
Under review as a conference paper at ICLR 2021

LEARNING TASK-RELEVANT FEATURES VIA CON-
TRASTIVE INPUT MORPHING

Anonymous authors
Paper under double-blind review

ABSTRACT

A fundamental challenge in artificial intelligence is learning useful representa-
tions of data that yield good performance on a downstream classification task,
without overfitting to spurious input features. Extracting task-relevant predic-
tive information becomes particularly challenging for high-dimensional, noisy,
real-world data. We propose Contrastive Input Morphing (CIM), a representation
learning framework that learns input-space transformations of the data to mitigate
the effect of irrelevant input features on downstream performance via a triplet
loss. Empirically, we demonstrate the efficacy of our approach on various tasks
which typically suffer from the presence of spurious correlations, and show that
CIM improves the performance of other representation learning methods such as
variational information bottleneck (VIB) when used in conjunction.

1 INTRODUCTION

At the heart of modern machine learning is the problem of representation learning, or extracting
features from raw data that enable predictions with high accuracy (Hinton & Salakhutdinov, 2006;
Vincent et al., 2010; Chen et al., 2016; Van Den Oord et al., 2017; Oord et al., 2018). Despite
the recent successes of deep neural networks (Dean et al., 2012; LeCun et al., 2015), their rapidly
growing size and large-scale training procedures, coupled with high-dimensional data sources, pose
significant challenges in learning models that perform well on a given task without overfitting to
spurious input features (Zhang et al., 2016; Ilyas et al., 2019; Geirhos et al., 2020). As a result,
trained networks have been shown to fail spectacularly on out-of-domain generalization tasks (Beery
et al., 2018; Rosenfeld et al., 2018) and for rare subgroups present in data (Hashimoto et al., 2018;
Goel et al., 2020), among others.

A wide range of methods have been proposed to tackle this problem, including regularization, data
augmentation, leveraging causal explanations, and self-training (Srivastava et al., 2014; Chen et al.,
2020b; Sagawa et al., 2019; Chen et al., 2020b). In particular, prior art places a heavy emphasis on
lossless access to the input data during training, then constructing a high-level representation which
extracts the necessary information. Yet it is reasonable to assume that in some cases, we desire
access to only a subset of the input which is relevant to the task – for example, the background color
in an image of a “7” is unnecessary for identifying its digit class. The fundamental challenge, then,
is discerning which parts of the input are relevant without requiring privileged information (e.g., the
nature of the downstream task) at training time.

Our approach, Contrastive Input Morphing (CIM), uses labeled supervision to learn input-space
transformations of the data that mitigate the effect of irrelevant input features on predictive perfor-
mance. Though the Data Processing Inequality (Cover, 1999) states that no amount of input process-
ing can increase its mutual information (MI) with the predictive variable, we propose to transform
the data in such a way that it makes it easier for the model to extract the relevant predictive infor-
mation for the downstream task – that is, we attempt to increase the amount of usable information
for our representations (Xu et al., 2020). We emphasize that our method does not assume access to
the exact nature of the downstream task, such as attribute labels for rare subgroups.
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Figure 1: An end-to-end flowchart for the CIM training procedure. C refers to the TN while D
refers to the classifier (discriminator). Lcon forces the learned input transformation Φ to upweight
the task-relevant blue features which are present in both x and x+, and to downweight the spurious
red feature which is shared by x and x−.

The key workhorse of CIM is an auxiliary network called the Transformation Network (TN). Lever-
aging ideas from neural style transfer (Gatys et al., 2015; Li et al., 2017b), the TN is trained via a
triplet loss on feature correlation matrices (Schroff et al., 2015; Koch, 2015). Intuitively, this ob-
jective uses the shared information from competing classes (“negative examples”) as a proxy for
spurious correlations, while leveraging the shared information within the same class (“positive ex-
amples”) as a heuristic for task-relevancy (Khosla et al., 2020). The framework for CIM is quite
general: it is (1) complementary to MI-based representation learning techniques such as variational
information bottleneck (VIB) (Alemi et al., 2016); and (2) can be used as a plug-in module for
training any classifier. For the flowchart of the training procedure of the CIM refer to Figure 1.

