
TenSet: A Large-scale Program Performance Dataset
for Learned Tensor Compilers

Lianmin Zheng1∗ Ruochen Liu1∗ Junru Shao2 Tianqi Chen23

Joseph E. Gonzalez1 Ion Stoica1 Ameer Haj-Ali1
1UC Berkeley 2OctoML 3Carnegie Mellon University

Abstract

Search-based tensor compilers can greatly accelerate the execution of machine
learning models by generating high-performance tensor programs, such as matrix
multiplications and convolutions. These compilers take a high-level mathematical
expression as an input and search for the fastest low-level implementation. At the
core of the search procedure is a cost model, which estimates the performance of
different implementations to reduce the frequency of time-consuming on-device
measurements. There has been a growing interest in using deep learning techniques
to learn a cost model to ease the effort of building an analytical model. To realize
the potential of such deep learning models, a standard dataset for pre-training and
benchmarking learned cost models is necessary. However, this dataset is lacking.
We introduce TenSet, a large-scale tensor program performance dataset. TenSet
contains 52 million program performance records collected from 6 hardware plat-
forms. We provide comprehensive studies on how to learn and evaluate the cost
models, including data collection, model architectures, loss functions, transfer
learning, and evaluation metrics. We also show that a cost model pre-trained on
TenSet can accelerate the search time in the state-of-the-art tensor compiler by up
to 10×. The dataset is available at https://github.com/tlc-pack/tenset.

1 Introduction

Efficient execution of machine learning models relies on high-performance tensor programs, i.e.,
optimized low-level implementations of tensor operators such as convolution and matrix multipli-
cation. However, it is notoriously challenging to obtain performant tensor programs for numerous
tensor operators on various hardware platforms[7]. Existing systems mainly rely on vendor-provided
kernel libraries such as cuDNN [14] and OneDNN [23]. However, crafting these libraries requires
spending significant engineering efforts on manual tuning. Moreover, they fall short of supporting
new operators invented by researchers and graph optimizations such as operator fusion [12]. To
overcome the limitations of manually optimized libraries, researchers and practitioners are building
search-based tensor compilers [1, 12, 48]. Given an operator or a computation graph in mathematical
expression, these compilers search for the best compiled tensor programs for the target hardware
platform. At the core of the search procedure is a cost model, which estimates the performance of
tensor program candidates to reduce the time-consuming on-device measurements.

With the advances of deep learning, there has been a growing interest in using deep learning techniques
to learn a cost model [5, 13, 20, 25, 39, 48]. By learning directly from the data, learning-based
approaches can simplify the development of analytical cost models, especially for complicated
modern hardware platforms. However, training data collection is one of the biggest challenges for
adopting learning-based approaches in search-based tensor compilers [36]. Currently, the community
lacks a public large-scale dataset that can include performance measurements from multiple hardware

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/tlc-pack/tenset

Input:
A mathematical expression

(e.g., 𝐶!,# = ∑ 𝐴!,$$ 𝐵$,#)

Output:
Low-level implementation

(e.g., x86 assembly, CUDA C)

Search Algorithm
(e.g., MCTS, GA, beam search)

Cost Model Devices

Time cost
estimation

Time cost
profiling

Collect
online data

Offline
Dataset

Training
data (small)

Training
data (large)

Online
Dataset

Figure 1: The architecture of a search-based compiler with a learned cost model. The compiler takes
a high-level mathematical expression as an input and searches for the best low-level implementation.

platforms. This hinders the development of learning-based approaches as pre-training a decent cost
model offline requires a comprehensive dataset. Therefore, some compilers [12, 48] choose to collect
the training data online during the search, which makes the search very time-consuming due to
unavoidable on-device measurements [27]. Furthermore, without a standard dataset, it is not easy to
fairly benchmark and evaluate the proposed models and training algorithms.

We introduce TenSet, a large-scale program performance dataset for learned tensor compilers. TenSet
contains 52 million program performance records collected from real measurements on Intel CPUs,
AMD CPUs, ARM CPUs, and NVIDIA GPUs. We generate random tensor programs for popular
deep learning models. The generated programs are compiled by TVM compiler [12] and measured
on the target hardware platforms. With this dataset, we provide comprehensive studies on how to
learn and evaluate cost models, including data collection, model architectures, loss functions, transfer
learning, and evaluation metrics. We integrate the cost models pre-trained on TenSet into Ansor[48],
a state-of-the-art search framework in TVM compiler, and show that it reduces the search time by up
to 10× while achieving the same search quality.

2 Background: Search-based Compilers with Learned Cost Models

Figure 1 shows the general architecture of a search-based compiler with a learned cost model. This
architecture is used by plenty of recent tensor compilers, such as TVM [13, 48], Halide [1, 3, 39],
Tiramisu [5] and XLA [25]. The compiler accepts an operator or a computational graph in high-level
mathematical expression as input, and runs a search algorithm to find the best tensor program. The
adopted search algorithms include Monte Carlo tree search (MCTS)[5, 20], genetic algorithm (GA)
[48], beam search[1], simulated annealing [13], and reinforcement learning [2]. The majority of the
considered search spaces include loop optimizations such as tiling, vectorization, parallelization,
unrolling, and fusion. By searching in a very large space of different optimization combinations,
these compilers can often find programs that are better than hand-optimized implementations.

