
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFERENTIAL FINE-TUNING LARGE LANGUAGE MOD-
ELS TOWARDS BETTER DIVERSE REASONING ABILI-
TIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning abilities of large language models (LLMs) require explicit derivations
compared to general question-answering, supervised fine-tuning (SFT) can em-
power multiple reasoning abilities in LLMs via learning from various datasets.
However, neither training the datasets jointly (mix-up) nor continually can maintain
the performance of single-dataset SFT, sometimes better while sometimes even
worse, illustrating vanilla SFT can not only facilitate reasoning abilities but also
introduce conflicts. In this paper, we propose a novel framework to mitigate the
conflicts and preserve benefits among different reasoning tasks, and even surpass
each task’s single dataset SFT performance. We start by exploring the differences
between reasoning fine-tuned and base LLMs by analyzing their parameter varia-
tions during model inference, and we discover that each reasoning capability has
exclusive parameters that benefit itself more evidently than others. In contrast,
the overlapped parameters of tasks can bring benefits or conflicts. Inspired by
the findings, we propose to update the exclusive and overlapped parameters ac-
cording to specific reasoning task combinations differentially, thereby avoiding
unnecessary conflicts while maintaining benefits. Consistent improvements in
mix-up and continual SFT experiments demonstrate that the proposed SFT strat-
egy can achieve better performance on various LLMs (Llama3-8B, Mistral-7B,
and Qwen2.5-14B) and diverse reasoning tasks with fewer conflicts, showing the
superiority and generality of our analysis findings and the proposed approach.

1 INTRODUCTION

Large language models (LLMs) have emerged various reasoning abilities (Achiam et al., 2023;
Dubey et al., 2024; Yang et al., 2024), such as math problem-solving (Yue et al., 2024), coding (Guo
et al., 2024), logical inference (Pan et al., 2023), and commonsense reasoning (Zhao et al., 2024).
In contrast to the general conversation, reasoning tasks often require models to perform higher-
order cognitive processes such as analysis, deduction, and problem-solving. Supervised fine-tuning
(SFT) on distinct labeled datasets can facilitate such proficiencies (Dong et al., 2023; Zhang et al.,
2024; Chen et al., 2024; Lu et al., 2024), enabling LLMs with versatile reasoning capabilities.
Although vanilla SFT on different reasoning data can strengthen LLMs’ certain capabilities in some
curated combinations (Dong et al., 2023), it tends to underperform on a single dataset, revealing that
mutual enhancement and conflict may coexist across reasoning tasks. Prior works have explored the
destructive interference of varied tasks (Wang et al., 2024; Hui et al., 2024b; Panda et al., 2024; Gong
et al., 2024), they focused on the conflict of general abilities rather than reasoning and believed that
all of interactions were harmful to involved tasks.

In the investigation, we conduct comprehensive SFT experiments with different LLMs on types
of reasoning data to discover the relationships among various reasoning proficiencies. As shown
in Figure 1(a), some combinations, like Mix-Math-Code of Llama3-8B, obtain significant im-
provements in math (measured by GSM8k) compared to Math-only, while it underperforms on
other tasks like code (measured by xGLUE), which is more clear in Figure 1(b). On the other hand,
continual learning results through Continual-Math-Code exhibit severe negative interference.
However, an intriguing difference emerges in Mistral-7B (Jiang et al., 2023), suggesting complex
dynamics in distinct LLMs. These tendencies are also exhibited similarly in combinations among

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

48.9
43.5 43.8

39.6

64.8

61.639.4

44.4

57.7
56.5 56.8

54.370.5
68.2

69.3

67.2

69.1
65.6

63.9 61.5

80.2
65.7

51.7
49.866.2

63.7
63.6

61.7

59.1

47.0

41.2
39.0

64.3 60.3

52.5 45.0

50.5
44.8

28.7
26.0

(a) Mix-up SFT

Llama3-8B-base

Llama3-8B-Math-only

Llama3-8B-Mix-Math-Code

Llama3-8B-Continual-Math-Code
0

10

20

30

40

50

60

70

Ac
c

/ P
as

s r
at

e

39.4

61.6
64.8

44.443.5
48.9

43.8
39.6

GSM8k
xGLUE (x40)

(b) Continual SFT

Figure 1: Performance of various math-related SFT models on 5 benchmarks with Llama3-8B and
Mistral-7B, scores are increasingly ranked from the center to the circle. (We multiply the pass rate of
xGLUE by 40 and the accuracy of LogiQA2 by 2 to align others for better visualization.)

more reasoning tasks, while they perform distinctly in different LLMs. Such phenomena imply
benefits and conflicts between distinct reasoning capabilities that may be ubiquitous. More detailed
experiments and analysis are introduced in Section 3.

Previous efforts have been made in parameter-variation SFT to mitigate conflicts among various
LLM abilities. Dong et al. (2023) designed a dual-stage mixed SFT strategy to endow LLMs with
math and other capabilities. HFT (Hui et al., 2024b) updated the half LLM parameters randomly in
continual SFT to alleviate catastrophic forgetting. LoTA (Panda et al., 2024) employed task vector
extraction and sparse adaptation to minimize interference among tasks. Nonetheless, the complete
picture of task relationships is neglected, encompassing beneficial, contradictory, and neutral. In this
paper, we investigate the mutual benefits and conflicts of reasoning capabilities in the SFT process.

To determine what benefits and conflicts exist and what causes those, we explore the intrinsic weights
of distinct fine-tuned LLMs. Concretely, we present a novel approach to identify the individual
parameter sensitivity via sampled data inference on corresponding LLMs, thereby locating necessary
weights for specific abilities. After that, we design a suit of Differential SFT (DiFT) strategies to
get better versatile reasoning abilities: for mix-up SFT, we merely fine-tune the parameters union
of critical weights for involved tasks, to obtain target reasoning abilities while making less disturb
to others; as for continual SFT, we freeze the parameters in difference set of the former and current
tasks, to reserve historic proficiencies and learn new ones by remaining parameters.

We employ base instead of instruct LLMs for analysis and validation, as instruct LLMs have been
through massive post-training, making it hard to measure their inner benefits/conflicts. Additionally,
our fine-tuned LLMs with fewer data beat instruct LLMs on some tasks (e.g., logic and commonsense
in Section 5.4), highlighting that our research can provide insights for reasoning-oriented fine-
tuning(regardless of base or instruct models). We conduct extensive experiments with pilot LLMs on
several reasoning tasks, and results show that the proposed DiFT can improve all LLMs in various
reasoning combinations, where mix-up SFT can approach the single dataset SFT and continual SFT
can reduce more historical performance losses, demonstrating that our analysis is valid and DiFT can
mitigate reasoning conflicts and keep mutual benefits. Our contributions are as follows:

• We investigate in comprehensive SFT experiments on single (vanilla), mix-up, and continual
reasoning datasets with different LLMs, showing mutual benefits and conflicts exist among
distinct reasoning tasks commonly.

• By analyzing the parameter variations during inference between various fine-tuned and
base models, we discover some parameters are vital to specific reasoning tasks, i.e., each
reasoning capability corresponds to certain parts of parameters.

• Based on the analysis and findings, we propose a novel fine-grained SFT strategy to preserve
enhancement and mitigate the conflicts by selectively updating those reasoning-relevant
parameters of LLMs.

• We conduct extensive experiments on different LLMs with the proposed DiFT, and em-
pirical results across distinct reasoning tasks are in line with our analysis, validating the
effectiveness of the proposed approach.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

SFT has been demonstrated as a productive post-training paradigm for improving models’ various
capabilities (Minaee et al., 2024), including math (Yu et al., 2023), code (Guo et al., 2024), common-
sense (Bian et al., 2024), logic (Chen et al., 2023), and instruction following (Lou et al., 2023). There
are task conflicts in LLMs (Luo et al., 2023), and numerous SFT variants emerged in the era of LLMs
from data selection and optimization. Task Vector (Ilharco et al., 2022) considered the fine-tuned
and pre-trained parameter variations as the task-related weights and conducted addition and negation
to modify or combine different tasks. Rudman et al. (2023) discovered that outlier dimensions
could encode crucial task-specific knowledge and that the value of a representation in a single outlier
dimension drives downstream model decisions. Zhang et al. (2023) proposed parameter optimization
trajectory and learned to uncover intrinsic task-specific subspace by exploiting the dynamics of
fine-tuning a given task. Nonetheless, these works failed to connect the specific parameters and tasks.

DMT (Dong et al., 2023) designed dual-stage mixed fine-tuning to endow LLMs with math, code, and
instruction abilities. These methods aim to find better data usage, ignoring the learning process. Tang
et al. (2024) presented a partial linearization to fuse multi-task abilities into one model. HFT (Hui et al.,
2024b) updated a random half of LLM parameters in continual fine-tuning to alleviate catastrophic
forgetting. LoTA (Panda et al., 2024) employed task vector extraction and sparse adaptation to
minimize interference among multiple tasks. Kong et al. (2024) introduced a gradient approximation
strategy for activated parameter locating to reduce the computational complexity associated with
many parameter partitions. Nevertheless, none of them analyze the model parameters in-depth from
the perspective of reasoning conflicts.

3 BENEFITS AND CONFLICTS ANALYSIS

We intend to validate and explore the mutual benefits and conflicts among reasoning abilities via
delving into the LLMs’ parameters step by step to explore the causes. First, we conduct SFT
experiments on 4 datasets in 3 settings: vanilla, mix-up, and continual (detailed experimental settings
in Section 5.1). As instruct-LLMs were trained on massive data, the scaling-up training may trade-off
a part of conflicts in math reasoning, we take Llama3-8B-base and Mistral-7B-base, results are shown
in Table 1. The findings and intervening phenomena are similar in instruct LLMs in Section 5.4.

