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Abstract

The denoising process of diffusion models can be interpreted as an approximate projection
of noisy samples onto the data manifold. Moreover, the noise level in these samples approxi-
mates their distance to the underlying manifold. Building on this insight, we propose a novel
method to enhance sample generation by aligning the estimated noise level with the true
distance of noisy samples to the manifold. Specifically, we introduce a noise level correction
network, leveraging a pre-trained denoising network, to refine noise level estimates during the
denoising process. Additionally, we extend this approach to various image restoration tasks
by integrating task-specific constraints, including inpainting, deblurring, super-resolution,
colorization, and compressed sensing. Experimental results demonstrate that our method
significantly improves sample quality in both unconstrained and constrained generation sce-
narios. Notably, the proposed noise level correction framework is compatible with existing
denoising schedulers (e.g., DDIM), offering additional performance improvements.

1 Introduction

Generative models have significantly advanced our capability of creating high-fidelity data samples across
various domains such as images, audio, and text (Song & Ermon, 2019; Sohl-Dickstein et al., 2015; Oussidi &
Elhassouny, 2018). Among these, diffusion models have emerged as one of the most powerful approaches due
to their superior performance in generating high-quality samples from complex distributions (Song & Ermon,
2019; Sohl-Dickstein et al., 2015; Li et al., 2024a). Unlike previous generative models, such as generative
adversarial networks (GANs) (Goodfellow et al., 2014) and variational autoencoders (VAEs) (Kingma &
Welling, 2014), diffusion models add multiple levels of noise to the data, and the original data is recovered
through a learned denoising process (Ho et al., 2020; Song et al., 2023). This allows diffusion models to
handle high-dimensional, complex data distributions, making them especially useful for tasks where sample
quality and diversity are critical (Cao et al., 2024). Their capability to generate complex, high-resolution data
has led to widespread applications across numerous tasks, from image generation in models like DALL·E
(Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022) to use in robotic path-planningand control
(Janner et al., 2022; Chi et al., 2023), as well as text generation (Li et al., 2022).

Previous studies Rick Chang et al. (2017); Permenter & Yuan (2024) have interpreted the denoising process in
diffusion models as an approximate projection onto the data manifold, with the noise level σ approximating
the distance between noisy samples and the data manifold. This perspective views the sampling process
an optimization problem, where the goal is to minimize the distance between noisy samples and underlying
data manifold using gradient descent. The gradient direction is approximated by the denoiser output with
step size determined by the noise level schedule. However, the denoiser requires an estimate of the noise
level as input. We claim that accurately estimating the noise level during the denoising process—essentially
the distance to the data manifold—is crucial for convergence and accurate sampling.

The expressive capabilities of diffusion models have also made them a compelling choice for image restoration
tasks, where generating high-quality, detailed images is essential (Wang et al., 2024). Diffusion models
can be used as an image-prior for capturing the underlying structure of image manifold and have shown
significant promise for constrained generation such as image restoration (Song et al., 2022; Chung et al.,
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2023a; Wu et al., 2024). Plug-and-play methods were proposed to utilize pre-trained models without the
need for extensive retraining or end-to-end optimization for linear inverse problems such as super-resolution,
inpainting and compressed sensing (Chung et al., 2023a; Dou & Song, 2024; Wang et al., 2023). These
methods can be interpreted as alternating taking gradient steps towards the constraint set (linear projection
for linear inverse problems) and the image manifold (noise direction estimated by the learned denoiser) to
find their intersection. However, they may suffer from inconsistency issues if, after each projection step, the
noise level no longer approximates distance (Figure 2). Thus correcting the noise level after each step could
increase the accuracy of image restoration tasks.

Figure 1: Qualitative results of constrained image generation.

In this work, we propose a novel noise level correction method to refine the estimated noise level and
enhance sample generation quality. Our approach introduces a noise level correction network that aligns
the estimated noise level of noisy samples more closely with their true distance to the data manifold. By
dynamically adjusting the sampling step size based on this corrected noise level estimation, our method
improves the sample generation process, significantly enhancing the quality of generated data. Furthermore,
our approach integrates seamlessly with existing denoising scheduling methods, such as DDPM (Denoising
Diffusion Probabilistic Models) (Ho et al., 2020), DDIM (Denoising Diffusion Implicit Models) (Song et al.,
2021a), and EDM (Karras et al., 2022). Furthermore, we extend the application of noise level correction
to various image restoration tasks, showing its ability to improve the performance of diffusion-based models
such as DDNM (Denoising Diffusion Nullspace Model) in Wang et al. (2023). Our method achieves improved
results across tasks including inpainting, deblurring, super-resolution, colorization, and compressed sensing,
as illustrated in Figure 1. Additionally, we introduce a parameter-free lookup table as an approximation
of the noise level correction network, providing a computationally efficient alternative for improving the
performance of unconstrained diffusion models. In summary, our contributions are:

• We propose a noise level correction network that improves sample generation quality by dynamically
refining the estimated noise level during the denoising process.

• We extend the proposed method to constrained tasks, achieving significant performance improve-
ments in various image restoration challenges.

• We develop a parameter-free approximation of the noise level correction network, offering a compu-
tationally efficient tool to improve diffusion models.

• Through extensive experiments, we demonstrate that the proposed noise level correction method
consistently provides additional performance gains when applied on top of various denoising methods.
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2 Background

2.1 Diffusion Models

Diffusion models represent a powerful class of latent variable generative models that treat datasets as samples
from a probability distribution, typically assumed to lie on a low-dimensional manifold K ⊂ Rn (Sohl-
Dickstein et al., 2015; Ho et al., 2020). Given a data point z0 ∈ K, diffusion models aim to learn a
model distribution pθ(z0) that can approximate this manifold and enable the generation of high-quality
samples. The process involves gradually corrupting the data with noise during a forward diffusion process
and incrementally denoising it to reconstruct the original data through a reverse generative process.

Diffusion (forward) process. In the forward process, noise is added progressively to the data. Starting
with a clean sample z0, the noisy version at step t, denoted zt, is a linear combination of z0 and Gaussian
noise ϵ:

zt =
√

αtz0 +
√

1 − αtϵ, where ϵ ∼ N (0, I), (1)

where the noise schedule αt controls the amount of noise injected at each step. Typically, 1 > α1 > α2 >
· · · > αT > 0, ensuring that p(zT ) ∼ N (0, I) for large enough T (Ho et al., 2020). For mathematical
convenience, a reparameterization is often employed, defining new variables xt = zt/

√
αt, which results in:

xt = x0 + σtϵ, where ϵ ∼ N (0, I), (2)

σt =
√

1 − αt

αt
, xt = zt√

αt
, x0 = z0. (3)

Where σt denotes the noise level. Note that the diffusion process is originally presented in variable zt, we
use the formulation xt = zt√

αt
to simplify the forward and reverse denoising processes. A similar formulation

can be found in Song et al. (2021b); Karras et al. (2022).

