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ABSTRACT

Reasoning abilities of large language models (LLMs) require explicit derivations
compared to general question-answering, supervised fine-tuning (SFT) can em-
power multiple reasoning abilities in LLMs via learning from various datasets.
However, neither training the datasets jointly (mix-up) nor continually can maintain
the performance of single-dataset SFT, sometimes better while sometimes even
worse, illustrating vanilla SFT can not only facilitate reasoning abilities but also
introduce conflicts. In this paper, we propose a novel framework to mitigate the
conflicts and preserve benefits among different reasoning tasks, and even surpass
each task’s single dataset SFT performance. We start by exploring the differences
between reasoning fine-tuned and base LLMs by analyzing their parameter varia-
tions during model inference, and we discover that each reasoning capability has
exclusive parameters that benefit itself more evidently than others. In contrast,
the overlapped parameters of tasks can bring benefits or conflicts. Inspired by
the findings, we propose to update the exclusive and overlapped parameters ac-
cording to specific reasoning task combinations differentially, thereby avoiding
unnecessary conflicts while maintaining benefits. Consistent improvements in
mix-up and continual SFT experiments demonstrate that the proposed SFT strat-
egy can achieve better performance on various LLMs (Llama3-8B, Mistral-7B,
and Qwen2.5-14B) and diverse reasoning tasks with fewer conflicts, showing the
superiority and generality of our analysis findings and the proposed approach.

1 INTRODUCTION

Large language models (LLMs) have emerged various reasoning abilities (Achiam et al., 2023;
Dubey et al., 2024; Yang et al., 2024), such as math problem-solving (Yue et al., 2024), coding (Guo
et al., 2024), logical inference (Pan et al., 2023), and commonsense reasoning (Zhao et al., 2024).
In contrast to the general conversation, reasoning tasks often require models to perform higher-
order cognitive processes such as analysis, deduction, and problem-solving. Supervised fine-tuning
(SFT) on distinct labeled datasets can facilitate such proficiencies (Dong et al., 2023; Zhang et al.,
2024; Chen et al., 2024; Lu et al., 2024), enabling LLMs with versatile reasoning capabilities.
Although vanilla SFT on different reasoning data can strengthen LLMs’ certain capabilities in some
curated combinations (Dong et al., 2023), it tends to underperform on a single dataset, revealing that
mutual enhancement and conflict may coexist across reasoning tasks. Prior works have explored the
destructive interference of varied tasks (Wang et al., 2024; Hui et al., 2024b; Panda et al., 2024; Gong
et al., 2024), they focused on the conflict of general abilities rather than reasoning and believed that
all of interactions were harmful to involved tasks.

In the investigation, we conduct comprehensive SFT experiments with different LLMs on types
of reasoning data to discover the relationships among various reasoning proficiencies. As shown
in Figure 1(a), some combinations, like Mix-Math-Code of Llama3-8B, obtain significant im-
provements in math (measured by GSM8k) compared to Math-only, while it underperforms on
other tasks like code (measured by xGLUE), which is more clear in Figure 1(b). On the other hand,
continual learning results through Continual-Math-Code exhibit severe negative interference.
However, an intriguing difference emerges in Mistral-7B (Jiang et al., 2023), suggesting complex
dynamics in distinct LLMs. These tendencies are also exhibited similarly in combinations among
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Figure 1: Performance of various math-related SFT models on 5 benchmarks with Llama3-8B and
Mistral-7B, scores are increasingly ranked from the center to the circle. (We multiply the pass rate of
xGLUE by 40 and the accuracy of LogiQA2 by 2 to align others for better visualization.)

more reasoning tasks, while they perform distinctly in different LLMs. Such phenomena imply
benefits and conflicts between distinct reasoning capabilities that may be ubiquitous. More detailed
experiments and analysis are introduced in Section 3.

Previous efforts have been made in parameter-variation SFT to mitigate conflicts among various
LLM abilities. Dong et al. (2023) designed a dual-stage mixed SFT strategy to endow LLMs with
math and other capabilities. HFT (Hui et al., 2024b) updated the half LLM parameters randomly in
continual SFT to alleviate catastrophic forgetting. LoTA (Panda et al., 2024) employed task vector
extraction and sparse adaptation to minimize interference among tasks. Nonetheless, the complete
picture of task relationships is neglected, encompassing beneficial, contradictory, and neutral. In this
paper, we investigate the mutual benefits and conflicts of reasoning capabilities in the SFT process.

To determine what benefits and conflicts exist and what causes those, we explore the intrinsic weights
of distinct fine-tuned LLMs. Concretely, we present a novel approach to identify the individual
parameter sensitivity via sampled data inference on corresponding LLMs, thereby locating necessary
weights for specific abilities. After that, we design a suit of Differential SFT (DiFT) strategies to
get better versatile reasoning abilities: for mix-up SFT, we merely fine-tune the parameters union
of critical weights for involved tasks, to obtain target reasoning abilities while making less disturb
to others; as for continual SFT, we freeze the parameters in difference set of the former and current
tasks, to reserve historic proficiencies and learn new ones by remaining parameters.

We employ base instead of instruct LLMs for analysis and validation, as instruct LLMs have been
through massive post-training, making it hard to measure their inner benefits/conflicts. Additionally,
our fine-tuned LLMs with fewer data beat instruct LLMs on some tasks (e.g., logic and commonsense
in Section 5.4), highlighting that our research can provide insights for reasoning-oriented fine-
tuning(regardless of base or instruct models). We conduct extensive experiments with pilot LLMs on
several reasoning tasks, and results show that the proposed DiFT can improve all LLMs in various
reasoning combinations, where mix-up SFT can approach the single dataset SFT and continual SFT
can reduce more historical performance losses, demonstrating that our analysis is valid and DiFT can
mitigate reasoning conflicts and keep mutual benefits. Our contributions are as follows:

• We investigate in comprehensive SFT experiments on single (vanilla), mix-up, and continual
reasoning datasets with different LLMs, showing mutual benefits and conflicts exist among
distinct reasoning tasks commonly.

• By analyzing the parameter variations during inference between various fine-tuned and
base models, we discover some parameters are vital to specific reasoning tasks, i.e., each
reasoning capability corresponds to certain parts of parameters.

• Based on the analysis and findings, we propose a novel fine-grained SFT strategy to preserve
enhancement and mitigate the conflicts by selectively updating those reasoning-relevant
parameters of LLMs.

• We conduct extensive experiments on different LLMs with the proposed DiFT, and em-
pirical results across distinct reasoning tasks are in line with our analysis, validating the
effectiveness of the proposed approach.
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2 RELATED WORK

SFT has been demonstrated as a productive post-training paradigm for improving models’ various
capabilities (Minaee et al., 2024), including math (Yu et al., 2023), code (Guo et al., 2024), common-
sense (Bian et al., 2024), logic (Chen et al., 2023), and instruction following (Lou et al., 2023). There
are task conflicts in LLMs (Luo et al., 2023), and numerous SFT variants emerged in the era of LLMs
from data selection and optimization. Task Vector (Ilharco et al., 2022) considered the fine-tuned
and pre-trained parameter variations as the task-related weights and conducted addition and negation
to modify or combine different tasks. Rudman et al. (2023) discovered that outlier dimensions
could encode crucial task-specific knowledge and that the value of a representation in a single outlier
dimension drives downstream model decisions. Zhang et al. (2023) proposed parameter optimization
trajectory and learned to uncover intrinsic task-specific subspace by exploiting the dynamics of
fine-tuning a given task. Nonetheless, these works failed to connect the specific parameters and tasks.