Table 1: The mix-up and continual SFT results of Llama3-8B and Mistral-7B on 5 benchmarks, the
↓and ↑denote decreasing and increasing compared to the base model performance, respectively.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA MMLU GSM8k xGLUE LogiQA2 CSQA MMLU
base model 39.42 ↑ 1.0874 ↑ 31.93 ↑ 69.29 ↑ 57.66 ↑ 38.97 ↑ 1.2449 ↑ 31.87 ↑ 64.29 ↑ 50.49 ↑

Vanilla SFT
1 Math-only 61.64 ↑ 1.2228 ↑ 30.73 ↓ 67.24 ↓ 56.76 ↑ 59.14 ↑ 2.0042 ↑ 30.85 ↓ 52.50 ↓ 28.68 ↓
2 Code-only 26.54 ↓ 1.1203 ↑ 35.05 ↑ 70.93 ↑ 55.65 ↑ 31.31 ↓ 1.7146 ↑ 28.94 ↓ 58.39 ↓ 43.04 ↓
3 Logic-only 30.17 ↓ 0.6880 ↓ 37.02 ↑ 72.89 ↑ 57.52 ↑ 4.62 ↓ 1.3628 ↑ 31.23 ↑ 54.55 ↓ 32.47 ↓
4 CSQA-only 8.79 ↓ 0.5702 ↓ 29.90 ↓ 79.36 ↑ 28.10 ↓ 1.36 ↓ 2.7964 ↑ 30.15 ↓ 70.93 ↑ 23.43 ↓

Mix-up SFT
5 Mix-Math-Code 64.82 ↑ 1.0956 ↑ 34.54 ↑ 68.22 ↑ 56.47 ↑ 41.17 ↑ 1.2913 ↑ 33.08 ↑ 60.28 ↓ 44.81 ↓
6 Mix-Math-Logic 64.37 ↑ 1.2092 ↑ 32.32 ↑ 70.52 ↑ 55.30 ↓ 57.39 ↑ 0.8593 ↓ 31.87 ↑ 62.49 ↑ 36.68 ↓
7 Mix-Math-CSQA 68.92 ↑ 1.1342 ↑ 32.32 ↑ 77.31 ↑ 47.46 ↓ 52.77 ↑ 2.8439 ↑ 31.11 ↑ 73.05 ↑ 39.76 ↓
8 Mix-Code-Logic 52.31 ↑ 1.0779 ↑ 32.57 ↑ 70.52 ↑ 58.05 ↑ 22.37 ↓ 1.2342 ↑ 31.17 ↑ 62.00 ↑ 43.33 ↓
9 Mix-Code-CSQA 52.39 ↑ 0.8905 ↓ 31.42 ↑ 77.15 ↑ 32.08 ↓ 26.69 ↓ 1.3969 ↑ 33.46 ↑ 75.02 ↑ 44.97 ↓
10 Mix-Logic-CSQA 16.91 ↓ 0.2150 ↓ 32.44 ↑ 77.40 ↑ 47.14 ↓ 16.60 ↓ 0.9582 ↓ 31.11 ↑ 74.69 ↑ 45.34 ↓

Continual SFT
11 Continual-Math-Code 44.35 ↑ 0.9902 ↓ 32.82 ↑ 70.52 ↑ 54.28 ↓ 47.01 ↑ 1.6431 ↑ 31.81 ↑ 44.96 ↓ 25.98 ↓
12 Continual-Math-Logic 10.99 ↓ 0.6433 ↓ 31.30 ↑ 67.90 ↑ 51.53 ↓ 4.62 ↓ 1.0365 ↓ 29.26 ↓ 40.29 ↓ 24.56 ↓
13 Continual-Math-CSQA 3.87 ↓ 0.5494 ↓ 31.36 ↑ 78.71 ↑ 47.07 ↓ 1.14 ↓ 3.8740 ↑ 30.34 ↓ 57.90 ↓ 23.12 ↓

3.1 MIX-UP AND CONTINUAL REASONING SFT

In Table 1, vanilla SFT enhances the corresponding reasoning ability stably on both Llama and Mistral
while it may affect others: for example, the Math-only can degrade logic and commonsense a bit,
and so do the Logic-only and CSQA-only to math. Such results suggest:

i. There may be a learning trade-off between distinct abilities that leads to reasoning interference.

Interestingly, the mix-up SFT exhibits synergistic effects in both positive and negative aspects.
Mix-Math-Code achieves great performance on both GSM8k and xGLUE compared to single

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

250

500

750

1000

1250

1500

1750

Sc
al

er
 V

al
ue

71267927 97885534 88169753 119813125 7995763 1205753263516 87065903 114186280

9246

284

1992
Layer: model.layers.24.mlp.gate_proj

(a) math rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500

Sc
al

er
 V

al
ue

71267927 97888816 119815534 9753 12057763 3125 53263516 7995870659036280 11418

9246

284
1992

Layer: model.layers.24.mlp.gate_proj

(b) math rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500

Sc
al

er
 V

al
ue

71267927 9788881655343125 9753 12057119815326763 3516 87067995 1141859036280

9246
284

1992
Layer: model.layers.24.mlp.gate_proj

(c) math rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

2000

Sc
al

er
 V

al
ue

7216 9788553431253516 7920 1205779958816 119815326 71265903 9753763
11418

1992
284 92466280

Layer: model.layers.24.mlp.gate_proj

(d) code rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

Sc
al

er
 V

al
ue

13356978855343125 120573516 881671265903 79955326 7920 119819753
763

114181992284 6280 9246
Layer: model.layers.24.mlp.gate_proj

(e) code rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500

1750

Sc
al

er
 V

al
ue

97883125 5534 88163516 12057 13356799579205326 7126 1198197535903763 1992 11418
284

92466280
Layer: model.layers.24.mlp.gate_proj

(f) code rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

200

400

600

800

1000

1200

Sc
al

er
 V

al
ue

1304188976666 133566225763 88165903 7126 120571198128043516 5326 13528
6280

114189246
284

1992
Layer: model.layers.24.mlp.gate_proj

(g) logic rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

200

400

600

800
Sc

al
er

 V
al

ue

55345054 6666 120578816 13356763 119815903 13528889771262804 53263516
6280

11418
9246284

1992
Layer: model.layers.24.mlp.gate_proj

(h) logic rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

200

400

600

800

1000

1200

Sc
al

er
 V

al
ue

50545534 120576225763 8816
13356135287126 1198159032804 8897

3516 5326
6280

114189246
284

1992
Layer: model.layers.24.mlp.gate_proj

(i) logic rows (seed=44)

Figure 2: Distribution of delta-scale rows (DSR) for model.layer.24.mlp.gate.proj with distinct
sampled data on different reasoning LLMs, we randomly sample 3 times (with seeds 42/43/44) for
each task. The x-axis denotes the row order of the specific weight matrix, and y-axis is DSR values.

variants, implying math and code may share complementary weights, evidenced by the 64.82%
accuracy and 1.0956 pass rate of Mix-Math-Code on Llama3-8B, surpassing Math-only. An
intriguing discovery is the imbalance impact: Mix-Math-Code improves math from 61.64% to
64.82%, while it only enhances xGLUE to 1.0956, minor less than Code-only, implying:

ii. Benefits between different reasoning abilities are not always reciprocal, where one reasoning
ability may gain more than the other.

In contrast to mix-up SFT, continual SFT is born with catastrophic forgetting, which remains a signifi-
cant challenge, making it more complex (Ramasesh et al., 2021; Luo et al., 2023). At Table 1 bottom,
we can hardly observe benefits between reasoning abilities. While Continual-Math-Logic
achieving moderate logic performance (31.30% on Llama3-8B), it shows severe degradation in math
reasoning (10.99% on GSM8k). Such results indicate that continual SFT with different reasoning data
may lead to the erosion of previously abilities. Additionally, the continual SFT on one task performs
worse than the direct SFT on the base LLM in some settings, e.g., significant task interference in
Continual-Math-Code (1.084 to 0.9902 with Llama3-8b). Such results indicate that there also
exist reasoning conflicts besides catastrophic forgetting. Therefore, we make an assumption:

iii. Even catastrophic forgetting is the main issue, reasoning conflicts matter in continual SFT.

The above findings highlight the complex interactions between different reasoning capabilities and
the challenges in mitigating conflicts while preserving benefits. To address the above challenges, we
start by analyzing the inner weights of LLMs with different reasoning proficiencies.

3.2 DELTA-SCALE ROWS

We propose a novel approach for identifying influential weights in LLMs inspired by Yu et al. (2024),
and to quantify the sensitivity of the model output to changes in weights, we introduce the delta-scale
row (DSR) score to measure the parametric sensitivity. Let W ∈ RH×D denote the weight matrix of a
linear layer, with H as the out-dimension and D the in-dimension, L(W) is the loss of the current task
on W ; W 0 is parameters of the original model while W f is of the fine-tuned; ∆Wk = W f

k −W 0
k ,

Xt is an input sample at token t, and Yt = XtW
⊤. The fine-tuning process can be formalized as:

W s+1 = W s − ηsg
s =⇒ ∆Wk = −

∫ T

0

gk(τ)dτ (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where gs is gradient at step s, ηs is learning rate, τ is integration variable, and T is total steps. Hence,
|∆Wk| is large if the gradient keep projecting on k-th row significantly in training. We perform a
second-order Taylor expansion by varying Wk, plug δ = ∆Wk, and obtain:

∆Lk = −gk∆Wk − 1
2Hkk(∆Wk)

2 + o
(
(∆Wk)

2
)

(2)

where H is the Hessian matrix of the loss (H = ∇2
θL(W 0)) at the starting point W 0, and Hkk is its

k-th diagonal element (curvature along the k-th row). Substantial loss drop thus needs a non-trivial
|∆Wk|. For a set of input X , the output activations Y ∈ RL×H are typically computed as:

Y = XWT + b (3)

We analyze the difference in outputs between a base model (Mbase) and a fine-tuned model (Mft),
where weights are presumed to have changed during fine-tuning. Let Ybase and Yft be the output
activations of a specific layer for the same input X from Mbase and Mft, respectively. The difference
in output for the k-th component (corresponding to the k-th row of W) for a given token t is:

∆Y k
t = Y k

ft(t)− Y k
base(t) (4)

This ∆Y k
t reflects the impact of the accumulated changes between W k

ft and W k
base on the k-th output

feature for that token. Combining above derivations, we can obtain:

∆Y k
t = Xt∆Wk, Et[∥∆Y k

t ∥22] = ∥∆Wk∥2Et[∥Xt∥2] (5)

Thus, sk = Et[∥∆Y k
t ∥22], which can be computed by sk = 1

N

∑N
t=1 ||∆Y k

t ||22 is proportional to both
∥∆Wk∥2 and ∥Xt∥2, meaning that DSR score can denote the task-specific accumulated importance.

In practice, DSR scores accumulate the squared differences for each output component k, effectively
capturing the impact of changes in the corresponding k-th row of the weight matrix across reasoning
data. High values in the vector of scores indicate rows of the weight matrix (and their associ-
ated output features) that exhibit greater changes in activation magnitude due to fine-tuning,
suggesting these rows are influential in the processes modified or learned by the model.

