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Abstract

Recent advances in generative AI have enabled the creation of highly realistic synthetic
audio, which poses significant challenges in voice authentication, media verification, and
fraud detection. While Artificial Neural Networks (ANNs) are frequently used for fake
audio detection, they often struggle to generalize to unseen and complex manipulations,
particularly partial fake audio, where real and synthetic segments are seamlessly combined.
This paper explores the use of Spiking Neural Networks (SNNs) for fake and partial fake
audio detection – an unexplored area. Taking advantage of the inherent energy efficiency
and temporal processing capabilities of SNNs, we propose novel SNN-based architectures
for both tasks. We perform comprehensive evaluations that include hyperparameter tuning,
cross-data set generalization, noise robustness, and partial fake audio detection using mul-
tiple large-scale public audio datasets. Our results show that SNNs achieve performance
comparable to state-of-the-art ANN models while showing better generalization capabil-
ities and robustness to noise. These SNN-based approaches also resulted in additional
advantages, such as reduced model sizes and the ability to classify individual segments,
making them more suitable for resource-constrained and real-time voice authentication ap-
plications. This work lays the foundation for exploring SNNs as countermeasures against
audio spoofing in security-critical applications.

Keywords: Fake Audio Detection; Partial Fake Audio Detection; Spiking Neural Net-
works; Artificial Neural Networks.

1. Introduction

Generative AI continues to evolve at an unprecedented rate, enabling the creation of highly
realistic synthetic media in various modalities, including images, video, and audio (Ram-
durai and Adhithya, 2023). These technologies are proving to be highly useful in various
domains such as entertainment, customer service, education, and healthcare (Ramdurai
and Adhithya, 2023). However, the ease of generating convincing artificial content also
introduces significant ethical, security, and societal challenges. While synthetic images and
deepfake videos dominate media headlines (Rana et al., 2022), synthetic speech generated
by advanced Text-to-Speech (TTS) (Shen et al., 2018; Ren et al., 2020) and Voice Con-
version (VC) (Kameoka et al., 2018; Qian et al., 2019) systems is emerging as an equally
disruptive force, particularly in areas where voice authenticity is essential, such as voice
authentication systems, customer service, and media. These models can produce speech
that is nearly indistinguishable from real voices (Mai et al., 2023), opening the door to
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malicious activities such as impersonation, fraud, and disinformation (Bleisch, 2024). Even
more concerning is the rise of partial fake audio, where genuine and fabricated segments are
seamlessly combined (Zhang et al., 2021), making detection significantly more challenging.

Current approaches to detect fake audio or synthetic speech were originally based on
machine learning (ML) algorithms and have since evolved to incorporate advanced deep
learning models (Dixit et al., 2023). The performance of these models also relies heavily
on the quality of the training datasets. Among various options, the ASVSpoof-2019 (Wang
et al., 2020b) and Fake or Real (Reimao and Tzerpos, 2019) datasets are widely used
benchmarks for fake audio detection. Certain models proposed in the literature, such as
RawNet2 (Jung et al., 2020) and DeepSonar (Wang et al., 2020a) have shown considerable
performance on these datasets, yet recent studies reveal that these models continue to
struggle with generalization to audio content generated by newer/previously unseen TTS
and VC techniques (Chen et al., 2020). Moreover, detection of partial fake audio poses an
additional challenge, as existing models typically assume the input audio to be fully fake or
real, leaving them ill equipped to handle such complex cases.

Spiking Neural Networks (SNNs), inspired by the brain’s efficient, event-driven pro-
cessing, present a compelling, yet largely untapped paradigm for addressing these limi-
tations. Unlike traditional Artificial Neural Networks (ANNs), SNNs communicate via
discrete spikes, offering a potentially more refined and efficient way to capture the critical
temporal dynamics inherent in audio signals. Despite these inherent benefits, the appli-
cation of SNNs to the specific problem of detecting fully and partially fake audio remains
largely unaddressed.