During the search, the algorithm generates a set of promising programs from the search space and
compares their performance. The performance can either be estimated by querying the cost model or
measured by actually running the programs on the hardware. Due to the size of the search space and
the time-consuming on-device measurement, it is impossible to measure the execution time of every
program candidate. Therefore, it is common to use a learned cost model to guide the search. The
quality of the cost model is one of the most important factors for search efficiency and result quality.
To train the cost model, the compilers can use large offline datasets collected in advance, or small
online datasets collected on-the-fly during the search, or both.

Many learned cost models have been proposed [1, 3, 5, 13, 25, 39, 48]. They collect their own dataset,
use different feature extraction, model architectures, compilers, and hardware platforms. However,
they often do not release code or complete datasets that are easy to access and well documented.
In addition, they typically only cover one hardware platform, making it hard to use the models in
a real multi-backend compiler and hard to study transfer learning across hardware platforms. The
fragmented development hinders the research in this area.

Notably, TVM [12] is the state-of-the-art tensor compiler that implements the above search-based
architecture. TVM has two generations of search frameworks: AutoTVM [13] and Ansor [48].
AutoTVM is a semi-automated framework, which requires pre-defined manual templates, while
Ansor is a more advanced, fully automated framework. This work is built on top of Ansor. Currently,
due to the lack of a large-scale offline dataset, TVM has to collect data on-the-fly during the search,
leading to an extremely long search time. It can take several hours to optimize and compile a single
neural network [13, 48].

2

Data = PLACEHOLDER [1, 56, 56, 64]
PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 57)) && (i2 >= 1)) && (i2 < 57)),

Data[i0, (i1 - 1), (i2 - 1), i3], 0f)
Weight = PLACEHOLDER [3, 3, 64, 128]
Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy*2) + ry), ((xx*2) + rx), rc] * Weight[ry, rx, rc, ff])
Bias = PLACEHOLDER [1, 1, 1, 128]
T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + Bias[ax0, 0, 0, ax3])
T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

Figure 2: The computational graph for a fused conv2d-biad_add-relu task.

parallel ax0.0@ax1.0@ax2.0@ (0,4)
for i1 (0,57)
for i2 ((floormod(ax0.outer.outer...
for i3 (0,64)

PaddedInput = ...
for ax3.0 (0,2)
for ax2.1 (0,7)
for ax3.1 (0,8)

Conv2dOutput auto_unroll: 16
for rx.0 (0,3)
for rc.0 (0,4)
for ry.1 (0,3)
for rc.1 (0,16)

for yy.3 (0,28)
vectorize ff.3 (0,8)
Conv2dOutput = ...

for ax1.2 (0,28)
vectorize ax3.2 (0,8)
T_relu = ...

Figure 3: A sample program for the task in Fig. 2

Item Number
Networks 120
Hardware Platforms 6
Tasks 13,848
Measurement records 51,532,994

Table 1: Dataset statistics

3 TenSet: A Dataset for Tensor Programs

A good dataset is the first requirement of a good model [42, 36]. The purpose of TenSet is to provide
a large-scale dataset for pre-training and benchmarking the cost models in tensor compilers. This
section describes the requirements of a good dataset and introduces the contents of TenSet.

3.1 Requirements of the Dataset

Large-scale. A learned cost model using this dataset is expected to perform well on common
workloads and generalize relatively well to other uncommon workloads. A large-scale dataset
containing diverse workloads is necessary for generalization ability.

Multi-platform. A tensor compiler typically supports multiple hardware platforms. The dataset
should thus contain the records from multiple platforms. This can be used to train different models
for different platforms. If the dataset also contains the performance of the same program on different
platforms, it is possible to let the model learn the difference among different hardware platforms.
This enables advanced research on transfer learning among different hardware platforms.

To the best of our knowledge, TenSet is the first public tensor program dataset that meets these
two requirements. With the death of Moore’s law, we are seeing a lot of new custom hardware
(continuously changing hardware) and this dataset should generalize well to new programs and new
hardware.

3.2 Terminology

We define some terminologies used in the rest of this section.

Network and Subgraph: A deep neural network with a specific input shape. The input shape
contains the batch size and image size (or sequence length). A network is a computational graph.
Typically, tensor compilers partition a large computational graph into several small subgraphs based
on certain rules. Subgraphs are the finest granularity for compilation.

Hardware platform: A device to execute the subgraphs. Note that devices with different hardware
architectures (e.g., NVIDIA Tesla and Volta) are counted as different hardware platforms.

Task: A task is a pair of a subgraph and a hardware platform. A network contains many subgraphs,
so we can extract many tasks from a network on a hardware platform. For example, after the graph
partitioning for ResNet-50, there are 27 unique subgraphs, which implies 27 search tasks.

3

Network Hardware Platform

sample programs and
measure them

generate search space

Graph Partition

Task 0

Search Space 0

Measurement
Record File 1

Task 1

Search Space 1

Measurement
Record File 1

Search Space 2

Task 2

Measurement
Record File 1

Search Space n

Task n

Measurement
Record File 1

…

Figure 4: The hierarchical structure of the dataset.