DMT (Dong et al., 2023) designed dual-stage mixed fine-tuning to endow LLMs with math, code, and
instruction abilities. These methods aim to find better data usage, ignoring the learning process. Tang
et al. (2024) presented a partial linearization to fuse multi-task abilities into one model. HFT (Hui et al.,
2024b) updated a random half of LLM parameters in continual fine-tuning to alleviate catastrophic
forgetting. LoTA (Panda et al., 2024) employed task vector extraction and sparse adaptation to
minimize interference among multiple tasks. Kong et al. (2024) introduced a gradient approximation
strategy for activated parameter locating to reduce the computational complexity associated with
many parameter partitions. Nevertheless, none of them analyze the model parameters in-depth from
the perspective of reasoning conflicts.

3 BENEFITS AND CONFLICTS ANALYSIS

We intend to validate and explore the mutual benefits and conflicts among reasoning abilities via
delving into the LLMs’ parameters step by step to explore the causes. First, we conduct SFT
experiments on 4 datasets in 3 settings: vanilla, mix-up, and continual (detailed experimental settings
in Section 5.1). As instruct-LLMs were trained on massive data, the scaling-up training may trade-off
a part of conflicts in math reasoning, we take Llama3-8B-base and Mistral-7B-base, results are shown
in Table 1. The findings and intervening phenomena are similar in instruct LLMs in Section 5.4.

Table 1: The mix-up and continual SFT results of Llama3-8B and Mistral-7B on 5 benchmarks, the
↓and ↑denote decreasing and increasing compared to the base model performance, respectively.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA MMLU GSM8k xGLUE LogiQA2 CSQA MMLU
base model 39.42 ↑ 1.0874 ↑ 31.93 ↑ 69.29 ↑ 57.66 ↑ 38.97 ↑ 1.2449 ↑ 31.87 ↑ 64.29 ↑ 50.49 ↑

Vanilla SFT
1 Math-only 61.64 ↑ 1.2228 ↑ 30.73 ↓ 67.24 ↓ 56.76 ↑ 59.14 ↑ 2.0042 ↑ 30.85 ↓ 52.50 ↓ 28.68 ↓
2 Code-only 26.54 ↓ 1.1203 ↑ 35.05 ↑ 70.93 ↑ 55.65 ↑ 31.31 ↓ 1.7146 ↑ 28.94 ↓ 58.39 ↓ 43.04 ↓
3 Logic-only 30.17 ↓ 0.6880 ↓ 37.02 ↑ 72.89 ↑ 57.52 ↑ 4.62 ↓ 1.3628 ↑ 31.23 ↑ 54.55 ↓ 32.47 ↓
4 CSQA-only 8.79 ↓ 0.5702 ↓ 29.90 ↓ 79.36 ↑ 28.10 ↓ 1.36 ↓ 2.7964 ↑ 30.15 ↓ 70.93 ↑ 23.43 ↓

Mix-up SFT
5 Mix-Math-Code 64.82 ↑ 1.0956 ↑ 34.54 ↑ 68.22 ↑ 56.47 ↑ 41.17 ↑ 1.2913 ↑ 33.08 ↑ 60.28 ↓ 44.81 ↓
6 Mix-Math-Logic 64.37 ↑ 1.2092 ↑ 32.32 ↑ 70.52 ↑ 55.30 ↓ 57.39 ↑ 0.8593 ↓ 31.87 ↑ 62.49 ↑ 36.68 ↓
7 Mix-Math-CSQA 68.92 ↑ 1.1342 ↑ 32.32 ↑ 77.31 ↑ 47.46 ↓ 52.77 ↑ 2.8439 ↑ 31.11 ↑ 73.05 ↑ 39.76 ↓
8 Mix-Code-Logic 52.31 ↑ 1.0779 ↑ 32.57 ↑ 70.52 ↑ 58.05 ↑ 22.37 ↓ 1.2342 ↑ 31.17 ↑ 62.00 ↑ 43.33 ↓
9 Mix-Code-CSQA 52.39 ↑ 0.8905 ↓ 31.42 ↑ 77.15 ↑ 32.08 ↓ 26.69 ↓ 1.3969 ↑ 33.46 ↑ 75.02 ↑ 44.97 ↓
10 Mix-Logic-CSQA 16.91 ↓ 0.2150 ↓ 32.44 ↑ 77.40 ↑ 47.14 ↓ 16.60 ↓ 0.9582 ↓ 31.11 ↑ 74.69 ↑ 45.34 ↓

Continual SFT
11 Continual-Math-Code 44.35 ↑ 0.9902 ↓ 32.82 ↑ 70.52 ↑ 54.28 ↓ 47.01 ↑ 1.6431 ↑ 31.81 ↑ 44.96 ↓ 25.98 ↓
12 Continual-Math-Logic 10.99 ↓ 0.6433 ↓ 31.30 ↑ 67.90 ↑ 51.53 ↓ 4.62 ↓ 1.0365 ↓ 29.26 ↓ 40.29 ↓ 24.56 ↓
13 Continual-Math-CSQA 3.87 ↓ 0.5494 ↓ 31.36 ↑ 78.71 ↑ 47.07 ↓ 1.14 ↓ 3.8740 ↑ 30.34 ↓ 57.90 ↓ 23.12 ↓

3.1 MIX-UP AND CONTINUAL REASONING SFT

In Table 1, vanilla SFT enhances the corresponding reasoning ability stably on both Llama and Mistral
while it may affect others: for example, the Math-only can degrade logic and commonsense a bit,
and so do the Logic-only and CSQA-only to math. Such results suggest:

i. There may be a learning trade-off between distinct abilities that leads to reasoning interference.

Interestingly, the mix-up SFT exhibits synergistic effects in both positive and negative aspects.
Mix-Math-Code achieves great performance on both GSM8k and xGLUE compared to single
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(b) math rows (seed=43)
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(e) code rows (seed=43)
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(g) logic rows (seed=42)
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Figure 2: Distribution of delta-scale rows (DSR) for model.layer.24.mlp.gate.proj with distinct
sampled data on different reasoning LLMs, we randomly sample 3 times (with seeds 42/43/44) for
each task. The x-axis denotes the row order of the specific weight matrix, and y-axis is DSR values.

variants, implying math and code may share complementary weights, evidenced by the 64.82%
accuracy and 1.0956 pass rate of Mix-Math-Code on Llama3-8B, surpassing Math-only. An
intriguing discovery is the imbalance impact: Mix-Math-Code improves math from 61.64% to
64.82%, while it only enhances xGLUE to 1.0956, minor less than Code-only, implying:

ii. Benefits between different reasoning abilities are not always reciprocal, where one reasoning
ability may gain more than the other.

In contrast to mix-up SFT, continual SFT is born with catastrophic forgetting, which remains a signifi-
cant challenge, making it more complex (Ramasesh et al., 2021; Luo et al., 2023). At Table 1 bottom,
we can hardly observe benefits between reasoning abilities. While Continual-Math-Logic
achieving moderate logic performance (31.30% on Llama3-8B), it shows severe degradation in math
reasoning (10.99% on GSM8k). Such results indicate that continual SFT with different reasoning data
may lead to the erosion of previously abilities. Additionally, the continual SFT on one task performs
worse than the direct SFT on the base LLM in some settings, e.g., significant task interference in
Continual-Math-Code (1.084 to 0.9902 with Llama3-8b). Such results indicate that there also
exist reasoning conflicts besides catastrophic forgetting. Therefore, we make an assumption:

iii. Even catastrophic forgetting is the main issue, reasoning conflicts matter in continual SFT.

The above findings highlight the complex interactions between different reasoning capabilities and
the challenges in mitigating conflicts while preserving benefits. To address the above challenges, we
start by analyzing the inner weights of LLMs with different reasoning proficiencies.