Empirically, we evaluate CIM on three settings that suffer from spurious correlations: classifica-
tion with nuisance background information, out-of-domain (OOD) generalization, and improving
accuracy uniformly across subgroups. In the first task, CIM outperforms ERM on colored MNIST
and improves over the ResNet-50 baseline on the Background Challenge (Xiao et al., 2020). Simi-
larly, CIM outperforms relevant baselines using ResNet-18 on the VLCS dataset (Torralba & Efros,
2011) for OOD generalization. For subgroup accuracies, CIM outperforms both supervised and un-
supervised methods on CelebA (Liu et al., 2015) in terms of worst-group accuracy (by 1.7% and
41.4% respectively), while outperforming unsupervised methods by up to 12.9% on Waterbirds.

In summary, our contributions in this work can be outlined as follows:

1. We propose CIM, a method demonstrating that lossy access to input data helps extract
good task-relevant representations.

2. We show that CIM is complementary to existing methods, as the learned transformations
can be leveraged by other MI-based representation learning techniques such as VIB.

3. We empirically verify the robustness of the learned representations to spurious correlations
on a variety of tasks (Section 4).

2 PRELIMINARIES

We consider the standard supervised learning setup where x ∈ X ⊆ Rd is the input variable, and y ∈
Y = {1, . . . , k} is the set of corresponding labels. We assume access to samples D = {(xi, yi)}ni=1
drawn from an underlying (unknown) joint distribution pdata(x, y), and use capital letters to denote
random variables, e.g. X and Y . We use P (X,Y ) to denote their joint distribution as well as P (·)
for the respective marginal (e.g. P (X) for the marginal distribution of X).

2.1 BACKGROUND AND PROBLEM SETUP

Our goal is to learn a classifier fθ : X → Y , where fθ ∈ Θ achieves low error according to some
loss function ` : Θ× (X × Y)→ R. Specifically, we minimize the empirical risk:

Lsup(θ) = Ex,y∼pdata(x,y)[`(fθ(x), y)] ≈
n∑
i=1

`(fθ(xi), yi) (1)
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In addition to good classification performance, we aim to learn representations of the data, which:
(a) are highly predictive of the downstream task; and (b) do not rely on spurious input features. That
is, the learned representations should be task-relevant.

Information bottleneck. A natural way to measure “task-relevance” in random variables is to
consider the total amount of information that a compressed (stochastic) representation Z contains
about the input variable X and the output variable Y . In particular, information bottleneck (IB)
(Tishby et al., 2000; Chechik et al., 2005; Alemi et al., 2016) is a framework which utilizes mutual
information (MI) to quantify this dependence via the following objective:

min
P (Z|X)

I(X;Z)− βI(Z;Y ) (2)

where β > 0 controls the importance of obtaining good performance on the downstream task. Given
two random variables X and Y , I(X;Y ) is computed as DKL(P (X,Y )||P (X)P (Y )), where DKL
denotes the Kullback-Leibler (KL) divergence between two probability distributions.

The IB framework can be extended to account for additional sources of input data that is known to
contain irrelevant information about the predictive task. This setting, known as IB with side infor-
mation (Chechik & Tishby, 2003), adds a term in the IB objective, which simultaneously minimizes
the MI between this nuisance variable and the learned representation. Concretely, given random
variables (X,Y+, Y−) where Y+ denotes the task of interest and Y− denotes a spurious auxiliary
variable, the objective becomes:

min
P (Z|X)

I(X;Z)− β(I(Z;Y+)− γI(Z;Y−)) (3)

where γ is another tunable hyperparameter for the nuisance task. We note that this framework bears
resemblance to triplet-based losses such as (Schroff et al., 2015; Koch, 2015), as well as contrastive
learning approaches that leverage MI maximization (Linsker, 1988; Hjelm et al., 2018; Oord et al.,
2018; Tian et al., 2019; Khosla et al., 2020). It is also in line with the InfoMin principle suggested
by (Tian et al., 2020), for learning good views in self-supervised contrastive learning.

Although the MI framework is compelling, as it captures arbitrarily complex dependencies between
random variables, there exist several challenges with their use in practice. The difficulty of com-
puting MI in high dimensions, for example, is well-documented, demands the use of various neural
estimators (Barber & Agakov, 2003; Gutmann & Hyvärinen, 2010; Oord et al., 2018; Belghazi et al.,
2018; Poole et al., 2019; Song & Ermon, 2019). Additionally, approaches such as IB posit restric-
tive assumptions on the relationships between Y+ and Y−; namely, that they must be conditionally
independent given X , which is difficult to enforce.

