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Abstract

Generating videos is a complex task that is accomplished by generating a set of temporally
coherent images frame-by-frame. This limits the expressivity of videos to only image-based
operations on the individual video frames needing network designs to obtain temporally
coherent trajectories in the underlying image space. We propose INR-V, a video repre-
sentation network that learns a continuous space for video-based generative tasks. INR-V
parameterizes videos using implicit neural representations (INRs), a multi-layered percep-
tron that predicts an RGB value for each input pixel location of the video. The INR is
predicted using a meta-network which is a hypernetwork trained on neural representations
of multiple video instances. Later, the meta-network can be sampled to generate diverse
novel videos enabling many downstream video-based generative tasks. Interestingly, we find
that conditional regularization and progressive weight initialization play a crucial role in
obtaining INR-V. The representation space learned by INR-V is more expressive than an
image space showcasing many interesting properties not possible with the existing works.
For instance, INR-V can smoothly interpolate intermediate videos between known video
instances (such as intermediate identities, expressions, and poses in face videos). It can also
in-paint missing portions in videos to recover temporally coherent full videos. In this work,
we evaluate the space learned by INR-V on diverse generative tasks such as video inter-
polation, novel video generation, video inversion, and video inpainting against the existing
baselines. INR-V significantly outperforms the baselines on several of these demonstrated
tasks, clearly showcasing the potential of the proposed representation space.

1 Introduction

Learning to generate complex spatio-temporal videos from simple distributions is a challenging problem in
computer vision that has been recently addressed in various ways Tian et al. (2021); Tulyakov et al. (2017);
Clark et al. (2019); Skorokhodov et al. (2021); Ding et al. (2019); Yu et al. (2022); Yan et al. (2021). State-of-
the-art (SOTA) works Skorokhodov et al. (2021); Tian et al. (2021); Yu et al. (2022) treat video generation
as a task of generating a sequence of temporally coherent frames. Although such networks have advanced
the SOTA to generate high-quality frames (such as carefully crafted eyes, nose, and mouth for talking-head
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Figure 1: Demonstrating the continuity of the video space learned by INR-V by interpolating novel videos
between two real videos V1 and V2. Note that content (identity, hair) and motion (pose, expressions)
gradually transition as we traverse the trajectory in the latent space between V1 and V2’s latents.

videos), they come with a major limitation: They rely on an image space. This limits the application of the
learned space to image-based operations such as animating images and editing on frames. Direct operations
on videos, such as interpolating intermediate videos between two videos and generating future segment of
a video, become difficult. This is because such operations require learning the set of frame and motion
constraints and ensuring that they are coherently learned.
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Figure 2: Overview of INR-V: INR-V
learns a continuous video space by first pa-
rameterizing videos as implicit neural repre-
sentations denoted by fθz

, where z denotes
a unique video instance Vz. Next, a meta-
network based on hypernetworks denoted
by dΩ is used to learn a continuous represen-
tation over the neural representations. dΩ
is conditioned by an underlying continuous
video space where each point denotes the
condition for a complete video.

We propose that videos can be represented as a single unit in-
stead of being broken into a sequence of images. One can learn
a latent space where each latent point represents a complete
video. However, with existing video generator architectures,
such representations are difficult. Firstly, such a video gen-
erator would be made of several 3D convolution operations.
As the dimension and length of the video increase, such an
architecture would become drastically computationally expen-
sive (a GPU with limited memory can only fit a video of lim-
ited dimension). Secondly, videos are high-dimensional signals
spanning both spatial and temporal directions. Representing
such a highly expressive signal by a single latent point would
require complicated generator architectures and a very high-
dimensional latent space. Instead, videos can be parameterized
as a function of space and time using implicit neural represen-
tations (INRs). Any point in a video Vhwt can be represented
by a function fθ(h, w, t) → RGBhwt where t denotes the tth

frame in the video and h, w denote the spatial location in the
frame and RGB denotes the color at the pixel position {h, w, t}.
Here, the dynamic dimension of videos (a few million pixels)
is reduced to a constant number of weights θ (a few thousand)
required for the parameterization. A network can then be used
to learn a prior over videos in this parameterized space. This
can be obtained through a meta-network that learns a function to map from a latent space to a reduced
parameter space that maps to a video. A complete video is thus represented as a single latent point.

We propose INR-V, a video generator network with a continuous video representation space based on learning
an implicit neural representation for videos. It is illustrated in Fig. 2. INR-V is made of key elements that,
when combined, makes it ideal for video representation: (1) Its INR is free of expensive convolutional layers
(millions of parameters) such as in the existing architectures Tian et al. (2021); Skorokhodov et al. (2021)
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and relies on a few layers of traditional multi-layered perceptrons (MLPs), leading to a very few parameters
(a few thousand). (2) Having very few parameters, INR’s weights can be populated using a secondary meta-
network called hypernetwork Ha et al. (2016) that learns a continuous function over the INRs by getting
trained on multiple video instances. (3) It is trained on a deterministic distance loss, such as Euclidean or
Manhattan distance. This allows INR-V to learn the exact requirements of a coherent video directly from
the ground truth video instances.

Hypernetworks have seen wide applications in graphics Sitzmann et al. (2020b; 2021); Chiang et al. (2021);
Sitzmann et al. (2019); however, they have been seldom used for videos. Hypernetworks are notoriously
unstable to train, especially on the parameterizations of highly expressive signals like videos. Thus, we
propose a key prior regularization and a progressive weight initialization scheme to stabilize the hypernetwork
training allowing it to scale quickly to more than 30,000 videos. As we show in the experimental section,
INR-V demonstrates an expressive and continuous video space by getting trained on these datapoints.
The learned prior enables several downstream tasks such as novel video generation, video inversion, future
segment prediction, and video inpainting directly at the video level. As shown in Fig. 1, INR-V also showcases
smooth interpolation of novel videos between two videos by traversing the path between their latent points.
Interpolation morphs different identities and motions and generates coherent videos. Interestingly, the
properties demonstrated in this work are not enforced at training but are natural outcomes of the continuous
video space. To summarize, our contributions in this work are as follows:

1. We propose considering videos as a single unit and learning a continuous latent space for videos
where each latent point represents a complete video.

2. We propose INR-V, a video representation technique that parameterizes videos using INRs, bringing
down the dimension of a video from a dynamic few million to a constant few thousand. INR-V uses
a hypernetwork as a meta-network to learn a continuous space over these parameterizations.

3. We demonstrate the benefit of a key regularization and progressive weight initialization scheme to
stabilize the hypernetwork training. We scale the hypernetworks to more than 30,000 video points
enabling it to learn a continuous meaningful latent space over the INRs.

4. Lastly, we demonstrate key properties of the learned video space, such as video interpolation, video
inversion, and so on, by conducting several experiments and evaluations.