Given that the application of SNNs in this area is largely unexplored, coupled with SNNs
inherent advantages, a critical question arises: Can SNNs offer a better approach? Specifi-
cally, we ask: How do SNN-based architectures perform in detecting fully synthetic speech,
in terms of accuracy and robustness under diverse conditions, and how does this compare
to state-of-the-art (SOTA) ANN methods? Furthermore, how well do SNNs generalize to
entirely new and unseen forms of synthetic speech, a known weakness of current ANN meth-
ods? And perhaps most crucially for real-world scenarios, are SNNs particularly well-suited
to the more challenging task of detecting partial fakes, where subtle temporal cues may be
the key to success? We believe that answering these questions and observing the strengths
and limitations of SNNs in these tasks can help guide future work on enhancing voice au-
thentication, media verification, and fraud detection systems, where reliable and efficient
detection of audio manipulations is increasingly important. While SNN components are
not novel in isolation, their application to fake/partial fake audio detection, especially with
frame-level classification (i.e. classify short segments of audio independently, rather than
treating the entire clip as a single unit), cross-dataset generalization, and noise robustness
experiments is entirely novel and unexplored in existing literature. Our work attempts to
fill this critical gap in the intersection of SNNs and their application to detect audio forgery.

To this end, we propose and explore three SNN architectural flavors: (i) a minimal feed-
forward SNN that offers the lowest latency and parameter count, (ii) a convolutional CSNN
that extracts local time-frequency cues, and (iii) a recurrent RSNN that captures longer
temporal context. This range of designs lets us study the accuracy–latency trade-off inherent
to spiking models. For a thorough evaluation of the proposed approach against current
SOTA ANN-based approaches, we also curate a more comprehensive dataset by merging
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multiple mainstream datasets, ensuring broader coverage of real and synthetic audio. Our
results show that the proposed SNN models performed comparably to ANN models for fake
audio detection task but showed overall better generalizability and robustness to noise while
maintaining a smaller model size. Specifically, our proposed models were able to achieve an
Equal Error Rate (EER) as low as 4.79% on the proposed combined dataset for the fake
audio detection task and a frame-level accuracy of 71.39% for the partial fake audio task.
Specifically, our contributions are as follows.

• Development and analysis of three specialized SNN architectures for full and
partial fake audio detection problem by leveraging spiking neurons’ temporal encoding
to capture subtle audio cues at frame-level.1

• Comprehensive hyperparameter exploration of SNN models, examining different
surrogate gradients (Fast Sigmoid, Arctangent) and loss functions (CE-count, CE-rate),
leading to optimized configurations.

• Cross-dataset generalization and noise robustness evaluation, comparing SNN
performance to prominent ANN baselines (RawNet2, AASIST, ResNet, CNN, MLP) on
known and unseen data, under varying noise levels.

• Partial fake detection evaluation, by demonstrating the effectiveness of SNNs in
localizing synthetic segments within mostly genuine audio.

2. Related Work

Fake Audio Detection The pipeline for fake audio detection typically involves feature
extraction from input audio and classification. Early approaches relied on handcrafted
features such as Mel-Frequency Cepstral Coefficients (MFCCs), Constant-Q Cepstral Co-
efficients (CQCCs), and Linear Prediction Cepstral Coefficients (LPCCs) combined with
machine learning classifiers such as Gaussian Mixture Models (GMMs) (Todisco et al.,
2016). With the advent of deep learning, end-to-end models such as RawNet2 (Tak et al.,
2021) emerged, learning features directly from raw audio and eliminating the need for ex-
plicit feature engineering. These deep learning models have achieved considerable success on
benchmark datasets such as ASVspoof-2019 and Fake or Real, as summarized in Table 1.

Despite these advancements, there is limited research involving cross-dataset evalua-
tions for fake audio detection. Many SOTA models, while effective on the datasets they
were trained on, struggle with generalizing to unseen TTS or VC models (Chen et al., 2020).
This generalization problem is particularly concerning as synthetic audio generation tech-
nologies continue to evolve, producing increasingly realistic audio that can evade detection.
Therefore, enhancing the generalization ability of detection models is critical to improving
the security of voice-based systems. Given these challenges, this work investigates the po-
tential of SNNs to address the generalization issue in fake audio detection, particularly in
scenarios involving unseen TTS and VC models.

Partial Fake Audio Detection Partial fake audio consists of a mixture of fake and real
utterances, making it particularly difficult for deep learning models to detect. Existing
models in the literature, typically trained on datasets containing entirely fake and entirely

1. The code is available at: https://github.com/aadityakhant/SAFE
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Table 1: A summary of related works on fake and partial fake audio detection.