Hardware Platform Cloud Instance Other Comments
Intel Platinum 8272CL @ 2.60GHz (16 cores) Azure D32s_v4 AVX-512
Intel E5-2673 v4 @ 2.30GHz (8 cores) Azure F16s AVX-2
AMD EPYC 7452 @ 2.35GHz (4 cores) Azure D16as_v4 AVX-2
ARM Graviton2 (16 cores) AWS c6g.4xlarge Neon
NVIDIA Tesla K80 AWS p2.xlarge Kepler Architecture
NVIDIA Tesla T4 AWS g4dn.xlarge Turing Architecture

Table 2: Hardware Platforms in this Dataset

Search space: Each task has its own search space, which is determined by the input/output tensor
shapes, data types, data layouts, and the target hardware platform. The search space is usually in the
order of millions on CPUs and billions on GPUs.

Program: A program or a tensor program refers to a low-level, hardware-dependent implementation
of a subgraph. It can be seen as a candidate in the search space.

Measurement record: A measurement record is a tuple of task, program, and on-device measurement
result. The program measurement module takes the task and program, performs the compilation,
execution, and measurement. The measurement result contains the execution time of the program or
an error code if encountering compilation or runtime errors.

3.3 An Illustrative Example of Tensor Programs

Figure 2 shows the computational graph of an example task, which is a fused convolution + bias
add + ReLU activation. The computational graph is printed in a form similar to Einstein notation.
Figure 3 then shows a sample program from the search space of this task on a CPU. The program is
optimized by multi-level tiling, parallelization, vectorization, unrolling, and fusion.

3.4 Contents and Data Collection

The dataset is organized in a hierarchical structure, as shown in Figure 4. The top-level includes some
common networks with different configurations and hardware platforms. Table 6 (in Appendix A)
lists the specifications of network architectures and input shapes. The network architectures are
chosen from PyTorch’s vision model Zoo and Huggingface’s transformer model Zoo. They cover both
representative CV and NLP tasks. We vary the batch size and input image sizes to generate different
subgraphs. Note that we focus on small batch sizes in this dataset because tensor compilers are mainly
used for optimizing trained models for inference. In total, there are 120 network configurations.

Next, we pick 6 hardware platforms according to their availability on public cloud providers, their
popularity in the machine learning community, their compiler toolchain support, and the data collation
cost. Their specification is listed in Table 2. We favor publicly-accessible cloud instances for improved
reproducibility.

For each pair of (network, hardware platform), we run the graph partitioning algorithm to obtain
a list of unique subgraphs. A subgraph usually includes a heavy tensor operator (e.g., conv2d,
conv3d, conv2d_tranpose, depthwise_conv2d, matmul, softmax) fused with lightweight operators
(e.g, element-wise operators). For each subgraph, we randomly sample programs from its search
space generated by Ansor [48]. We then dump the sampled programs and measure them on AWS and
Azure cloud instances. For each program, we do warm-up and run several repeated measurements.

4

The time costs of all repeated measurements are saved in the measurement record files. The record
file is in JSON format. Read and write utility functions are provided to parse and generate these files.

Figure 1 shows some statistics of the dataset. In total, we collect tasks from 120 networks ×
6 hardware platforms. There are 2,308 subgraphs extracted from the 120 networks, so we have
2,308×6=13,848 tasks for 6 platforms in total. For each task, we sample at most 4,000 programs
from its search space and generate measurement records. The search space size of a task varies from
10 to the order of billions. In total, the dataset includes 51,577,248 measurement records from all the
tasks. The collection process takes several weeks with clusters of cloud instances.

4 Learning and Evaluating a Cost Model in Tensor Compilers

The goal of a learned cost model is to rank the performance of different tensor programs in a given
search space. This section gives a high-level overview of how to learn, evaluate and use cost models
in tensor compilers. The scope of this work is supervised learning.

4.1 Learning a Cost Model

Feature Extraction To feed a program into a machine learning model, the compiler can extract
features from the high-level task description, optimization specification, and low-level compiled
program. Currently, manual feature extraction is still required because the programs contain a lot
of structural and numerical information. Learning an end-to-end model directly from text tokens
has not been explored for this specific problem in the literature. The features can be extracted at
multiple levels, from high-level task descriptions to low-level compiled programs. Features from
higher levels are faster to extract, while features from lower levels are slower to extract because
they require going through the compilation process. The high-level task features can include the
features or embeddings of the input computational graphs such as shape and access pattern. It can
also include hardware platform information such as cache size and vector width. The optimization
features can include the used loop transformations and schedules. The low-level program features can
include features extracted from the lowered IR or even machine code, which can help to model the
end-to-end compilation process. At all levels, the features are used to capture the memory access and
computation patterns of the tensor programs, which are the most important factors of the performance
of the programs. The lists of typical features can be found at [1, 5, 48]. The specific features we use
can be found in Appendix C.

Model Architecture The features that can be extracted can have vector structures, tree structures,
or graph structures. They also have variable lengths. To feed these features into a machine learning
model, the hierarchical structure is generally flattened and fed into feed-forward neural networks with
padding or sum aggregation. The hierarchical structure can also be feed directly into tree recurrent
neural networks and graph neural networks. Existing works have adopted MLP [1], LSTM [5, 39],
GRU [13], GraphSAGE [25, 22], GCN [35], and GBDT [48, 11].