3 CONTRASTIVE INPUT MORPHING

Motivated by the above challenges, we propose to approximate the information content between
task-relevant and -irrelevant features via correlations in higher-dimensional feature spaces. This
procedure helps our method learn the appropriate input-space transformations.

3.1 MEASURING RELEVANCE VIA CORRELATIONS

Another way to measure “task-relevance” in random variables is to consider their conditional de-
pendencies, as captured by their covariances. Specifically, consider a feature map φ : X → Rd
that takes in an input and returns a representation φ(x) that is of the same dimensionality as the
original input x. We can use this feature map to construct a covariance (Gram) matrix of φ(x),
where ΣXX = φ(x)Tφ(x). Although the covariance only measures linear dependencies between
the input, we can capture more complex relationships via an arbitrarily complex feature map φ.

Training Procedure: For the Transformation Network (TN), we utilize a convolutional autoencoder
to obtain a reconstructed image of the same dimensionality as the input, as shown in Figure 2. Our
method operates over triplets: (x, x+, x−), where (x, x+) denote examples from the same class
while x− is an example from a different class than x. We use a supervised contrastive loss to train
the network, similar in spirit to (Khosla et al., 2020).

Specifically, we learn an intermediate feature map φ : X → R(H×W )×C using the TN that takes
in an input x and returns a representation φ(x) that is of the same dimensionality as the original
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Figure 2: Captured similarities on MNIST. Top: When training the TN as an autoencoder, the triplet
loss forces the network to reconstruct the shared spurious features between examples. Bottom:
When training CIM for classification, the input transformation Φ highlights the task-relevant digit
while de-emphasizing the uninformative sources of variation (the background and red square).

input, where (H ×W ) denotes the height and width of the image, and C denotes the number of
channels. We use this feature map to construct a Gram matrix of the input features, where ΣXX =
φ(x)Tφ(x). Then, the triplet loss encourages the positive examples’ Gram matrix representations
to move closer together in embedding space to those of the input, while ensuring that the negative
examples’ representations are further apart:

Lcon(φ) = min
φ
||ΣXX ,ΣX+X+ ||2 −max(α, ||ΣXX ,ΣX−X− ||2) (4)

for some margin α > 0. The output of φ(·) is then passed through a 1 × 1 2-D convolution layer
with a sigmoid activation to produce a (single channel) soft “mask” m(x), which is then multiplied
with the original input image x to obtain the final representation ψ(x) = x ◦ m(x). Finally, the
classifier fθ(·)is trained on the transformed input image ψ(x).

Learning Objective: The overall loss function can be written as:

L(φ, θ) = λLcon(φ) + Lsup(θ) (5)

where λ is a multiplier which controls the contribution of the TN loss from Lcon(φ) from Equation 4
and Lsup(θ) is the standard cross entropy loss for multi-class classification. The parameters for the
transformation network (φ) and the classifier (θ) are trained jointly. In our experiments, we found
that values of λ = 0.0001 worked well.

It is well known that Lcon can be interpreted as minimizing a specific form of Maximum Mean
Discrepancy (MMD) (Gatys et al., 2015; Li et al., 2017b). For the identity map φ(·), Equation 5
is equivalent to minimizing MMD between two kernelized inputs where the specific kernel is the
second-order polynomial kernel. In this way, CIM’s Transformation Network can also be seen as
minimizing the distance between the mean embeddings of the underlying distributions for X and
X+ while simultaneously maximizing the distance for those of X and X−.

3.2 A MOTIVATING EXAMPLE

We present a concrete example for the intuition behind our approach using the MNIST dataset
(LeCun, 1998). We first construct a challenging input reconstruction task, in which a red square is
placed on the bottom right of all samples and the model is trained to reconstruct a random digit that
is different from the input’s class. As the TN is trained as an independent autoencoding module, we
find that the TN learns to pick up shared signals across inputs (i.e., the black background) before
converging to the red square as the source of shared (spurious) correlations among examples.

Next, we evaluate whether we can remove this source of variation for digit classification by passing
a lossy version of the input into the classifier (Figure 1). As shown in Figure 2 (bottom), the input
transformation learned by the model (i.e. ψ(x) = m ◦ x) de-emphasizes the shared features while
highlighting the task-relevant features.