Denoiser. Diffusion models are trained to estimate the noise vector added to a sample during the forward
process. The learned denoiser, denoted as ϵθ, is to predict the noise vector ϵ from the noisy sample xt and the
corresponding noise level σt. The denoiser is optimized using a loss function that minimizes the difference
between the predicted and true noise vectors:

L(θ) := E∥ϵθ(xt, σt) − ϵ∥2 = Ex0,t,ϵ∥ϵθ(x0 + σtϵ, σt) − ϵ∥2. (4)

Here, x0 is sampled from the data distribution, σt drawn from a discrete predefined noise level schedule, and
ϵ is drawn from a standard Gaussian distribution, N (0, I). Training is typically performed using gradient
descent, where randomly sampled triplets (x0, ϵ, σt) are used to update the denoiser’s parameters θ. Once
the denoiser is trained, we can apply a one-step estimation to approximate the clean sample x̂0|t ≈ x0:

x̂0|t = xt − σtϵθ(xt, σt). (5)

Denoising (sampling) process. The one-step estimation, eq. (5), may lack accuracy, in which case the
trained denoiser is applied iteratively through the denoising process. This process aims to progressively
denoise a noisy sample xT and recover the original data x0. Sampling algorithms construct a sequence of
intermediate estimates (xT , xT −1, . . . , x0), starting from an initial point xT drawn from a Gaussian distribu-
tion, xT ∼ N (0, I). One of the widely used samplers, the deterministic DDIM (Song et al., 2021a), follows
the recursion:

xt−1 = xt + (σt−1 − σt)ϵθ(xt, σt) = x̂0|t + σt−1ϵθ(xt, σt) (6)

xT = zT√
αt

=
√

σ2
T + 1 · zT , zT ∼ N (0, I), (7)

where ϵθ is the predicted noise at step t. This iterative process continues until x0 is obtained, which represents
a denoised sample. On the other hand, the randomized DDPM Ho et al. (2020) follows the update rule:

xt−1 = xt + (σt′ − σt)ϵθ(xt, σt) + ηωt = x̂0|t + σt′ϵθ(xt, σt) + ηωt (8)

σt′ =
σ2

t−1
σt

, η =
√

σ2
t−1 − σ2

t′ , ωt ∼ N (0, I). (9)
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2.2 Additional Related Works

Diffusion models have gained significant attention for their ability to learn complex data distributions,
excelling in diverse applications such as image generation (Ho et al., 2020; Arechiga et al., 2023), audio
synthesis (Kong et al., 2021), and robotics (Chi et al., 2023). Several methods have been proposed to
improve the quality of generated samples while reducing the number of iterations. These include techniques
such as distillation to reduce sampling steps (Nichol & Dhariwal, 2021), progressive distillation (Salimans
& Ho, 2022), consistency models (Song et al., 2023), and improved design space of diffusion models (Karras
et al., 2022). On the theoretical side, significant research has explored the non-asymptotic convergence
rates of various diffusion samplers, including DDPM (Benton et al., 2024) and DDIM (Li et al., 2024b),
contributing to a deeper understanding of the optimization processes underlying diffusion-based models.

Diffusion models have also demonstrated effectiveness in image restoration tasks, including super-resolution
(Chung et al., 2023a), inpainting (Kawar et al., 2022), deblurring, and compressed sensing (Wang et al.,
2023). These tasks often require strict adherence to data consistency constraints, making diffusion models
particularly suitable for addressing such challenges. Prior works such as DDRM (Kawar et al., 2022) and
DDNM (Wang et al., 2023) pioneered the use of diffusion models to solve linear inverse problems by projecting
noisy samples onto the subspace of solutions that satisfy linear constraints. Other methods have employed
alternative approaches, such as computing full projections by enforcing linear constraints or using the gradient
of quadratically penalized constraints (Chung et al., 2022; 2023b). Recent work has extended the application
of diffusion models to more complex non-convex constraint functions. In these cases, iterative methods
such as gradient descent are utilized to guide the sampling process toward satisfying the constraints, as
demonstrated in Universal Guidance (Bansal et al., 2023). Furthermore, a provably robust framework for
score-based diffusion models applied to image reconstruction was introduced by Xu & Chi (2024), offering
robust performance in handling nonlinear inverse problems while ensuring consistency with the observed
data.

3 Methods

3.1 Noise Level as Distance from Noisy Samples to the Manifold

This work builds on the insight that denoising in diffusion models can be interpreted as an approximate
projection onto the support of the training-set distribution. Previous studies Rick Chang et al. (2017);
Permenter & Yuan (2024) have established this connection. The distance function of a set K ⊂ Rn, denoted
as distK(x), is defined as the minimum distance from a point x to any point x0 ∈ K:

distK(x) := inf{∥x − x0∥ : x0 ∈ K}. (10)

The projection of x onto K, denoted projK(x), refers to the point (or points) on K that achieves this minimum
distance. Assuming the projection is unique, we can express it as:

projK(x) := {x0 ∈ K : distK(x) = ∥x − x0∥}. (11)

Permenter & Yuan (2024) introduces the following relative-error model, inspired by the manifold hypothesis
(Bengio et al., 2013; Fefferman et al., 2016) as well as from the fact that the ideal/optimal denoiser is the
gradient of a smoothed distance function:

Assumption 3.1 (Informal) The learned denoiser ϵ∗ as well as the sampling noise schedule {σt}N
t=1 sat-

isfies the following for all xt during sampling:

1. σt decreases slowly enough to ensure that
√

nσt ≈ distK(xt) after each iteration

2. If σt approximates distK(xt), then xt − σtϵ
∗(xt, σt) ≈ projK(xt) with constant relative error with

respect to distK(xt).