Loss Function The model is used to rank the performance of candidates in a search space. Therefore,
the model can be trained with regression losses to predict absolute scores or be trained with ranking
losses to predict relative scores. For regression losses, models can be trained with Mean Square Error
(MSE) loss to predict the normalized throughput or latency of a program [1]. For ranking losses,
models in previous works have been trained with pairwise or listwise losses [10, 13].

Transfer Learning During the search of a new task, if new online data can be collected from the
task, it can be used to adapt the pre-trained model to the new task with transfer learning. The
transfer learning can be done by using transferable features, fine-tuning, learning local models [13],
or meta-learning [35, 18].

4.2 Integration with the Search Algorithm

To use a cost model in the search process, the compiler runs a search algorithm and picks the top-k
programs according to the cost model for each task. If on-device measurements are not allowed,
the k is set to 1 and the compiler makes decisions totally based on the cost model. If on-device
measurements are allowed, the k can be set to a larger number. For each task, the compiler measures
the top-k programs on actual devices and picks the best one according to real measurement results.

5

RMSE R2 Pairwise Accuracy Top-1 Score Top-5 Score Latency (ms)

Model #1 0.09 0.77 0.85 0.86 0.92 7.89

Model #2 0.07 0.89 0.84 0.87 0.95 6.45

Model #3 7.27 -1818.41 2 0.89 0.88 0.96 6.39

Table 3: Evaluation of different models using dataset-based metrics and search-based metrics. The
description of each metric is detailed in Appendix B. Lower RMSE and latency, and higher pairwise
accuracy, R2, and top-k scores are desirable.

This process can also be done iteratively because we can update the cost model using the newly
collected measurement data and run the search again. We can also use a scheduler to allocate
different time budgets to different tasks according to their importance [47, 48]. In a search with
on-device measurements, a number of total measurement trials is set as the time budget, because
measurements are the most expensive part of the search. The search terminates when it runs out of
allowed measurement trials.

4.3 Evaluation Metrics

To evaluate and compare the performance of cost models, there are two types of evaluation metrics:
dataset-based metrics and search-based metrics. The dataset-based metrics evaluate the accuracy of
the model on a static dataset, and search-based metrics evaluate the end-to-end search efficiency or
search quality after integrating the cost models into the search algorithms.

Typical dataset-based metrics include Rooted Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE), R2 (Coefficient of Determination), pairwise comparison accuracy. We also propose a
new metric top-k score, which reflects how well the top-k programs predicted by the model perform.
Their definition can be found at Appendix B. For search-based metrics, there are two typical metrics:
we can either fix the search time, and compare the latency of the resulting programs, or fix a converged
latency, and compare the search time used to reach it.

The search-based metrics are the end-to-end objective of a search-based compiler, but these metrics
are expensive to compute due to the time-consuming search process. These metrics also involve other
factors that are not directly related to the cost model. On the other hand, dataset-based metrics can be
computed very fast on a static dataset. They are more directly related to the cost model but do not
directly reflect the end-to-end objective. In Sec. 5.1, we compare several dataset-based metrics to see
how well they reflect the end-to-end objective.

5 Experiments

In this section, we try to answer the following questions: What are the best metrics to evaluate a
cost model (Sec. 5.1)? How do the model architectures and loss functions influence the model
performance (Sec. 5.2)? How should we collect the dataset (Sec. 5.3)? How can the model improve
search efficiency (Sec. 5.4)? Is the online transfer learning useful (Sec. 5.5)? How can we further
improve the search results (Sec .5.6)?

5.1 Evaluation Metrics

In Sec. 4.3, we list some widely used dataset-based metrics and discuss the possible discrepancies
between these metrics and the end-to-end objective. In this section, we compare several dataset-based
metrics and pick the one that reflects the end-to-end objective best. We can then use it as the evaluation
metric in the following sections without involving the search process. Additional experimental setup
can be found in Appendix C.

We train three different models and evaluate them with both dataset-based metrics and search-based
metrics. We use the dataset from Intel Xeon Platinum-8272. We hold out a ResNet-50 (batch size=1,
image size=224) as the test set, and use the rest of the dataset as the training set. For dataset-based
metrics, we evaluate the models on the test dataset. For the search-based metrics, we run the search

2A negative R2 is possible when the model performs worse than the baseline model which always predicts
the mean value. This means the model is not trained to be a good regression model.

6

ResNet-50 MobileNet-V2 ResNext-50 BERT-tiny BERT-base

MLP + Ranking loss Top-1 Score 0.8823 0.7446 0.8584 0.8041 0.9143
Top-5 Score 0.9456 0.9027 0.9502 0.8601 0.9753

MLP + MSE Top-1 Score 0.8873 0.7026 0.6772 0.8001 0.8535
Top-5 Score 0.9371 0.8844 0.9167 0.8805 0.9387

XGBoost + MSE Top-1 Score 0.8535 0.7259 0.8411 0.6534 0.7621
Top-5 Score 0.9341 0.9085 0.8958 0.8522 0.9441

LSTM + MSE Top-1 Score 0.8637 0.7145 0.7653 0.7972 0.8693
Top-5 Score 0.9239 0.8842 0.9173 0.8295 0.9354

Table 4: The top-k scores of different cost models on five test networks. A higher score is better.
Scores in bold are the highest top-k score for each network.

algorithm with each model for ResNet-50 under the same time budget, and measure the latency of
the result programs. Table 3 shows the evaluation results of five different dataset-based metrics and
a search-based metric. For dataset-based metrics, a good model has the RMSE close to 0 and the
pairwise accuracy, R2 and top-k score close to 1. For search-based metrics, the lower latency, the
better the search result is.