3.3 FINE-TUNED REASONING MODEL ANALYSIS

To analyze the DSR scores of parameters, we perform inference with distinct fine-tuned and
base LLMs on samples, ensuring that each sampled data corresponds to a tuned LLM. Con-
cretely, we compute for each layer in the forward pass with 5 sampled groups of 50 data items
(random seed 42-46) to obtain the top DSR of each task, we display some row distributions of
model.layers.24.mlp.gate.proj in Figure 2, other weights also express similar patterns,
more visualizations in Appendix F.4. The magnitude of the DSR provides a quantitative measure of
specific parameters’ influence, where higher values matter more. Across all sub-figures in Figure 2,
we can observe distinct peaks in DSR parameters. These peaks indicate specific rows in the weight
matrix disproportionately affect LLMs, and the rows correspond to the critical DSR parameters we
aim to identify. Note that we only annotate the top-20 DSR parameters for better visualization, there
are remarkable differences among distributions of distinct data in Figure 2.

In the distribution of the math (Figures 2(a) to 2(c)) row-wise, distinct peaks at multiple rows, e.g.
284, 1992, and 9246, suggesting that specific rows in the weight exert significant influences on
the LLM’s reasoning on math. Interestingly, such a pattern is consistent across sampled data with
different seeds, and so are the code and logic, implying stability of key DSR parameters for the task
regardless of sample variations. However, the distribution of each fine-tuned reasoning LLM exhibits
distinctly in Figures 2(a) to 2(g) column-wise: rows 284 and 1992 have the top-2 scores across all
rows in math and logic LLMs, while the top-2 rows of the code LLM are 6280 and 9246; the logic
model has influential rows of index >13000, but the indices of all math DSR are <13000. Similar
phenomena exist in more LLMs as shown in Figures 8 and 9 in Appendix F.4.

We further analyze the same model (Math-only) with sampled data subsets and observe a more
diverse DSR parameter distribution among distinct data in Appendix F.4, illustrating the parameter
divergence of reasoning abilities within LLMs. After meticulous DSR analysis, we discover that: On
the one hand, rows of the parameter matrix are not sensitive to different inputs of the same
reasoning task, on the other hand, different tasks demonstrate unique parameter distributions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 METHOD

We propose Differential SFT (DiFT), a novel fine-tuning strategy for LLMs which can mitigate
task conflicts and maintain benefits in multi-task and continual learning settings by leveraging DSR
analysis. DiFT identifies task-specific DSR parameters through activation differences between base
and fine-tuned LLMs, then differentially updates those crucial to current tasks while preserving the
performance of others. By isolating and protecting these sensitive yet non-specialized parameters,
which can be treated as a reliable proxy for task specificity (Deng et al., 2025), DiFT reduces negative
transfer and forgetting. Algorithm 1 in Appendix C provides more details.

4.1 DELTA-SCALE ROW ANALYSIS

Given a base model Mbase and a set of reasoning-specific LLMs {Mk
ft}

K−1
k=0 with corresponding

datasets {Dk}K−1
k=0 , DiFT analyzes how fine-tuning alters internal activations. For each task k, we

sample N inputs from Dk and register forward hooks on target layers of both Mbase and Mk
ft to

capture input/output activations. For every input x, we compute the difference in layer outputs:

∆h(l) = h
(l)
ft (x)− h

(l)
base(x) (6)

where h(l) is the output of layer l. We accumulate the squared L2 norm of the differences across
samples to obtain per-row sensitivity (Eq. 5). The DSR scores reflect how much each weight row
(i.e., neuron activation) changes during SFT. We define DSRk as the set of top-C highest-scoring
rows per layer for task k, denoting parameters most critical to its reasoning behavior. According to
Section 3.2, DSRk captures the “accumulated effects” of k. Combining with our conflicts validation,
when two tasks A and B conflict, SA = DSRA and SB = DSRB are crucial parameter sets for A
and B. Naturally, the other parameters out of these sets are more likely to hurt involved tasks, so we
choose to freeze those to mitigate conflicts. We also conduct experiments to demonstrate that the
effectiveness of DiFT lies in conflict mitigation instead of regularization, and more details can be
referred to Appendix D.3.

4.2 MIX-UP FINE-TUNING

To fine-tune a given LLM on multiple reasoning tasks simultaneously, DiFT computes the influential
union set DSRunion and merely updates these parameters:

DSRunion =

K−1⋃
k=0

DSRk (7)

The LLM is then fine-tuned on the mixed data
⋃K−1

k=0 Dk. Concretely, for SA and SB that are critical
for tasks A and B, respectively, what we focus on when considering A and B is to learn with SA

and SB to maintain their performance as much. Although SA and SB may disturb each other, such
conflicts cannot be measured precisely and are out of this paper’s scope. Therefore, we care about the
major and leave the minor, i.e., reserve the base performance of A and B. As for 1− SA ∪ SB , since
we observe that A and B have conflicts, and SA and SB should carry more weights of maintaining
the performance of A and B (as stated in the former paragraph), so our focus on 1 − SA ∪ SB is
freezing them to prevent these parameters from their potential conflicts to A and B.

4.3 CONTINUAL FINE-TUNING

In continual SFT, DiFT mitigates conflicts by updating only newly important DSR parameters.
Inspired by the common practice in continual learning (Wang et al., 2024), at step k (for k ≥ 2), we
obtain a highly sensitive parameter set to task k but not identified as critical previously:

DSRdiff = DSRk \
k−1⋃
j=0

DSRj (8)

Only the DSRdiff parameters are trained on Dk, starting from the latest Mk−1
ft . Concretely, for

historic task A, we freeze the SA to decrease the negative influence from the current task B to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A, as SA matters a lot for task A; for task B, we employ 1 − SA to improve B’s performance as
much. By restricting updates to parameters with less impact on prior tasks, DiFT preserves historical
abilities while acquiring new skills, effectively decoupling new learning from old representations.
Additionally, given the parametric nature, DiFT can also be employed jointly with data-driven
methods to reduce conflicts after mitigating forgetting, and we will discuss that in Section 5.3.
Based on the DSR analysis, fine-tuning 1 − SB can also be an approach, however, the empirical
results in Appendix D.4 suggest that the DSRdiff is better.

In summary, DiFT employs DSR to identify task-specific parameters with a few reasoning data, then
differentially fine-tunes to mitigate conflicts while reserve benefits. It attempts to enhance diverse
reasoning proficiencies of LLMs by curated adaptation where it matters most in mix-up or continual
scenarios, and disturb less what already works. We further perform a comprehensive ablation
studies in Appendix F.4 to analyze the DiFT in various perspectives.

5 EXPERIMENTS

To validate our findings and evaluate the proposed DiFT, we conduct comprehensive experiments
on both mix-up and continual settings. We employ Llama3-8B, Mistral-7B, and Qwen2.5-14B, and
several common reasoning benchmarks. All DiFT results are based on the top-100 DSR union,
ablation studies on the scales of 100 are in Appendix D.1, and studies for the choice strategies, i.e.,
random/top DSR are put in Appendix D.2. We also put Qwen2.5-14B results in Appendix E.

5.1 SETTING

Training data We collect and sample reasoning data to fine-tune LLMs toward distinct abilities.
All the source data are widely used for task-specific training, including but not limited to MathIn-
struct (Yue et al., 2023), Code Bagel Hermes (Teknium, 2023), LogiCoT (Liu et al., 2023b), and
CommonsenseQA (Talmor et al., 2018). More source data can be referred to Appendix B.3. We
sample 20,000 for each reasoning ability and conduct SFT involving 2 tasks with DiFT each time.

Baselines As DiFT works in both mix-up and continual settings, we implement comparable
approaches to evaluate the performance. HFT (Hui et al., 2024b) is a continual SFT framework, it
randomly freezes half of each named parameter when fine-tuning on a new task to memorize the old
knowledge. LoTA (Panda et al., 2024) is an advanced gradient-projection method, in each round
of continual fine-tuning, it extracted and masked the feature vectors in the next round. Dual-stage
Mixed Fine-Tuning (DMT) (Dong et al., 2023) presented a two-stage mix-up fine-tuning strategy,
implemented by merging different training data. CoBa (Gong et al., 2024) designed a synthesized loss
by calculating the relative and absolute convergence scores. The hyperparameter settings of baselines
are the same as DiFT, in Appendix B.1, where we also compare PEFT methods in Section F.3.

Evaluation We choose the pass rate (code) and 0-shot accuracy to evaluate the performance of
LLMs, details are in Appendix B.4. As our purpose is to reserve benefits and mitigate conflicts, we
emphasize the performance of involved tasks, therefore, we use the average target accuracy (ATA) to
better show gains and drops of target/historic abilities compared to base LLMs, which reflects various
methods better. For math and logic, we compute the (math + logic) / 2 accuracy as the ATA score, we
also multiply the code pass rate by 50 for to align other metrics (non-weighted ATA in Appendix F.2).
Computing costs: DiFT conducts merely a small-scale SFT with 1k training data and inference on a
few samples, whose computing costs are lighter than task-vector and gradient-based methods. More
computation cost details are in Appendix B.2.