3.2 DELTA-SCALE ROWS

We propose a novel approach for identifying influential weights in LLMs inspired by Yu et al. (2024),
and to quantify the sensitivity of the model output to changes in weights, we introduce the delta-scale
row (DSR) score to measure the parametric sensitivity. Let W ∈ RH×D denote the weight matrix of a
linear layer, with H as the out-dimension and D the in-dimension, L(W ) is the loss of the current task
on W ; W 0 is parameters of the original model while W f is of the fine-tuned; ∆Wk = W f

k −W 0
k ,

Xt is an input sample at token t, and Yt = XtW
⊤. The fine-tuning process can be formalized as:

W s+1 = W s − ηsg
s =⇒ ∆Wk = −

∫ T

0

gk(τ)dτ (1)
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where gs is gradient at step s, ηs is learning rate, τ is integration variable, and T is total steps. Hence,
|∆Wk| is large if the gradient keep projecting on k-th row significantly in training. We perform a
second-order Taylor expansion by varying Wk, plug δ = ∆Wk, and obtain:

∆Lk = −gk∆Wk − 1
2Hkk(∆Wk)

2 + o
(
(∆Wk)

2
)

(2)

where H is the Hessian matrix of the loss (H = ∇2
θL(W 0)) at the starting point W 0, and Hkk is its

k-th diagonal element (curvature along the k-th row). Substantial loss drop thus needs a non-trivial
|∆Wk|. For a set of input X , the output activations Y ∈ RL×H are typically computed as:

Y = XWT + b (3)

We analyze the difference in outputs between a base model (Mbase) and a fine-tuned model (Mft),
where weights are presumed to have changed during fine-tuning. Let Ybase and Yft be the output
activations of a specific layer for the same input X from Mbase and Mft, respectively. The difference
in output for the k-th component (corresponding to the k-th row of W ) for a given token t is:

∆Y k
t = Y k

ft(t)− Y k
base(t) (4)

This ∆Y k
t reflects the impact of the accumulated changes between W k

ft and W k
base on the k-th output

feature for that token. Combining above derivations, we can obtain:

∆Y k
t = Xt∆Wk, Et[∥∆Y k

t ∥22] = ∥∆Wk∥2Et[∥Xt∥2] (5)

Thus, sk = Et[∥∆Y k
t ∥22], which can be computed by sk = 1

N

∑N
t=1 ||∆Y k

t ||22 is proportional to both
∥∆Wk∥2 and ∥Xt∥2, meaning that DSR score can denote the task-specific accumulated importance.

In practice, DSR scores accumulate the squared differences for each output component k, effectively
capturing the impact of changes in the corresponding k-th row of the weight matrix across reasoning
data. High values in the vector of scores indicate rows of the weight matrix (and their associ-
ated output features) that exhibit greater changes in activation magnitude due to fine-tuning,
suggesting these rows are influential in the processes modified or learned by the model.

3.3 FINE-TUNED REASONING MODEL ANALYSIS

To analyze the DSR scores of parameters, we perform inference with distinct fine-tuned and
base LLMs on samples, ensuring that each sampled data corresponds to a tuned LLM. Con-
cretely, we compute for each layer in the forward pass with 5 sampled groups of 50 data items
(random seed 42-46) to obtain the top DSR of each task, we display some row distributions of
model.layers.24.mlp.gate.proj in Figure 2, other weights also express similar patterns,
more visualizations in Appendix F.4. The magnitude of the DSR provides a quantitative measure of
specific parameters’ influence, where higher values matter more. Across all sub-figures in Figure 2,
we can observe distinct peaks in DSR parameters. These peaks indicate specific rows in the weight
matrix disproportionately affect LLMs, and the rows correspond to the critical DSR parameters we
aim to identify. Note that we only annotate the top-20 DSR parameters for better visualization, there
are remarkable differences among distributions of distinct data in Figure 2.

In the distribution of the math (Figures 2(a) to 2(c)) row-wise, distinct peaks at multiple rows, e.g.
284, 1992, and 9246, suggesting that specific rows in the weight exert significant influences on
the LLM’s reasoning on math. Interestingly, such a pattern is consistent across sampled data with
different seeds, and so are the code and logic, implying stability of key DSR parameters for the task
regardless of sample variations. However, the distribution of each fine-tuned reasoning LLM exhibits
distinctly in Figures 2(a) to 2(g) column-wise: rows 284 and 1992 have the top-2 scores across all
rows in math and logic LLMs, while the top-2 rows of the code LLM are 6280 and 9246; the logic
model has influential rows of index >13000, but the indices of all math DSR are <13000. Similar
phenomena exist in more LLMs as shown in Figures 8 and 9 in Appendix F.4.

We further analyze the same model (Math-only) with sampled data subsets and observe a more
diverse DSR parameter distribution among distinct data in Appendix F.4, illustrating the parameter
divergence of reasoning abilities within LLMs. After meticulous DSR analysis, we discover that: On
the one hand, rows of the parameter matrix are not sensitive to different inputs of the same
reasoning task, on the other hand, different tasks demonstrate unique parameter distributions.
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4 METHOD

We propose Differential SFT (DiFT), a novel fine-tuning strategy for LLMs which can mitigate
task conflicts and maintain benefits in multi-task and continual learning settings by leveraging DSR
analysis. DiFT identifies task-specific DSR parameters through activation differences between base
and fine-tuned LLMs, then differentially updates those crucial to current tasks while preserving the
performance of others. By isolating and protecting these sensitive yet non-specialized parameters,
which can be treated as a reliable proxy for task specificity (Deng et al., 2025), DiFT reduces negative
transfer and forgetting. Algorithm 1 in Appendix C provides more details.

4.1 DELTA-SCALE ROW ANALYSIS

Given a base model Mbase and a set of reasoning-specific LLMs {Mk
ft}

K−1
k=0 with corresponding

datasets {Dk}K−1
k=0 , DiFT analyzes how fine-tuning alters internal activations. For each task k, we

sample N inputs from Dk and register forward hooks on target layers of both Mbase and Mk
ft to

capture input/output activations. For every input x, we compute the difference in layer outputs:

∆h(l) = h
(l)
ft (x)− h

(l)
base(x) (6)

where h(l) is the output of layer l. We accumulate the squared L2 norm of the differences across
samples to obtain per-row sensitivity (Eq. 5). The DSR scores reflect how much each weight row
(i.e., neuron activation) changes during SFT. We define DSRk as the set of top-C highest-scoring
rows per layer for task k, denoting parameters most critical to its reasoning behavior. According to
Section 3.2, DSRk captures the “accumulated effects” of k. Combining with our conflicts validation,
when two tasks A and B conflict, SA = DSRA and SB = DSRB are crucial parameter sets for A
and B. Naturally, the other parameters out of these sets are more likely to hurt involved tasks, so we
choose to freeze those to mitigate conflicts. We also conduct experiments to demonstrate that the
effectiveness of DiFT lies in conflict mitigation instead of regularization, and more details can be
referred to Appendix D.3.

4.2 MIX-UP FINE-TUNING

To fine-tune a given LLM on multiple reasoning tasks simultaneously, DiFT computes the influential
union set DSRunion and merely updates these parameters:

DSRunion =

K−1⋃
k=0

DSRk (7)

The LLM is then fine-tuned on the mixed data
⋃K−1

k=0 Dk. Concretely, for SA and SB that are critical
for tasks A and B, respectively, what we focus on when considering A and B is to learn with SA

and SB to maintain their performance as much. Although SA and SB may disturb each other, such
conflicts cannot be measured precisely and are out of this paper’s scope. Therefore, we care about the
major and leave the minor, i.e., reserve the base performance of A and B. As for 1− SA ∪ SB , since
we observe that A and B have conflicts, and SA and SB should carry more weights of maintaining
the performance of A and B (as stated in the former paragraph), so our focus on 1 − SA ∪ SB is
freezing them to prevent these parameters from their potential conflicts to A and B.