2 Related Work

Video Generation. Video generation aims to produce novel videos from scratch. It falls under the paradigm
of ‘video synthesis’ that encompasses several categories, including (1) Video prediction Luc et al. (2020);
Moing et al. (2021); Walker et al. (2021): that predicts the next set of frames given the current frames, (2)
Frame interpolation Park et al. (2021); Niklaus & Liu (2020); Niklaus et al. (2017); Zhang et al. (2021): that
interpolates frames between given frames of a video. These tasks generate the unseen portion of the video
based on the context of the seen portion. On the other hand, video generation produces videos without any
expressive prior context, making the task more challenging. The complexity of the problem has led to a
plethora of works in this area Tian et al. (2021); Tulyakov et al. (2017); Skorokhodov et al. (2021); Clark
et al. (2019); Ding et al. (2019); Yu et al. (2022). VideoGPT Yan et al. (2021) tackled this challenge by first
reducing the raw videos of up to 128 × 128 dimension to a quantized space. It then trained a transformer
architecture to model a prior over the quantized space. Our architecture is conceptually similar to VideoGPT,
which used a likelihood-based generative model to learn a video prior. However, VideoGPT operates on a
quantized space that is discontinuous, making the prior less expressive. INR-V, on the other hand, models a
continuous video space. VideoGPT also consists of 3D convolution layers making the model computationally
expensive for larger videos. INR-V is a simple MLP, based on a continuous parameterization scheme of INRs,
making it agnostic to the video dimension. This allows scaling to multiple resolutions (64 × 64 or 256 × 256)
at inference without any architectural changes or finetuning. More recent works StyleGAN-V Skorokhodov
et al. (2021), DIGAN Yu et al. (2022), and MoCoGAN-HD Tian et al. (2021) are a GAN-based setup that
model videos as a temporally coherent trajectory over an image space. Use of a continuous representation
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space for videos has been considered before in Fernando et al. (2015); Bilen et al. (2016) for the task of
action classification. However, in this work, we focus on learning a representation space for generative tasks.

Hypernetworks. Hypernetworks Ha et al. (2016) were introduced as a metafunction that initializes the
weights for a different network called the primary network. Hypernetworks have been widely used for several
purposes, starting from representation learning for continuous signals Park et al. (2019); Sitzmann et al.
(2021; 2020a;b); Mescheder et al. (2018); Sitzmann et al. (2019), compression Nguyen et al. (2022); Gao
et al. (2021), few-shot learning Sendera et al. (2022); Lamb et al. (2021), continual learning von Oswald
et al. (2019), language modeling Suarez (2017). We use hypernetworks to populate our primary video
generation network, an MLP parameterizing different video instances.

Implicit Neural Representations. In this paradigm, a continuous signal is represented by a neural
network. INRs have had wide adaptations in 3D Computer Vision Park et al. (2019); Genova et al. (2019);
Sitzmann et al. (2018); Mescheder et al. (2018); Sitzmann et al. (2021); Mildenhall et al. (2020) and Computer
Graphics Guo et al. (2021); Yao et al. (2022). Recently, INR was adopted for images Skorokhodov et al.
(2020) and videos Chen et al. (2021); Sitzmann et al. (2020b); Yu et al. (2022); Chen et al. (2022). INR-
GAN Skorokhodov et al. (2020) first showed the application of INRs in generating high-quality images by
replacing the generator component of StyleGAN2 Karras et al. (2019) with an MLP-based INR. It then used
a hypernetwork to populate the INR. Unlike INR-GAN, which is trained using a stochastic discriminator,
INR-V relies on a deterministic distance-based loss to train the hypernetwork. SIREN Sitzmann et al. (2020b)
proposed periodic activation functions for INRs as a replacement for ReLU activation to parameterize many
different data types like images, videos, sounds, and 3D shapes, with fine details. NeRV Chen et al. (2021)
designed an implicit function as a continuous function of time and used convolution blocks at each time step
to parameterize discrete frames showcasing an improved frame quality over SIREN. Recently, VideoINR Chen
et al. (2022) was proposed that used INRs for video superresolution. DIGAN Yu et al. (2022) incorporated
INRs made of MLP layers for video generation. It consisted of two separate networks that generated spatial
and temporal codes for generating videos in a frame-wise fashion. StyleGAN-V Skorokhodov et al. (2021)
also incorporated INRs and relied on continuous non-periodic positional encodings for each timestep of a
video. Like NeRV, StyleGAN-V used traditional convolution operations for frame-by-frame video generation.
Both DIGAN and StyleGAN-V used a GAN setup to train the video generators. INR-V is based on MLPs
with ReLU activation trained in a fashion similar to Light Field Networks (LFNs) Sitzmann et al. (2021).
LFNs proposed a novel neural scene representation for novel view synthesis and trained a hypernetwork over
multiple object instances using distance-based losses like Euclidean or Manhattan distance. Like LFNs and
INR-GAN, INR-V parameterizes the entire signal (a video) using INRs and relies on a single hypernetwork
to generate the INRs. However, unlike LFNs and INR-GAN, INR-V encodes a denser representation of a
volumetric 3D signal ∈ R3 data making hypernetwork training more challenging.

3 INR-V: Implicit Neural Representation for Video Synthesis

Each video instance Vn consists of pixels at locations (h, w) at tth frame. We have a particular parameter
vector θn that is used by a network f to generate the value of the color RGBhwt for that pixel location
(h, w, t). We need to learn a network d with parameters Ω that predicts the parameters θn for a particular
video Vn. Here, d is a hyper-network. The overall approach to train the network is illustrated in Fig. 3.

3.1 Hypernetwork for Modeling Multiple Video Instances

As fθ implicitly stores a single video signal, any new video would need its own implicit function. Let fθn

denote the implicit function for a given video {Vn}N
n=1 where N is the total number of available videos in

the training dataset D. Each of these implicit functions, fθn can be modeled using a neural network trained
on each pixel value of the video Vn. Thus, implicit functions minimize the following objective:

L(θn) = 1
T

1
W

1
H

T∑
t=1

W∑
w=1

H∑
h=1

(fθn
(h, w, t) − RGBhwt)2 (1)
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Figure 3: Architecture of INR-V: Any video instance Vn is represented by its corresponding implicit
neural representation, an MLP, fθn

. fθn
takes a grid as input denoting the pixel positions of the video

encoded using periodic positional encodings. It then generates the pixel values for all the positions. fθn

is initialized by a meta-network called hypernetworks denoted as dΩ composed of a set of MLPs. dΩ is
conditioned by an instance code mn unique to every video instance Vn. mn is trained by combining (1)
auto-decoding framework to regress to a code cn and (2) encoding-framework to regularize the space using
CLIP embedding that generates Vn’s semantic code gn. At the time of inference, mn is randomly sampled
from an underlying learned distribution τ .

Generating a novel video Vz translates to generating a novel implicit function fθz that represents the video
meaningfully. Let us consider fθz , an unseen sample from an underlying distribution Φ. Each point in the
distribution Φ denotes an implicit function of a meaningful video. To randomly sample fθz

, we make use of
a meta-network to learn the distribution Φ.