Type Model Dataset Metric Result(%)

Fake Audio

TCN (Khochare et al., 2021)

Fake or Real
Accuracy

80.00
VGG-19 (Reimao and Tzerpos, 2021) 90.72

STN (Khochare et al., 2021) 92.00
MobileNet (Reimao and Tzerpos, 2021) 92.00

AMSDF (Wu et al., 2024b) EER 4.55

ASVSpoof B1 (Wang et al., 2020b)

ASVSpoof-19 EER

9.57
ASVSpoof B2 (Wang et al., 2020b) 8.09

ASSERT (Lai et al., 2019) 6.70
RawNet2 (Tak et al., 2021) 1.12
AMSDF (Wu et al., 2024b) 0.16

LCNN (Müller et al., 2022)
In-the-Wild EER

35.14
RawNet2 (Müller et al., 2022) 33.94
AMSDF (Wu et al., 2024b) 9.50

Partial Fake Audio

CFPRF (Wu et al., 2024a)
PartialSpoof EER

7.41
STFT (Negroni et al., 2024) 6.16
ResNet-1D (Cai and Li, 2024) 1.16

ResNet-1D (Cai and Li, 2024) ADD2023 EER 0.064

STFT (Negroni et al., 2024)
HAD EER

7.36
CFPRF (Wu et al., 2024a) 0.08

real samples, struggle to identify the manipulated portions when genuine audio is present
(Rahman et al., 2022). This limitation arises because most current models are designed for
binary classification, and they lack the granularity to detect individual fake/real segments
within a single audio file. Although time-variant DNN models (see table 1) with variable
input/output lengths have shown promise, there remains a lack of open-source datasets
featuring diverse partial fake attacks. The PartialSpoof dataset (Zhang et al., 2021),
based on ASVspoof-2019, is currently the only publicly available dataset for this purpose.

Spiking Neural Networks Recently, SNNs have gained attention as a biologically inspired
alternative to traditional ANNs due to their temporal dynamics and energy efficiency (Ya-
mazaki et al., 2022). Due to the recurrent nature of spiking neurons, SNNs are well suited
for handling temporal data and have been successfully applied to tasks such as sound local-
ization and classification (Baek and Lee, 2024). Further, convolutional and residual SNNs
have demonstrated strong performance in image processing, combining the strengths of
ANNs and SNNs (Mozafari et al., 2019; Zhou et al., 2020; Kirkland et al., 2020; Hu et al.,
2021). Although SNNs have proven effective in sound and image-related tasks, their appli-
cation to fake or partial fake audio detection remains largely unexplored. This work aims
to bridge this gap by systematically investigating their potential in this area.

3. Preliminaries

Popular representations of SNNs include the Leaky Integrate-and-Fire (LIF) model, the
Hodgkin-Huxley model, and the Spike Response model, each of which captures distinct
aspects of neuronal dynamics and behavior. Given its proven effectiveness for power-efficient
deep learning (Rozenberg et al., 2019), our work uses the LIF model to implement a SNN.
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Leaky Integrate and Fire Neuron The LIF neuron is a simplified model of a biolog-
ical neuron, widely used in computational neuroscience to simulate the electrical activity
of neurons in a network (Dayan and Abbott, 2001). The LIF neuron has a membrane po-
tential U(t) which increases with input I(t) (synaptic current or stimulus) and decays with
the membrane potential decay rate β. The neuron “fires” or generates a spike when the
membrane potential reaches a certain threshold, following which the membrane potential
is reset according to some reset mechanism. The membrane potential of a neuron can be
described by the following equation:

U(t+ 1) = β × U(t) + I(t+ 1)−R(β × U(t) + I(t+ 1)) (1)

where R is the reset mechanism. R is set to 1 when the neuron fires, and 0 otherwise.
Surrogate Gradient Descent Training SNNs through supervised learning is challenging
due to the discrete nature of spikes. During the forward pass, the spikes are represented
using a shifted Heaviside step function. During the backward pass, to calculate the gra-
dients (the partial derivative of the loss with respect to the parameters), the spikes are
approximated using a smooth surrogate function such as Fast Sigmoid (Zenke and Ganguli,
2018) and Arctangent (Fang et al., 2021).
Loss Functions To train SNN models for classification tasks, two commonly used loss func-
tions for backpropagation are Cross Entropy Spike Count (CE-count) and Cross Entropy
Rate (CE-rate). The CE-count loss function first predicts class by accumulating output
spikes over all time steps and then calculates loss by calculating the cross-entropy between
predicted class and target class. On the other hand, the CE-rate loss function processes
spike outputs sequentially at each time step. At each time step, the spike output and the
corresponding ground-truth values are passed through the cross-entropy (CE) function, with
the resulting losses accumulated over time. Both loss functions promote consistent spiking
of the correct class and suppresses incorrect spikes. More details on both loss functions are
provided in the Appendix A.