4.3 CONTINUAL FINE-TUNING

In continual SFT, DiFT mitigates conflicts by updating only newly important DSR parameters.
Inspired by the common practice in continual learning (Wang et al., 2024), at step k (for k ≥ 2), we
obtain a highly sensitive parameter set to task k but not identified as critical previously:

DSRdiff = DSRk \
k−1⋃
j=0

DSRj (8)

Only the DSRdiff parameters are trained on Dk, starting from the latest Mk−1
ft . Concretely, for

historic task A, we freeze the SA to decrease the negative influence from the current task B to
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A, as SA matters a lot for task A; for task B, we employ 1 − SA to improve B’s performance as
much. By restricting updates to parameters with less impact on prior tasks, DiFT preserves historical
abilities while acquiring new skills, effectively decoupling new learning from old representations.
Additionally, given the parametric nature, DiFT can also be employed jointly with data-driven
methods to reduce conflicts after mitigating forgetting, and we will discuss that in Section 5.3.
Based on the DSR analysis, fine-tuning 1 − SB can also be an approach, however, the empirical
results in Appendix D.4 suggest that the DSRdiff is better.

In summary, DiFT employs DSR to identify task-specific parameters with a few reasoning data, then
differentially fine-tunes to mitigate conflicts while reserve benefits. It attempts to enhance diverse
reasoning proficiencies of LLMs by curated adaptation where it matters most in mix-up or continual
scenarios, and disturb less what already works. We further perform a comprehensive ablation
studies in Appendix F.4 to analyze the DiFT in various perspectives.

5 EXPERIMENTS

To validate our findings and evaluate the proposed DiFT, we conduct comprehensive experiments
on both mix-up and continual settings. We employ Llama3-8B, Mistral-7B, and Qwen2.5-14B, and
several common reasoning benchmarks. All DiFT results are based on the top-100 DSR union,
ablation studies on the scales of 100 are in Appendix D.1, and studies for the choice strategies, i.e.,
random/top DSR are put in Appendix D.2. We also put Qwen2.5-14B results in Appendix E.

5.1 SETTING

Training data We collect and sample reasoning data to fine-tune LLMs toward distinct abilities.
All the source data are widely used for task-specific training, including but not limited to MathIn-
struct (Yue et al., 2023), Code Bagel Hermes (Teknium, 2023), LogiCoT (Liu et al., 2023b), and
CommonsenseQA (Talmor et al., 2018). More source data can be referred to Appendix B.3. We
sample 20,000 for each reasoning ability and conduct SFT involving 2 tasks with DiFT each time.

Baselines As DiFT works in both mix-up and continual settings, we implement comparable
approaches to evaluate the performance. HFT (Hui et al., 2024b) is a continual SFT framework, it
randomly freezes half of each named parameter when fine-tuning on a new task to memorize the old
knowledge. LoTA (Panda et al., 2024) is an advanced gradient-projection method, in each round
of continual fine-tuning, it extracted and masked the feature vectors in the next round. Dual-stage
Mixed Fine-Tuning (DMT) (Dong et al., 2023) presented a two-stage mix-up fine-tuning strategy,
implemented by merging different training data. CoBa (Gong et al., 2024) designed a synthesized loss
by calculating the relative and absolute convergence scores. The hyperparameter settings of baselines
are the same as DiFT, in Appendix B.1, where we also compare PEFT methods in Section F.3.

Evaluation We choose the pass rate (code) and 0-shot accuracy to evaluate the performance of
LLMs, details are in Appendix B.4. As our purpose is to reserve benefits and mitigate conflicts, we
emphasize the performance of involved tasks, therefore, we use the average target accuracy (ATA) to
better show gains and drops of target/historic abilities compared to base LLMs, which reflects various
methods better. For math and logic, we compute the (math + logic) / 2 accuracy as the ATA score, we
also multiply the code pass rate by 50 for to align other metrics (non-weighted ATA in Appendix F.2).
Computing costs: DiFT conducts merely a small-scale SFT with 1k training data and inference on a
few samples, whose computing costs are lighter than task-vector and gradient-based methods. More
computation cost details are in Appendix B.2.

5.2 MIX-UP SFT

Table 2 presents the mix-up SFT results, we can observe the extreme difficulty of baselines to improve
the vanilla SFT. In contrast, DiFT consistently improves the ATA, i.e. the averaged target performance,
and outperforms baselines across benchmarks and LLMs. Concretely, in the Mix-Math-Code, we
know that these 2 reasoning abilities can benefit each other, in Llama3-8B the math reasoning benefits
more, so its ATA gain of DiFT is not striking, even if it beats the baselines. While Mistral-7B fails to
achieve mutual benefits much with vanilla SFT, the 2 tasks gain more (from 52.87 to 54.80) with
DiFT. In Mix-Code-Logic, DiFT on both 2 models can improve involved reasoning abilities.
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Table 2: The mix-up and continual SFT results of Llama3-8B and Mistral-7B under different strategies
on 4 benchmarks. The SOTA results across different strategies are marked in bold numbers, and the
sub-optimal results are italic numbers. * denotes the existence of format issues, and more details
about the orthogonal combination of proposed method and the data-driven method for reducing
conflicts and mitigating forgetting are in Section 5.3.

Methods Llama3-8B Mistral-7B

GSM8k xGLUE LogiQA2 CSQA ATA GSM8k xGLUE LogiQA2 CSQA ATA
base model 39.42 1.0874 31.93 69.29 – 38.97 1.2449 31.87 64.29 –

Mix-up SFT
Mix-Math-Code 64.82 1.0956 34.54 68.22 59.80 41.17 1.2913 33.08 60.28 52.87
+DMT 65.07 1.0851 32.44 67.52 59.66 42.13 1.2400 32.18 59.82 52.07
+CoBa 66.21 1.0725 33.15 68.34 59.91 43.07 1.1900 31.94 58.45 51.29
+DiFT (ours) 67.02 1.0735 32.63 68.39 60.35 42.46 1.3429 33.33 59.46 54.80
Mix-Code-Logic 52.31 1.0779 32.57 70.52 43.23 22.37 1.2342 31.17 62.00 46.44
+DMT 50.37 1.0865 31.93 69.36 43.12 26.58 1.2308 30.62 63.19 46.08
+CoBa 51.12 1.0811 32.25 68.67 43.15 26.05 1.2431 30.16 63.82 46.16
+DiFT(ours) 41.09 1.1359 33.40 68.55 45.10 31.69 1.2555 32.51 62.24 47.64
Mix-Logic-CSQA 16.91 0.2150 32.44 77.40 54.92 16.60 0.9582 31.11 74.69 52.90
+DMT 13.79 0.3907 31.68 78.84 55.26 18.58 0.7731 30.72 72.75 51.74
+CoBa 14.93 0.3868 32.16 78.05 55.11 19.42 0.7847 30.41 73.48 51.95
+DiFT(ours) 16.22 0.4592 32.38 78.95 55.67 21.68 0.6196 31.68 74.45 53.07

Continual SFT
Continual-Math-Code 44.35 0.9902 32.82 70.52 46.93 47.01 1.6431 31.81 44.96 64.58
+HFT 44.74 1.0362 33.94 69.69 48.28 47.72 1.3429 31.46 45.95 57.43
+LoTA 44.29 1.0258 34.45 68.99 47.79 47.15 1.3534 31.92 45.49 57.41
+DiFT(ours) 46.32 1.0557 35.86 70.93 49.55 49.81 1.6362 31.81 44.55 65.81
Continual-Math-Logic* 10.99 0.6433 31.30 67.90 21.15 4.62 1.0365 29.26 40.29 16.94
+HFT 11.06 0.6682 31.55 67.52 21.31 6.57 0.9902 28.48 43.16 17.53
+LoTA 10.89 0.6749 31.87 66.84 21.38 6.70 0.9803 28.76 42.51 17.73
+DiFT(ours) 11.37 0.6919 31.23 68.80 21.30 10.92 0.7107 29.20 42.92 20.06

However, we notice that it hurts the math of Llama3-8B and the commonsense of Mistral-7B,
which results from the Mix-Code-Logic not considering the DSR parameters of the math rea-
soning. Considering math and commonsense, issues like this can be eliminated as in Figure 6.
Mix-Logic-CSQA is similar to Mix-Math-Code, albeit the vanilla SFT has mutual benefits in
Llama3-8B, the proposed DiFT still can enhance their ATA performance, as for Mistral-7B, the
vanilla and all baselines trade the logic ability for commonsense, DiFT maintains more LogiQA2
accuracy (31.68%) and obtains higher CSQA accuracy (74.45%), achieving diverse performance.