We use a hypernetwork dΩ as a meta-network to parameterize fθ, such that dΩ(mn) = θn for video instance
Vn. Here mn is a a d-dimensional point in the latent space, say τ , and serves as an instance code for Vn.
Given enough number of samples N , dΩ learns to map the latent codes sampled from τ to their corresponding
parameterized space Φ, as shown in Fig. 3. The parameters θn are then used to initialize f to generate Vn.

Let us consider τ as a meta-distribution such that {m}D ∈ τ . At the time of inference, mz can be sampled
from τ . As dΩ has learned a valid representation over Φ, mz enables dΩ to generate a meaningful implicit
function fθz

∈ Φ. Sampling from τ can be made straight forward by making sure τ is regularized during
training. At the time of training, Ω and {mn}N

n=1 are optimized together. θ is a non-learnable parameter
and f is initialized as the output of dΩ. The following objective is optimized:

L(Ω, m) = 1
N

1
T

1
W

1
H

N∑
n=1

(
T∑

t=1

W∑
w=1

H∑
h=1

(fθn
(h, w, t) − RGBijk)2

)
and θn = hΩ(mn) (2)

3.2 Regularizing τ for Hypernetwork Conditioning

To generate a novel video, a random latent mz is sampled from the latent space τ . dΩ is then conditioned
on mz generating an implicit function fθz

∈ Φ. In a standard hypernetwork training Sitzmann et al. (2019;
2021); Park et al. (2019); Sitzmann et al. (2020b), mn is optimized in an auto-decoding framework as given in
Eqn. 2. However, given the complexity of the signal V (a 3D volumetric representation) that dΩ has to model,
{m}D can collapse to a single point if τ is not regularized at the time of training, bringing the expressiveness
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of dΩ down to a single implicit function. We regularize τ by leveraging pretrained CLIP Radford et al.
(2021) designed for generating semantically meaningful embeddings for images. We design Video-CLIP that
encodes an entire video Vn to a vector gn. As shown in Fig. 4, Video-CLIP first generates the image-level
CLIP embeddings. These embeddings are then passed through a bi-directional GRU. The mean of the hidden
state outputs of the final layer produces gn. As shown in Fig. 3, the regularized instance code mn is now:

mn = ϕ(cn, gn) (3)

where cn is the instance code of Vn optimized in an auto-decoding fashion at the time of training, and ϕ is a
neural network. The pretrained CLIP embeddings are kept frozen during training and the learnable param-
eters are the instance codes cn that are regularized by gn. CLIP regularization encourages the latent codes
to be spaced sufficiently apart by leveraging predefined semantic encoding. This helps avoid mode collapse
during the initial stages of training. Please find the ablation on CLIP regularization in Appendix A.1.1.

3.3 Progressive Training

CLIP CLIP CLIP CLIP

Bi-GRU

Average

gn cn

Video-CLIP

R
ea

l

Figure 4: Video-CLIP: Encoding a
video Vn to a latent vector gn by using
image-level CLIP encodings.

A video is a dense 3D volume mandating its neural representation
to model every single point in the volume. Although implicit rep-
resentations have a constant number of parameters made of only a
few layers of MLPs in our case, learning a meta-function using a
hypernetwork over such dense representations is challenging. As a
result, if not appropriately initialized, the hypernetworks can eas-
ily collapse to a single representation despite CLIP regularization.
Moreover, a sub-optimal hypernetwork initialization could result in
a significantly longer convergence period. To tackle this challenge,
we adopt a progressive initialization scheme. Firstly, the training is
divided into multiple stages. Each stage, denoted by {l}K

l=1 where
K is the total number of stages, is made of a subset of the training
dataset D. The number of samples Nl in each stage l is given as:

Nl =
{

Nl−1 + ϵl l > 1
C l = 1

(4)

where C is a constant and ϵl denotes the number of additional sam-
ples for lth stage. Each step l consists of {Vn}Nl

n=1 datapoints that is computed as:

{Vn}Nl
n=1 = {Vi}

Nl−1
i=1 + {Vj}Nl−1+ϵl

j=Nl−1
(5)

where the order of set {V } is maintained across the training stages. At the start of the training, the model is
trained on C < 10 examples. This allows the hypernetwork to quickly adapt to the handful of examples and
initialize the weights. However, jumping from C to ∼ 30,000 samples causes the network to collapse again.
Thus, we adapt the network progressively to the given examples. Each stage of the progressive training is a
full training of the model, with the weights in the current stage initialized with the weights learned from the
previous stage. This includes reusing the instance codes cn learned at a previous stage l − 1 in the current
stage l. This step is crucial, as without this, the hypernetwork is pushed to re-learn all the instance codes.
The new instance codes added in the current stage are initialized from a Gaussian distribution.

4 Experiments

Experimental Setup: We perform our experiments on (1) How2Sign-Faces Duarte et al. (2020),
(2) SkyTimelapse Xiong et al. (2017), (3) Moving-MNIST Srivastava et al. (2015), and (4) Rainbow-
Jelly Skorokhodov et al. (2021). Real video samples of each dataset are visualized in Appendix Fig. 19.
How2Sign Duarte et al. (2020) is a full-body sign-language dataset consisting of 11 signers. The signers
have elaborate facial expressions, mouth, and head movements. We modify How2Sign to How2Sign-Faces
by cropping the face region out of all the videos and randomly sample 10,000 talking head videos, each of
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Single-INR INR-V
Dataset E ↓ PSNR50 ↑ SSIM50 ↑ E50 ↓ PSNR50 ↑ SSIM50 ↑ PSNRFULL ↑ SSIMFULL ↑

How2Sign-Faces 4.83 29.72 0.925 8.29 25.69 0.850 25.84 0.869
SkyTimelapse 4.69 36.19 0.943 5.87 33.69 0.931 33.94 0.924

Moving-MNIST 3.57 37.26 0.978 6.06 29.81 0.949 29.54 0.975
RainbowJelly 4.17 35.93 0.918 5.02 33.34 0.937 33.57 0.938

Table 1: Quantitative metrics on reconstruction quality. Comparison set is made of 50 videos per training dataset.
INRs trained individually for each video is denoted as Single-INR. INR-V trains a single hypernetwork dΩ to populate
the INRs of all the videos in the training dataset. PSNR50 and SSIM50 are computed on the comparison set,
PSNRFULL and SSIMFULL are computed on the entire training set. E is computed on videos with pixel range [0, 255].
INR-V performs comparably with Single-INR despite getting trained on huge datasets of more than 30,000 videos.

Method How2Sign-Faces SkyTimelapse Moving-MNIST RainbowJelly
MoCoGAN-HD 396.53 321.44 296.95 1856.21

DIGAN 165.89 135.60 144.97 408.19
StyleGAN-V 94.64 85.05 109.85 1227.70

INR-V 161.68 153.42 103.24 260.72
+ Denoising 87.22 - 47.28 -

Table 2: FVD16 metrics computed on random videos generated by the respective models.

at least 25 frames, of dimension 128 × 128. SkyTimelapse Xiong et al. (2017) consists of scenic videos of sky
changes. It is made of 1803 videos, each at least 25 frames. The videos are first center-cropped to 360 × 360
from an original dimension of 360×620 and then resized to 128×128 for training. Moving-MNIST Srivastava
et al. (2015) is a video dataset of moving MNIST digits containing a total of 10,000 datapoints. Each video
is 20 frames long. RainbowJelly is a single underwater video capturing colorful jellyfishes. The video is first
extracted into frames which are then divided into videos of 25 frames each, making a total of 34,526 videos.
Similar to SkyTimelapse, the videos are first center cropped to 360 × 360 and then resized to 128 × 128.