Leveraging this assumption, we outline the following theorem informally, which summarizes results from
Permenter & Yuan (2024) (for formal proofs refer to Permenter & Yuan (2024)):
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Theorem 3.1 (Informal) Suppose Assumption 3.1 holds and the initial distance satisfies distK(xT ) =√
nσT . Then the DDIM sampler generates the sequence (xT , . . . , x0) by performing gradient descent on the

objective function f(x) := 1
2 distK(x)2 with a step-size of βt := 1 − σt−1/σt:

xt−1 = xt − βt∇f(xt) = xt − βt · distK(xt) · ∇distK(xt), (12)
distK(xt) =

√
nσt, ∇distK(xt) = ϵ∗

θ(xt, σt)/
√

n (13)

Theorem 3.1 demonstrates that the estimated clean sample generated by the denoising process x̂0|t =
xtσtϵθ(xt, σt)) serves as an approximation of the projection of the noisy sample xt onto the manifold K.
It also establishes that throughout the sampling process, the distance of a noisy sample xt onto manifold
K, can be approximated by the noise level

√
nσt. Given that σt and ϵθ satisfies Assumption 3.1, the DDIM

process generates a sequence dt with monotonically decreasing distance to the manifold by gradient descent
on the squared-distance function to the manifold. Specifically, the distance of each noisy sample from the
manifold is determined by the noise level, distK(xt) =

√
nσt, while the gradient ∇f(x), which is the direction

of projection of xt onto the manifold, is estimated by the noise vector ∇distK(xt) ≈ ϵ∗
θ(xt, σt)/

√
n.

(a) Denoising Process (b) Constrained Denoising (c) Denoising with NLC

Figure 2: Denoising approximates projection. (a) Denoising process using DDIM. (b) Constrained denoising
process viewed as an alternative projection. Note that in both (a) and (b), the estimated noise level σt

does not always match the distance distK(xt). (c) Constrained denoising process with noise level correction
(NLC). By replacing the prior noise level σt with the more accurate noise level σ̂t, the projection more closely
aligns with the manifold K.

However Theorem 3.1 relies on two key assumptions: (1) a denoiser ϵθ(xt, σt) satisfying the relative
projection-error assumption, and (2) a noise schedule that decrease slowly enough so that for all t, we
have distK(xt) ≈

√
nσt. For sample generation, cumulative errors introduced during the denoising process

can lead to biases due to the imperfections of the denoiser Ning et al. (2023). These errors become par-
ticularly significant by the final steps, where deviations in the denoising process result in a large mismatch
between the true distance distK(xt) and the estimated noise level

√
nσt, as illustrated in Figure 2a. As

observed, a mismatch between the true distance and the estimated noise level can lead to the clean image
estimation using eq. (5) falling outside the manifold K. In constrained sample generation tasks, such as
image restoration and guided sample generation, this issue is further exacerbated. As shown in Figure 2b,
deviations introduced by guidance terms or projection steps onto the constraint C amplify the discrepancy
between the estimated noise level

√
nσt and the actual distance distK(xt). These deviations are particularly

impactful in the later denoising steps and can prevent the reconstructed sample from accurately lying on the
data manifold K. Additional details are provided in Appendix A.

3.2 Noise Level Correction

To address the issue of inaccurate distance estimation caused by relying on a predefined noise level σt, as
discussed in section 3.1, we propose a method called noise level correction to better align the corrected
noise level with the true distance. This approach replaces the predefined noise level scheduler σt with
a corrected noise level σ̂t during the denoising process, enabling more accurate distance estimation and
improved sample quality. As shown in Figure 2c, using the corrected noise level brings the estimated clean
sample x̂0|t closer to the data manifold K compared to the naive denoising process that relies solely on σt.
The corrected noise level is defined as σ̂t := σt[1 + r̂t] ≈ distK(xt)/

√
n, where r̂t represents the residual
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and can be modeled using either a neural network or a non-parametric function. This residual alignment
approach is effective because the residual r̂t is stable across noise levels, making it easier to model, while the
noise level itself may become unbounded during large diffusion time steps.

For distK(xt), calculating the ground-truth distance to the manifold is generally not feasible. Instead, we
approximate it using the distance between the noisy sample and its clean counterpart in the forward diffusion
process. Specifically, given the noisy samples xt generated by the diffusion process from x0 ∈ K in eq. (2),
we estimate the distance as distK(xt) ≈ |xt − x0|. This approximation is reasonable when the projection of
xt onto K satisfies projK(xt) = projK(x0 +σtϵ) ≈ x0. As illustrated in Permenter & Yuan (2024), this occurs
when σt is small (due to the manifold hypothesis, the random noise ϵ is orthogonal to the manifold K), and
when σt is much larger than the diameter of K.

We introduce a neural network to learn r̂t = rθ(xt, σt) for noise level correction. To minimize additional
computational costs, we design the noise level correction network rθ(·) to be small and efficient. It leverages
the encoder module of the denoiser’s UNet architecture, followed by compact layers that fully utilize the
pre-trained denoiser’s capabilities. As shown in Figure 3, the denoiser network uses a UNet structure to
estimate the noise vector (denoising direction) based on the noisy image xt and σt. Meanwhile, the noise
level correction network utilizes the shared encoder, followed by additional neural network blocks, to predict
the residual noise level. We train the noise level correction network rθ(·) alongside a fixed, pre-trained
denoiser ϵθ(·), ensuring coordinated improvement in denoising accuracy. In training, to further enhance the
noise level correction network, we introduce a scaling factor λ to expand the input-output space of rθ(xt, σt)
within the diffusion process. The objective function for noise level correction is defined as:

Lrθ
:= E

[
∥
√

nσt[1 + rθ(x̂t, σt)] − σtλ∥ϵt∥∥
]

(14)
x̂t = x0 + σtλϵt, ϵt ∼ N (0, I), λ ∼ U(1 − δ, 1 + δ) (15)

The scaling factor λ is sampled from a uniform distribution U(1 − δ, 1 + δ), with δ = 0.5 in our experiment,
to control the level of variation introduced into the noise level correction.

Figure 3: Neural Network Architecture

3.3 Enhancing Sample Generation with Noise Level Correction

The trained noise level correction network rθ can be integrated into various existing sampling algorithms to
improve sample quality. For algorithms that include an initial sample estimate x0|t, eq. (5), we reformulate
the one-step estimation as follows:

x̂0|t = xt − σ̂tϵ̂t (16)

σ̂t = σt[1 + rθ(x̂t, σt)], ϵ̂t =
√

n
ϵθ(xt, σ̂t)

∥ϵθ(xt, σ̂t)∥
(17)

We normalize the noise vector ϵθ(·) during the sampling as in eq. (17), process to decouple noise level
(magnitude) correction σ̂t from direction estimation ϵ̂t. Empirical experiments show that normalizing ϵθ(·)
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and using σ̂t to account for magnitude yields better results compared to not normalizing ϵθ(·). In the training
loss function eq. (14), normalization of the noise vector ϵ is unnecessary because the randomly sampled noise
ϵ naturally concentrates around the norm

√
n. However, the neural network-estimated noise vector ϵθ(·)

does not maintain a constant norm.