In multiple mix-up SFT experiments, DiFT can maintain and facilitate mutual benefits and
alleviate conflicts between reasoning capabilities significantly, thereby supporting the effec-
tiveness of the earlier DSR analysis. We also found that math and code tasks are some-
how synergistic while logic and commonsense are conflicting, which is interesting. The
math-code synergizing may come from that the two tasks share similar computation back-
grounds, providing more views for LLMs to understand the reasoning process, and such
Mix-Math-Code tuning has been utilized in math- and code-specific LLMs training (Shao
et al., 2024; Hui et al., 2024a). In contrast, logic tasks need to obey strict and complex rules,
while commonsense tasks are more about ground knowledge and simple reasoning, leading to
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Figure 3: Joint DiFT-SSR for conflicts after alle-
viating forgetting.

conflicts between the two tasks (Song et al., 2024).

5.3 CONTINUAL SFT

The bottom of Table 2 manifests results of con-
tinual SFT, where models are fine-tuned sequen-
tially and need to retain the previous reasoning
proficiency while adapting to new ones. As men-
tioned in Section 3.1, reasoning benefits and con-
flicts exist along with catastrophic forgetting, not
dominant but still important. In Continual-Math-
Code, DiFT learns code ability better and keeps
more math reasoning on both 2 LLMs, resulting in 2.62 and 1.23 ATA improvements. As for
Continual-Math-Logic, DiFT on Llama3-8B enhances ATA compared to vanilla, but under-
performs baselines for mitigating forgetting. In contrast to Llama3-8B, DiFT on Mistral-7B performs
better on both the historical math and logic, achieving a 3.12 ATA improvement, and such a difference
between 2 LLMs illustrates more conflicts in Mistral-7B, while more forgetting in Llama3-8B.
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We check the outputs of Continual-Math-Logic on GSM8k test cases, and notice the perfor-
mance drops not come from the ability destruction but the format issue, and we put an example to
explain that in Appendix B.5. To diminish the formatting issue and further evaluate compatibility
between the conflicts-oriented, parametric DiFT and the forgetting-oriented, data-driven SSR (Huang
et al., 2024) mentioned in Section 4, we further conduct extensive data-driven continual SFT experi-
ments with joint-DiFT-SSR. In Figure 3, we can see that DiFT can continue to decrease conflicts after
mitigating the forgetting in both Continual-Math-Code and Continual-Math-Logic,
illustrating that DiFT is orthogonal to data-driven methods.

Table 3: SFT performance comparison between
the base and instruct LLMs.

Model LogiQA2 CSQA
Llama3-8B-Ins 31.55 76.09
Logic-only 34.74 78.57
CSQA-only 31.82 81.33
Mix-Logic-CSQA 32.64 78.57
+ DiFT (ours) 34.48(+1.84) 80.23(+1.46)

Table 4: Inverse DiFT comparison on Llama3-8B
under mix-up and continual settings.

Settings Mix-Math-Code Continual-Math-Code
DiFT inverse-DiFT DiFT inverse-DiFT

GSM8k 67.02 61.26 46.32 25.17
xGLUE 1.0735 0.9561 1.0557 0.9512
LogiQA2 32.63 33.84 35.86 34.54
CSQA 68.39 70.84 70.93 69.94

5.4 BASE AND INSTRUCT LLMS

Massive high-quality data is necessary for training base LLMs towards instruct LLMs, current
LLMs take hundreds of thousands and even millions of data from multiple tasks to perform SFT.
However, the computing costs and complexity is out of this work’s scope if reproducing such a
process completely. Although we cannot reproduce the whole process from base to instruct LLMs,
our strategy can adapt to the instruct models, as instruct LLMs still contain reasoning benefits and
conflicts. To validate that, we conducted the same 20k SFT experiments as we did on the base
LLMs, results are shown in Table 3. We can observe that the logic and CSQA results are significantly
improved than the vanilla SFT, suggesting DiFT can also perform quite well on instruct LLMs,
demonstrating that DiFT can also perform quite well on instruct LLMs as on the base LLMs. We
further conduct DeepSeek-R1-like reasoning data to validate the DiFT on the long CoT setting, with
Llama3-8B-Instruct on 1k training data, and results illustrate the DiFT is neither limited by long or
short CoT reasoning formats nor the base/instruct models, more details are in Appendix F.1.

5.5 NECESSITY OF DSR PARAMETERS

Incorporating new reasoning abilities with identified DSR works well under both mix-up and continual
SFT settings. We also wonder whether the other parameters can achieve nearly the performance, thus,
we further conduct inverse DiFT, i.e, exchange the freezing positions of the original DiFT. Concretely,
we fine-tune the DSR parameters while freezing others in the continual SFT, as for the mix-up SFT,
we fine-tune the others while freezing DSR parameters, to test whether the other parameters can
learn the same reasoning abilities. Table 4 compares the performance of DiFT and inverse DiFT with
Llama3-8B, we can see that in the mix-up experiments, learning some reasoning abilities with less
related parameters would not lead to model collapse, while still incomparable for target abilities with
DiFT. As for the continual SFT, the historic reasoning proficiency is forgotten catastrophically, albeit
it works well on others, demonstrating that the identified DSR parameters are indispensable for target
reasoning abilities, which also validates the correctness of our analysis and the proposed DiFT. We
conduct more ablation studies to analyze the DiFT thoroughly in Appendix D.1.

6 CONCLUSION

In this work, we first discover mutual benefits and conflicts among various reasoning tasks through
mix-up and continual SFT experiments with several LLMs. Then we explore such phenomena by
presenting a novel delta-scale row analysis approach, we compare fine-tuned and base LLMs during
inference, finding specific groups of parameters are crucial for distinct reasoning abilities. Inspired
by that, we propose a novel DiFT strategy to update the parameters differentially based on their
optimizing directions. We conduct dozens of experiments with several LLMs on task combinations,
and consistent experimental improvements demonstrate that the proposed DiFT can preserve benefits
and mitigate conflicts to achieve better diverse reasoning capabilities.
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A LLM USAGE CLAIM

In this work, we employ LLMs for polishing the whole paper’s writing, including: checking the
grammar and syntax issues, polishing some expressions, and nothing for other usages.

B IMPLEMENTATION DETAILS

B.1 FORMAT AND HYPERPARAMETERS

For all the SFT experiments (vanilla, mix-up, continual SFT), we adopt learning rate=2e-5, max
length=2,048 (16,384 for LongCoT data), batch size=256, warm-up ratio=0.03, weight decay=0.1,
max gradient norm=1.0, and we employ DeepSpeed Zero2 as the accelerate framework for gradient
interference convenience in DiFT. In LoRA experiments, we adopt lora rank=8, lora alpha=32,
target modules=‘all-linear’, learning rate=1e-4, and the rest hyperparameters are the same as the
full-parameter SFT. All the hyperparameters are widely used in SFT practice, and with these hyperpa-
rameters, we can ensure that all the model training converges. Besides, we use the same seed (42)
during the dataset shuffle to make the comparison fair.