All experiments are performed on 2 NVIDIA-GTX 2080-ti GPUs with 12 GB memory each. All models,
except INR-V, are trained at a resolution of 128 × 128. To make training computationally efficient, INR-V
is trained on a lower resolution of 100 × 100 videos. Based on INRs, INR-V can infer directly at multiple
resolutions (please refer section 5.2). For evaluations and comparisons, INR-V is inferred at 128 × 128 like
the other models. The training setup and model architecture are explained in Appendix A.21 .

4.1 Comparing INR-V with Single-INR

INR-V uses hypernetworks to learn a distribution over the INRs of videos. A single hypernetwork dΩ can
initialize the INRs for multiple videos {Vn} based on their respective instance codes mn. Thus, measuring if
dΩ generates the INR functions fθ accurately is crucial. We evaluate this using a set of 50 randomly sampled
videos from the training dataset. Each video is first trained to fit a single INR function fθn using Eqn. 1
denoted as Single-INR. Next, the INRs of these 50 videos are populated using a pretrained hypernetwork
dΩ trained on the entire dataset. We measure the reconstruction quality with PSNR (Peak Signal to Noise
Ratio), SSIM (Structural SIMilarity), and the error as:

E =
(

1
50

50∑
n=1

1
HWT

(V
′

n − Vn)2

) 1
2

(6)

where V
′

n denotes the video generated using the implicit function fθ. Single-INR was optimized for 750 steps
using Eqn. 1 taking ∼ 5.56 minutes for each video (∼ 4.63 hours for 50 videos). Table. 1 presents quantitative

1 The codebase, dataset, and pretrained models can be found at https://skymanaditya1.github.io/INRV
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Figure 5: Examples of random videos generated on, from top to bottom, How2Sign-Faces Duarte et al. (2020),
SkyTimelapse Xiong et al. (2017), RainbowJelly, and Moving-MNIST Srivastava et al. (2015). For Moving-MNIST,
every 2nd frame of 20 frames long videos and for other datasets, every 3rd frame of 25 frames long generated are shown.
Moving-MNIST and How2Sign-Faces are passed through VQVAE2 denoising network as described in Section 4.2

metrics on the videos reconstructed using Single-INR and INR-V. PSNRFULL computes the PSNR on the
entire training dataset, PSNR50 computes the metric on the selected 50 videos for comparison. As can be
seen, although hypernetwork dΩ is trained on huge datasets, it performs comparably with Single-INR. For
RainbowJelly, it even outperforms Single-INR in SSIM metric and performs at par on SkyTimelapse. This
indicates that dΩ has learned to accurately generate INRs for complex spatio-temporal signals. Thus, INR-V
can be used as a compression technique to compress 1000s of videos with minimal loss in perceptual quality.

4.2 Comparing INR-V with SOTA video generation networks

Overview: Fig. 5 and Table 2 present qualitative and quantitative comparisons respectively between
MocoGAN-HD Tian et al. (2021), DIGAN Yu et al. (2022), StyleGAN-V Skorokhodov et al. (2021), and
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Figure 6: Each cell displays 12th frame of 25 frames long generated videos. The videos demonstrate
interpolation between two given videos (in red boxes) by traversing along a trajectory in the latent space
connecting the latent points of the given videos. Here, MoCoGAN+ and StyleGAN+ denote MoCoGAN-HD
and StyleGAN-V. White boxes indicate a sudden transition in content (e.g. identity) or motion (e.g. pose).

INR-V. All models were trained from scratch. As we train the models on smaller datasets of ∼ 10,000
datapoints, MoCoGAN-HD is trained on StyleGAN2-ADA Karras et al. (2020) image-generator backend.
For each model, the best-performing checkpoint is selected for comparison.

Evaluation: As can be seen in Fig. 5, INR-V generates novel videos with coherent content and motion.
MoCoGAN-HD fails to maintain the identity in a single video instance. For quantitative evaluation, we use
the Frechet Video Distance (FVD) metric as implemented by StyleGAN-V. FVD16 is computed on 2048
videos of 16 frames sampled at a resolution of 128 × 128. As can be seen in Table 2, INR-V outperforms the
existing networks on Moving-MNIST and RainbowJelly and performs comparably on the remaining datasets.

Enhancing INR-V’s Visual Quality Enhancing image and video quality has been an area of extensive
research Yang et al. (2021); Chu et al. (2020); Liang et al. (2022); Chadha et al. (2020) with many break-
throughs. We propose that video generation can be partitioned into two stages (1) generating coherent
content and motion (2) enhancing the visual quality. Note that, in the current work, our effort has been (1)
to propose a novel continuous representation space for videos. We demonstrate (2) by developing a simple
denoising network using a standard VQVAE2 Razavi et al. (2019). We train VQVAE2 as a frame-by-frame
denoising autoencoder making one minor change: Instead of reconstructing the given low-quality input,
we use the high-quality frame for computing the error. The low-quality inputs are the intermediate video
instances reconstructed by INR-V during training. We train denoising VQVAE2 on How2Sign-Faces and
Moving-MNIST. Appendix Fig. 18 demonstrates the results of the denoising network on blurry instances
generated by INR-V. As can be seen from the quantitative metrics in Table. 2, using an additional denoising
network improves the network’s performance by ∼ 2×.

5 Applications of the continuous video space learned by INR-V

INR-V learns a continuous latent representation for videos allowing complex spatio-temporal video signals
to be represented using a single latent point. In this section, we showcase the advantage of such a latent
space through several demonstrated properties and comparisons. We also benchmark several tasks based on
the inversion of 256 videos on How2Sign-Faces using full and incomplete video context.

5.1 Video Interpolation

Given two videos V1 and V2, a continuous video space should be able to make a gradual transition between the
two videos such that every point along the trajectory between the two (1) produces a meaningful video and (2)
shares content and motion properties from V1 and V2. We demonstrate this property in Fig. 1 and Fig. 6 with
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Figure 7: INR-V direct inference on multiple resolutions and frame length. INR-V trained on only
25 frames long 100 × 100 videos. Novel videos of multiple resolutions (64 × 64, 128 × 128, 256 × 256) and
video length (50) are directly generated on the trained model without any architectural change or finetuning.
The images are not upto scale, please refer Appendix Fig. 25 for scaled representation.

Spherical Linear Interpolation (Slerp)2 . Each cell in Fig. 6 demonstrate the 12th frame of the 25 frames long
videos. As can be seen, INR-V observed a gradual change in motion (pose, mouth movements, expressions,
cloud shift) and content (identity, visibility of sun). The interpolated videos are spatio-temporally coherent
(best seen in the supplementary video). Appendix Fig. 23 and Fig. 24 demonstrate the spatio-temporal
transition on How2Sign-Faces and SkyTimelapse. As we represent an entire video in a single point in the
continuous video space, interpolation is a natural operation that can be performed with INR-V.