5.2 MIX-UP SFT

Table 2 presents the mix-up SFT results, we can observe the extreme difficulty of baselines to improve
the vanilla SFT. In contrast, DiFT consistently improves the ATA, i.e. the averaged target performance,
and outperforms baselines across benchmarks and LLMs. Concretely, in the Mix-Math-Code, we
know that these 2 reasoning abilities can benefit each other, in Llama3-8B the math reasoning benefits
more, so its ATA gain of DiFT is not striking, even if it beats the baselines. While Mistral-7B fails to
achieve mutual benefits much with vanilla SFT, the 2 tasks gain more (from 52.87 to 54.80) with
DiFT. In Mix-Code-Logic, DiFT on both 2 models can improve involved reasoning abilities.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The mix-up and continual SFT results of Llama3-8B and Mistral-7B under different strategies
on 4 benchmarks. The SOTA results across different strategies are marked in bold numbers, and the
sub-optimal results are italic numbers. * denotes the existence of format issues, and more details
about the orthogonal combination of proposed method and the data-driven method for reducing
conflicts and mitigating forgetting are in Section 5.3.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA ATA GSM8k xGLUE LogiQA2 CSQA ATA
base model 39.42 1.0874 31.93 69.29 – 38.97 1.2449 31.87 64.29 –

Mix-up SFT
Mix-Math-Code 64.82 1.0956 34.54 68.22 59.80 41.17 1.2913 33.08 60.28 52.87
+DMT 65.07 1.0851 32.44 67.52 59.66 42.13 1.2400 32.18 59.82 52.07
+CoBa 66.21 1.0725 33.15 68.34 59.91 43.07 1.1900 31.94 58.45 51.29
+DiFT (ours) 67.02 1.0735 32.63 68.39 60.35 42.46 1.3429 33.33 59.46 54.80
Mix-Code-Logic 52.31 1.0779 32.57 70.52 43.23 22.37 1.2342 31.17 62.00 46.44
+DMT 50.37 1.0865 31.93 69.36 43.12 26.58 1.2308 30.62 63.19 46.08
+CoBa 51.12 1.0811 32.25 68.67 43.15 26.05 1.2431 30.16 63.82 46.16
+DiFT(ours) 41.09 1.1359 33.40 68.55 45.10 31.69 1.2555 32.51 62.24 47.64
Mix-Logic-CSQA 16.91 0.2150 32.44 77.40 54.92 16.60 0.9582 31.11 74.69 52.90
+DMT 13.79 0.3907 31.68 78.84 55.26 18.58 0.7731 30.72 72.75 51.74
+CoBa 14.93 0.3868 32.16 78.05 55.11 19.42 0.7847 30.41 73.48 51.95
+DiFT(ours) 16.22 0.4592 32.38 78.95 55.67 21.68 0.6196 31.68 74.45 53.07

Continual SFT
Continual-Math-Code 44.35 0.9902 32.82 70.52 46.93 47.01 1.6431 31.81 44.96 64.58
+HFT 44.74 1.0362 33.94 69.69 48.28 47.72 1.3429 31.46 45.95 57.43
+LoTA 44.29 1.0258 34.45 68.99 47.79 47.15 1.3534 31.92 45.49 57.41
+DiFT(ours) 46.32 1.0557 35.86 70.93 49.55 49.81 1.6362 31.81 44.55 65.81
Continual-Math-Logic* 10.99 0.6433 31.30 67.90 21.15 4.62 1.0365 29.26 40.29 16.94
+HFT 11.06 0.6682 31.55 67.52 21.31 6.57 0.9902 28.48 43.16 17.53
+LoTA 10.89 0.6749 31.87 66.84 21.38 6.70 0.9803 28.76 42.51 17.73
+DiFT(ours) 11.37 0.6919 31.23 68.80 21.30 10.92 0.7107 29.20 42.92 20.06

However, we notice that it hurts the math of Llama3-8B and the commonsense of Mistral-7B,
which results from the Mix-Code-Logic not considering the DSR parameters of the math rea-
soning. Considering math and commonsense, issues like this can be eliminated as in Figure 6.
Mix-Logic-CSQA is similar to Mix-Math-Code, albeit the vanilla SFT has mutual benefits in
Llama3-8B, the proposed DiFT still can enhance their ATA performance, as for Mistral-7B, the
vanilla and all baselines trade the logic ability for commonsense, DiFT maintains more LogiQA2
accuracy (31.68%) and obtains higher CSQA accuracy (74.45%), achieving diverse performance.

In multiple mix-up SFT experiments, DiFT can maintain and facilitate mutual benefits and
alleviate conflicts between reasoning capabilities significantly, thereby supporting the effec-
tiveness of the earlier DSR analysis. We also found that math and code tasks are some-
how synergistic while logic and commonsense are conflicting, which is interesting. The
math-code synergizing may come from that the two tasks share similar computation back-
grounds, providing more views for LLMs to understand the reasoning process, and such
Mix-Math-Code tuning has been utilized in math- and code-specific LLMs training (Shao
et al., 2024; Hui et al., 2024a). In contrast, logic tasks need to obey strict and complex rules,
while commonsense tasks are more about ground knowledge and simple reasoning, leading to

base ssr ssr+ours0

10

20

30

40

50

60

Ac
c

+1.62+3.50

GSM8k

base ssr ssr+ours0

10

20

30

40

50

60

Pa
ss

 ra
te

 x
40

+0.0412+0.0206

xGLUE

base ssr ssr+ours0

10

20

30

40

50

60

Ac
c +2.61

LogiQA2

Continual-Math-Code Continual-Math-Logic

Figure 3: Joint DiFT-SSR for conflicts after alle-
viating forgetting.

conflicts between the two tasks (Song et al., 2024).

5.3 CONTINUAL SFT

The bottom of Table 2 manifests results of con-
tinual SFT, where models are fine-tuned sequen-
tially and need to retain the previous reasoning
proficiency while adapting to new ones. As men-
tioned in Section 3.1, reasoning benefits and con-
flicts exist along with catastrophic forgetting, not
dominant but still important. In Continual-Math-
Code, DiFT learns code ability better and keeps
more math reasoning on both 2 LLMs, resulting in 2.62 and 1.23 ATA improvements. As for
Continual-Math-Logic, DiFT on Llama3-8B enhances ATA compared to vanilla, but under-
performs baselines for mitigating forgetting. In contrast to Llama3-8B, DiFT on Mistral-7B performs
better on both the historical math and logic, achieving a 3.12 ATA improvement, and such a difference
between 2 LLMs illustrates more conflicts in Mistral-7B, while more forgetting in Llama3-8B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We check the outputs of Continual-Math-Logic on GSM8k test cases, and notice the perfor-
mance drops not come from the ability destruction but the format issue, and we put an example to
explain that in Appendix B.5. To diminish the formatting issue and further evaluate compatibility
between the conflicts-oriented, parametric DiFT and the forgetting-oriented, data-driven SSR (Huang
et al., 2024) mentioned in Section 4, we further conduct extensive data-driven continual SFT experi-
ments with joint-DiFT-SSR. In Figure 3, we can see that DiFT can continue to decrease conflicts after
mitigating the forgetting in both Continual-Math-Code and Continual-Math-Logic,
illustrating that DiFT is orthogonal to data-driven methods.

Table 3: SFT performance comparison between
the base and instruct LLMs.

Model LogiQA2 CSQA
Llama3-8B-Ins 31.55 76.09
Logic-only 34.74 78.57
CSQA-only 31.82 81.33
Mix-Logic-CSQA 32.64 78.57
+ DiFT (ours) 34.48(+1.84) 80.23(+1.46)

Table 4: Inverse DiFT comparison on Llama3-8B
under mix-up and continual settings.

Settings Mix-Math-Code Continual-Math-Code
DiFT inverse-DiFT DiFT inverse-DiFT

GSM8k 67.02 61.26 46.32 25.17
xGLUE 1.0735 0.9561 1.0557 0.9512
LogiQA2 32.63 33.84 35.86 34.54
CSQA 68.39 70.84 70.93 69.94

5.4 BASE AND INSTRUCT LLMS

Massive high-quality data is necessary for training base LLMs towards instruct LLMs, current
LLMs take hundreds of thousands and even millions of data from multiple tasks to perform SFT.
However, the computing costs and complexity is out of this work’s scope if reproducing such a
process completely. Although we cannot reproduce the whole process from base to instruct LLMs,
our strategy can adapt to the instruct models, as instruct LLMs still contain reasoning benefits and
conflicts. To validate that, we conducted the same 20k SFT experiments as we did on the base
LLMs, results are shown in Table 3. We can observe that the logic and CSQA results are significantly
improved than the vanilla SFT, suggesting DiFT can also perform quite well on instruct LLMs,
demonstrating that DiFT can also perform quite well on instruct LLMs as on the base LLMs. We
further conduct DeepSeek-R1-like reasoning data to validate the DiFT on the long CoT setting, with
Llama3-8B-Instruct on 1k training data, and results illustrate the DiFT is neither limited by long or
short CoT reasoning formats nor the base/instruct models, more details are in Appendix F.1.

5.5 NECESSITY OF DSR PARAMETERS

Incorporating new reasoning abilities with identified DSR works well under both mix-up and continual
SFT settings. We also wonder whether the other parameters can achieve nearly the performance, thus,
we further conduct inverse DiFT, i.e, exchange the freezing positions of the original DiFT. Concretely,
we fine-tune the DSR parameters while freezing others in the continual SFT, as for the mix-up SFT,
we fine-tune the others while freezing DSR parameters, to test whether the other parameters can
learn the same reasoning abilities. Table 4 compares the performance of DiFT and inverse DiFT with
Llama3-8B, we can see that in the mix-up experiments, learning some reasoning abilities with less
related parameters would not lead to model collapse, while still incomparable for target abilities with
DiFT. As for the continual SFT, the historic reasoning proficiency is forgotten catastrophically, albeit
it works well on others, demonstrating that the identified DSR parameters are indispensable for target
reasoning abilities, which also validates the correctness of our analysis and the proposed DiFT. We
conduct more ablation studies to analyze the DiFT thoroughly in Appendix D.1.

6 CONCLUSION

In this work, we first discover mutual benefits and conflicts among various reasoning tasks through
mix-up and continual SFT experiments with several LLMs. Then we explore such phenomena by
presenting a novel delta-scale row analysis approach, we compare fine-tuned and base LLMs during
inference, finding specific groups of parameters are crucial for distinct reasoning abilities. Inspired
by that, we propose a novel DiFT strategy to update the parameters differentially based on their
optimizing directions. We conduct dozens of experiments with several LLMs on task combinations,
and consistent experimental improvements demonstrate that the proposed DiFT can preserve benefits
and mitigate conflicts to achieve better diverse reasoning capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

BAAI. Infinity instruct. arXiv preprint arXiv:2406, 2024.

Ning Bian, Xianpei Han, Hongyu Lin, Yaojie Lu, Ben He, and Le Sun. Rule or story, which
is a better commonsense expression for talking with large language models? arXiv preprint
arXiv:2402.14355, 2024.

Meiqi Chen, Yubo Ma, Kaitao Song, Yixin Cao, Yan Zhang, and Dongsheng Li. Learning to teach
large language models logical reasoning. arXiv preprint arXiv:2310.09158, 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Forty-first International Conference
on Machine Learning, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Wenlong Deng, Yize Zhao, Vala Vakilian, Minghui Chen, Xiaoxiao Li, and Christos Thrampoulidis.
Dare the extreme: Revisiting delta-parameter pruning for fine-tuned models. In The Thirteenth
International Conference on Learning Representations, 2025.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. Transactions
of the Association for Computational Linguistics (TACL), 2021.