4 EXPERIMENTAL RESULTS

For our experiments, we are interested in empirically investigating the following questions:

4



Under review as a conference paper at ICLR 2021

Train Test

7

2

(a) Train vs. test distributions

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
alpha

50

60

70

80

90

Ac
cu

ra
cy

ERM
VIB
CIM (ours)
CIM+VIB (ours)

(b) Classification results; higher is better.

Figure 3: Results with nuisance background information for Colored MNIST. In (a), the train and
test sets are constructed such that a classifier will achieve low accuracy by relying on background
color. In (b), CIM and CIM + VIB outperform relative baselines on digit classification.

1. Are CIM’s learned representations robust to spurious correlations in the input features?

2. Does the input transformation learned by CIM improve domain generalization?

3. How well can CIM preserve classification accuracy across subgroups?

Datasets: We consider various datasets to test the effectiveness of our method. We first construct
a colored variant of MNIST to demonstrate that CIM successfully ignores nuisance background
information in a digit classification task, then further explore this finding on the Background Chal-
lenge (Xiao et al., 2020). Next, we evaluate CIM on the VLCS dataset (Torralba & Efros, 2011)
to demonstrate that the input transformations help in learning representations that generalize to out-
of-domain distributions. Then, we study two benchmark datasets, CelebA (Liu et al., 2015) and
Waterbirds (Wah et al., 2011; Zhou et al., 2017; Sagawa et al., 2019), to show that CIM preserves
subgroup accuracies.

Models: We use different classifier architectures depending on the downstream task. While ResNet-
50 is the default choice for most datasets, we also utilize Inception-ResNetV2 (Szegedy et al., 2016)
to obtain better performance, ResNet-18 for a fair comparison with existing OOD generalization
techniques, and PointNet (Qi et al., 2017) for 3D point cloud classification. We also experiment
with Variational Information Bottleneck (VIB) (Alemi et al., 2016) as both a complementary and
competing approach to CIM, and use ResNet-50 as the VIB encoder. We refer the reader to Ap-
pendix A.2 for additional details on model architectures and hyperparameters. We note that the
transformed inputs and the feature maps Φ are semantically meaningful as shown in Figure 4.

4.1 CLASSIFICATION WITH NUISANCE BACKGROUND INFORMATION

Colored MNIST: First, we assess whether CIM can distinguish between two MNIST digit classes
(2 and 7) in the presence of a spurious input feature (background color). As outlined in Figure 3(a),
we construct a dataset such that a classifier will achieve low accuracy by relying on background
color. For a given proportion α, we color α% of all digits labeled “2” in the training set with blue
backgrounds, and color the remaining (1−α)% labeled “7” with yellow backgrounds. We vary this
proportion by α = {0.5%, 1%, 2%}. At test time, we color all the digits labeled “2” in blue, while
coloring the “7” digits in yellow. As shown in Figure 3 (b), CIM is better able to utilize relevant
information for the downstream classification task in comparison to ERM by 13%, 10.5%, and
3% on models trained with α = {0.5%, 1%, 2%} respectively. Perhaps more interestingly, a hybrid
approach of VIB + CIM outperforms all other methods – this suggests that the input transformations
learned by CIM are indeed preserving task-relevant information that can be better leveraged by
InfoMax methods such as VIB. More experimental details can be found in Appendix A.2.

The Background Challenge: Next, we evaluate whether the favorable results from MNIST trans-
late to a more challenging setup, and test CIM on the Background Challenge (Xiao et al., 2020). The
Background Challenge is a public dataset consisting of ImageNet-9 (Deng et al., 2009) test sets with
varying amounts of foreground and background signals, designed to measure the extent to which
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Original (↑) Mixed-same (↑) Mixed-rand (↑) BG-gap (↓)
Baseline (Xiao et al., 2020) 96.3 89.9 75.6 14.3
CIM (Ours) 97.1 90.4 79.7 10.7
CIM + VIB (Ours) 97.5 90.3 79.9 10.4

Table 1: Results from the Background Challenge on ImageNet-9 using ResNet-50. Our method out-
performs the relevant baselines across all three datasets. The difference between Mixed-same and
Mixed-rand is referred to as the background gap (BG-gap), which indicates average robustness
to varying backgrounds from different image sources.

deep classifiers rely on spurious features for image classification. As shown in Table 1, CIM outper-
forms the original ResNet-50’s performance by 4.1% on Mixed-rand, 0.8% on Mixed-same,
and 0.5% on the original test set. Mixed-rand refers to the setting where the foreground is overlaid
onto a random background, while Mixed-same corresponds to the test set where the foreground
is placed on a background from the same class. These results demonstrate that CIM indeed learns
task-relevant representations without relying on nuisance background information.