Using eq. (17), we integrate noise level correction into the DDIM and DDPM sampling algorithms, as
illustrated in Algorithm 1, with the modifications from the original DDIM/DDPM algorithms highlighted in
blue. In this algorithm, lines 3 and 4 represent the current and next-step noise level corrections, respectively,
while line 5 provides the normalized noise vector. Lines 6 through 8 follow the steps of the original DDIM and
DDPM algorithms. Similarly, noise level correction can be integrated into the EDM sampling algorithm,
as shown in Algorithm 3. Note that in EDM with noise level correction, we do not normalize the noise
vector ϵθ(xt, σ̂t), since EDM employs a second-order Heun solver to improve noise vector estimation. By
incorporating noise level correction, these algorithms produce higher-quality samples with improved accuracy
by considering both the direction and distance to the data manifold during the denoising process.

Algorithm 1 DDIM/DDPM with Noise Level Correction (DDIM/DDPM-NLC)
Input: Denoiser ϵθ and noise level corrector rθ

Input: Noise scheduler σt, randomness scale η (η = 0 for deterministic DDIM and η = 1 for DDPM )
Output: samples x0 ∈ K

1: xT =
√

σ2
T + 1 · zT , zT ∼ N (0, I),

2: for t = T, T − 1, · · · , 1 do
3: σ̂t = σt[1 + rθ(xt, σt))]
4: σ̂t−1 = σ̂t

σt−1
σt

5: ϵ̂t =
√

nϵθ(xt, σ̂t)/∥ϵθ(xt, σ̂t)∥
6: σnoise = η σ̂t−1

σ̂t

√
σ̂2

t − σ̂2
t−1

7: σsignal =
√

σ̂2
t−1 − σ2

noise

8: xt−1 = xt + (σsignal − σ̂t)ϵ̂t + σnoiseωt, where ωt ∼ N (0, I)
9: end for

3.4 Constrained Sample Generation

The noise level correction method can also improve performance in constrained sample generation tasks,
such as image restoration. Let K denote the data manifold, and let C represent specific constraints, such
as masked pixel matching in inpainting tasks. Constrained sample generation aims to generate samples
x that satisfy both the manifold and constraint requirements, meaning x ∈ K ∩ C. Similar to DDIM-NLC
sampling approach in Algorithm 1, noise level correction can be incorporated into existing constrained sample
generation methods, such as DDNM (Wang et al., 2023), a DDIM-based image restoration algorithm. An
example of this is shown in Algorithm 4.

To further enhance constrained sample generation, we propose a flexible iterative projection algorithm in-
spired by the alternating projection technique (Bauschke & Borwein, 1996; Lewis & Malick, 2008). This
approach iteratively projects samples onto each constraint set to approximate a solution that lies in the
intersection of K and C. The iterative projection process can be expressed as follows:

x̂0|k = projK(x(k)), x0|k = projC(x̂0|k), x(k+1) = x0|k + ϵ̄, , k = 0, 1, · · · (18)

Where x̂0|k and x0|k represent the k-th estimates of points satisfying x ∈ K and x ∈ C, respectively. The
iterative rule ensures that x0|k approximates a point in K ∩ C. xk+1 introduces a small noise term ϵ̄, which
helps avoid convergence to local minima in non-flat regions. This noise term is analogous to the one used in
DDPM (eq. (8)) and facilitates iterative refinement toward the final clean samples. The noise term ϵ̄ can be
gradually reduced over iterations or set to zero once a satisfactory iteration k = Kmax is achieved. At this
point, the algorithm returns a final estimate such that xKmax

∈ K ∩ C.

Considering diffusion models, Theorem 1 demonstrates that the projection operator projK(·) can be approx-
imately computed using the denoising operator. Starting from an initial random point x0 = σmaxϵ, the
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projection onto the manifold K can be iteratively refined using eq. (16) and eq. (17), as follows:

projK(x(k)) = x̂0|k = x(k) − σ̂(k)ϵ̂(k) (19)

For the additional constraint projection, projC(x), the specific calculation depends on the nature of the
constraint. The constraints for many image restoration tasks are linear, including inpainting, colorization,
super-resolution, deblurring, and compressed sensing. For tasks with linear constraints, the projection can
be computed directly or optimized using gradient descent. Consider an image restoration task formulated
as y = Ax0, where x0 represents the ground-truth image, y is the degraded observation, A is the linear
degradation operator. Given the degraded image y and the current estimate x̂0|k, the projection onto the
constraint can be computed as:

x0|k = projC(x̂0|k) = A†y + (I − A†A)x̂0|k (20)

Where A† is the pseudo-inverse of A. In this work, we adopt the values of A† for image restoration tasks
as provided in Wang et al. (2023). Here, x0|k is the k−th th estimate satisfying x0 ∈ K ∩ C. This iterative
estimation requires a predefined noise scheduler σ1, · · · , σ(k), · · · to generate x0|k and x(k+1). To allow flexible
and potentially unlimited refinement steps, we define the noise schedule σ(k) with a maximum noise level
σ(0) = σmax and a minimum level σmin, decaying by a predefined factor η < 1. If the noise level reaches
σmin, the process can either stop with returning x0|k or restart from σrestart. This strategy permits an
arbitrary number of refinement steps, stopping either at a desired loss threshold or continuing indefinitely.
Since σ(k) represents the distance of noisy samples from the manifold, this decaying schedule incrementally
reduces x(k)’s distance from the manifold.

Algorithm 2 Constrained Sample Generation with Noise Level Correction (IterProj-NLC)
Input: Denoiser ϵθ and noise level corrector rθ

Input: Constraint C, distance decay α, noise scale η
Input: σmax, σmin, and σrestart, and maximum iterations Kmax

Output: samples x0|K ∈ K ∩ C
1: x(0) = σ(0)ϵ, ϵ ∼ N (0, I), σ(0) = σmax

2: for k = 0, 1, 2, · · · , do
3: σ̂(k) = σ(k)[1 + rθ(x(k), σ(k))]
4: ϵ̂(k) =

√
nϵθ(x(k), σ̂(k))/∥ϵθ(x(k), σ̂(k))∥

5: x̂0|k = x(k) − σ̂(k)ϵ̂(k)
6: x0|k = ProjC(x̂0|k) (For image restoration tasks, refer eq. (20))
7: σ(k+1) = ασ(k)
8: if σ(k+1) < σmin then
9: σ(k+1) = σrestart

10: end
11: ϵ̃(k) =

√
1 − η2ϵ̂(k) + ηϵ, where ϵ ∼ N (0, I)

12: x(k+1) = x0|k + σ(k+1)ϵ̃(k)
13: if k ≥ Kmax or ∥x0|k − x0|k−1∥ is small enough then
14: return x0|k
15: end
16: end for

Algorithm 2 presents the proposed constrained generation approach, termed IterProj-NLC (Iterative Projec-
tion with Noise Level Correction). Lines 3 to 5 project onto the data manifold K, while Line 6 projects onto
the constraint set C. Lines 7 to 10 update the noise level, and Lines 11 and 12 compute the next noisy sample
x(k+1) from the current clean estimate xk|0. This step also acts as a convex combination of the current clean
estimate xk|0 and the previous noisy sample x(k).
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4 Experiments

4.1 Toy Experiments

We conducted a toy experiment to demonstrate the effectiveness of noise level correction in sample generation
for diffusion models. The objective was to generate samples on d-sphere manifold. The toy training dataset
was sampled from d-dimensional sphere manifold embedded within an n-dimensional data space, where
d < n. Detailed experimental design information is available in Appendix C.1.