According to Table 3, although Model #1 has a small RMSE and large R2, it does not result in as
good latency as Model #3 which has a high RMSE and an extremely low R2. This suggests that
RMSE and R2 might not be the appropriate metrics for models trained with ranking losses. Model
#3 is trained with ranking loss. Directly using its output values to compute regression metrics such
as RMSE and R2 gives meaningless values. On the other hand, pairwise comparison accuracy and
the top-k score are more consistent with the final latency; thus they are better dataset-based metrics
for our use case. One slight difference between these two is that pairwise comparison accuracy does
not differentiate Model #1 and Model #2 well, so top-k score reflects the end-to-end objective best.
Intuitively, the problem we are tackling is fundamentally a ranking problem rather than a regression
problem. Therefore, using ranking-based metrics can evaluate all kinds of models while directly
using regression-based metrics is meaningless for some models. In addition, we care the most about
the top-ranked programs because the compiler will only choose and compile them. We use top-k
score in the following sections.

5.2 Model Architectures and Loss Functions

This subsection evaluates the effectiveness of different model architectures and loss functions. We
use the dataset from Intel Xeon Platinum-8272. We hold out a test set that consists of five networks,
ResNet-50, MobileNet-V2, ResNext-50. BERT-tiny, and BERT-base with batch size 1 and image
size 224 (or sequence length 128), and train models using different combinations of architectures
and loss functions on the training set that consists of the whole dataset excluding all the tasks that
appear in the above five networks. Further training details are included in Appendix C. Note that for
the ranking loss, we use the probabilistic cost function originated from LambdaRank [44]. Table. 4
shows the top-k scores of these models on the test set. The highest top-1 score and top-5 score in
each column are in bold. In general, a MLP model trained with the ranking loss performs the best.

5.3 Dataset Size

This section evaluates the impact of dataset size on model performance. The size of a dataset is
defined as # tasks multiplied by # programs per task. In dataset collection, we typically have a budget
on the total size, but how to set these two factors given the total size (i.e., their product) is unclear. To
give guidance to future dataset collection, we compare the performance of cost models trained with
different combinations of # task and # programs per task. We use the same training set and test set as
in Sec. 5.2 but randomly downsample the whole training set to get smaller datasets with different
combinations of # task and # programs per task. Figure 5a and Figure 5b show how the model’s
top-k score varies along with changes in the two factors described above. It shows that the model’s
performance generally increases along with the dataset size, although an increase in the dataset size
does not guarantee an improvement in the model performance. Besides, the figure shows that in
general, given a fixed total size, allocating more to # task is often more effective than allocating more

7

20
0

30
0

40
0

50
0

60
0

70
0

80
0

task

18
00

16
00

14
00

12
00

10
00

80
0

60
0

40
0

20
0#

pr
og

ra
m

s p
er

 ta
sk

0.55

0.60

0.65

0.70

(a) Top 1 score

20
0

30
0

40
0

50
0

60
0

70
0

80
0

task

18
00

16
00

14
00

12
00

10
00

80
0

60
0

40
0

20
0#

pr
og

ra
m

s p
er

 ta
sk

0.70

0.75

0.80

(b) Top 5 score

400 600 800
Search Time (s)

10

20

30

La
te

nc
y

(m
s)

ResNet-50
Ansor Default
Ours

(c) Tuning curve
Figure 5: (a)(b): The impact of dataset size on model performance. The x-axis is number of tasks
and y-axis is number of programs per task. The lighter the color, the better the model. (c): Network
performance tuning curve. The y-axis is the result program’s latency and the x-axis is the search time.

ResN
et-

50

 (C
PU

)

Mob
ileN

et-
V2

 (C
PU

)
BER

T-b
ase

 (C
PU

)
ResN

et-
50

 (G
PU

)

Mob
ileN

et-
V2

 (G
PU

)
BER

T-b
ase

 (G
PU

)

0

2500

5000

7500

10000

12500

Se
ar

ch
 T

im
e

(s
)

3289 2956
2121

13344

10196

6224

301 284 206

2976
1520

3216

Ansor Default
Ours

(a) pla
tin

um
-82

72

e5
-26

73

ep
yc-

74
52

0

1000

2000

3000

4000

5000

Se
ar

ch
 T

im
e

(s
)

Model trained on platinum-8272
Model trained on e5-2673
Model trained on epyc-7452
Model trained on all platforms
Ansor

(b)

Figure 6: Search time comparison. The y-axis is the search time used to converge to the same result.
(a) Shows the search time for different neural network architectures on a CPU and a GPU. (b) shows
the search time on different hardware platforms for models trained on different hardware platforms.

to # program per task. For example, for a dataset of size 120000, (600 tasks, 200 programs per task)
works better than (300 tasks, 400 programs per task) and (200 tasks, 600 programs per task).