Table 5: Performance comparison of different models on reasoning tasks.
Model Math Code Logic CSQA

Llama3-8B 0.93 0.94 0.91 0.93
Mistral-7B 0.94 0.96 0.93 0.94

Qwen2.5-14B 0.95 0.97 0.94 0.96

B.2 COMPUTING COSTS

In investigation, we noticed that the DSR distribution is not that affected by training data scale: SFT
with only a small proportion of data (1k) shows very similar distribution as shown in Table B.1.
We can see 1k-SFT and 20k-SFT share most top-DSR parameters, implying the robustness
of the DSR analysis. Therefore, we merely SFT LLMs on a little scratch of data to identify DSR
instead of the entire data, then conduct DiFT experiments with fewer budgets. With such results, we
only conduct a small scale SFT, unlike task-vector arithmetic methods that need to full-scale SFT in
preparation, and we can obtain quite consistent distributions of DSR parameters.

Based on the above finding, to identify the sensitive weights, we merely SFT LLMs on
a little scratch of data instead of the entire training set. After getting the small-scale
SFT, we load the fine-tuned LLMs and corresponding base LLMs through randomly se-
lected 50 training samples via the proposed analysis method, inference for identifying

Table 6: CUDA memory usage and inference time
for different models.

Model CUDA Mem (GB) Time (second)
Llama3-8B/Mistral-7B 30 900

Qwen2.5-14B 65 1,200

DSR parameters on 1 NVIDIA A100 GPU, as
shown in Table B.2. Each group in the analysis
only consumes around 30GB CUDA memory
for ≈900 seconds on 7B/8B models, and around
62GB for ≈1,200 seconds on the 14B model,
indicating the cost of computing DSR parameters is negligible compared to the naive LLM inference.
During SFT, we employ 8-A100 servers (one server can conduct all experiments in this work) and
employ fixed batch size and max length to utilize the GPU efficiently. At last, we compute the
DSR union and DSR diff, and employ these parameter-task information to differentially finetune
LLMs, and the finetuning costs are similar to other methods in this phase. Therefore, the computing
costs of the proposed DSR is lighter than task-vector approaches. When it comes to the training
process of DiFT, we randomly selected 100 DSR parameters, it only takes about 3.7% parameters of
the entire model, i.e. we need to finetune about 92.3% parameters in continual SFT, while only 3.7%
or less in mix-up SFT.

B.3 DATA COMPOSITION

For math and code reasoning, we select 20,000 training samples from math and code Infinity
Instruction data BAAI (2024), respectively, which consists of various math and code data as shown in
Figure 4; for logic reasoning, we sample the same amount of data from LogiCoT Liu et al. (2023b);
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Figure 4: Data composition of Infinity-Instruct-7M after de-duplication. Each bar represents the
number of instruction rows contributed by each source dataset. The x-axis uses a logarithmic scale to
accommodate the wide range of sizes.

as for Commonsense reasoning, we gather CommonsenseQA Talmor et al. (2018), CoS-e Rajani
et al. (2019), OpenBookQA Mihaylov et al. (2018), SocialIQA Sap et al. (2019), StrategyQA Geva
et al. (2021), WorldTree Xie et al. (2020). As introduced in Section 5.1, we collect training data from
available and popular reasoning datasets, and we use the “query”, “response” format for training.

B.4 EVALUATION

Since the outputs of math, logic, and commonsense reasoning are either a number or an option, we
use GSM8k Cobbe et al. (2021), LogicQA2 Liu et al. (2023a), and CommonsenseQA Talmor et al.
(2018) as evaluation benchmarks, respectively, and adopt the accuracy of 0-shot as a common metric.
For code reasoning, we use the pass rate on CodeXGlue Lu et al. (2021) to test whether the generated
codes can pass. We employ the official 1 as the base repo for evaluation, and the results fluctuations
for the same benchmarks were of a limited range, so we report their stable accuracy. We evaluate 3
checkpoints in each training process and take the best for results report.

B.5 CATASTROPHIC FORGETTING FROM FORMAT ISSUES

In Tables 1 and 2, we can see the math reasoning of Continual-Math-Logic was damaged severely,
however, it didn’t drop much in Continual-Math-Code, illustrating **the Continual-Math-Logic may
encounter a special issue**. To investigate the cause, we conduct case analysis, and we find that after
logic data SFT, the response of the model for a GSM8k question is as follows:

Q: A raspberry bush has 6 clusters of 20 fruit each and 67
individual fruit scattered across the bush. How many raspberries
are there total?

A: The clusters have 20 raspberries each, so there are 6 clusters.
Therefore, the first part of the answer is yes. Now, we have

1lm-evaluation-harness: https://github.com/huggingface/lm-evaluation-harness

14

https://github.com/huggingface/lm-evaluation-harness


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

to add the individual raspberries to the total. So, the
total number of raspberries is 6 clusters * 20 raspberries per
cluster + 67 individual raspberries. Therefore, the answer is
yes.<|eot id|><|eot id|><|eot id|><|eot id|>122

The Continual-Math-Logic finetuned LLMs tend to output a LogiCoT-format “yes” or “no” after
regular CoT reasoning steps, the reasoning steps are totally correct (near reaching the correct answer
187), while it ends with outputting a guessed number as the final answer, meaning that the math
reasoning ability is almost not affected after DiFT in continual SFT, but the output format was
modified during finetuning. Therefore, we employ data mixture in continual SFT to alleviate the
format issue with rehearsal-based method then perform conflicts mitigation as in Section 5.3.

C DIFT ALGORITHM

Algorithm 1 Delta-Scale Analysis of Fine-tuned Language Models

Input: Base LLM Mbase, fine-tuned models M0
ft,M

1
ft, ...,M

K−1
ft , evaluation data

D0, D1, ..., DK−1, sample size N , top dimensions C
Output: Delta-scale row scores for each model and layer
for k = 0 to K − 1 do

Sample N data points from Dk: Sk ∼ Dk

Hk = Register forward hooks on linear layers of Mk
ft

Hbase = Register forward hooks on linear layers of Mbase

DSRk = {}
for x in Sk do

outk = Mk
ft(x)

outbase = Mbase(x)
for hk, hbase in (Hk, Hbase) do
hk.add batch(inpk, outk)
hbase.add batch(inpbase, outbase)
\\ compare the differences between Mk

ft and Mbase

hk.update(hbase.inp, hbase.out)
end for

end for
for h in Hk do

scaler values = h.scaler rows
top indices = argsort(scaler values)[-C:]
DSRk = DSRk ∪ {scaler values[top indices]}

end for
end for
return DSR1, DSR2, ..., DSRK

\\ Mix-up SFT
DSRunion = ∪K−1

k=0 DSRk

freeze parameter in M0 - DSRunion

fine-tune M0 on ∪K−1
k=0 Dk

\\ Continual SFT
for k = 1 to K do
DSRdiff = DSRk - (∪k−1

j=0 DSR j)
freeze all parameters in Mk

ft except in DSR diff

fine-tune Mk−1
ft on Dk to obtain Mk

ft

end for
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D ABLATION STUDIES ON DSR NECESSITY AND SCALE

D.1 NUMBERS OF DELTA-SCALE ROWS

The scale of DSR parameters are rather important, from which we can identify the reasoning-
related weights, intuitively, the more samples employed during model inference, the more
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Figure 5: The effect of delta-scale row numbers
on different reasoning models.

comprehensive the location. To figure out that, we
try various numbers of DSR parameters to freeze
and conduct corresponding ablation studies. In
Figure 5, we choose 20, 50, 100, and 200 as top
numbers to locate the top DSR parameters and
then conduct mix-up and continual SFT, and infer-
ence on the GSM8k to evaluate the math ability.
The results indicate that when it increases from
20 to 100, the math performance gradually gets
better, however, it drops when we adopt the first
200 rows, showing that critical parameters for a
task might be very limited.