After training, we applied the proposed 10-step DDIM with Noise Level Correction (DDIM-NLC), as detailed
in Algorithm 1 to generate samples. This method was compared to the 10-step DDIM baseline. Our
evaluation metric measured the distance between the generated samples and the ground-truth d-sphere
manifold K (where lower distance indicates better results). Figure 4a presents the sample quality (measured
as the distance to the manifold) for different methods across each denoising step. As shown, DDIM-NLC
outperforms the baseline DDIM by generating samples that are consistently closer to the target manifold.

As we discussed in Theorom 1, the distance to the manifold can be approximated by the noise level, as
shown in ??. We further evaluated the accuracy of the noise level correction by examining its proximity
to the actual distance distK(x̂t). Figure 4b displays the relative distance estimation bias during sampling,
calculated as

Distance Estimation Bias = distK(x̂t) −
√

nσ̂t√
nσt

.

Where σ̂t = σt for DDIM, and σ̂t = σt[1 + rθ(x̂t, σt)] for DDIM-NLC. The results show that DDIM-NLC
achieves a significantly smaller distance estimation bias than DDIM, particularly in the later steps as samples
approach the manifold. The results of constrained sample generation are shown in Appendix C.2.
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Figure 4: Results from experiments on toy models. (a) Generated sample quality was evaluated the distance
to the manifold. (b) Distance Estimation Error.

4.2 Unconstrained Image Generation

We conducted experiments to evaluate the effectiveness of noise level correction in unconstrained image
generation tasks. The noise level correction network was trained on top of a pre-trained denoiser network.
Notably, the noise level correction network is approximately ten times smaller than the denoiser network.
Additional details on the experimental setup are provided in Appendix D.1. We used the FID (Fréchet
Inception Distance) score as the evaluation metric to assess the quality of generated samples, where lower
scores indicate better quality, following standard practice in image generation tasks Heusel et al. (2017). The
experimental results for the DDIM/DDPM framework on the CIFAR-10 dataset are shown in Table 1. As
observed, DDPM-NLC and DDIM-NLC, which incorporate noise level correction, outperform the original
DDPM and DDIM models across all sampling steps. Specifically, our proposed noise level correction approach
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Table 1: FID on DDIM/DDPM sampling on CIFAR-10 with
and without noise level correction.

Method\Step 1000 300 100 50 20 10
DDPM 2.99 2.95 3.37 4.43 10.41 23.19
DDPM-NLC 2.35 2.21 2.39 2.74 6.44 19.27
DDIM 4.29 4.32 4.66 5.17 8.25 14.21
DDIM-NLC 3.11 3.11 3.12 4.04 5.66 9.61

Table 2: FID on EDM sampling on
CIFAR-10 with and w/o NLC.

Method\Step 35 21 13
Euler 3.81 6.29 12.28
Euler-NLC 2.79 4.21 8.17
Heun 1.98 2.33 7.22
Heun-NLC 1.95 2.22 6.56

improves DDIM performance by 32%, 31%, 22%, 33%, and 28% for 10, 20, 50, 100, and 300 sampling steps,
respectively.

We evaluate the effectiveness of noise level correction with EDM (Karras et al., 2022), as it achieves state-
of-the-art sampling quality with few sampling steps. Specifically, we assess the impact of NLC using both a
first-order Euler ODE solver and a second-order Heun ODE solver within the EDM framework. As shown
in Table 2, the proposed NLC also enhances the performance of EDM-based sampling methods. Notably, as
a robust sampling technique, noise level correction improves the performance of the Heun sampler by 10%
with just 13 sampling steps.

4.3 Image Restoration

In this section, we evaluate the effectiveness of noise level correction on five common image restoration tasks,
4× super-resolution (SR) using bicubic downsampling, deblurring with a Gaussian blur kernel, colorization
using an average grayscale operator, compressed sensing (CS) with a Walsh-Hadamard sampling matrix at a
0.25 compression ratio, and inpainting with text masks. These experiments are conducted on the ImageNet
(Deng et al., 2009) and CelebA-HQ (Karras et al., 2018) datasets. We compare our method with recent
state-of-the-art diffusion-based image restoration methods, including ILVR (Choi et al., 2021), RePaint ?,
DDRM (Kawar et al., 2022), and DDNM (Wang et al., 2023). For a fair comparison, all diffusion-based
methods utilize the same pretrained denoising networks with the same 100-step denoising process (100
number of inference steps), following the experimental setup in Wang et al. (2023). To evaluate sample
quality, we use FID, PSNR (Peak Signal-to-Noise Ratio), and SSIM (Structural Similarity Index Measure).
For colorization, where PSNR and SSIM are less effective metrics (Wang et al., 2023), we additionally use
a Consistency metric, denoted as "Cons" and calculated as ∥Ax0 − y∥1. As a baseline, we also include the
inverse solution for each image restoration task, given by x̂ = A†y, which achieves zero constraint violation
but lacks the data manifold information.

The results on the ImageNet dataset are summarized in Table 3, while those for CelebA-HQ are shown in
Table 4. Tasks not supported by certain methods are marked as “N/A.” As the results indicate, integrating
noise level correction (as in Algorithm 4) enhances sample generation performance for DDNM. Furthermore,
the proposed IterProj-NLC method (Algorithm 2), achieves the best performance across all benchmarks.
For instance, IterProj-NLC outperforms the baseline DDNM in FID score by 6%, 59%, 14%, and 50% on
4× SR, Deblurring, CS 25%, and Inpainting tasks, respectively. It also improves Consistency in colorization
by 9%. Qualitative comparisons are shown in Figure 1, with additional results in Appendix E.1.

Table 3: Comparative results of five image restoration tasks on ImageNet.