4.2 CIM GENERALIZES OVER DIFFERENT DOMAINS

In this experiment, we evaluate CIM on OOD generalization performance using the VLCS bench-
mark (Torralba & Efros, 2011). VLCS consists of images from five object categories shared by the
PASCAL VOC 2007, LabelMe, Caltech, and Sun datasets, which are considered to be four separate
domains. We follow the standard evaluation strategy used in (Carlucci et al., 2019), where we parti-
tion each domain into a train (70%) and test set (30%) by random selection from the overall dataset.
As summarized in Table 2, CIM outperforms state-of-the-art methods based on ResNet-18 on each
domain, bolstering our claim that using a lossy transformation of the input is helpful for learning
task-relevant representations that generalize across domains.

Method Caltech LabelMe Pascal Sun Average

DeepC (Li et al., 2018b) 87.47 62.06 64.93 61.51 68.89
CIDDG (Li et al., 2018b) 88.83 63.06 64.38 62.10 69.59
CCSA (Motiian et al., 2017) 92.30 62.10 67.10 59.10 70.15
SLRC (Ding & Fu, 2017) 92.76 62.34 65.25 63.54 70.15
TF (Li et al., 2017a) 93.63 63.49 69.99 61.32 72.11
MMD-AAE (Li et al., 2018a) 94.40 62.60 67.70 64.40 72.28
D-SAM (D’Innocente & Caputo, 2018) 91.75 57.95 58.59 60.84 67.03
JiGen (Carlucci et al., 2019) 96.93 60.90 70.62 64.30 73.19
Asadi et al. (Asadi et al., 2019) 98.11 63.61 74.33 67.11 75.79
CIM (Ours) 98.63 66.67 75.36 69.62 77.57

Table 2: Multi-source domain generalization results (%) on the VLCS dataset with ResNet-18 as the
base network. All reported numbers are averaged over three runs.

4.3 CIM PRESERVES SUBGROUP PERFORMANCE

In this experiment, we investigate whether representations learned by CIM perform well on all
subgroups on the CelebA and Waterbirds datasets. Preserving good subgroup-level accuracy is
challenging for naive ERM-based methods, given their tendency to latch onto spurious correlations
(Kim et al., 2019; Arjovsky et al., 2019; Sagawa et al., 2020; Chen et al., 2020b). Most prior
works leverage privileged information such as group labels to mitigate this effect (Ben-Tal et al.,
2013; Vapnik & Izmailov, 2015; Sagawa et al., 2019; Goel et al., 2020; Xiao et al., 2020). As
TN in CIM is trained to capture task-relevant features and minimize nuisance correlations between
classes, we hypothesize that CIM should perform well at the subgroup level even without explicit
group label information.

For a fair comparison with the prior work, we use ResNet-50 as the backbone classifier for the CIM ,
but also train both ERM and CIM with an Inception-ResNetV2 (Szegedy et al., 2016) backbone to
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assess the impact of using a larger model (denoted by ERM* and CIM*, respectively). We also use
ResNet-50 for VIB’s encoder and InfoMask’s discriminator (see Appendix A.2). Table 3 shows that
CIM outperforms both supervised and unsupervised methods on CelebA in terms of worst-group
accuracy (2.4% improvement over CAMEL, the top-performing supervised model), and outperforms
unsupervised models while significantly improving over ERM on the Waterbirds dataset (16.7%
increase). We emphasize that the favorable performance of CIM is obtained without using subgroup
labels, in contrast with previous approaches. We refer the reader to Appendix B.3 for further details
and ablation studies regarding the different components of our method.

Dataset Method Unsupervised (group-level) Worst-group acc. Overall acc.