5.4 Search with a Pre-trained Cost Model

We combine the findings from the previous sections and train four MLP models with ranking loss
for Intel Xeon Platinum-8272, Intel E5-2673, AMD EPYC-7452, and NVIDIA K80 respectively.
Each model is trained on the dataset collected from a single hardware platform. We integrate the
cost models into the Ansor auto-scheduler[48] in TVM [13]. We name the original Ansor (i.e., the
one without our cost model) as "Ansor default" and follow its official benchmark scripts to run the
benchmark.

In Figure 5c, we run the search for ResNet-50 on Intel Xeon Platinum-8272 with the cost model
trained on the same hardware platform, and report how the result program’s latency changes along
with the total search time in both Ansor default and our approach. It shows that our pre-trained
cost model makes the search converge much faster. This is because "Ansor default" does not have
a pre-trained model. It thus has to start from random search and collect data during the search and
train the model online, which takes an extremely long time. Figure 6a compares the search time that
Ansor default and our approach take respectively to converge to the same result on more networks
and two hardware platforms (Intel Platinum CPU and NVIDIA K80 GPU). It shows that the use of
our cost model reduces the search time by up to 10× while maintaining the same search quality. One
of our industry collaborators runs weekly benchmarks and compiles hundreds of models for dozens
of hardware platforms. The long-term savings of using this dataset are significant.

In Figure 6b, we run the search algorithm with three cost models on three different hardware
platforms. It shows that the models are able to transfer across different hardware platforms, although
the performance is not as good as on the platform that generates the dataset that the model is trained

8

Intel Xeon Platinum-8272 Intel e5-2673

Setting 1 With transfer learning 6.22 ms 27.26 ms
Without transfer learning 6.43 ms 29.94 ms

Setting 2 With transfer learning 6.44 ms 28.92 ms
Without transfer learning 7.15 ms 32.03 ms

Table 5: Evaluation of the effectiveness of transfer learning. The model is trained on Intel Xeon
Platinum-8272 and evaluated on both Intel Xeon Platinum-8272 and Intel e5-2673. We compare the
latency (ms) of the result program with a fixed number of measurement trials on ResNet-50.

on. We also train a model on a training set that consists of one-third of the data from each platform.
This model performs the second best on all three platforms, which implies the possibility to train one
general model for all hardware platforms.

5.5 Transfer Learning

To explore transfer learning, the cost model is pre-trained using offline learning with a static dataset
and later improved using online learning during the search. More specifically, we first collect a
certain number of measurement records for each task during the search, and fit a local model to
predict the difference between the measured latency and the pre-trained model’s prediction. Then we
continue to conduct another round of search, during which we tune the pre-trained model’s prediction
with the local model’s predicted difference. In this experiment, we train a model using the dataset
collected from Intel Xeon Platinum-8272 excluding ResNet-50 (batch size 1, image size 224, 240,
256), then run the search algorithm on both Intel Xeon Platinum-8272 and Intel e5-2673. We evaluate
the effectiveness of the local model in two ways.

In Setting 1, we report two results: 1) without using transfer learning where we run the search
for 50 measurement trials per task and choose the best measurement out of 50 trials and 2) with
transfer learning where we use the first 40 out of 50 measurements to fit a local model (the last 10
measurements do not update the model) and choose the best measurement out of 50 trials. In Setting
2, we do everything similar to Setting 1 but we only consider the last 10 measurements per task in
the final reported result. The last 10 measurements are programs collected after training the local
model, so we can study how exactly the local model affects the programs collected within the same
number of trials. Setting 1 is more like an end-to-end benchmark while Setting 2 is more like a
micro-benchmark for the transferred model. In both cases, we compare the latency of the resulting
program, as shown in Table 5. In both settings, transfer learning improves the search results by
producing programs with lower latency.

Note that we only do transfer learning across different types of CPUs. We leave the transfer learning
from CPUs to GPUs to future work. Our first intuition is that CPUs and GPUs are based on very
different architectures in terms of both memory hierarchy and execution model, and hence we do not
expect transfer learning between them would be very useful.

5.6 Optimizing with Additional Random Sampling

In Sec. 5.4, when compiling a single network with many tasks, the best program was selected for
each intermediate task. For example, for every intermediate neural network layer, the algorithm picks
the best performing configuration for that particular layer and combines it with the best performing
configuration of the next layer and so on. However, sometimes the combination of the best candidates
of different tasks does not result in the best end-to-end performance. In this experiment, we integrate
random sampling to solve this problem. After measuring the program composed of best candidates of
all tasks, we randomly sample one of the top 3 candidates for every task and repeat this procedure 80
times; for each time, we measure the end-to-end performance of the new program and choose the
best performing program so far.

Figure 7 shows the experiment results for 3 networks. For each network, we first run the search
process for a certain number of trials and start the random sampling based on the measurement
records collected during the search. We then plot the best inference latency we have found as a
function of the number of random samples we have explored. The plot shows that as the number of
random samples increases, we can always find better programs with lower latency. The measurement

9

0 20 40 60 80
samples explored

5.6
5.8
6.0
6.2
6.4
6.6
6.8

La
te

nc
y(

m
s)

resnet_50

0 20 40 60 80
samples explored

6.0

6.2

6.4

6.6

La
te

nc
y(

m
s)

resnext_50

0 20 40 60 80
samples explored

18

19

20

21

La
te

nc
y(

m
s)

bert_base
trials per task = 10 # trials per task = 20 # trials per task = 40

Figure 7: Optimizing with additional random sampling. The figure shows the lowest program latency
found so far as a function of the number of times we reran the experiment.

variance is around 0.1 ms, so we can conclude that the decrease in latency is due to improvement
in programs instead of noise. Note that although the random sampling generally produces better
programs, this process itself takes time, which leads to a trade-off that we have to consider.