MoCoGAN-HD DIGAN StyleGAN-V
100.00 89.43 95.24

Table 3: Video interpolation user
study: % of times INR-V interpolation
was preferred over existing models.

Comparisons: Existing models have different motion and content
codes; thus, to interpolate videos, intermediate content codes were
interpolated between two videos by Slerp interpolation. INR-V does
not have separate motion and content vectors; thus, videos can be
interpolated directly using given video’s latent points. As shown in
Fig. 6, INR-V has a gradual transition in motion and content. For
How2Sign-Faces, StyleGAN-V abruptly changes motion (cell 5-7), and
DIGAN abruptly switches identity (cell 1-2, cell 5-6). This effect is
highlighted in white boxes. This is expected as both of these architectures operate in the image space, and
thus a gradual spatio-temporal transition is harder to achieve. We performed a user study on 30 users to
qualitatively evaluate the interpolation quality of INR-V against the SOTA models and report the metrics
in Table. 3. INR-V interpolation was randomly shown against either of the other three models. The users
provided their preference on which interpolation looked smoother in terms of transition in content and
motion. INR-V was preferred at least 85% more than all the SOTA networks. This demonstrates the
continuous nature of the video space learned by INR-V.

5.2 Multi-Resolution and Multi-Length Inference

In Fig. 7 we show INR-V trained on videos of only 100 × 100 resolution with 25 frames per video, generating
novel videos of multiple resolutions and lengths, maintaining the content and motion quality of the output.
An underlying property of INRs is a continuous representation of the signal given as fθ(h, w, t) → RGB. This
enables the model to understand a continuous property of the signal making it agnostic to the dimension.
We show quantitative metrics on INR-V inferred at multiple resolutions and compare INR-V with existing
SOTA superresolution techniques Chen et al. (2022) in Appendix A.5.

5.3 Video Inversion and its applications

Inversion has been widely adopted in many applications prominently for images. StyleGAN2 Karras et al.
(2019) is extensively used for image inversion enabling many downstream image editing tasks such as changing
the emotion, age, or gender of a given face. In video inversion, we aim to invert a given video back into the
latent space of a pretrained video generation network. Existing methods perform frame-by-frame inversion
to individually invert the context code for each frame and the motion code for the video. In INR-V, we only

2 https://splines.readthedocs.io/en/latest/rotation/slerp.html
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need to invert to a single latent code that can be achieved through a simple optimization objective:

argmin
mz

1
T

1
W

1
H

t=1∑
T

w=1∑
W

h=1∑
H

(fθz
(h, w, t) − RGBs)2 where θz = hΩ(mz) (7)

where mz is the latent point for a video instance Vz. Fig 8 shows the qualitative demonstration of INR-V
inversion trained on How2Sign-Faces for a video outside of the training dataset D.

Figure 8: Video Inversion and it’s applications.
INR-V can be directly used for several tasks by simply
inverting a video to its latent point based on the given
context. We demonstrate some qualitative results.

Video Completion: Key categories of ‘video syn-
thesis’ include future frames prediction (future pre-
diction), completing the video between frames (frame
interpolation), and predicting the missing part of the
video (video inpainting). In INR-V, a video Vz, rep-
resented by a single latent code mz can be gener-
ated without any additional knowledge. Thus, all the
above operations can be performed using a modified
optimization operation based on Eqn 7 on the seen
part of the video given as:

argmin
mz

1
S

(fθz (hs, ws, ts) − RGBs)2

and θz = hΩ(mz)
(8)

where S is the number of context points, hs, ws, and
ts are the context points of Vz seen at the time of op-
timization. With the optimized mz, the full video can
simply be generated back with INR-V. Fig. 8 demon-
strates the results for the various operation on a video
outside of D with ∼ 2.5 minutes of optimization on a
single 12 GB NVIDIA GTX 2080ti GPU. As can be
seen, the network is able to regress to a latent corre-
sponding to the given identity while preserving finer
details like spectacles, mouth shape, pose, etc. In the
case of ‘Video Inpainting’, the network understands
the person’s pose. For ‘Frame Prediction’, although
the pose does not match the ground truth, the over-
all video is coherent. In ‘Frame Interpolation’, the
model is able to generate a coherent context between
two frames, including the pose, expressions, identity,
and mouth movements. In ‘Sparse Inpainting’, we
randomly set 25% of all the video pixels as the con-
text points for optimization. Even with very sparse
context, INR-V is able to regress to the correct spec-
ifications including the finer content details.

Video Superresolution through inversion:
Video Superresolution is the task of enhancing the
resolution of a given video. Recent works such as Chu et al. (2020); Liang et al. (2022); Sajjadi et al. (2018);
Chadha et al. (2020); Wang et al. (2019); Chen et al. (2022) have made significant progress in video super-
resolution, showcasing 4× enhancement. INR-V can directly superresolve seen video instances as showcased
in Appendix Table. 7. For unseen instances, combining the capability of video inversion and multi-resolution
video generation, INR-V can superresolve a given video Vz of a lower resolution (say 32 × 32) simply as
following: (1) Invert Vz at the smaller resolution to obtain mz. (2) Render Vz from mz directly at a higher
resolution (say 256 × 256). In Fig. 8, we demonstrate the qualitative results on a video outside the training
dataset. The video was optimized at 32 × 32 for ∼ 2.5 minutes. The inverted video was then superresolved
at a scale factor of 8× to 256 × 256. Additional details are present in Appendix A.5.
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Task Method GT-ID ↑ TL-ID ↑ TG-ID ↑ Context-L1 ↓ PSNR ↑ SSIM ↑ Cost ↓

Inv.
DIGAN 0.652 0.953 0.9599 45.08 19.59 0.653 ∼ 4.25
Style-V 0.804 0.985 0.998 42.16 19.65 0.665 ∼ 3.25
INR-V 0.770 0.950 0.950 5.25 21.21 0.773 ∼ 2.75

Inp. DIGAN 0.628 0.960 0.969 45.80 - - ∼ 4.25
INR-V 0.758 0.948 0.939 4.83 - - ∼ 2.75

Pre. DIGAN 0.603 0.940 0.928 40.26 - - ∼ 4.25
INR-V 0.703 0.946 0.932 4.72 - - ∼ 2.75

Int. DIGAN 0.653 0.925 0.921 48.66 - - ∼ 4.25
INR-V 0.702 0.928 0.905 7.46 - - ∼ 2.75

Spr. DIGAN 0.718 0.961 0.967 46.24 19.74 0.671 ∼ 4.25
INR-V 0.768 0.968 0.974 5.29 22.35 0.774 ∼ 2.75

Sup.
4×

Bicubic 0.808 0.923 0.903 - 28.36 0.906 -
VideoINR 0.939 0.982 0.974 - 32.86 0.957 -
INR-V 0.734 0.911 0.903 4.92 21.94 0.742 ∼ 2.75

Table 4: Comparison of INR-V on various video inversion tasks: Video Inversion
(Inv.), Video Inpainting (Inp.), Frame Prediction (Pre.), Frame Interpolation (Int.),
Sparse Interpolation (Spr.), and Superresolution (Sup.). Comparison set is made of
256 videos outside of the training dataset. Metrics used for evaluation is explained
in Sec. 5.3. Cost denotes the time to optimize a single video instance in minutes.