4. Methodology

The proposed SNN based approaches begins by segmenting the input audio signal into
smaller, overlapping chunks using a sliding window. Each chunk is then converted into a
compact feature representation suitable for modeling audio patterns. These features are
processed sequentially by a SNN, which classifies each chunk individually while maintaining
temporal continuity through its internal membrane potential. This allows the model to
capture local patterns as well as broader temporal dependencies across the input. Figure 1
provides a high-level overview of the proposed approach. Below we outline key aspects of our
SNN-based methodology, including feature extraction and classification model architecture.

4.1. Feature Extraction

Suppose, input is an audio file sampled at 16 kHz and of 2 seconds in length, resulting in
32,000 floating point values per sample. Feeding these raw values directly into a neural
network would dramatically increase the number of input parameters, resulting in a com-
putationally inefficient model with higher memory and processing demands. To mitigate
this, we extract a feature vector of 40 MFCCs (Davis and Mermelstein, 1980) and pass
that as input to the models. To keep the input length constant, samples shorter than the
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Figure 1: The proposed SNN-based approach for fake and partial fake audio detection.

desired length are padded with zeros (silence) and samples longer than desired length are
truncated. For full fake audio detection, we use a window size of 2048 samples with a hop
size of 512 samples (25% overlap), resulting in frames of 128ms. For partial fake detection,
we use shorter windows of either 320, 1280 or 5120 samples with no overlap, aligning the
chunk size to frame-level ground truth labels. Lastly, MFCCs are normalized using Lp-norm
normalization, preventing those with larger scales from disproportionately influencing the
learning process.

4.2. SNN Models

SNNs are well-suited for sequential data due to their ability to naturally capture temporal
dependencies through membrane potential dynamics of LIF neurons, as discussed in sec-
tion 3. This built-in recurrence allows SNNs to process each input frame in sequence while
retaining contextual information from previous frames without requiring explicit recurrent
layers or skip connections. In contrast, conventional ANNs typically operate on fixed-length
inputs in a single forward pass. We design and evaluate the below three distinct SNN-based
architectures to evaluate trade-offs in complexity, efficiency, and performance.

SNN A feed-forward SNN model consisting of an input layer with 40 neurons, followed by
four spiking layers containing 256, 126, 10, and 2 (output) neurons, respectively. Each spik-
ing layer comprises a Fully Connected (FC) layer from an ANN model and a corresponding
leaky layer. The leaky layer consists of LIF neurons, which are connected one-to-one with
the neurons in the preceding FC layer, similar to the ReLU activation function in ANN
models. The leaky layer serves as an activation mechanism, outputting either a spike (1) or
no spike (0). We set the decay parameter (β) for LIF neurons to 0.9, and the spike threshold
is learned during training. The input is processed sequentially, with the 40 MFCCs from
one timeframe passed into the network at a time. This sequential input allows the SNN
model to capture temporal dependencies, making it independent of input length. For fake
audio detection, classification is done based on the spike count of two output neurons. In
contrast, for partial fake detection, the model produces a prediction for each time frame by
evaluating the spiking activity at that specific step.

CSNN While deep learning models such as Transformer-encoder are computationally and
power intensive, simpler models such as MLP may lack the complexity needed to effectively
capture subtle patterns in large audio datasets (Müller et al., 2022). CNNs strike a balance
by efficiently extracting complex features through convolutional layers while utilizing smaller
fully connected layers for classification. On the other hand, while SNNs are generally energy-
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Figure 2: CSNN vs. CNN model architecture.

efficient, they may also lack complexity to fit diverse datasets. To this end, we propose a
novel Convolutional Spiking Neural Network (CSNN) based approach that combines the
feature extraction power of CNNs with the temporal processing capabilities of SNNs for
the task of fake and partial fake audio detection. As shown in fig. 2, CSNN retains the
CNN architecture up to the final maxpool layer, where deep features are extracted from
the MFCCs. These deep features are then passed through three spiking layers containing
128, 10, and 2 neurons, respectively. Similarly to the previous SNN model, we set the decay
parameter (β) to 0.9, and the spike threshold is learned during training. Fake and partial
fake audios are classified using a mechanism similar to the SNN model.