Given the above investigation, we compute and
choose 100 rows in main DiFT experiments, the DSR of each task in different LLMs maybe different
as exhibited Figure 7 (also Figures 10- 9 in Appendix F.4). Suppose we randomly selected 100 DSR
parameters, it only takes about 3.7% parameters of the entire model, i.e. we need to finetune about
92.3% parameters in continual SFT, while only 3.7% or less in mix-up SFT.

D.2 RANDOM DSR WITH THE SAME SCALE

Apart from the inverse-DiFT in Section 5.5 for validating the necessity of top-DSR, we further
evaluate the same-scale random DiFT to make the DSR’s necessity more convincing. We conduct

Table 7: Performance comparison of DiFT and DiFT random on Mix-Math-Code and
Continual-Math-Code settings.

Model GSM8k xGLUE
Llama3-8B-mix-math-code 64.82 1.0956
+DiFT 67.02 1.0735
+DiFT random 62.35 (-4.67) 1.0294 (-0.0662)
Llama3-8B-continual-math-code 44.35 0.9902
+DiFT 46.32 1.0557
+DiFT random 42.46 (-4.03) 0.8192 (-0.2365)

random DiFT (of the same rows) experiments in both mix-up and continual SFT, results are in the
Table 7, we can see that the random DiFT underperforms the top-k DiFT to a large margin, which
strengthens the importance of top-DSR, and this is in line with the phenomenon as Section 5.5.

D.3 CONFLICTS AND REGULARIZATION IN CONTINUAL SFT

We denote the math task as A, the code task as B, we then conducted math-only and code-
only DiFT experiments. In Table D.3, we can see that A’s and B’s corresponding DiFT, i.e.,
DiFT-math and DiFT-code, can both enhance their own performance compared to the base LLM,

Table 8: Performance comparison of base model,
full-SFT, and DiFT on GSM8k and xGLUE.

Model GSM8k xGLUE
base model 39.42 1.0874

full-SFT math 61.64 1.2228
DiFT-math 59.36 1.2393

full-SFT code 26.54 1.1203
DiFT-code 51.18 1.1097

but cannot surpass their vanilla SFT (SFT with
1) performance correspondingly. In the mean-
time, we notice that full-SFT code underper-
forms DiFT-code (SFT with SB) on math largely
(26.54 v.s. 51.18), illustrating that 1− SB have
a greater negative impact on SA than SB (in-
tuitively, the scale of SB is much smaller than
1 − SB). Therefore, we freeze 1 − SB in the
mix-up setting to mitigate its conflicts with SA.
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Figure 6: DiFT performance on Llama3-8B in multiple task mix-up and different order continual
setting, involving more task mix-up and continual experiments of different orders.

D.4 ANOTHER CONTINUAL SFT STRATEGY

Additionally, we compare 3 settings in continual-math-code SFT experiments, we still denote the
math task as A, the code task as B, the 3 settings are: (1) SFT all parameters (SFT with ⊮), (2) SFT
only DSR k for the code task (SFT with SB), (3) SFT only DSR diff (SFT with ⊮− SB). As (1) and
(3) have been conducted in the main paper, we conduct the continual-math-code SFT only SB for
the current task (i.e., DiFT w. DSR cur). In Table 9, we can see that DiFT w. DSR cur (SFT with

Table 9: Performance comparison of full-SFT, DiFT, and DiFT with DSR cur on GSM8k and xGLUE.
Model GSM8k xGLUE
full-SFT 44.35 0.9902
DiFT 46.32 1.0557
DiFT w. DSR cur 45.75 1.0325

SB) can also maintain the historic math performance (as we freeze SA), while it cannot learn more
current code ability compared to the original DiFT (SFT with 1−SA), and this comparison illustrates
that 1 − SA ourperforms the SB , further demonstrating the reasonableness and effectiveness of
our method. The results also prove that our proposed DiFT is not the only solution for mitigating
reasoning conflicts and reserving benefits, other derivative methods of DSR analysis can also work
well, and our initiative is proposing the DiFT to validate the DSR analysis, thereby providing insights
for future reasoning conflicts and benefits research.

D.5 DIFFERENT CONTINUAL ORDERS

In Figure 6, we reverse the learning orders of continual SFT, and we can observe that
Seq-Code-Math and the Seq-Logic-Math perform better than their vanilla SFT counter-
parts as the continual SFT performance in the main experiments, showing that DiFT is still effective
regardless of training orders. These results highlight DiFT’s validity in reducing conflicts between
historical and new reasoning abilities, paving the way for better diverse reasoning abilities under
arbitrary mix-up and continual SFT settings without curated arrangements.

E 14B LLM EXPERIMENTS

We also conduct DiFT experiments with Qwen2.5-14B, and the results are shown in Table E, the
results illustrate that our method can facilitate multiple reasoning abilities, and the DiFT is even better
for large-scale models, demonstrating not only the scalability of the DiFT but also the effectiveness
of our DSR analysis.

F MORE REASONING CONFLICTS AND BENEFITS ANALYSIS

We focus on the reasoning tasks since this scenario is more challenging than others. Specifically,
reasoning tasks often require models to perform higher-order cognitive processes such as analysis,
deduction, and problem-solving, and they usually share a set of numeric/symbolic manipulation
contents and consist of multiple deduction steps. Apart from that, distinct reasoning tasks have
exclusive reasoning goals. These factors provide a relatively intuitive explanation for the emergence
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Table 10: The mix-up and continual SFT results of Qwen2.5-14B-base with vanilla and DiFT on the
same 4 benchmarks as the main experiments.

Model GSM8k xGLUE LogiQA2 CSQA ATA
Mix-Math-Code 85.52±0.31 1.4113±0.0062 43.51±0.27 84.28±0.31 78.04
+DiFT 86.43±0.40 1.4188±0.0077 44.15±0.34 84.68±0.26 78.69
Mix-Code-Logic 72.10±0.34 1.0592±0.0059 47.33±0.30 83.78±0.29 50.15
+DiFT 57.16±0.41 1.0925±0.0063 47.44±0.33 83.29±0.32 51.03
Mix-Logic-CSQA 54.06±0.37 1.0758±0.0020 40.01±0.27 86.65±0.35 63.33
+DiFT 67.78±0.42 1.0910±0.0025 41.38±0.22 87.81±0.32 64.60
Continual-Math-Code 71.42±0.43 1.1322±0.0043 44.53±0.36 82.56±0.28 64.02
+DiFT 79.00±0.38 1.1461±0.0040 44.40±0.34 83.46±0.30 68.15
Continual-Math-Logic 56.86±0.46 0.7387±0.0044 48.28±0.27 84.36±0.33 52.57
+DiFT 57.70±0.50 0.7620±0.0036 48.35±0.31 84.36±0.35 53.03

of conflicts. Therefore, we concentrate on the benefits and conflicts among reasoning tasks in this
work. To validate our assumption, we conducted massive investigation experiments and validated it,
and then conducted more detailed analysis.

Table 11: LongCoT DiFT performance comparison on Llama3-8B-Instruct.
Model xGLUE LogiQA2
Llama3-8B-Ins 1.2506 31.55
LongCode-only 1.6556 31.11
LongLogic-only 1.3606 33.92
Mix-Long-code-logic 1.5209 31.11
+DiFT 1.5776 (+0.0567) 32.51 (+1.4)

F.1 DIFT FOR LONG COT DATA

For experiments in the main paper, we employed normal CoT data for SFT, compared to the DeepSeek-
R1-like reasoning pattern, i.e. Long CoT, our training data can be seemed as Short CoT. To evaluate
DiFT more complete, we select 1k samples from the code Long CoT data from the RedStar-Reasoning,
which is distilled from QwQ-32B, and also 1k logic Long CoT data distilled from DeepSeek-R1-
Distill-Llama-70B, we then conducted Long CoT-SFT on Llama3-8B-Instruct. As illustrated in
Table 11, our DiFT still performs better than vanilla mix-up SFT in Mix-Long-Code-Logic with
Long CoT training on the instruct LLM, especially for code reasoning, demonstrating the DiFT is
neither limited by long or short CoT reasoning data formats nor the base/instruct models.