Zi Gong, Hang Yu, Cong Liao, Bingchang Liu, Chaoyu Chen, and Jianguo Li. Coba: Convergence
balancer for multitask finetuning of large language models. arXiv preprint arXiv:2410.06741,
2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming-the
rise of code intelligence. CoRR, 2024.

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi Yang, Xinting Liao, Linfeng Song, Junfeng Yao,
and Jinsong Su. Mitigating catastrophic forgetting in large language models with self-synthesized
rehearsal. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1416–1428, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024a.

Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. Hft: Half
fine-tuning for large language models. arXiv preprint arXiv:2404.18466, 2024b.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Fanshuang Kong, Richong Zhang, and Ziqiao Wang. Activated parameter locating via causal
intervention for model merging. arXiv preprint arXiv:2408.09485, 2024.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang. Logiqa
2.0—an improved dataset for logical reasoning in natural language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2023a.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli Zhang, Qiji Zhou, and Yue Zhang. Logicot:
Logical chain-of-thought instruction tuning. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 2908–2921, 2023b.

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Janice Ahn, Hanzi Xu, Yu Su, and Wenpeng Yin.
Muffin: Curating multi-faceted instructions for improving instruction following. In The Twelfth
International Conference on Learning Representations, 2023.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier
Amatriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 3806–3824, 2023.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal. Lot-
tery ticket adaptation: Mitigating destructive interference in llms. arXiv preprint arXiv:2406.16797,
2024.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning. In Proceedings of the 2019 Conference
of the Association for Computational Linguistics (ACL2019), 2019. URL https://arxiv.
org/abs/1906.02361.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2021.

William Rudman, Catherine Chen, and Carsten Eickhoff. Outlier dimensions encode task-specific
knowledge. arXiv preprint arXiv:2310.17715, 2023.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

11

https://arxiv.org/abs/1906.02361
https://arxiv.org/abs/1906.02361

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Youngrok Song, Gunhee Cho, HyunJu Kim, Youngjune Kim, Byung-Chull Bae, and Yun-Gyung
Cheong. A conflict-embedded narrative generation using commonsense reasoning. In Proceedings
of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 7744–7752, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
Parameter-efficient multi-task model fusion with partial linearization. In The Twelfth International
Conference on Learning Representations, 2024.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://hf-mirror.com/datasets/teknium/OpenHermes-2.5.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Elizabeth Wainwright, Steven Marmorstein, and
Peter Jansen. Worldtree v2: A corpus of science-domain structured explanations and inference
patterns supporting multi-hop inference. In Proceedings of the twelfth language resources and
evaluation conference, pp. 5456–5473, 2020.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Mengxia Yu, De Wang, Qi Shan, and Alvin Wan. The super weight in large language models. arXiv
preprint arXiv:2411.07191, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. In The Twelfth International Conference on Learning
Representations, 2024.

Zhong Zhang, Bang Liu, and Junming Shao. Fine-tuning happens in tiny subspaces: Exploring
intrinsic task-specific subspaces of pre-trained language models. arXiv preprint arXiv:2305.17446,
2023.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

12

https://hf-mirror.com/datasets/teknium/OpenHermes-2.5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE CLAIM

In this work, we employ LLMs for polishing the whole paper’s writing, including: checking the
grammar and syntax issues, polishing some expressions, and nothing for other usages.

B IMPLEMENTATION DETAILS

B.1 FORMAT AND HYPERPARAMETERS

For all the SFT experiments (vanilla, mix-up, continual SFT), we adopt learning rate=2e-5, max
length=2,048 (16,384 for LongCoT data), batch size=256, warm-up ratio=0.03, weight decay=0.1,
max gradient norm=1.0, and we employ DeepSpeed Zero2 as the accelerate framework for gradient
interference convenience in DiFT. In LoRA experiments, we adopt lora rank=8, lora alpha=32,
target modules=‘all-linear’, learning rate=1e-4, and the rest hyperparameters are the same as the
full-parameter SFT. All the hyperparameters are widely used in SFT practice, and with these hyperpa-
rameters, we can ensure that all the model training converges. Besides, we use the same seed (42)
during the dataset shuffle to make the comparison fair.

Table 5: Performance comparison of different models on reasoning tasks.
Model Math Code Logic CSQA

Llama3-8B 0.93 0.94 0.91 0.93
Mistral-7B 0.94 0.96 0.93 0.94

Qwen2.5-14B 0.95 0.97 0.94 0.96

B.2 COMPUTING COSTS

In investigation, we noticed that the DSR distribution is not that affected by training data scale: SFT
with only a small proportion of data (1k) shows very similar distribution as shown in Table B.1.
We can see 1k-SFT and 20k-SFT share most top-DSR parameters, implying the robustness
of the DSR analysis. Therefore, we merely SFT LLMs on a little scratch of data to identify DSR
instead of the entire data, then conduct DiFT experiments with fewer budgets. With such results, we
only conduct a small scale SFT, unlike task-vector arithmetic methods that need to full-scale SFT in
preparation, and we can obtain quite consistent distributions of DSR parameters.

Based on the above finding, to identify the sensitive weights, we merely SFT LLMs on
a little scratch of data instead of the entire training set. After getting the small-scale
SFT, we load the fine-tuned LLMs and corresponding base LLMs through randomly se-
lected 50 training samples via the proposed analysis method, inference for identifying

Table 6: CUDA memory usage and inference time
for different models.

Model CUDA Mem (GB) Time (second)
Llama3-8B/Mistral-7B 30 900

Qwen2.5-14B 65 1,200

DSR parameters on 1 NVIDIA A100 GPU, as
shown in Table B.2. Each group in the analysis
only consumes around 30GB CUDA memory
for ≈900 seconds on 7B/8B models, and around
62GB for ≈1,200 seconds on the 14B model,
indicating the cost of computing DSR parameters is negligible compared to the naive LLM inference.
During SFT, we employ 8-A100 servers (one server can conduct all experiments in this work) and
employ fixed batch size and max length to utilize the GPU efficiently. At last, we compute the
DSR union and DSR diff, and employ these parameter-task information to differentially finetune
LLMs, and the finetuning costs are similar to other methods in this phase. Therefore, the computing
costs of the proposed DSR is lighter than task-vector approaches. When it comes to the training
process of DiFT, we randomly selected 100 DSR parameters, it only takes about 3.7% parameters of
the entire model, i.e. we need to finetune about 92.3% parameters in continual SFT, while only 3.7%
or less in mix-up SFT.

B.3 DATA COMPOSITION

For math and code reasoning, we select 20,000 training samples from math and code Infinity
Instruction data BAAI (2024), respectively, which consists of various math and code data as shown in
Figure 4; for logic reasoning, we sample the same amount of data from LogiCoT Liu et al. (2023b);

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

104 105 106

Number of Rows (log scale)

ajibawa-2023/Python-Code-23k-ShareGPT

iamtarun/python_code_instructions_18k_alpaca

glaiveai/glaive-code-assistant-v3

Safurai/Code-Instruct-700k

TokenBender/code_instructions_122k_alpaca_style

codefuse-ai/CodeExercise-Python-27k

nickrosh/Evol-Instruct-Code-80k-v1

bigcode/self-oss-instruct-sc2-exec-filter-50k

m-a-p/CodeFeedback-Filtered-Instruction

m-a-p/Code-Feedback

Nan-Do/instructional_code-search-net-python

jtatman/python-code-dataset-500k

TIGER-Lab/MathInstruct

Replete-AI/code_bagel_hermes-2.5

microsoft/orca-math-word-problems-200k

jinaai/code_exercises

MetaMathQa

teknium/Openhermes-2.5

Selected subjective instructions

google/flan

Da
ta

se
t S

ou
rc

e

2,297

2,581

9,281

10,860

23,130

27,159

43,354

50,467

60,735

79,513

82,920

88,632

329,254

386,649

398,168

590,958

690,138

855,478

1,342,427

2,435,840

Figure 4: Data composition of Infinity-Instruct-7M after de-duplication. Each bar represents the
number of instruction rows contributed by each source dataset. The x-axis uses a logarithmic scale to
accommodate the wide range of sizes.

as for Commonsense reasoning, we gather CommonsenseQA Talmor et al. (2018), CoS-e Rajani
et al. (2019), OpenBookQA Mihaylov et al. (2018), SocialIQA Sap et al. (2019), StrategyQA Geva
et al. (2021), WorldTree Xie et al. (2020). As introduced in Section 5.1, we collect training data from
available and popular reasoning datasets, and we use the “query”, “response” format for training.

B.4 EVALUATION

Since the outputs of math, logic, and commonsense reasoning are either a number or an option, we
use GSM8k Cobbe et al. (2021), LogicQA2 Liu et al. (2023a), and CommonsenseQA Talmor et al.
(2018) as evaluation benchmarks, respectively, and adopt the accuracy of 0-shot as a common metric.
For code reasoning, we use the pass rate on CodeXGlue Lu et al. (2021) to test whether the generated
codes can pass. We employ the official 1 as the base repo for evaluation, and the results fluctuations
for the same benchmarks were of a limited range, so we report their stable accuracy. We evaluate 3
checkpoints in each training process and take the best for results report.

B.5 CATASTROPHIC FORGETTING FROM FORMAT ISSUES

In Tables 1 and 2, we can see the math reasoning of Continual-Math-Logic was damaged severely,
however, it didn’t drop much in Continual-Math-Code, illustrating **the Continual-Math-Logic may
encounter a special issue**. To investigate the cause, we conduct case analysis, and we find that after
logic data SFT, the response of the model for a GSM8k question is as follows:

Q: A raspberry bush has 6 clusters of 20 fruit each and 67
individual fruit scattered across the bush. How many raspberries
are there total?

A: The clusters have 20 raspberries each, so there are 6 clusters.
Therefore, the first part of the answer is yes. Now, we have

1lm-evaluation-harness: https://github.com/huggingface/lm-evaluation-harness

14

https://github.com/huggingface/lm-evaluation-harness

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

to add the individual raspberries to the total. So, the
total number of raspberries is 6 clusters * 20 raspberries per
cluster + 67 individual raspberries. Therefore, the answer is
yes.<|eot id|><|eot id|><|eot id|><|eot id|>122

The Continual-Math-Logic finetuned LLMs tend to output a LogiCoT-format “yes” or “no” after
regular CoT reasoning steps, the reasoning steps are totally correct (near reaching the correct answer
187), while it ends with outputting a guessed number as the final answer, meaning that the math
reasoning ability is almost not affected after DiFT in continual SFT, but the output format was
modified during finetuning. Therefore, we employ data mixture in continual SFT to alleviate the
format issue with rehearsal-based method then perform conflicts mitigation as in Section 5.3.