RSNN Typically, in a spiking neuron, membrane potentials decay over time, leading to
rapid loss of historical information. This limitation is particularly problematic for audio
classification tasks because such tasks often involve sequential data in which meaningful pat-
terns are distributed over time. To address this, we draw inspiration from the ResNet18 (He
et al., 2016) architecture to implement a Residual SNN (RSNN). As shown in fig. 8 in the
Appendix B, the residual block in the RSNN model is visually similar to that of a ResNet18,
with three main differences: (1) instead of a standard batch normalization layer, we use
Batch Normalization Through Time (BNTT) (Kim and Panda, 2021) to accommodate tem-
poral spiking behavior; (2) we replace the ReLU activation layers with spiking neuron layers.
Consequently, the RSNN model represents an advanced deep spiking network architecture
for fake and partial fake audio classification; and (3) we substitute 2D convolution with 1D
convolution to accommodate the single dimensional audio data.

4.3. Artificial Neural Network Models

Due to the lack of cross-dataset evaluation studies on assessing the generalization ability of
ANNs for fake audio detection problem, we implemented five representative ANN models,
MLP, CNN, RNN, RawNet2 and AASIST. This aims to establish baseline performance by
ANN models that utilize similar resources, including datasets.

Multi Layer Perceptron We implement a 5-layer Fully-Connected Feed-Forward Neural
Network (FC-FFNN). The layers contain 2520 (input), 256, 128, 10, and 2 (output) neurons,
respectively. A Rectified Linear Unit (ReLU) activation function is used at each hidden layer
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to introduce non-linearity allowing the model to learn complex patterns. The input to the
network consists of flattened MFCCs of size 40× 65 = 2520.

Convolutional Neural Network We then implement a CNN model as demonstrated
in fig. 2. The convolution layer in the model uses 1D convolutional and 1D max-pooling,
applied over the time domain, to extract deep features from the MFCCs of input audio. 40
MFCCs are treated as 40 input channels. The subsequent convolutional layers have 20, 20,
and 10 channels, respectively. In both the convolutional and max-pooling layers, a stride of
one and padding (zero-padding) of one is used to preserve the temporal dimensions of the
data. The output of the final max-pool layer is flattened into a 630-dimensional vector and
fed into an FC-FFNN consisting of three layers with 630, 10, and 2 neurons, respectively,
where the ReLU activation function is applied to the intermediate layers.

Residual Neural Network We also implemented the ResNet-18 architecture proposed
by He et al. (2016) (illustrated in fig. 8). The model begins with an initial convolutional
layer followed by batch normalization, a ReLU activation, and a max pooling layer. This
is followed by eight groups of residual blocks. Each residual block contains two consecutive
convolutional layers, each followed by batch normalization, with ReLU activation applied
after the first batch normalization. A skip connection with down-sampling or identity
mapping adds the block’s input directly to its output. The last residual block is followed
by an average pooling layer and a fully connected layer with two (output) neurons.

RawNet2 and AASIST We reimplement the RawNet2 architecture (Tak et al., 2021),
originally proposed for the ASVSpoof-2019 challenge (Wang et al., 2020b), due to its strong
performance on that dataset. We also reimplement the Additive Angular Softmax-based
Integrated Spectral and Temporal (AASIST) model (Jung et al., 2022), which achieved
promising results on the ASVSpoof-2019 dataset. The only modification made to both
architectures is adjusting the input dimensions to accommodate the desired input length.
This change does not affect the core architecture or feature extraction processes, as both
models are designed to seamlessly adapt to varying input sizes.

4.4. Datasets

To conduct a rigorous evaluation, we created the Consolidated Fake Audio (CFA) dataset
by merging the training, validation, and testing sets of the ASVspoof-2019 LA subset
(ASVspoof) (Wang et al., 2020b), the Fake or Real - Normalized subset (FoR) (Reimao
and Tzerpos, 2019), and LibriSpeech (Panayotov et al., 2015) into corresponding splits for
the CFA dataset. By combining these sources, we increase both the diversity and quantity
of real and synthetic audio samples, capturing a wider range of acoustic characteristics and
manipulation techniques. Thus, the CFA dataset ensures a varied training environment,
which is critical for fair comparisons between the ANN and SNN models in standard fake
audio detection scenarios. Table 2 summarizes the real/fake sample distribution.