F.2 THE NON-WEIGHTED ATA METRIC

The current ATA in the main paper was designed to describe the balanced performance of distinct
accuracy metric, while may cause misunderstanding when it comes to the code task’s pass rate. Here
we recompute the non-weighted ATA metrics from Table 2 that involving code tasks. We can see

Table 12: Performance under the non-weighted ATA.
Model GSM8k xGLUE LogiQA2 ATA non-weighted ATA
Mix-Math-Code 64.82 1.0956 34.54 59.80 32.96
+DMT 65.07 1.0851 34.54 59.66 33.08
+CoBA 66.21 1.0725 33.15 59.91 33.64
+DiFT(ours) 67.02 1.0735 32.63 60.35 34.05
Mix-Code-Logic 52.31 1.0779 32.57 43.23 16.82
+DMT 50.37 1.0865 31.93 43.12 16.51
+CoBA 51.12 1.0811 32.25 43.15 16.67
+DiFT(ours) 41.09 1.1359 33.40 45.10 17.27
Continual-Math-Code 44.35 0.9902 32.82 46.93 22.67
+HFT 44.74 1.0362 33.94 48.28 22.89
+LoTA 44.29 1.0258 34.45 47.79 22.66
+DiFT(ours) 46.32 1.0557 35.86 49.55 23.69
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that no matter the non-weighted ATA or the former scaled ATA, our strategy can achieve the SOTA.
Nonetheless, merely the scaled ATA can lead to unnecessary misunderstanding as you worry, to
this end, we have add the non-weighted ATA to our updated manuscript. Also to observe the
code-related balanced performance fairly, we suggest to consider the pass rate together with
ATA metrics to obtain more details.

F.3 COMPARED TO PEFT METHODS

As we intended to locate the related parameters of different reasoning tasks, and then differentially
train LLMs with the (almost) full-parameter SFT. Compared with PEFT methods like LoRA, we
merely freeze the gradient backpropagation for the parameters of DSR, and the rest of the parameters
are still fine-tuned. Therefore, DiFT does not reduce the fine-tuning time and memory usage compared
to full fine-tuning. The cost of DiFT is higher than that of LoRA, which is the cost of computing
delta-rows and the cost of fine-tuning the model with delta-rows. We can see that LoRA is not
comparable with full SFT and underperforms the DiFT in most of the settings, and the results are
consistent with our previous analysis. However, we notice that LoRA can forget less though it also
learns less., which is quite interesting.

Table 13: Results of LoRA and DiFT in mix-up and continual SFT.
Model GSM8k xGLUE LogiQA2 CSQA ATA
math 61.64 1.2228 30.73 67.24 –
+LoRA 56.71 1.1542 29.77 67.73 –
code 26.54 1.1203 35.05 70.93 –
+LoRA 20.02 1.0805 32.82 71.33 –
Mix-Math-Code 64.82 1.0956 34.54 68.22 59.80
+LoRA 62.62 1.0589 32.32 69.7 57.78
+DiFT 67.02 1.0735 32.63 68.39 60.35
Continual-Math-Code 44.35 0.9902 32.82 70.52 46.93
+LoRA 43.97 0.9565 34.03 71.09 45.90
+DiFT 46.32 1.0557 35.86 70.93 49.55

F.4 MORE REASONING-FINETUNED LLMS ANALYSIS

We analyze the fine-tuned reasoning LLMs then check each task and the named parameters thoroughly,
and eventually come up with the conclusion in Section 3. Here we display more named parameters’
DSR parameters visualization for reasoning tasks on their corresponding fine-tuned LLMs, including
Llama3-8B, Mistral-7B, and Qwen2.5-14B to demonstrate the universal DSR pattern.

Figure 7 display the DSR distribution of Math-only with different sampled data subsets where we
can see a more diverse DSR distribution among distinct reasoning data, reconfirming the observation
in Section 3.2. In each row of Figure 10, we can see that all sampled data from the same reasoning
data display nearly the same distribution for DSR parameters, as for its row-wise sub-figures, i.e., the
influential parameters of each reasoning ability, the behaviors are rather inconsistent, leaving us a
huge optimal space for multiple reasoning proficiencies gathering.
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Figure 7: Delta-scale rows of model.layer.24.mlp.gate proj with distinct data samples
on Llama3-8B’s Math-only models.
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Figure 8: Delta-scale rows of model.layer.24.mlp.gate proj with distinct data samples
on different reasoning Mistral-7B models.
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Figure 9: Delta-scale rows of model.layer.24.mlp.gate proj with distinct data samples
on different reasoning Qwen2.5-14B models.
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Figure 10: Delta-scale rows of model.layer.14.self attn.v proj with distinct data sam-
ples on different reasoning Llama3-8B models.

In Mistral-7B and Qwen2.5-14B, the patterns are also like in Llama3-8B, we visualize the
model.layer.24.mlp.gate for each reasoning data in Figures 8 and 9. We can observe
that math and code abilities share a large proportion of common DSR parameters, while others do
not, such a phenomenon reminds us that the benefits and conflicts are entangled. Therefore, we can
see the math and code performances of Mistral-7B and Qwen2.5-14B in Table 2 and Table E are in
strong correlation, which can also align with the finding in Section 3.2.

LIMITATIONS

Although our proposed delta-scale row analysis and the proposed DiFT have been demonstrated
effective via extensive experiments, there is no proof to support it theoretically. Due to hardware
limitations, we only conducted experiments on 7/8B and 14B LLMs in this paper, lacking validation
on larger-scale (30B+) models that can be complementary. In contrast to the mix-up SFT, while
the continual SFT can alleviate some conflicts between reasoning tasks, we cannot address the
catastrophic forgetting, which is the main cause of the huge performance drop.

Additionally, recent MoE LLMs like DeepSeek-V3 and Kimi-K2 are of impressive performance
on numerous tasks, while they tend to be computationally heavy, normally 671B-A37B, 1TB-
A32B, smaller ones are still 8x7B, 8x22B. The inference process of all MoE models is of unstable
activation parameters given the router module, while our delta-scale rows analysis need to compute
all corresponding activations of LLMs with the same activation distribution, making it infeasible for
further analysis. Nonetheless, the activation instability of MoE LLMs is a fantastic topic, we will
investigate this research meticulously in the future.

23


	Introduction
	Related Work
	Benefits and Conflicts Analysis
	Mix-up and Continual Reasoning SFT
	Delta-scale rows
	Fine-tuned Reasoning Model Analysis

	Method
	Delta-scale Row Analysis
	Mix-up Fine-tuning
	Continual Fine-tuning

	Experiments
	Setting
	Mix-up SFT
	Continual SFT
	Base and Instruct LLMs
	Necessity of DSR parameters

	Conclusion
	LLM Usage Claim
	Implementation Details
	Format and hyperparameters
	Computing costs
	Data composition
	Evaluation
	Catastrophic forgetting from format issues

	DiFT Algorithm
	Ablation Studies on DSR Necessity and Scale
	Numbers of delta-scale rows
	Random DSR with the same scale
	Conflicts and regularization in continual SFT
	Another continual SFT strategy
	Different continual orders

	14B LLM Experiments
	More Reasoning Conflicts and Benefits Analysis
	DiFT for long CoT data
	The non-weighted ATA metric
	Compared to PEFT methods
	More reasoning-finetuned LLMs analysis