C DIFT ALGORITHM

Algorithm 1 Delta-Scale Analysis of Fine-tuned Language Models

Input: Base LLM Mbase, fine-tuned models M0
ft,M

1
ft, ...,M

K−1
ft , evaluation data

D0, D1, ..., DK−1, sample size N , top dimensions C
Output: Delta-scale row scores for each model and layer
for k = 0 to K − 1 do

Sample N data points from Dk: Sk ∼ Dk

Hk = Register forward hooks on linear layers of Mk
ft

Hbase = Register forward hooks on linear layers of Mbase

DSRk = {}
for x in Sk do

outk = Mk
ft(x)

outbase = Mbase(x)
for hk, hbase in (Hk, Hbase) do
hk.add batch(inpk, outk)
hbase.add batch(inpbase, outbase)
\\ compare the differences between Mk

ft and Mbase

hk.update(hbase.inp, hbase.out)
end for

end for
for h in Hk do

scaler values = h.scaler rows
top indices = argsort(scaler values)[-C:]
DSRk = DSRk ∪ {scaler values[top indices]}

end for
end for
return DSR1, DSR2, ..., DSRK

\\ Mix-up SFT
DSRunion = ∪K−1

k=0 DSRk

freeze parameter in M0 - DSRunion

fine-tune M0 on ∪K−1
k=0 Dk

\\ Continual SFT
for k = 1 to K do
DSRdiff = DSRk - (∪k−1

j=0 DSR j)
freeze all parameters in Mk

ft except in DSR diff

fine-tune Mk−1
ft on Dk to obtain Mk

ft

end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D ABLATION STUDIES ON DSR NECESSITY AND SCALE

D.1 NUMBERS OF DELTA-SCALE ROWS

The scale of DSR parameters are rather important, from which we can identify the reasoning-
related weights, intuitively, the more samples employed during model inference, the more

50 100 150 200
64.0

64.5

65.0

65.5

66.0

66.5

67.0

GS
M

8k
 a

cc
ur

ac
y

(%
)

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

(a) Mix-up SFT
50 100 150 200

42.5
43.0
43.5
44.0
44.5
45.0
45.5
46.0
46.5

GS
M

8k
 a

cc
ur

ac
y

(%
)

46.0
46.5
47.0
47.5
48.0
48.5
49.0
49.5
50.0

(b) Continual SFT
Figure 5: The effect of delta-scale row numbers
on different reasoning models.

comprehensive the location. To figure out that, we
try various numbers of DSR parameters to freeze
and conduct corresponding ablation studies. In
Figure 5, we choose 20, 50, 100, and 200 as top
numbers to locate the top DSR parameters and
then conduct mix-up and continual SFT, and infer-
ence on the GSM8k to evaluate the math ability.
The results indicate that when it increases from
20 to 100, the math performance gradually gets
better, however, it drops when we adopt the first
200 rows, showing that critical parameters for a
task might be very limited.

Given the above investigation, we compute and
choose 100 rows in main DiFT experiments, the DSR of each task in different LLMs maybe different
as exhibited Figure 7 (also Figures 10- 9 in Appendix F.4). Suppose we randomly selected 100 DSR
parameters, it only takes about 3.7% parameters of the entire model, i.e. we need to finetune about
92.3% parameters in continual SFT, while only 3.7% or less in mix-up SFT.

D.2 RANDOM DSR WITH THE SAME SCALE

Apart from the inverse-DiFT in Section 5.5 for validating the necessity of top-DSR, we further
evaluate the same-scale random DiFT to make the DSR’s necessity more convincing. We conduct

Table 7: Performance comparison of DiFT and DiFT random on Mix-Math-Code and
Continual-Math-Code settings.

Model GSM8k xGLUE
Llama3-8B-mix-math-code 64.82 1.0956
+DiFT 67.02 1.0735
+DiFT random 62.35 (-4.67) 1.0294 (-0.0662)
Llama3-8B-continual-math-code 44.35 0.9902
+DiFT 46.32 1.0557
+DiFT random 42.46 (-4.03) 0.8192 (-0.2365)

random DiFT (of the same rows) experiments in both mix-up and continual SFT, results are in the
Table 7, we can see that the random DiFT underperforms the top-k DiFT to a large margin, which
strengthens the importance of top-DSR, and this is in line with the phenomenon as Section 5.5.

D.3 CONFLICTS AND REGULARIZATION IN CONTINUAL SFT

We denote the math task as A, the code task as B, we then conducted math-only and code-
only DiFT experiments. In Table D.3, we can see that A’s and B’s corresponding DiFT, i.e.,
DiFT-math and DiFT-code, can both enhance their own performance compared to the base LLM,

Table 8: Performance comparison of base model,
full-SFT, and DiFT on GSM8k and xGLUE.

Model GSM8k xGLUE
base model 39.42 1.0874

full-SFT math 61.64 1.2228
DiFT-math 59.36 1.2393

full-SFT code 26.54 1.1203
DiFT-code 51.18 1.1097

but cannot surpass their vanilla SFT (SFT with
1) performance correspondingly. In the mean-
time, we notice that full-SFT code underper-
forms DiFT-code (SFT with SB) on math largely
(26.54 v.s. 51.18), illustrating that 1− SB have
a greater negative impact on SA than SB (in-
tuitively, the scale of SB is much smaller than
1 − SB). Therefore, we freeze 1 − SB in the
mix-up setting to mitigate its conflicts with SA.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GSM
8k

xG
LU

E

Log
iQA2

CSQ
A ATA

50

55

60

65

70

75

80

Pe
rfo

rm
an

ce

Mix-Up SFT (Math-Code-CSQA)
Mix-Math-Code-CSQA
Mix-Math-Code-CSQA + DiFT

GSM
8k

xG
LU

E

Log
iQA2

CSQ
A ATA

Mix-Up SFT (Math-Code-Logic-CSQA)
Mix-Math-Code-Logic-CSQA
Mix-Math-Code-Logic-CSQA + DiFT

GSM
8k

xG
LU

E

Log
iQA2

CSQ
A ATA

Continual SFT (Code-Math)
Seq-Code-Math
Seq-Code-Math + DiFT

GSM
8k

xG
LU

E

Log
iQA2

CSQ
A ATA

Continual SFT (Logic-Math)
Seq-Logic-Math
Seq-Logic-Math + DiFT

Performance Comparison of DiFT

Figure 6: DiFT performance on Llama3-8B in multiple task mix-up and different order continual
setting, involving more task mix-up and continual experiments of different orders.

D.4 ANOTHER CONTINUAL SFT STRATEGY

Additionally, we compare 3 settings in continual-math-code SFT experiments, we still denote the
math task as A, the code task as B, the 3 settings are: (1) SFT all parameters (SFT with ⊮), (2) SFT
only DSR k for the code task (SFT with SB), (3) SFT only DSR diff (SFT with ⊮− SB). As (1) and
(3) have been conducted in the main paper, we conduct the continual-math-code SFT only SB for
the current task (i.e., DiFT w. DSR cur). In Table 9, we can see that DiFT w. DSR cur (SFT with

Table 9: Performance comparison of full-SFT, DiFT, and DiFT with DSR cur on GSM8k and xGLUE.
Model GSM8k xGLUE
full-SFT 44.35 0.9902
DiFT 46.32 1.0557
DiFT w. DSR cur 45.75 1.0325

SB) can also maintain the historic math performance (as we freeze SA), while it cannot learn more
current code ability compared to the original DiFT (SFT with 1−SA), and this comparison illustrates
that 1 − SA ourperforms the SB , further demonstrating the reasonableness and effectiveness of
our method. The results also prove that our proposed DiFT is not the only solution for mitigating
reasoning conflicts and reserving benefits, other derivative methods of DSR analysis can also work
well, and our initiative is proposing the DiFT to validate the DSR analysis, thereby providing insights
for future reasoning conflicts and benefits research.

D.5 DIFFERENT CONTINUAL ORDERS

In Figure 6, we reverse the learning orders of continual SFT, and we can observe that
Seq-Code-Math and the Seq-Logic-Math perform better than their vanilla SFT counter-
parts as the continual SFT performance in the main experiments, showing that DiFT is still effective
regardless of training orders. These results highlight DiFT’s validity in reducing conflicts between
historical and new reasoning abilities, paving the way for better diverse reasoning abilities under
arbitrary mix-up and continual SFT settings without curated arrangements.

E 14B LLM EXPERIMENTS

We also conduct DiFT experiments with Qwen2.5-14B, and the results are shown in Table E, the
results illustrate that our method can facilitate multiple reasoning abilities, and the DiFT is even better
for large-scale models, demonstrating not only the scalability of the DiFT but also the effectiveness
of our DSR analysis.

F MORE REASONING CONFLICTS AND BENEFITS ANALYSIS

We focus on the reasoning tasks since this scenario is more challenging than others. Specifically,
reasoning tasks often require models to perform higher-order cognitive processes such as analysis,
deduction, and problem-solving, and they usually share a set of numeric/symbolic manipulation
contents and consist of multiple deduction steps. Apart from that, distinct reasoning tasks have
exclusive reasoning goals. These factors provide a relatively intuitive explanation for the emergence

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: The mix-up and continual SFT results of Qwen2.5-14B-base with vanilla and DiFT on the
same 4 benchmarks as the main experiments.

Model GSM8k xGLUE LogiQA2 CSQA ATA
Mix-Math-Code 85.52±0.31 1.4113±0.0062 43.51±0.27 84.28±0.31 78.04
+DiFT 86.43±0.40 1.4188±0.0077 44.15±0.34 84.68±0.26 78.69
Mix-Code-Logic 72.10±0.34 1.0592±0.0059 47.33±0.30 83.78±0.29 50.15
+DiFT 57.16±0.41 1.0925±0.0063 47.44±0.33 83.29±0.32 51.03
Mix-Logic-CSQA 54.06±0.37 1.0758±0.0020 40.01±0.27 86.65±0.35 63.33
+DiFT 67.78±0.42 1.0910±0.0025 41.38±0.22 87.81±0.32 64.60
Continual-Math-Code 71.42±0.43 1.1322±0.0043 44.53±0.36 82.56±0.28 64.02
+DiFT 79.00±0.38 1.1461±0.0040 44.40±0.34 83.46±0.30 68.15
Continual-Math-Logic 56.86±0.46 0.7387±0.0044 48.28±0.27 84.36±0.33 52.57
+DiFT 57.70±0.50 0.7620±0.0036 48.35±0.31 84.36±0.35 53.03

of conflicts. Therefore, we concentrate on the benefits and conflicts among reasoning tasks in this
work. To validate our assumption, we conducted massive investigation experiments and validated it,
and then conducted more detailed analysis.