ImageNet 4 x SR Deblurring Colorization CS 25% Inpainting
Method PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ Cons↓/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓

A†y 24.26 / 0.684 / 134.4 18.46 / 0.6616 / 55.42 0.0 / 43.37 15.65 / 0.510 / 277.4 14.52/ 0.799 / 72.71
ILVR 27.40 / 0.870 / 43.66 N/A N/A N/A N/A

RePaint N/A N/A N/A N/A 31.87 / 0.968 / 13.43
DDRM 27.38 / 0.869 / 43.15 43.01 / 0.992 / 1.48 260.4 / 36.56 19.95 / 0.704 / 97.99 31.73 / 0.966 / 10.82
DDNM 27.45 / 0.870/ 39.56 44.93 / 0.993 / 1.17 42.32 / 36.32 21.62 / 0.748 / 64.68 31.60 / 0.946 / 9.79

DDNM-NLC 27.50 / 0.872 / 37.82 46.20 / 0.995 / 0.79 41.60 / 35.89 21.27 / 0.769 / 58.96 32.51 / 0.957 / 7.20
IterProj-NLC 27.56 / 0.873 / 37.48 48.24 / 0.997 / 0.48 38.30/ 35.66 22.27 / 0.771 / 55.69 33.58 / 0.966 / 4.90
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Table 4: Comparative results of five image restoration tasks on Celeba-HQ.

Celeba-HQ 4 x SR Deblurring Colorization CS 25% Inpainting
Method PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ Cons↓/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓

A†y 27.27 / 0.782 / 103.3 18.85 / 0.741 / 54.31 0.0 / 68.81 15.09 / 0.583 / 377.7 15.57 / 0.809 / 181.56
ILVR 31.59 / 0.945 / 29.82 N/A N/A N/A N/A

RePaint N/A N/A N/A N/A 35.20 / 0.981 /18.21
DDRM 31.63 / 0.945 / 31.04 43.07 / 0.993 / 6.24 455.9 / 31.26 24.86 / 0.876 / 46.77 34.79 / 0.978 /16.35
DDNM 31.63 / 0.945 / 22.50 46.72 / 0.996 / 1.42 26.25 / 26.78 27.52 / 0.909 / 28.80 35.64 / 0.979 / 12.21

DDNM-NLC 31.78 / 0.947 / 22.10 46.78 / 0.997 / 1.36 24.92 / 25.81 27.63 / 0.914 / 24.72 36.48 / 0.980 / 11.60
IterProj-NLC 31.93 / 0.949 / 21.96 46.97 / 0.997 / 1.29 24.65 / 25.30 27.78 / 0.916 / 23.45 36.57 / 0.981 / 11.07

4.4 Lookup Table for Noise Level Correction

In this section, we explore the statistical properties of the noise level correction network and demonstrate
how these properties can be leveraged to create a lookup table for correcting noise levels without neural
network inference. The lookup table for noise level correction is defined as σ̂t = σt[1 + r̂t] where r̂t is a
non-parametric function that approximates the actual distance to the data manifold. As illustrated in the
toy experiment shown in Figure 4b, distance estimation error using noise levels is lower in the initial sampling
steps and increases in later stages when the true distance to the manifold decreases. This trend is expected:
in the early stages, noisy samples are farther from the manifold, making approximate projections easier and
reducing relative distance estimation error. More specifically, at the initial steps, the true distance distK(xt)
is slightly larger than the estimation from the noise level

√
nσt as supported by eq. (22). In later steps,

however, distK(xt) decreases more rapidly than
√

nσt.
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Figure 5: Plot of rθ(σt) versus σt in the unconstrained DDIM-NLC denoising process and constrained DDNM-
NLC denoising process. The curve represents the average over samples, with shaded regions indicating the
standard deviation. The larger variance (right) illustrates that the corrections applied by rθ(σt) are too
complex for a simple look-up table in the context of constrained generation.

We conducted an experiment to analyze the statistical behavior of the neural network-based noise level cor-
rector rθ(·) for unconstrained sample generation on the CIFAR-10 and ImageNet datasets. Figure 5a presents
the relationship between rθ(σt) and σt, averaged over the samples xt during the DDIM-NLC denoising pro-
cess. As seen, rθ(σt) values are negative for smaller σt corresponding to the final denoising steps (higher
time steps t), and increase as σt increases. This trend aligns with the observation in the toy experiment
Figure 4b, indicating that distance decreases in the final steps and thus requires reducing σ̂t for accurate
distance representation. Moreover, a similar trend is observed across different datasets, such as CIFAR-10
and ImageNet. We further analyzed the statistical behavior of rθ(·) in constrained sample generation tasks
on the ImageNet dataset. These tasks introduce additional variability due to constraint projections eq. (20),
resulting in higher variance in rθ(·) across samples. Notably, even within the same dataset, constraints such
as colorization and inpainting exhibit distinct trends during the final denoising steps (i.e., at small noise
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levels). Moreover, the variance at small noise levels is substantially higher in constrained tasks compared to
unconstrained scenarios.

Using the values of rθ(σt) recorded in the average value curve of Figure 5, we created a lookup table-based
noise level correction (LT-NLC) search r̂t to estimate rθ(σt). We evaluated the effectiveness of LT-NLC
in unconstrained sample generation tasks. The experimental results for LT-NLC applied to the DDIM
framework on the CIFAR-10 dataset are shown in Table 5. As expected, the trained noise level correction
(NLC) achieves the best performance. However, LT-NLC also significantly improves the original DDIM,
enhancing performance by 14%, 20%, and 15% for 10, 20, and 50 sampling steps, respectively. The results
for LT-NLC applied to the EDM framework on the CIFAR-10 dataset are presented in Table 6. Similar to
the DDIM results, LT-NLC improves the performance of EDM-based sampling methods, demonstrating its
effectiveness as a network inference-free enhancement. The results for constrained generation can be found
in Appendix D.3. As illustrated in Figure 5, the variance of rθ(σt) in constrained generation tasks, such as
image restoration, is significantly higher. Consequently, the performance improvements achieved by LT-NLC
are smaller compared to those of the neural network-based NLC, as LT-NLC applies the same correction
across all samples. Therefore, in constrained image generation tasks, the neural network-based NLC remains
essential for achieving optimal performance.

Table 5: FID on DDIM sampling on CIFAR-10 with lookup
table noise level correction.

Method\Step 1000 300 100 50 20 10
DDIM 4.29 4.32 4.66 5.17 8.25 14.21
DDIM-LT-NLC 4.01 3.97 3.83 4.37 6.54 11.21
DDIM-NLC 3.11 3.11 3.12 4.04 5.66 9.61

Table 6: FID on EDM sampling on
CIFAR-10 with and with LT-NLC.

Method\Step 35 21 13
Heun 1.98 2.33 7.22
Heun-LT-NLC 1.97 2.27 6.84
Heun-NLC 1.95 2.22 6.56

The noise level correction (NLC) network is significantly smaller than the denoiser, resulting in minimal
additional computational overhead. Detailed comparisons of the training and inference times for the proposed
NLC method are provided in Appendix D.2.