6 Related Work

Tensor compilers use compiler techniques to optimize the execution of tensor programs. Some
notable compilers are Halide [33], TACO [26], XLA [41], Tensor Comprehensions [43], TVM [12],
nGraph [16], Glow [34], Tiramisu [6], TASO [24], HummingBird [32], and Rammer [29].

To guide the search in search-based tensor compilers, many learned cost models have been proposed
[1, 3, 5, 13, 25, 39, 48]. Besides learned cost models, there are analytical models [8, 28, 38, 40, 43]
for tensor program cost estimation. Apart from single device tensor program domain, there are learned
cost models for other system problems [30, 46, 37]. In addition to supervised learning approaches,
there are reinforcement learning approaches for compiler optimizations [2, 4, 15, 19, 21, 31, 47, 49].

There are several existing performance datasets for programs [6, 17, 45]. To the best of our knowledge,
TenSet is the first public multi-platform dataset for tensor programs with the largest number of
samples.

7 Discussion

Limitation There are some limitations of this dataset. For example, the dataset only includes
programs for floating point and dense neural networks. The subgraphs are partitioned by a specific
algorithm, which limits the types of subgraphs.

Potential societal impact The dataset is of tensor programs. It does not contain any personally
identifiable information or offensive content. The dataset is used to make tensor compilers better,
which makes the execution of neural networks faster. It does not have any direct potential negative
societal impact.

Conclusion We introduce TenSet, a large-scale multi-platform program performance dataset for
learned tensor compilers. We conduct comprehensive experiments with the dataset and show its
practical usage in Ansor, the state-of-the-art tensor compiler. We hope that despite the end of Moore’s
law, and despite the continuously changing application-specific hardware platforms as a result of
it, TenSet can help continue the performance scaling by improving the tensor compilers and further
advancing the research in the field.

8 Acknowledgement

We would like to thank Cody Hao Yu, Zhao Wu, Chengfan Jia, Minmin Sun, Wanchen Sui, Jun Yang,
and anonymous reviewers for their insightful feedback. In addition to NSF CISE Expeditions Award
CCF-1730628, this research is supported by gifts from Alibaba Group, Amazon Web Services, Ant
Group, CapitalOne, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk, and VMware.

10

References
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi,

Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al. Learning to optimize
halide with tree search and random programs. ACM Transactions on Graphics (TOG), 38(4):1–
12, 2019.

[2] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh.
Chameleon: Adaptive code optimization for expedited deep neural network compilation. In
International Conference on Learning Representations, 2020.

[3] Luke Anderson, Andrew Adams, Karima Ma, Tzu-Mao Li, and Jonathan Ragan-Kelley. Learn-
ing to schedule halide pipelines for the gpu. arXiv preprint arXiv:2012.07145, 2020.

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,
Una-May O’Reilly, and Saman Amarasinghe. Opentuner: an extensible framework for program
autotuning. In Proceedings of the 23rd international conference on Parallel architectures and
compilation, pages 303–316, 2014.

[5] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel Abdous, Taha
Arbaoui, Karima Benatchba, et al. A deep learning based cost model for automatic code
optimization. Proceedings of Machine Learning and Systems, 3, 2021.

[6] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman
Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. Tiramisu: a
polyhedral compiler for expressing fast and portable code. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 193–205. IEEE, 2019.

[7] Paul Barham and Michael Isard. Machine learning systems are stuck in a rut. In Proceedings of
the Workshop on Hot Topics in Operating Systems, pages 177–183, 2019.

[8] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
101–113, 2008.

[9] Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification.
arXiv preprint arXiv:1811.03508, 2018.

[10] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pages 129–136, 2007.

[11] Tianqi Chen and Carlos Guestrin. Xgboost: a scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: an automated end-to-end optimizing
compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018.

[13] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. In Advances in
Neural Information Processing Systems, pages 3389–3400, 2018.

[14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[15] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya
Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, et al. Compilergym: Robust, performant compiler
optimization environments for ai research. arXiv preprint arXiv:2109.08267, 2021.

11

[16] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew Brookhart,
Avijit Chakraborty, Will Constable, Christian Convey, Leona Cook, Omar Kanawi, et al. Intel
ngraph: An intermediate representation, compiler, and executor for deep learning. arXiv preprint
arXiv:1801.08058, 2018.

[17] Anderson Faustino, Bruno Kind, and Fernando Magno Quint. Anghabench: a synthetic
collection of benchmarks mined from open-source repositories. 2020.

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[19] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion
Stoica. Neurovectorizer: end-to-end vectorization with deep reinforcement learning. In Proceed-
ings of the 18th ACM/IEEE International Symposium on Code Generation and Optimization,
pages 242–255, 2020.