Table 11: LongCoT DiFT performance comparison on Llama3-8B-Instruct.
Model xGLUE LogiQA2
Llama3-8B-Ins 1.2506 31.55
LongCode-only 1.6556 31.11
LongLogic-only 1.3606 33.92
Mix-Long-code-logic 1.5209 31.11
+DiFT 1.5776 (+0.0567) 32.51 (+1.4)

F.1 DIFT FOR LONG COT DATA

For experiments in the main paper, we employed normal CoT data for SFT, compared to the DeepSeek-
R1-like reasoning pattern, i.e. Long CoT, our training data can be seemed as Short CoT. To evaluate
DiFT more complete, we select 1k samples from the code Long CoT data from the RedStar-Reasoning,
which is distilled from QwQ-32B, and also 1k logic Long CoT data distilled from DeepSeek-R1-
Distill-Llama-70B, we then conducted Long CoT-SFT on Llama3-8B-Instruct. As illustrated in
Table 11, our DiFT still performs better than vanilla mix-up SFT in Mix-Long-Code-Logic with
Long CoT training on the instruct LLM, especially for code reasoning, demonstrating the DiFT is
neither limited by long or short CoT reasoning data formats nor the base/instruct models.

F.2 THE NON-WEIGHTED ATA METRIC

The current ATA in the main paper was designed to describe the balanced performance of distinct
accuracy metric, while may cause misunderstanding when it comes to the code task’s pass rate. Here
we recompute the non-weighted ATA metrics from Table 2 that involving code tasks. We can see

Table 12: Performance under the non-weighted ATA.
Model GSM8k xGLUE LogiQA2 ATA non-weighted ATA
Mix-Math-Code 64.82 1.0956 34.54 59.80 32.96
+DMT 65.07 1.0851 34.54 59.66 33.08
+CoBA 66.21 1.0725 33.15 59.91 33.64
+DiFT(ours) 67.02 1.0735 32.63 60.35 34.05
Mix-Code-Logic 52.31 1.0779 32.57 43.23 16.82
+DMT 50.37 1.0865 31.93 43.12 16.51
+CoBA 51.12 1.0811 32.25 43.15 16.67
+DiFT(ours) 41.09 1.1359 33.40 45.10 17.27
Continual-Math-Code 44.35 0.9902 32.82 46.93 22.67
+HFT 44.74 1.0362 33.94 48.28 22.89
+LoTA 44.29 1.0258 34.45 47.79 22.66
+DiFT(ours) 46.32 1.0557 35.86 49.55 23.69

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

that no matter the non-weighted ATA or the former scaled ATA, our strategy can achieve the SOTA.
Nonetheless, merely the scaled ATA can lead to unnecessary misunderstanding as you worry, to
this end, we have add the non-weighted ATA to our updated manuscript. Also to observe the
code-related balanced performance fairly, we suggest to consider the pass rate together with
ATA metrics to obtain more details.

F.3 COMPARED TO PEFT METHODS

As we intended to locate the related parameters of different reasoning tasks, and then differentially
train LLMs with the (almost) full-parameter SFT. Compared with PEFT methods like LoRA, we
merely freeze the gradient backpropagation for the parameters of DSR, and the rest of the parameters
are still fine-tuned. Therefore, DiFT does not reduce the fine-tuning time and memory usage compared
to full fine-tuning. The cost of DiFT is higher than that of LoRA, which is the cost of computing
delta-rows and the cost of fine-tuning the model with delta-rows. We can see that LoRA is not
comparable with full SFT and underperforms the DiFT in most of the settings, and the results are
consistent with our previous analysis. However, we notice that LoRA can forget less though it also
learns less., which is quite interesting.

Table 13: Results of LoRA and DiFT in mix-up and continual SFT.
Model GSM8k xGLUE LogiQA2 CSQA ATA
math 61.64 1.2228 30.73 67.24 –
+LoRA 56.71 1.1542 29.77 67.73 –
code 26.54 1.1203 35.05 70.93 –
+LoRA 20.02 1.0805 32.82 71.33 –
Mix-Math-Code 64.82 1.0956 34.54 68.22 59.80
+LoRA 62.62 1.0589 32.32 69.7 57.78
+DiFT 67.02 1.0735 32.63 68.39 60.35
Continual-Math-Code 44.35 0.9902 32.82 70.52 46.93
+LoRA 43.97 0.9565 34.03 71.09 45.90
+DiFT 46.32 1.0557 35.86 70.93 49.55

F.4 MORE REASONING-FINETUNED LLMS ANALYSIS

We analyze the fine-tuned reasoning LLMs then check each task and the named parameters thoroughly,
and eventually come up with the conclusion in Section 3. Here we display more named parameters’
DSR parameters visualization for reasoning tasks on their corresponding fine-tuned LLMs, including
Llama3-8B, Mistral-7B, and Qwen2.5-14B to demonstrate the universal DSR pattern.

Figure 7 display the DSR distribution of Math-only with different sampled data subsets where we
can see a more diverse DSR distribution among distinct reasoning data, reconfirming the observation
in Section 3.2. In each row of Figure 10, we can see that all sampled data from the same reasoning
data display nearly the same distribution for DSR parameters, as for its row-wise sub-figures, i.e., the
influential parameters of each reasoning ability, the behaviors are rather inconsistent, leaving us a
huge optimal space for multiple reasoning proficiencies gathering.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

250

500

750

1000

1250

1500

1750

Sc
al

er
 V

al
ue

71267927 97885534 88169753 119813125 7995763 1205753263516 87065903 114186280

9246

284

1992
Layer: model.layers.24.mlp.gate_proj

(a) math rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500

Sc
al

er
 V

al
ue

71267927 97888816 119815534 9753 12057763 3125 53263516 7995870659036280 11418

9246

284
1992

Layer: model.layers.24.mlp.gate_proj

(b) math rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500

Sc
al

er
 V

al
ue

71267927 9788881655343125 9753 12057119815326763 3516 87067995 1141859036280

9246
284

1992
Layer: model.layers.24.mlp.gate_proj

(c) math rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

2000

Sc
al

er
 V

al
ue

55342804 137998816978897535326 1205779203516 119817995
763 712659036280 11418

9246
284 1992

Layer: model.layers.24.mlp.gate_proj

(d) code rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

Sc
al

er
 V

al
ue

132382804 5534 8816 12057978897535326 79203516 119815903 79956280763 7126 11418
9246

284 1992
Layer: model.layers.24.mlp.gate_proj

(e) code rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500

Sc
al

er
 V

al
ue

2804 5534 132388816 120579788975353263516 79957920 11981
763 62805903 114187126 9246

284 1992
Layer: model.layers.24.mlp.gate_proj

(f) code rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

200

400

600

800

1000

Sc
al

er
 V

al
ue

112704844 11754628059033125 889766665534 8816
7995763 53263516 7126 12057

92461992
11418284

Layer: model.layers.24.mlp.gate_proj

(g) logic rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

200

400

600

800

Sc
al

er
 V

al
ue

857848443125 112701175488168897590362805534 12057763 53263516 7995
7126

1992
9246284 11418

Layer: model.layers.24.mlp.gate_proj

(h) logic rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

200

400

600

800

1000

Sc
al

er
 V

al
ue

3954 6666 8578 117543125 88166280 88975903763 12057553453263516 7995
7126

92461992
11418284

Layer: model.layers.24.mlp.gate_proj

(i) logic rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0
50

100
150
200
250
300
350

Sc
al

er
 V

al
ue

129111880 8185 14326666630892474 88162804 7920 12057
53263516

1992 7126 11418763
9246

284 6280
Layer: model.layers.24.mlp.gate_proj

(j) csqa rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

50

100

150

200

250

300

350

Sc
al

er
 V

al
ue

129114844806 143261880 30892474 8816 1205779202804
5326

3516
1992

11418763 7126 9246

6280284
Layer: model.layers.24.mlp.gate_proj

(k) csqa rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

100

200

300

Sc
al

er
 V

al
ue

1291181853089 66661880 143262804 120572474 88167920
5326

3516
11418763 1992 7126

9246

284 6280
Layer: model.layers.24.mlp.gate_proj

(l) csqa rows (seed=44)

Figure 7: Delta-scale rows of model.layer.24.mlp.gate proj with distinct data samples
on Llama3-8B’s Math-only models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue 1338065042222 107745432 13259130923205

759652544166 7318 137852628 11862806 11512
1189

89028783
Layer: model.layers.24.mlp.gate_proj

(a) math rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue 202 54323831 65047197 13092107747596 13259115125254 73184166 1378511862806

2628
1189

89028783
Layer: model.layers.24.mlp.gate_proj

(b) math rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue 71973205 65045432 11529 1309210774 132597596 13785115124166 5254 11862806 73182628

1189
89028783

Layer: model.layers.24.mlp.gate_proj

(c) math rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

1000

2000

3000

4000

5000

6000

Sc
al

er
 V

al
ue 1236867856504 11529 132592222 9742 13092381

7318 137854166 5254806 1186289027197
26281189

8783
Layer: model.layers.24.mlp.gate_proj

(d) code rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

1000

2000

3000

4000

5000

6000

Sc
al

er
 V

al
ue 2173 1236811529381 5596 132591309297422222 7318 11862 137854166806 5254

89027197
26281189

8783
Layer: model.layers.24.mlp.gate_proj

(e) code rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

1000

2000

3000

4000

5000

Sc
al

er
 V

al
ue 4027 5596 11529123682222381 9742 137857318 13092132594166 11862806 5254 7197 89022628

1189

8783
Layer: model.layers.24.mlp.gate_proj

(f) code rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

2000

Sc
al

er
 V

al
ue

1065497422222 54324166 62855254 118627229 1151211529 13785806 38311189 89022628
7596 13259