In addition to full fake audio, we also evaluate the ability of SNNs to detect partial
fake audio. To this end, we employ the PartialSpoof dataset (Zhang et al., 2022), which
was generated using real and fake speech samples from the ASVSpoof dataset. This dataset
provides ground-truth annotations at multiple granularity levels, allowing both coarse- and
fine-grained evaluation.
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Table 2: Class distribution in the datasets.

Dataset Train Validation Test
Fake Real Fake Real Fake Real

FoR-normalized (Reimao and Tzerpos, 2019) 26,927 26,941 5,398 5,400 2,370 2,264
ASVspoof-2019 LA subset (Wang et al., 2020b) 22,800 2,580 22,296 2,548 63,882 7,355
LibriSpeech(Panayotov et al., 2015) - 104,014 - 2,703 - 2,620
In-the-Wild(Müller et al., 2022) - - - - 11,816 19,963
CFA (proposed) 49,727 49,521 27,694 27,651 66,252 66,239
PartialSpoof(Zhang et al., 2022) 25,380 24,844 71,237

5. Experiments & Results

This section outlines the conducted experiments and results to evaluate the effectiveness
of SNNs in detecting fake and partial fake audio. In terms of performance metrics, we
primarily use EER (a lower EER indicates better performance). For partial fake audio
detection, we use frame-wise accuracy, where we compare each frame’s prediction to its
ground-truth label (instead of classifying the whole audio sample as fake/real). All models
were trained for 200 epochs using the Adam optimizer with early stopping (patience of 10
epochs). We used grid search to tune key hyperparameters: learning rate (ranging from
0.0001 to 0.01), L2 regularization (weight decay, from 0 to 0.0001), and batch size (ranging
from 32 to 128). All experiments were conducted on an NVIDIA L40S GPU.

5.1. Hyperparameter Tuning

We began by identifying optimal hyperparameters for our proposed SNN models. Specifi-
cally, we explored two loss functions (CE-rate and CE-count) and two surrogate gradients
(Fast-Sigmoid and Arctangent). For each of these combinations, we trained SNN, CSNN,
and RSNN models on the CFA dataset using a fixed input length of two seconds. The input
length was selected based on the length distribution in the CFA dataset. The models were
then evaluated on a validation set to select the best performing hyperparameters.
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Figure 3: SNN, CSNN & RSNN hyperpa-
rameter tuning.
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Figure 3 illustrates the impact of these combinations on SNN, CSNN, and RSNN per-
formance. Although changes in EER were relatively small, all three models performed
slightly better with a combination of the Arctangent surrogate gradient and CE-count loss
function. We speculate that CE-count is more suitable for binary (fake vs. real) classi-
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fication, whereas CE-rate encourages correct classification at each timeframe. Very poor
performance of RSNN model when using CE-count and Fast-Sigmoid is an outlier. For each
model (SNN, CSNN, RSNN), the hyperparameter combination (CE-count and Arctangent)
yielding the lowest EER on the validation set was selected for subsequent experiments.

Across all three SNN models, the best-performing configuration consistently used the
Arctangent surrogate gradient and CE-count loss.

5.2. Fake Audio Detection

Effect of Sample Length After determining the best hyperparameters, we compared
SNN models against standard ANN models (described in section 4.3) at fixed audio sample
input lengths of 2, 3, and 4 seconds. These lengths were chosen based on the distribution
of audio clip durations in the CFA dataset. Figure 4 shows the EER on the CFA test set and
the parameter count for each model under these three input lengths. Deep neural network
models such as RNN, RawNet2 and AASIST, even at 2 seconds input length, have signif-
icantly more parameters compared to SNN models. Although performance did not vary
significantly with input length, the number of parameters in ANN models increased sub-
stantially (except for RawNet2 & AASIST) as input sample length grew (to accommodate
higher input dimensions). In contrast, the SNN architectures noticeably remained constant
in parameter count, indicating that SNNs can scale more efficiently to longer input clips
without a proportional increase in model complexity and still retain competitive accuracy.
See Appendix C for detailed model parameter counts.

In summary, SNNs maintain stable parameter counts across different input lengths while
preserving accuracy, making them appealing for memory-efficient real-time fake audio
detection systems.