[20] Ameer Haj-Ali, Hasan Genc, Qijing Huang, William Moses, John Wawrzynek, Krste Asanović,
and Ion Stoica. Protuner: tuning programs with monte carlo tree search. arXiv preprint
arXiv:2005.13685, 2020.

[21] Ameer Haj-Ali, Qijing Huang, William Moses, John Xiang, John Wawrzynek, Krste Asanovic,
and Ion Stoica. Autophase: juggling hls phase orderings in random forests with deep reinforce-
ment learning. In Third Conference on Machine Learning and Systems (ML-Sys), 2020.

[22] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216, 2017.

[23] Intel. Oneapi deep neural network library (onednn), 2019.

[24] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken.
Taso: optimizing deep learning computation with automatic generation of graph substitutions.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 47–62,
2019.

[25] Samuel J Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip
Roy, Amit Sabne, and Mike Burrows. A learned performance model for tensor processing units.
Proceedings of Machine Learning and Systems, 2021.

[26] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. The
tensor algebra compiler. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–
29, 2017.

[27] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor program
compilation made efficient. Advances in Neural Information Processing Systems, 33, 2020.

[28] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice Rastello, Atanas
Rountev, and Ponnuswamy Sadayappan. Analytical cache modeling and tilesize optimization
for tensor contractions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–13, 2019.

[29] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenxiang Hu, Fan
Yang, Lintao Zhang, and Lidong Zhou. Rammer: Enabling holistic deep learning compiler
optimizations with rtasks. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 881–897, 2020.

[30] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural networks. In International
Conference on machine learning, pages 4505–4515. PMLR, 2019.

[31] Charith Mendis, Cambridge Yang, Yewen Pu, Dr.Saman Amarasinghe, and Michael Carbin.
Compiler auto-vectorization with imitation learning. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

12

[32] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus
Weimer, and Matteo Interlandi. A tensor compiler for unified machine learning prediction
serving. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 899–917, 2020.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

[34] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman
Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein, et al. Glow:
Graph lowering compiler techniques for neural networks. arXiv preprint arXiv:1805.00907,
2018.

[35] Jaehun Ryu and Hyojin Sung. Metatune: Meta-learning based cost model for fast and efficient
auto-tuning frameworks. arXiv preprint arXiv:2102.04199, 2021.

[36] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, and
Lora M Aroyo. “everyone wants to do the model work, not the data work”: Data cascades in
high-stakes ai. In proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pages 1–15, 2021.

[37] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. Cost models for big
data query processing: Learning, retrofitting, and our findings. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 99–113, 2020.

[38] Savvas Sioutas, Sander Stuijk, Twan Basten, Henk Corporaal, and Lou Somers. Schedule syn-
thesis for halide pipelines on gpus. ACM Transactions on Architecture and Code Optimization
(TACO), 17(3):1–25, 2020.

[39] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. Value function based perfor-
mance optimization of deep learning workloads. Proceedings of Machine Learning and Systems,
2021.

[40] Sanket Tavarageri, Alexander Heinecke, Sasikanth Avancha, Bharat Kaul, Gagandeep Goyal,
and Ramakrishna Upadrasta. Polydl: Polyhedral optimizations for creation of high-performance
dl primitives. ACM Transactions on Architecture and Code Optimization (TACO), 18(1):1–27,
2021.

[41] XLA Team. Xla: Optimizing compiler for machine learning, 2017.

[42] Joaquin Vanschoren and Serena Yeung. Announcing the neurips 2021 datasets and benchmarks
track. 2021.

[43] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,
William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-
sions: framework-agnostic high-performance machine learning abstractions. arXiv preprint
arXiv:1802.04730, 2018.

[44] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. The
lambdaloss framework for ranking metric optimization. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, pages 1313–1322,
2018.

[45] Tomofumi Yuki and Louis-Noël Pouchet. Polybench 4.0, 2015.

[46] Hao Zhang, Yuan Li, Zhijie Deng, Xiaodan Liang, Lawrence Carin, and Eric Xing. Au-
tosync: Learning to synchronize for data-parallel distributed deep learning. Advances in Neural
Information Processing Systems, 33, 2020.

[47] Minjia Zhang, Menghao Li, Chi Wang, and Mingqin Li. Dynatune: Dynamic tensor program
optimization in deep neural network compilation. In International Conference on Learning
Representations, 2021.

13

[48] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida
Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating high-performance
tensor programs for deep learning. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 863–879, 2020.

[49] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. Flextensor: an automatic
schedule exploration and optimization framework for tensor computation on heterogeneous
system. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 859–873, 2020.

14

	Introduction
	Background: Search-based Compilers with Learned Cost Models
	TenSet: A Dataset for Tensor Programs
	Requirements of the Dataset
	Terminology
	An Illustrative Example of Tensor Programs
	Contents and Data Collection

	Learning and Evaluating a Cost Model in Tensor Compilers
	Learning a Cost Model
	Integration with the Search Algorithm
	Evaluation Metrics

	Experiments
	Evaluation Metrics
	Model Architectures and Loss Functions
	Dataset Size
	Search with a Pre-trained Cost Model
	Transfer Learning
	Optimizing with Additional Random Sampling

	Related Work
	Discussion
	Acknowledgement
	Additional Dataset information
	Definition of Dataset-based Evaluation Metrics
	Experimental Setup