C
el

eb
A

GDRO (Sagawa et al., 2019) 7 82.2 90.9
GDRO* (Sagawa et al., 2019) 7 49.4 91.4
CAMEL (Goel et al., 2020) 7 83.5 92.9

ERM (Vapnik, 2013) 3 41.4 91.4
ERM* (Vapnik, 2013) 3 35.9 91.1
VIB (Alemi et al., 2016) 3 40.6 90.5
InfoMask (Taghanaki et al., 2019) 3 43.8 88.4
CIM (Ours) 3 85.2 91.1
CIM + VIB (Ours) 3 85.9 90.2
CIM* (Ours) 3 85.1 93.8

W
at

er
bi

rd
s

GDRO (Sagawa et al., 2019) 7 83.8 89.4
GDRO* (Sagawa et al., 2019) 7 75.2 97.4
CAMEL (Goel et al., 2020) 7 89.6 90.9

ERM (Vapnik, 2013) 3 59.7 95.4
ERM* (Vapnik, 2013) 3 54.8 95.8
VIB (Alemi et al., 2016) 3 69.9 95.3
InfoMask (Taghanaki et al., 2019) 3 58.4 94.9
CIM (Ours) 3 72.6 94.8
CIM + VIB (Ours) 3 76.4 95.4
CIM* (Ours) 3 77.9 96.4

Table 3: Average and worst-group accuracies for CelebA and Waterbird benchmark datasets. Meth-
ods without group-level supervision (i.e. with 3) are preferable. * refers to methods with Inception-
ResNetV2 backbone instead of ResNet-50. CIM outperforms both supervised and unsupervised
methods on the CelebA dataset as well as unsupervised methods on the Waterbirds dataset. It also
achieves favorable performance relative to supervised methods on Waterbirds.

5 RELATED WORK

Our work bridges several lines of work in contrastive learning and learning representations that are
robust to spurious correlations.

Contrastive representation learning. There has been a flurry of recent work in contrastive meth-
ods for representation learning, which encourages an encoder network to map “positive” examples
closer together in a latent embedding space while spreading the “negative” examples further apart
(Oord et al., 2018; Hjelm et al., 2018; Wu et al., 2018; Tian et al., 2019; Arora et al., 2019; Chen
et al., 2020a). Included are triplet-based losses (Schroff et al., 2015; Koch, 2015) and noise con-
trastive estimation losses (Gutmann & Hyvärinen, 2010). In particular, recent work (Tian et al.,
2020; Wu et al., 2020) has shown that minimizing MI between views while maximizing predic-
tive information of the representations with respect to the downstream task, leads to performance
improvements, similar to IB (Chechik & Tishby, 2003). While most contrastive approaches are self-
supervised, (Khosla et al., 2020) utilizes class labels as part of their learning procedure, similar to
our approach. We emphasize that CIM is not meant to be directly comparable to the aforementioned
techniques, as our objective is to learn input transformations of the data that are task-relevant.
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(a) Transformed inputs on 3D point clouds. (b) Sampled Φ on various datasets.

Figure 4: Qualitative visualizations of the learned representations from CIM. (a) Morphed point
cloud objects of the Modelnet40 (Wu et al., 2015) dataset. The first row shows the raw input, while
the second row shows the morphed input. The first two columns are samples from the flowerpot
category while the next three are from the sink class. (b) Samples of learned Φ. Left to right:
CelebA, Waterbirds, and the Background Challenge datasets.

Robustness of representations Several works have considered the problem of learning relevant
features that do not rely on spurious correlations with the predictive task (Heinze-Deml & Mein-
shausen, 2017; Sagawa et al., 2020; Chen et al., 2020b). Though (Wang et al., 2019) is similar in
spirit to CIM, they utilize gray-level co-occurrence matrices as the spurious (textural) information
of the input images, then regress out this information from the trained classifier’s output layer. Our
method does not solely rely on textural features and can learn any transformation of the input space
that is relevant for the downstream task of interest. Although CIM also bears resemblance to In-
foMask (Taghanaki et al., 2019), our method is not limited to attention maps. (Kim et al., 2019)
uses an MI-based objective to minimize the effect of spurious features, while (Pensia et al., 2020)
additionally incorporates regularization via Fisher information to enforce robustness of the features.
On the other hand, CIM uses an orthogonal approach to learn robust representations via higher-order
correlations in the features.

Information in representations There is a rich body of work which focuses on quantifying the
amount of information necessary to perform well on a downstream task (Achille & Soatto, 2018).
CIM is reminiscent of InfoMax (Linsker, 1988) and IB-based approaches (Tishby et al., 2000; Alemi
et al., 2016) which propose to maximize the MI in the learned representations with the predictive
random variables. In particular, (Chechik & Tishby, 2003; Chechik et al., 2005; Goyal et al., 2020)
is most similar to our setup where they consider additional (nuisance) predictive information. Rather
than using MI, we draw inspiration from the style transfer literature (Gatys et al., 2015; Li et al.,
2017b; Krichene et al., 2018; Sastry & Oore, 2019) to compare correlations between feature activa-
tions of relevant versus irrelevant examples during training.