5 Conclusions

In this work, we explore the relationship between noise levels in diffusion models and the distance of noisy
samples from the underlying data manifold. Building on this insight, we propose a novel noise level correction
method, utilizing a neural network to align the corrected noise level with the true distance of noisy samples to
the data manifold. This alignment significantly improves sample generation quality. We further extend this
approach to constrained sample generation tasks, such as image restoration, within an alternating projection
framework. Extensive experiments on both unconstrained and constrained image generation tasks validate
the effectiveness of the proposed noise level correction network. Additionally, we introduce a lookup table-
based approximation for noise level correction. This parameter-free method effectively enhances performance
in various unconstrained sample generation tasks, offering a computationally efficient alternative to the neural
network-based approach.
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A Discrepancy between
√

nσt and the Distance distK(xt)

Previous works Ho et al. (2020); Karras et al. (2022) have primarily focused on improving the estimation of
the noise vector ϵθ(xt, σt) ≈ ϵt eq. (4), aligning with the first assumption of a zero-error denoiser. However,
these approaches typically rely on a predefined noise level scheduler σt for distance estimation, often without
explicit validation. This reliance can lead to inaccuracies, even at the initial step, where distK(xT ) ̸=

√
nσT .

Consider the DDIM as an example. The initial noisy point xT is sampled as follows:

xT = zT√
αt

=
√

σ2
T + 1 · zT , zT ∼ N (0, I) (21)

Let x∗
0 = ProjK(xt) ∈ K denotes the projection of xt onto the manifold K. In the context of an image

manifold, we have ∥x∗
0∥ > 0. If ⟨zT , x∗

0⟩ ≤ 0, the expectation of squared distance is given by:

E
[
∥xT − x∗

0∥2]
= E

[
∥
√

σ2
T + 1 · zT − x∗

0∥2
]

= E
[
(σ2

T + 1)∥zT ∥2 + ∥x∗
0∥2 − 2

√
σ2

T + 1⟨zT , x∗
0⟩

]
≥ (σ2

T + 1)E[∥zT ∥2] + E[∥x∗
0∥2]

= (σ2
T + 1)n + E[∥x∗

0∥2] > σ2
T n (22)

where the final equality uses the fact that E[|zT |2] = n for for zT ∼ N (0, In×n). Equation (22) implies that,
with high probability, distK(xT ) >

√
nσT . Consequently, at any step t = T, . . . , 0, these deviations may

result in distK(xt) ̸=
√

nσt, potentially causing the final sample to deviate from the manifold K. It is worth
noting that the EDM sampling method initializes with a random step as xT = σT zT . However, it leads to
the same conclusion: for ⟨zT , x∗

0⟩ ≤ 0, we have distK(xT ) ̸=
√

nσT .

B Sampling with Noise Level Correction

Algorithm 3 presents the algorithm for incorporating noise level correction within EDM. Unlike the approach
used in DDIM with noise level correction Algorithm 1, the EDM version does not normalize the noise vector
ϵθ(xt, σ̂t).

Algorithm 3 EDM with Noise Level Correction (EDM-NLC)
Input: Denoiser ϵθ and noise level corrector rθ

Input: Noise scheduler σt

Output: samples x0 ∈ K
1: xT = σT ϵ, ϵ ∼ N (0, I),
2: for t = T, T − 1, · · · , 1 do
3: σ̂t = σt[1 + rθ(xt, σt))]
4: σ̂t−1 = σ̂t

σt−1
σt

5: ϵ̂t = ϵθ(xt, σ̂t)
6: xt−1 = xt + (σ̂t−1 − σ̂t)ϵ̂t

7: if t > 1 then
8: ϵ̂t−1 = ϵθ(xt−1, σ̂t−1)
9: ϵ̄t = 0.5ϵ̂t + 0.5ϵ̂t−1

10: xt−1 = xt + (σ̂t−1 − σ̂t)ϵ̄t

11: end
12: end for

Algorithm 4 presents the algorithm for incorporating noise level correction within DDNM for linear image
restoration tasks y = Ax.
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Algorithm 4 DDNM with Noise Level Correction (DDNM-NLC)
Input: Denoiser ϵθ and noise level corrector rθ

Input: Noise scheduler σt, randomness scale η,
Input: Linear degradation operator A, and pseudo-inverse operator A† for image restoration constraint C,
Input: Degraded image y,
Output: samples x0 ∈ K ∩ C

1: xT =
√

σ2
T + 1 · zT , zT ∼ N (0, I),

2: for t = T, T − 1, · · · , 1 do
3: σ̂t = σt[1 + rθ(xt, σt))]
4: σ̂t−1 = σ̂t

σt−1
σt

5: ϵ̂t =
√

nϵθ(xt, σ̂t)/∥ϵθ(xt, σ̂t)∥
6: x̂0|t = xt − σ̂tϵ̂t

7: x0|t = A†y + (I − A†A)x̂0|t

8: σnoise = η σ̂t−1
σ̂t

√
σ̂2

t − σ̂2
t−1

9: σsignal =
√

σ̂2
t−1 − σ2

noise

10: xt−1 = x0|t + σsignalϵ̂t + σnoiseωt, where ωt ∼ N (0, I)
11: end for
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Figure 6: (a) Sphere datasets in toy experiments; (b) shows the results of sample generation with linear
constraint Ax = b.
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C Toy Experiments

C.1 Experimental design for sphere manifold.

The dataset consists of samples from a d-dimensional sphere manifold, denoted as s ∼ Sd embedded within
an n-dimensional data space. To create training samples x we apply m different linear projections (rotations)
to the original sphere s and add a small amount of Gaussian noise xnoise to the d-sphere signal xsignal. Let K
represent the d-sphere manifold, such that xsignal ∈ K. Each training sample x ∈ Rn is generated according
to the following equations:

x = xsignal + xnoise, xnoise ∼ N (0, 10−6I) (23)
xsignal = Rks ∈ Rn, where k ∼ U({1, 2, · · · , m}), RkRT

k = I(n×n) (24)

s ∼ Sd, where
d+1∑
i=1

s2
i = 1, sd+2 = sd+3 = · · · = sn = 0 (25)

Where N (0, Σ) denotes the normal distribution, U({·}) denotes the uniform distribution. Sd refers to a d
-dimensional sphere. The matrices R1, R2, · · · , Rm are fixed random orthogonal matrices that are utilized
to "hide" zeros in certain coordinates. For our experiments, we focus primarily on a dataset with parameters
n = 100, d = 1, and m = 4, resulting in a 100-dimensional dataset composed of 4 circles. For illustration,
we also generate a 3-dimensional dataset with parameters (n = 3, d = 1, m = 4), as shown in Figure 6a.
A total of 10,000 samples were used to train the model. The denoiser ϵθ(·)is implemented with a fully
connected network containing 5 layers, each with a hidden dimension of 128. For noise level correction, rθ(·)
is implemented with a 2-layer fully connected network, also using a hidden dimension of 128.