Generalization The objective of this experiment was to evaluate the generalization ca-
pabilities of SNN in comparison with ANN models for the fake audio detection task. All
models (SNN and ANN) were trained on the CFA dataset, which included the training sets
from FoR and ASVSpoof. For testing, the models were evaluated on the test sets of these two
familiar datasets (FoR and ASVSpoof) as well as the previously unseen In-the-Wild dataset
which contains more real-world audio samples (see table 2). To ensure consistency, the in-
put length was fixed at 2 seconds. Figure 5 presents the resulting EER values. As expected,
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Figure 5: Model performance on known
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Clean 20 10 5
SNR Levels

0

5

10

15

20

25

30

35

EE
R 

(%
)

MLP
CNN

RNN
RawNet2

AASIST
SNN

CSNN
RSNN

Figure 6: Model performance vs. noise lev-
els.



SAFE

EER rose significantly for all models when tested on unfamiliar distributions. Nevertheless,
SNN, CSNN and RSNN achieved EERs of 42.66%, 37.53% and 52.64%, respectively, on the
In-the-Wild dataset, which were comparable to or lower than those of the ANN models.

SNN-based detectors generalize at least as well as, and in the case of CSNN markedly
better than, heavyweight ANN baselines on unseen generation methods.

Robustness Since random noise is a common adversarial or environmental challenge, we
assessed model robustness by adding normalized noise to the audio samples at varying
signal-to-noise ratio (SNR) levels of 20, 10, and 5. The SNN and ANN models were then
compared at each noise level to quantify performance degradation and assess whether the
temporal encoding in SNNs confers greater resilience to noise. Figure 6 shows that advanced
architectures such as RawNet2 and AASIST, despite strong performance on clean data,
degrade more severely under noise. For instance, AASIST’s EER jumps from 1.75% (clean)
to 35.90% at 5% noise whereas, CSNN’s EER rise from 6.91% to only 19.87%. CNN and
RNN models consistently achieve the lowest EER values across all noise levels. The simpler
convolutional filters in these models are inherently robust to uniform additive noise, as
they focus on local features that remain salient. Similarly, the temporal encoding in SNNs
can preserve relevant spiking activity while discarding noisy fluctuations, leading to less
pronounced performance drops.

In summary, SNNs show stronger robustness to noise compared to some advanced ANN
models, highlighting their potential as a practical and resilient solution for real-world fake
audio detection even in noisy and unpredictable conditions.

5.3. Partial Fake Audio Detection

Partial fake audio poses a more significant detection challenge because it blends genuine
speech with fabricated segments. To highlight this challenge, we first tested previously
trained SNN and ANN models (trained on CFA using fully fake/real samples only) against
the PartialSpoof dataset. For this test, samples in the PartialSpoof dataset containing
at least one synthetic segment were labeled as fake. Figure 7 shows that while all models
struggled to distinguish partially faked samples from real audio, RawNet2 and AASIST
showed the worst performance among all models. Among the tested models, MLP and
RSNN performed the best, obtaining EER of 22.01% and 23.93%, respectively.
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Figure 7: Model performances on full
fake dataset (ASVSpoof) vs. partial fake
dataset (PartialSpoof).

Table 3: Model performances on the
PartialSpoof dataset at different frame
lengths.

Model Frame Length (ms)

20 80 320
SNN 68.99% 64.13% 65.86%
CSNN 71.45% 69.06% 69.41%
RSNN 71.39% 68.74% 70.32%
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To further explore the temporal and recurrent properties of SNNs for detecting such fine-
grained manipulations, we then performed frame-level classification by training the proposed
SNN, CSNN, and RSNN models on the PartialSpoof dataset with the CE-rate loss. To
further improve SNNs’ performance, we incorporated population coding (Eshraghian et al.,
2023) by changing the number of output neurons from two to ten, where each class is
represented by five output neurons instead of one. For each timeframe, spikes from five
output neurons are accumulated for classification. ANN models were excluded from this
experiment, as they do not provide classification at the individual timeframe level. Table 3
compares frame-level accuracy for these models trained on the PartialSpoof dataset with
non-overlapping sliding windows of length 20ms, 80ms, 320ms. The slight increase in
accuracy across all three models with shorter frame lengths is attributed to more granular
frames, which offer a better distinction between real and fake segments.