6 CONCLUSION

In summary, we considered the problem of extracting representations with task-relevant informa-
tion from high-dimensional data. We introduced a new framework, CIM, which learns input-space
transformations of the data via a triplet loss to mitigate the effect of irrelevant input features on
downstream performance. Through experiments on (1) classification with nuisance background in-
formation; (2) OOD domain generalization; and (3) preservation of uniform subgroup accuracy, we
showed that CIM achieves good performance despite the presence of spurious correlations in the
data and outperforms most relevant baselines. Additionally, we demonstrated that CIM is com-
plementary to other representation learning frameworks such as VIB. For future work, it would be
interesting to test different types of distance metrics for the triplet loss, to explore whether CIM can
be used as an effective way to learn views for unsupervised contrastive learning, and to investigate
label-free approaches for learning the input transformations.
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APPENDIX

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 ARCHITECTURES

In Figure 5, we show the detailed TN architectures used for RGB and point-cloud data.

Conv2D(32, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D((2, 2), padding='same'),
Conv2D(16, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D((2, 2), padding='same'),
Conv2D(8, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D((2, 2), padding='same'),
Conv2D(8, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
UpSampling2D((2, 2)),
Conv2D(16, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
UpSampling2D((2, 2)),
Conv2D(32, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
UpSampling2D((2, 2)),
Conv2D(3, (1, 1), padding='same')
BatchNormalization(name='Φ')

Conv1D(32, 1, activation='relu'),
BatchNormalization(),
Conv1D(64, 1, activation='relu'),
BatchNormalization(),
Conv1D(128, 1, activation='relu'),
BatchNormalization(),
Conv1D(64, 1, activation='relu'),
BatchNormalization(),
Conv1D(32, 1, activation='relu'),
BatchNormalization(),
Conv1D(3, 1, activation='tanh'),
BatchNormalization(name='Φ')

[

]

[

]

a) RGB input b) Point-cloud input

Figure 5: Architecture of the TN for both RGB and point-cloud inputs.

A.2 HYPERPARAMETER CONFIGURATIONS AND TRAINING DETAILS

Variational Information Bottleneck (VIB). We used ResNet-50 as the encoder in VIB because
most methods we compare CIM with are based on ResNet-50. We tested two different settings
for VIB after the encoder: (a) apply KL regularization on encoder’s last layer Lf of size (1,
2048) and compute the cross-entropy loss on the regularized feature vector; (b) apply KL on
the feature vector similar to (a), but add 3 fully connected layers of (1024, ReLu, batch
normalization), (512, ReLu, batch normalization), and (256, ReLu), then
calculate the cross-entropy loss; (c) add a fully connected layer of size 512 after Lf , then follow
the steps as in (a). For colored MNIST we used architecture (c) and trained the model using Adam
optimizer with a learning rate set to 0.0001 and batch size of 64. For celebA and Waterbirds, we
used architecture (b) with Adam optimizer and learning rate of 0.001 and batch size of 64. For all
the above experiments we set the weight for KL regularization term to be 0.001 and the standard
deviation of ε to be 0.1.

InfoMask. We used the default architecture (Taghanaki et al., 2019) except for changing the encod-
ing part to be ResNet-50. For celebA experiments, we used Adam optimizer with a learning rate
of 0.0001 and a batch size of 32. For Waterbirds, we trained the model using SGD optimizer with
a learning rate of 0.001 and a momentum of 0.9. Similar to VIB, we set the KL term weight to be
0.001 and the standard deviation of ε to be 0.1. We tested different threshold values for the masking
function and obtained the best results with just soft masking i.e. when the threshold is set to zero.

Point Cloud Experiments. For PointNet, we used Adam optimizer with a learning rate of 0.0001
and a batch size of 32. We trained both the original and CIM based model with rotated and jittered
input data.

Colored MNIST. We resized images to (64 × 64 × 3) and trained all the models using Adam
optimizer with a learning rate of 0.0001 and batch size of 64. For VIB, we set the KL divergence
contribution weight to 0.001.