Quantitative Evalua-
tion: To quantify the
performance of INR-V,
we prepare a comparison
set by randomly sam-
pling 256 videos outside
of the training set. We
compare against DIGAN
on the tasks of Video
Inversion, Video Inpaint-
ing, Frame Prediction,
Frame Interpolation, and
Sparse Interpolation and
against StyleGAN-V on
the task of Video Inversion.
Since DIGAN is based on
INRs, it can invert in-
complete frames, however,
StyleGAN-V expects a full
frame for backpropagation.
Thus we do not compare
with StyleGAN-V on the other tasks. For the task of Superresolution, we compare against Bicubic
Upsampling and VideoINR at a scale factor of 4× from 32 × 32 to 128 × 128.

We evaluate on the following metrics: (1) PSNR, (2) SSIM, (3) Temporally Locally (TL-ID) and Temporally
Globally (TG-ID) Identity Preservation, (4) Context-L1, and (5) Ground Truth Identity (GT-ID) Match.
TL-ID and TG-ID were proposed in Tzaban et al. (2022). They evaluate a video’s identity consistency at a
local and global level. For both metrics, a score of 1 would indicate that the method successfully maintains
the identity consistency of the original video. Context-L1 computes the L1 error on the inverted videos at the
given context points. An error of 0 would indicate that the inversion is perfect. GT-ID measures the match
in identity between the ground truth and the inverted video. DeepFace3 face features are extracted for both
the videos, and the cosine similarity is computed between the extracted features. Since there is no single
correct prediction for tasks like ‘Future Frame Prediction’, ‘Frame Interpolation’, and ‘Video Inpainting’, we
do not evaluate these tasks on PSNR and SSIM.

As can be seen, INR-V outperforms all the existing networks in most of the metrics on video inversion
and the proposed inversion tasks, except ‘Superresolution’, indicating the advantage and robustness of the
proposed space. For the task of Superresolution, INR-V performs comparably with Bicubic and VideoINR.
However, unlike these works that directly superresolve a video, INR-V first inverts the low resolution video
to generate a high resolution video. Such a mechanism opens several possibilities, such as inverting a low
resolution incomplete video (missing frames due to corruption) to a high resolution video with full context.

6 Conclusion

We present INR-V, a continuous video representation network. Unlike existing architectures that extend
superior image generation networks for generating videos one frame at a time, we use implicit neural rep-
resentations to parameterize videos as complete signals allowing a meta-network to encode it to a single
latent point. Given enough examples, the meta-network learns a continuous video space as demonstrated
through video interpolation and inversion tasks. INR-V generates diverse coherent videos outperforming
many existing video generation networks. INR-V opens the door to a multitude of video-based tasks and
removes the dependency on an image generator. To showcase this, we propose several downstream tasks
and observe that INR-V outperforms the existing works on a majority of these tasks. This demonstrates the
advantages and potential of a continuous video space and we hope to encourage research in this direction.

3 https://github.com/serengil/deepface

12

https://github.com/serengil/deepface


Published in Transactions on Machine Learning Research (10/2022)

References
Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and Stephen Gould. Dynamic image

networks for action recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3034–3042, 2016. doi: 10.1109/CVPR.2016.331.

Aman Chadha, John Britto, and M. Mani Roja. iSeeBetter: Spatio-temporal video super-resolution using
recurrent generative back-projection networks. Computational Visual Media, 6(3):307–317, jul 2020. doi:
10.1007/s41095-020-0175-7. URL https://doi.org/10.1007%2Fs41095-020-0175-7.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, and Abhinav Shrivastava. Nerv: Neural
representations for videos, 2021. URL https://arxiv.org/abs/2110.13903.

Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi, and
Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous space-time super-
resolution, 2022. URL https://arxiv.org/abs/2206.04647.

Pei-Ze Chiang, Meng-Shiun Tsai, Hung-Yu Tseng, Wei-sheng Lai, and Wei-Chen Chiu. Stylizing 3d scene
via implicit representation and hypernetwork, 2021. URL https://arxiv.org/abs/2105.13016.

Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé , and Nils Thuerey. Learning temporal coherence via
self-supervision for GAN-based video generation. ACM Transactions on Graphics, 39(4), aug 2020. doi:
10.1145/3386569.3392457. URL https://doi.org/10.1145%2F3386569.3392457.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets, 2019.
URL https://arxiv.org/abs/1907.06571.

Zihan Ding, Xiao-Yang Liu, Miao Yin, and Linghe Kong. Tgan: Deep tensor generative adversarial nets for
large image generation, 2019. URL https://arxiv.org/abs/1901.09953.

Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth DeHaan, Florian Metze,
Jordi Torres, and Xavier Giro-i Nieto. How2sign: A large-scale multimodal dataset for continuous american
sign language, 2020. URL https://arxiv.org/abs/2008.08143.

Basura Fernando, Efstratios Gavves, Jose Oramas M, Amir Ghodrati, and Tinne Tuytelaars. Modeling video
evolution for action recognition. 06 2015. doi: 10.1109/CVPR.2015.7299176.

Shangqian Gao, Feihu Huang, and Heng Huang. Model compression via hyper-structure network, 2021. URL
https://openreview.net/forum?id=Oc-Aedbjq0.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions, 2019. URL https://arxiv.org/abs/1904.
06447.

Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun Bao, and Juyong Zhang. Ad-nerf: Audio driven
neural radiance fields for talking head synthesis, 2021. URL https://arxiv.org/abs/2103.11078.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016. URL https://arxiv.org/abs/1609.09106.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan, 2019. URL https://arxiv.org/abs/1912.04958.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data, 2020. URL https://arxiv.org/abs/2006.06676.

Angus Lamb, Evgeny Saveliev, Yingzhen Li, Sebastian Tschiatschek, Camilla Longden, Simon Woodhead,
José Miguel Hernández-Lobato, Richard E. Turner, Pashmina Cameron, and Cheng Zhang. Contextual
hypernetworks for novel feature adaptation, 2021. URL https://arxiv.org/abs/2104.05860.

Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc
Van Gool. Vrt: A video restoration transformer, 2022. URL https://arxiv.org/abs/2201.12288.