8783
Layer: model.layers.24.mlp.gate_proj

(g) logic rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000
Sc

al
er

 V
al

ue

974254325254 118624166 11529106542222 1151262857229 137858061189 3831 89027596
132592628 8783

Layer: model.layers.24.mlp.gate_proj

(h) logic rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

Sc
al

er
 V

al
ue

974241662222 5254 11862543262857229 1065411529 137853831806 115121189 8902
2628 7596 132598783

Layer: model.layers.24.mlp.gate_proj

(i) logic rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

200

400

600

800

Sc
al

er
 V

al
ue 4920386 13380

72296504 12364678573185432 1217397421189 7596 11862
137854166806

2628
89028783

Layer: model.layers.24.mlp.gate_proj

(j) csqa rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0
100
200
300
400
500
600
700

Sc
al

er
 V

al
ue 4920 90486504 123641217367857318386 974272295432

1189 7596 11862
137854166806 2628

87838902
Layer: model.layers.24.mlp.gate_proj

(k) csqa rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

200

400

600

800

Sc
al

er
 V

al
ue 49205254386 12364650467855432 7318 121739742722975961189 11862

13785806 4166
2628 8902

8783
Layer: model.layers.24.mlp.gate_proj

(l) csqa rows (seed=44)

Figure 8: Delta-scale rows of model.layer.24.mlp.gate proj with distinct data samples
on different reasoning Mistral-7B models.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue

12438105767399 13215752274331393 3758
13250114801148 2607 3734 72418173

1150111572
3814

3820 11548
Layer: model.layers.24.mlp.gate_proj

(a) math rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue

124381057675227399 1321574331393 3758
13250114801148 37342607 81737241 1157211501

3814

3820

11548
Layer: model.layers.24.mlp.gate_proj

(b) math rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue

12438739974337522 10576 132151393 3758 132501148 11480
3734 72412607 8173

1150111572
3814

3820
11548

Layer: model.layers.24.mlp.gate_proj

(c) math rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue

73993758 132157659206 13931148 1243813250
7433 114803734 724181732607 115013814 11572

115483820
Layer: model.layers.24.mlp.gate_proj

(d) code rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue

758173996081 7659206 13931148 1243813250
1148072413734 74338173

38142607 1150111572

115483820
Layer: model.layers.24.mlp.gate_proj

(e) code rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

2500

3000

Sc
al

er
 V

al
ue

1393 3758 13215765975812061148 13250124387241 114803734 743381732607 3814 1150111572

11548
3820

Layer: model.layers.24.mlp.gate_proj

(f) code rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

500

1000

1500

Sc
al

er
 V

al
ue

206 7522 12438533737581393 59803651
1148011572 1321513250
11548724181731148
1150138142607

3820
Layer: model.layers.24.mlp.gate_proj

(g) logic rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

250

500

750

1000

1250

1500
Sc

al
er

 V
al

ue

5337 7522206 3651 59803758 124381393
1157211480 1321513250

72411148 115488173
3814 115012607

3820
Layer: model.layers.24.mlp.gate_proj

(h) logic rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

500

1000

1500

2000

Sc
al

er
 V

al
ue

6081 12438206 598036513758 53371393
1148011572 1325013215

8173 1154872411148
115012607 3814

3820
Layer: model.layers.24.mlp.gate_proj

(i) logic rows (seed=44)

0 2000 4000 6000 8000 10000 12000 14000
Column Index

0

100

200

300

400

500

600

Sc
al

er
 V

al
ue

75225337 10747 132151061611572121171393 2607 115483734 5980 724181731148 10576
13250

11501
3814
3820

Layer: model.layers.24.mlp.gate_proj

(j) csqa rows (seed=42)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

100

200

300

400

500

600

Sc
al

er
 V

al
ue

115725337 7522 107476081 106161393 121173734 115482607 5980 724181731148 10576
13250

11501
3814
3820

Layer: model.layers.24.mlp.gate_proj

(k) csqa rows (seed=43)
0 2000 4000 6000 8000 10000 12000 14000

Column Index

0

100

200

300

400

500

600

700

Sc
al

er
 V

al
ue

5337 7659 107477522 1211710616115721393 5980 115482607 3734 817372411148 10576 13250

11501
3814
3820

Layer: model.layers.24.mlp.gate_proj

(l) csqa rows (seed=44)

Figure 9: Delta-scale rows of model.layer.24.mlp.gate proj with distinct data samples
on different reasoning Qwen2.5-14B models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Column Index

50

100

150

200

Sc
al

er
 V

al
ue

704 930701578 873302 537347 865
999836

720314 574
908271

697362

572
380

Layer: model.layers.14.self_attn.v_proj

(a) math rows (seed=42)
0 200 400 600 800 1000

Column Index

50

100

150

200

Sc
al

er
 V

al
ue

647701 930578302 873347 537 865
999836720

314 574
271 908

697362

572

380
Layer: model.layers.14.self_attn.v_proj

(b) math rows (seed=43)
0 200 400 600 800 1000

Column Index

50

100

150

200

Sc
al

er
 V

al
ue

647 930701302 873578347 537 865
999836720314 574

271
908697362

572

380
Layer: model.layers.14.self_attn.v_proj

(c) math rows (seed=44)

0 200 400 600 800 1000
Column Index

50

100

150

200

250

300

350

Sc
al

er
 V

al
ue

701 930911347 865873314 704537 999578
836720574

271
697 908

362

572
380

Layer: model.layers.14.self_attn.v_proj

(d) code rows (seed=42)
0 200 400 600 800 1000

Column Index

50

100

150

200

250

300

Sc
al

er
 V

al
ue

701 930911704 865347314 873 999578537 836574 720

271 908697

362

572
380

Layer: model.layers.14.self_attn.v_proj

(e) code rows (seed=43)
0 200 400 600 800 1000

Column Index

50

100

150

200

250

Sc
al

er
 V

al
ue

807 930911704347 865873 999537578314
836720574

271
908697

362

380 572
Layer: model.layers.14.self_attn.v_proj

(f) code rows (seed=44)

0 200 400 600 800 1000
Column Index

0

25

50

75

100

125

150

Sc
al

er
 V

al
ue

701529 865250 537 873302 578271 362314 999
807720574 836

908

697

572380
Layer: model.layers.14.self_attn.v_proj

(g) logic rows (seed=42)
0 200 400 600 800 1000

Column Index

0

20

40

60

80

100

120

Sc
al

er
 V

al
ue

529194 250 873865537302 578271314
362 807 999

836720574 908
697

380
572

Layer: model.layers.14.self_attn.v_proj

(h) logic rows (seed=43)
0 200 400 600 800 1000

Column Index

0

25

50

75

100

125

150

Sc
al

er
 V

al
ue

865873194 537250 657
578302271 362314 999

720574 807
908836

697

572
380

Layer: model.layers.14.self_attn.v_proj

(i) logic rows (seed=44)

0 200 400 600 800 1000
Column Index

0

10

20

30

40

50

60

Sc
al

er
 V

al
ue

701 801504 873529 865704720 999271 911836314
697537362

574
908380

572
Layer: model.layers.14.self_attn.v_proj

(j) csqa rows (seed=42)
0 200 400 600 800 1000

Column Index

0

10

20

30

40

50

Sc
al

er
 V

al
ue

850873801504 704 865529 720
999271 911314 836697537362

574
380 908

572
Layer: model.layers.14.self_attn.v_proj

(k) csqa rows (seed=43)
0 200 400 600 800 1000

Column Index

0

10

20

30

40

50

60

Sc
al

er
 V

al
ue

701 801 873504 704529 865720271 999911314 836697362 537
574 908380

572
Layer: model.layers.14.self_attn.v_proj

(l) csqa rows (seed=44)

Figure 10: Delta-scale rows of model.layer.14.self attn.v proj with distinct data sam-
ples on different reasoning Llama3-8B models.

In Mistral-7B and Qwen2.5-14B, the patterns are also like in Llama3-8B, we visualize the
model.layer.24.mlp.gate for each reasoning data in Figures 8 and 9. We can observe
that math and code abilities share a large proportion of common DSR parameters, while others do
not, such a phenomenon reminds us that the benefits and conflicts are entangled. Therefore, we can
see the math and code performances of Mistral-7B and Qwen2.5-14B in Table 2 and Table E are in
strong correlation, which can also align with the finding in Section 3.2.

LIMITATIONS

Although our proposed delta-scale row analysis and the proposed DiFT have been demonstrated
effective via extensive experiments, there is no proof to support it theoretically. Due to hardware
limitations, we only conducted experiments on 7/8B and 14B LLMs in this paper, lacking validation
on larger-scale (30B+) models that can be complementary. In contrast to the mix-up SFT, while
the continual SFT can alleviate some conflicts between reasoning tasks, we cannot address the
catastrophic forgetting, which is the main cause of the huge performance drop.

Additionally, recent MoE LLMs like DeepSeek-V3 and Kimi-K2 are of impressive performance
on numerous tasks, while they tend to be computationally heavy, normally 671B-A37B, 1TB-
A32B, smaller ones are still 8x7B, 8x22B. The inference process of all MoE models is of unstable
activation parameters given the router module, while our delta-scale rows analysis need to compute
all corresponding activations of LLMs with the same activation distribution, making it infeasible for
further analysis. Nonetheless, the activation instability of MoE LLMs is a fantastic topic, we will
investigate this research meticulously in the future.

23

	Introduction
	Related Work
	Benefits and Conflicts Analysis
	Mix-up and Continual Reasoning SFT
	Delta-scale rows
	Fine-tuned Reasoning Model Analysis

	Method
	Delta-scale Row Analysis
	Mix-up Fine-tuning
	Continual Fine-tuning

	Experiments
	Setting
	Mix-up SFT
	Continual SFT
	Base and Instruct LLMs
	Necessity of DSR parameters

	Conclusion
	LLM Usage Claim
	Implementation Details
	Format and hyperparameters
	Computing costs
	Data composition
	Evaluation
	Catastrophic forgetting from format issues

	DiFT Algorithm
	Ablation Studies on DSR Necessity and Scale
	Numbers of delta-scale rows
	Random DSR with the same scale
	Conflicts and regularization in continual SFT
	Another continual SFT strategy
	Different continual orders

	14B LLM Experiments
	More Reasoning Conflicts and Benefits Analysis
	DiFT for long CoT data
	The non-weighted ATA metric
	Compared to PEFT methods
	More reasoning-finetuned LLMs analysis