Domain Generalization. We use ResNet-18 as the backbone to make a fair comparison with state-
of-the-art. We train CIM using Adam optimizer with learning rate of 0.0001 and batch size of 64.
We use the same training and test splits as those used in the work with (Carlucci et al., 2019).
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For CIM-based models, we set λ = 0.0001 and other hyper-parameters are summarized in Table 4.
To control the level of input re-weighting, we minimize negative entropy on m with a Lagrangian
multiplier ζ = 0.00001.

Table 4: Hyper-parameters for our CIM and CIM* methods.

Task Method Optimizer Batch size Input size

MNIST CIM Adam(lr=0.0001) 64 (64, 64, 3)

CelebA CIM Adam(lr=0.0001) 64 (224, 224, 3)
CIM* Adam(lr=0.0001) 64 (224, 224, 3)

Waterbirds CIM SGD(lr=0.001, momentum=0.9) 32 (224, 224, 3)
CIM* SGD(lr=0.001, momentum=0.9) 64 (224, 224, 3)

Background challenege CIM SGD(lr=0.001, momentum=0.9) 64 (224, 224, 3)
CIM* SGD(lr=0.001, momentum=0.9) 64 (224, 224, 3)

Point-clouds CIM Adam (lr=0.0001) 32 (2048, 3)

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 BACKGROUND CHALLENGE

We include for completeness the entirety of the results from (Xiao et al., 2020). We note that our
results are not directly comparable with those from other architectures (e.g. WRN-50x2), as we used
ResNet-50 as our base classifier.

Original (↑) Mixed-same (↑) Mixed-rand (↑) BG-gap (↓)
AlexNet 86.7 76.2 54.2 22.0
ShuffleNet 95.7 86.7 69.4 17.3
VGG16-BN 97.6 91.0 78.0 13.0
WRN-50x2 97.2 90.6 78.0 12.6
ResNet-50 96.3 89.9 75.6 14.3
CIM (Ours) 97.1 90.4 79.7 10.7
CIM + VIB (Ours) 97.5 90.3 79.9 10.4

Table 5: Results from the Background Challenge on ImageNet-9 using ResNet-50. The difference
between Mixed-same and Mixed-rand is referred to as the background gap (BG-gap), which
indicates average robustness to varying backgrounds from different image sources.

B.2 3D POINT CLOUD CLASSIFICATION

In Table 6, we report the classification results on normal and rotated objects. As the first row of the
table summarizes, PointNet performs well on average on the 40 classes. However, when we increase
spurious correlations by rotating the objects, class-wise accuracies significantly drop, resulting in a
16.1% performance degradation in the average accuracy of the model (second row). After applying
CIM, the spurious correlation between different categories is reduced, thus class-wise accuracy of
challenging objects is improved (third row).

Table 6: Modelnet40 (Wu et al., 2015) point cloud classification results.

Method flowerpot radio sink xbox dresser Avg. 40 classes

PointNet (Qi et al., 2017) 15 60 70 75 83 88.8

PointNet (Qi et al., 2017) 5 35 45 50 60 72.7
CIM [Ours] 25 45 60 65 75 73.2

14



Under review as a conference paper at ICLR 2021

B.3 ABLATION STUDIES

We construct an ablation study on the CelebA dataset to study the effects of the Gramian-based
contrastive loss. As shown in Table 7, we find that learning a simple attention-like weighting matrix
without any regularization performs better than ERM. We also observed that having both positive
and negative samples in the TN’s loss function performs better compared to having only positives or
negatives. It is worth mentioning the negative samples have a greater impact on the performance in
comparison to the positivies.

Table 7: Ablation study of CIM on the CelebA dataset. Rand x− corresponds to the common
contrastive learning strategy i.e. using random negative samples and augmented version of the input
as positives. Only m refers to applying m on the input without any contrastive regularization. Only
x+ and Only x− refer to leveraging only positive or negative terms in our contrastive Gramian loss,
respectively. The highlighted column shows the worst group accuracy.

Method Blonde male Blonde female Non-blonde female Non-blonde male Average acc.

Rand x− 69.53 96.05 90.36 96.85 93.33
Only m 78.13 98.07 86.79 95.31 91.35
Only x+ 80.47 97.49 87.75 95.22 91.72
Only x− 82.81 97.99 85.83 93.62 90.27
CIM 85.16 97.94 86.46 93.74 90.63
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