All three SNN variants saw substantial gains when trained directly on partial fakes, with
CSNN yielding the highest frame-level accuracy at 71.45%.

6. Discussion & Conclusion

Table 4: Key practical advantages of CSNN over a representative ANN baseline (RawNet2).

Aspect ANN Baseline SNN p-value Benefit

Unseen-attack degradation ∆EER +51.53 +26.8 < 0.001 1.9× better generalisation
Robustness to noise ∆EER +21.5 +16.24 < 0.0015 0.75× more robust
Partial-fake detection EER 42.96% 26.79% < 0.001 0.62×better partial fake detection
Parameter count (millions) 25 0.006 −− 416× lighter, scalable
Frame-level classification ✗ ✓ −− partial-fake localization

In this work, we explored the novel application of SNNs to the increasingly critical task
of detecting both fully and partially fake audio. As shown in table 4, our comprehensive
comparative evaluations revealed that SNN-based architectures are not only viable but also
effective competitors to SOTA ANNs in this domain. Specifically, SNNs achieved compara-
ble performance in detecting fully synthetic audio and, in several scenarios, demonstrated
superior robustness and efficiency. Moreover, when trained on partially fake audio, SNNs
significantly improved their ability to detect small, localized manipulations. This highlights
the practical benefit of their inherent temporal encoding and capacity for frame-level clas-
sification of audio segments. Our results indicate that SNNs offer a distinctive combination
of robustness, efficiency, and temporal resolution, making them well-suited for real-world
fake audio detection systems that require adaptability and low computational overhead.

Although we did not implement the proposed models on neuromorphic hardware or
measure hardware-level energy usage, the sparse activation and the inherently event-driven
nature of SNNs present an attractive avenue for energy-efficient deployments, for instance
on Intel Loihi (Davies et al., 2018). Such hardware platforms may further amplify SNNs’
advantages for large-scale or continuous fake audio monitoring. Despite these promising
findings, our study underscores two pressing limitations in the fake audio detection domain.
First, the limited diversity in existing training datasets impedes broader generalization to
novel or unseen voice synthesis algorithms. Second, the shortage of sophisticated partial
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fake audio datasets with frame level labels and realistic manipulations restricts progress in
partial fake audio detection. This work lays the foundation for future research aimed at
enhancing the robustness and generalization of SNN models, particularly for security-critical
audio manipulation detection.
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Appendix A. Loss Functions

Given an audio sample with n number of time frames and target class y, the model predicts

class ŷ using ŷ = argmaxc∈{0,1}
∑n

i=1 ŷ
(c)
i , where ŷ

(c)
i is the predicted probability of class c

for the ith time frame. Then LCE-count is calculated using eq. (2).

LCE-count = − [y log(ŷ) + (1− y) log(1− ŷ)] (2)

For the same sample, LCE-rate is calculated using eq. (3), where yi = y for i = 1, 2, ..., n

and class prediction for the ith frame ŷi = argmaxc∈{0,1} ŷ
(c)
i . Equation (3) can also be

utilized to calculate loss for partial fake audio, where yi ∈ {0, 1} is the target class for the
ith frame.

LCE-rate = −
1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3)

Appendix B. RSNN vs RNN Model Architecture
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Figure 8: RSNN vs. RNN model architecture.

Appendix C. Input Length vs Parameter Counts

Table 5 reports the parameter counts for each model with input lengths 2-4 s, and floating
point operations (FLOPs) for 2 s. The FLOPs include both the cost of converting raw
audio into normalized MFCC features (feature extraction) and the cost of classification. For
RawNet2 and AASIST, the feature extraction FLOPs are zero since they directly process
raw audio. For all other models, the feature extraction cost is fixed at 17.31 millions FLOPs.

Table 5: Parameter counts for models at input lengths of 2-4 s. FLOPs reported for 2 s.

MLP CNN RNN RawNet2 AASIST SNN CSNN RSNN

2 Sec 679,584 9,672 6,976,962 25,433,602 297,866 44,708 6,063 4,137,740
3 Sec 997,024 12,772 6,976,962 25,433,602 297,866 44,708 6,063 4,286,540
4 Sec 1,324,704 15,972 6,976,962 25,433,602 297,866 44,708 6,063 4,440,410
FLOPs (in millions) 18.67 17.32 2249.86 490.60 8877.44 22.97 17.66 27.36
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