C.2 Experimental result of constrained sample generation.

In Section 4.1, we demonstrate the effectiveness of noise level correction in unconstrained sample generation.
Here, we extend the evaluation to constrained generation, using a linear constraint Ax = b with A ∈ R1×n

as a random variable and b = 0. We applied the proposed 10-step DDNM with Noise Level Correction
(DDNM-NLC), as detailed in Algorithm 4 to generate samples and compared this method to the 10-step
DDNM baseline. We report the distance (to measure sample quality) and Consistency error ∥Ax − b∥ (to
measure constraint satisfaction) as shown in Figure 6b. The proposed method shows superior performance in
both metrics, generating high-quality samples that satisfy the constraint more effectively than the baseline.

D Image Generation Experiments

D.1 Experimental design

Implementation. In this experiment, we used a pretrained denoiser ϵθ(·), and trained the noise level
correction network rθ(·) to enhance the denoising process. For unconstrained image generation experiments,
we employed the pretrained 32 × 32 denoising network from Song et al. (2021a) in DDIM-based experiments
on the CIFAR-10 dataset, and the pretrained 32 × 32 denoising network from Karras et al. (2022) in EDM-
based experiments on CIFAR-10. For image restoration experiments, we utilized the pretrained 256 × 255
denoising network from Dhariwal & Nichol (2021) for ImageNet experiments and the pretrained 256 × 255
denoising network from Lugmayr et al. (2022) for CelebA-HQ experiments.

Network architecture. The noise correction network rθ(·) is designed to be significantly smaller than the
denoiser ϵθ(·) , while still incorporating residual and attention blocks similar to those used in the original
DDPM denoiser Ho et al. (2020). Table 7 outlines the architecture of the noise correction network for
CIFAR-10, ImageNet, and CelebA-HQ datasets. For all datasets, we employ 2 residual blocks, 1 attention
block, and 4 attention heads. The primary architectural difference lies in the varying feature sizes (input
channels and input dimensions) generated by the denoiser’s encoder. For comparison, the ImageNet denoiser
contains 9 attention blocks in the encoder and 13 in the decoder. Consequently, the noise correction network
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is approximately ten times smaller than the denoiser network. The last two rows of Table 7 provide a
parameter count comparison between the noise correction network rθ and the denoiser σθ.

Table 7: Architecture of the noise level correction network rθ(·)

Network Heperparameter CIFAR-10 ImageNet Celeba-HQ

Network Architecture
for rθ(·)

Input Channel (feature channel) 256 1024 512
Input Size (feature size) 4 8 8
Residual Blocks 2 2 2
Attention Blocks 1 1 1
Attention Heads 4 4 4

# Parameters rθ(·) 14 M 234 M 59 M
ϵθ(·) (Frozen, not trained) 218 M 2109 M 434 M

Training. The noise correction network is trained following the original DDPM training procedure. Key
hyperparameters for training are listed in Table 8. Notably, the noise correction network is trained until
19.2 million samples have been drawn from the training set. In comparison, training the denoiser requires
200 million samples for CIFAR-10 and over 2000 million samples for ImageNet.

Table 8: Hyperparameters used for the training

Settings CIFAR-10 ImageNet Celeba-HQ

Hyperparameters
Batch size 128 64 64
Learning rate 0.0003 0.0003 0.0003
# Iterations 150 K 300 K 300 K

# Samples Training rθ(·) 19.2 M 19.2 M 19.2 M
Training ϵθ(·) ≈ 200 M ≈ 2500 M ≈ 1000 M

D.2 Time and Memory Cost

Training time. The training time is shown in the last two rows of Table 8. This results in significantly
faster training for the noise level correction network. For example, training the ImageNet denoiser on 8 Tesla
V100 GPUs takes approximately two weeks, while training the noise correction network requires only about
one day. This efficiency is due to the smaller size of the noise level correction network and its use of the
pretrained denoiser.

Inference time. The inference times for 10-step sample generation with a batch size of 1 are presented
in Table 9. As shown, incorporating noise level correction adds only a modest increase in inference time,
approximately ≈ 10%.

Table 9: Inference time of DDIM and DDIM-NLC.

Inference time CIFAR-10 ImageNet
DDIM 0.32 0.93
DDIM-NLC 0.38 1.19

D.3 Lookup table method for image restoration

We evaluate the performance of the lookup table noise level correction (LT-NLC) in image restoration tasks.
The results on the ImageNet dataset are summarized in table 10. As shown, the DDNM image restoration
method achieves additional performance gains with LT-NLC. However, these improvements are notably
smaller compared to those achieved with the neural network-based NLC method.
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Table 10: Comparative results of image restoration tasks on ImageNet for lookup-table noise level correction.

ImageNet 4 x SR Deblurring Colorization CS 25% Inpainting
Method PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ Cons↓/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓
DDNM 27.45 / 0.870/ 39.56 44.93 / 0.993 / 1.17 42.32 / 36.32 21.62 / 0.748 / 64.68 31.60 / 0.946 / 9.79

DDNM-LT-NLC 27.47 / 0.870/ 39.03 45.14 / 0.993 / 1.02 42.12 / 36.07 21.48 / 0.751 / 62.64 31.84 / 0.951 / 9.19
DDNM-NLC 27.50 / 0.872 / 37.82 46.20 / 0.995 / 0.79 41.60 / 35.89 21.27 / 0.769 / 58.96 32.51 / 0.957 / 7.20

E Qualitative study

E.1 Image Restoration

We present qualitative comparisons between the proposed method, IterProj-NLC, and the baseline, DDNM,
across various image restoration tasks. These tasks include compressive sensing, shown in fig. 7, coloriza-
tion, shown in fig. 8, inpainting, shown in fig. 9, and super-resolution, shown in fig. 10. The comparisons
demonstrate the effectiveness of IterProj-NLC in producing visually superior results over the baseline.

Figure 7: Qualitative results of compressive sensing.

E.2 Unconstrained Image Generation

The example results of CIFAR-10 generated using 100-step sampling of DDIM-NLC are presented in fig. 11.
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Figure 8: Qualitative results of colorization.

Figure 9: Qualitative results of inpainting.
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Figure 10: Qualitative results of super resolution.

Figure 11: Example results of CIFAR-10 generated using DDIM-NLC.
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