13

https://doi.org/10.1007%2Fs41095-020-0175-7
https://arxiv.org/abs/2110.13903
https://arxiv.org/abs/2206.04647
https://arxiv.org/abs/2105.13016
https://doi.org/10.1145%2F3386569.3392457
https://arxiv.org/abs/1907.06571
https://arxiv.org/abs/1901.09953
https://arxiv.org/abs/2008.08143
https://openreview.net/forum?id=Oc-Aedbjq0
https://arxiv.org/abs/1904.06447
https://arxiv.org/abs/1904.06447
https://arxiv.org/abs/2103.11078
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2104.05860
https://arxiv.org/abs/2201.12288


Published in Transactions on Machine Learning Research (10/2022)

Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin Cassirer, and Karen
Simonyan. Transformation-based adversarial video prediction on large-scale data, 2020. URL https:
//arxiv.org/abs/2003.04035.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space, 2018. URL https://arxiv.org/abs/1812.
03828.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL https://arxiv.
org/abs/2003.08934.

Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. Ccvs: Context-aware controllable video synthesis,
2021. URL https://arxiv.org/abs/2107.08037.

Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon
Ryan, and Svetha Venkatesh. Fast conditional network compression using bayesian hypernetworks, 2022.
URL https://arxiv.org/abs/2205.06404.

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation, 2020. URL https://arxiv.
org/abs/2003.05534.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convolution, 2017.
URL https://arxiv.org/abs/1708.01692.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation, 2019. URL https://arxiv.org/
abs/1901.05103.

Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric bilateral motion estimation for video frame
interpolation, 2021. URL https://arxiv.org/abs/2108.06815.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2,
2019. URL https://arxiv.org/abs/1906.00446.

Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. Frame-recurrent video super-resolution,
2018. URL https://arxiv.org/abs/1801.04590.

Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, and Przemysław
Spurek. Hypershot: Few-shot learning by kernel hypernetworks, 2022. URL https://arxiv.org/abs/
2203.11378.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael Zollhöfer.
Deepvoxels: Learning persistent 3d feature embeddings, 2018. URL https://arxiv.org/abs/1812.
01024.

Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. Scene representation networks: Contin-
uous 3d-structure-aware neural scene representations. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf.

Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf: Meta-
learning signed distance functions, 2020a. URL https://arxiv.org/abs/2006.09662.

14

https://arxiv.org/abs/2003.04035
https://arxiv.org/abs/2003.04035
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2107.08037
https://arxiv.org/abs/2205.06404
https://arxiv.org/abs/2003.05534
https://arxiv.org/abs/2003.05534
https://arxiv.org/abs/1708.01692
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/2108.06815
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1801.04590
https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/1812.01024
https://arxiv.org/abs/1812.01024
https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
https://arxiv.org/abs/2006.09662


Published in Transactions on Machine Learning Research (10/2022)

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions, 2020b. URL https://arxiv.org/abs/
2006.09661.

Vincent Sitzmann, Semon Rezchikov, William T. Freeman, Joshua B. Tenenbaum, and Fredo Durand. Light
field networks: Neural scene representations with single-evaluation rendering, 2021. URL https://arxiv.
org/abs/2106.02634.

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous images,
2020. URL https://arxiv.org/abs/2011.12026.

Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video generator
with the price, image quality and perks of stylegan2, 2021. URL https://arxiv.org/abs/2112.14683.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representa-
tions using lstms, 2015. URL https://arxiv.org/abs/1502.04681.

Joseph Suarez. Language modeling with recurrent highway hypernetworks. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf.

Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, and Sergey Tulyakov. A
good image generator is what you need for high-resolution video synthesis, 2021. URL https://arxiv.
org/abs/2104.15069.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion and content
for video generation, 2017. URL https://arxiv.org/abs/1707.04993.

Rotem Tzaban, Ron Mokady, Rinon Gal, Amit H. Bermano, and Daniel Cohen-Or. Stitch it in time:
Gan-based facial editing of real videos, 2022. URL https://arxiv.org/abs/2201.08361.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual learning
with hypernetworks, 2019. URL https://arxiv.org/abs/1906.00695.

Jacob Walker, Ali Razavi, and Aäron van den Oord. Predicting video with vqvae, 2021. URL https:
//arxiv.org/abs/2103.01950.

Xintao Wang, Kelvin C. K. Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration with
enhanced deformable convolutional networks, 2019. URL https://arxiv.org/abs/1905.02716.

Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. Learning to generate time-lapse videos using
multi-stage dynamic generative adversarial networks, 2017. URL https://arxiv.org/abs/1709.07592.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using vq-vae
and transformers, 2021. URL https://arxiv.org/abs/2104.10157.

Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face restoration
in the wild, 2021. URL https://arxiv.org/abs/2105.06070.

Shunyu Yao, RuiZhe Zhong, Yichao Yan, Guangtao Zhai, and Xiaokang Yang. Dfa-nerf: Personalized talking
head generation via disentangled face attributes neural rendering, 2022. URL https://arxiv.org/abs/
2201.00791.

Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, and Jinwoo Shin. Generating
videos with dynamics-aware implicit generative adversarial networks, 2022. URL https://arxiv.org/
abs/2202.10571.

Youjian Zhang, Chaoyue Wang, and Dacheng Tao. Video frame interpolation without temporal priors, 2021.
URL https://arxiv.org/abs/2112.01161.

15

https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2106.02634
https://arxiv.org/abs/2106.02634
https://arxiv.org/abs/2011.12026
https://arxiv.org/abs/2112.14683
https://arxiv.org/abs/1502.04681
https://proceedings.neurips.cc/paper/2017/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://arxiv.org/abs/2104.15069
https://arxiv.org/abs/2104.15069
https://arxiv.org/abs/1707.04993
https://arxiv.org/abs/2201.08361
https://arxiv.org/abs/1906.00695
https://arxiv.org/abs/2103.01950
https://arxiv.org/abs/2103.01950
https://arxiv.org/abs/1905.02716
https://arxiv.org/abs/1709.07592
https://arxiv.org/abs/2104.10157
https://arxiv.org/abs/2105.06070
https://arxiv.org/abs/2201.00791
https://arxiv.org/abs/2201.00791
https://arxiv.org/abs/2202.10571
https://arxiv.org/abs/2202.10571
https://arxiv.org/abs/2112.01161


Published in Transactions on Machine Learning Research (10/2022)

A Appendix

A.1 Ablation

A.1.1 Effect of Regularization

Figure 9: Qualitative results of CLIP regularization. Intermediate results are shown after 30 hours of training
on 2 NVIDIA GTX 2080ti GPUs. (a) Video reconstruction quality. CLIP regularization enables the meta-
network to model the INRs with finer details. (b) Videos generated by random sampling. CLIP regularization
improves the quality of the sampled videos and encourages variation in the implicit representations.

Figure 10: Convergence rate for different regularization schemes on RainbowJelly (left) and SkyTimelapse
(right) datasets. RainbowJelly consists of ∼ 34K datapoints and SkyTimelapse consists of ∼ 2K datapoints.
As can be observed, SkyTimelapse being a relatively smaller dataset performs equally well on all the regu-
larization schemes. RainbowJelly performs worst without any regularization facing mode-collapse for about
the first ∼ 75 hours. Progressive training and CLIP regularization help INR-V converge the fastest.

In this section, we compare the training time and the performance of INR-V (1) with/without CLIP regu-
larization and (2) with/without progressive training. Fig. 9 presents the qualitative results on INR-V after
30 hours of training on 2 NVIDIA GTX 2080ti GPUs. Fig. 10 plots the rate of convergence on RainbowJelly
(left) and SkyTimelapse (right) datasets on the same training setup. We also show Gaussian regularization
with INR-V by adding the following additional loss term to the overall loss term in Eqn. 2:

δDKL( N (µ, σ) || N (0, 1) ) (9)

where µ and σ denote the mean and standard deviation over the latent codes {mn}N
n=1 and δ is a hyperpa-

rameter. In our experiments, δ = 1.0.

As can be observed from Fig. 9, reconstruction quality is much worse without CLIP. This is expected as Video-
CLIP (see Fig. 4) assigns semantic meaning to the initialized codes for each video instance. As we observe the
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Figure 11: Convergence rate for different regulariza-
tion schemes on RainbowJelly dataset made of ∼ 34K
instances. All the models are trained progressively.
CLIP Regularization leads to the fastest convergence.

Figure 12: Performance of INR-V when trained
on varying number of video instances (codebook
size). FVD is computed against the full dataset.

Figure 13: INR-V on progressive training with
different initializations: the order of video selec-
tion for each stage differ across the initialization.

novel video instances generated using this model (Fig. 9,
right), we already see a motion emerging with expres-
sive faces. As can be observed from Fig. 10, on Rain-
bowJelly dataset (made of 34526 instances), INR-V takes
more than 250 hours (∼ 11 days) to converge without
any regularization scheme or progressive training. With
progressive training, the convergence time is drastically
reduced to less than 180 hours (∼ 7.5 days). The best
performance is achieved when progressive training is done
along with CLIP regularization where the convergence
occurs in less than 120 hours (∼ 5 days) on 2 NVIDIA
GTX 2080ti GPUs. On SkyTimelapse dataset (made of
1803 instances), INR-V converges equally on either of the
regularization schemes. With a Gaussian prior, we ob-
served a slight advantage in terms of convergence time.
Fig. 11 plots an additional comparison on RainbowJelly
with progressive training on three different regularization
methods: Gaussian, CLIP, and no regularization.

The graphs indicate that CLIP regularization is more
suitable for a larger dataset like RainbowJelly, however
for a smaller dataset like SkyTimelapse (Fig 10, right),
Gaussian regularization is more effective. INR-V per-
forms equally well on either of the training schemes, given
enough time to train. This indicates that the genera-
tion capabilities is inherent to the proposed architecture,
whereas the different training schemes help in stabilizing
the training and thus, lead to a faster convergence. Ad-
ditional insights are provided in Appendix A.4.

A.1.2 Effect of the size of the codebook

Fig 12 presents a comparison between the FVDs of INR-
V when trained on varying number of video instances on
the RainbowJelly dataset. FVD is computed against the
entire dataset made of 34, 526 samples As can be seen
from the graph, the performance of INR-V deteriorates
as the number of video instances reduce. However, the
effect of the added instances is marginal as the codebook
size increases; the FVD improving by only 12% when go-
ing from 10K to 34K (24K additional instances) video
instances. However, the FVD improves by 20% when the
codebook size increases from 500 to 1000 (500 additional
instances) video instances.

A.1.3 Progressive
Training with different Initializations

To stabilize the hypernetwork training, we train our net-
work progressively as explained in Sec. 3.3. In this sec-
tion, we compare the performance of INR-V on training
with different video intializations. We randomly assign
videos for each stage of the training and the random as-
signments differ across the different initializations. As
shown in Fig. 3.3, INR-V takes about the same time to converge for all of them.
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A.2 INR-V Implementation Details

The implicit neural representation fθ is an MLP with three 256-dimensional hidden layers. Each hidden
layer is passed through ReLU activations. The hypernetwork dΩ is a set of MLPs. Each MLP predicts the
weights for a single hidden layer and the output layer of fθ. Each MLP has three 256-dimensional hidden
layers. CLIP embeddings are 512-dimensional vectors, Video-CLIP encodes the CLIP embeddings of each
frame through three 512 dimensional, GRU layers. As shown in Fig. 4, Video-CLIP produces 512-dimensional
video-level embedding gn. cn is a 512-dimensional context vector that is regressed in an auto-decoding fashion
during training. ϕ is made of 3-hidden layers that takes a 1024-dimensional vector as input (concatenation
of gn and cn) and produces mn, a 128-dimensional instance code of Vn, as the input for dΩ. The input to
fθ is a periodic positional encoding of ({h}H

h=1, {w}W
w=1, {t}T

t=1) as implemented in Sitzmann et al. (2021).
Adam optimizer is used with a learning rate of 1e − 4 during training and 1e − 2 during inversion tasks.
No scheduler is used. Progressive training is done at a power of 10 where ith stage is made of min(10i, N)
examples. i = 0 . . . K such that 10K+1 < N + 1, where N is the total number of training samples. Each
stage except the last stage is trained until the reconstruction error reaches a threshold of 1e − 3.

A.3 Comparison of Computational Complexity of INR-V against 3D Convolutional models

128 × 128 256 × 256 512 × 512 1024 × 1024
INR-V 1.68 6.71 26.84 107.36

3DConv 252.71 691.76 3860.77 OOM
25 frames 50 frames 75 frames 100 frames

INR-V 6.71 13.42 20.13 26.84
3DConv 691.76 2036.05 3719.98 6673.27

Table 5: Comparison of computational complexity of INR-V
against 3D convolutional-based video generative models for dif-
ferent spatial and temporal dimensions. The computational
complexity is the total number of multiply-add Giga opera-
tions denoted by GMAC (Multiply-Add Cumulation).

We compare the computational complex-
ity of INR-V against standard implemen-
tations of 3D convolution-based video gen-
eration models of varying spatial and tem-
poral dimensions. We call these models
as “3DConv". 3DConvs do not generate
any meaningful output and are used solely
to compare the computation costs against
INR-V. They comprise of several trans-
pose 3D convolution-based upsampling lay-
ers and take a fixed 128-dimensional latent
vector as input. For comparison against
INR-V, we gradually vary their spatial di-
mension from 128 × 128 to 1024 × 1024 by
keeping the temporal dimension fixed to 25
frames. To generate a video of resolution 128 × 128, three 3D convolution-based upsampling layers are used.
An additional upsampling layer is added for every subsequent jump in the spatial dimension. Next, we vary
the temporal dimension for 25, 50, 75, and 100 frames by keeping the spatial extent and the number of
layers fixed to 256 × 256 and four, respectively, and adjusting the kernel size corresponding to the temporal
dimension. The stride, kernel size, and padding are appropriately adjusted for all the models. The batch
size for comparison is fixed to 1 for both 3DConv and INR-V. As can be seen in Table. 5, the number
of operations (MAC) increases drastically as the spatial dimension increases for the 3DConvs. It becomes
prohibitively expensive to generate videos of higher spatial dimensions. For example, generating a single
video of 25 frames of dimension 1024 × 1024 results in out of memory (OOM) on a single NVIDIA GTX
2080 ti GPU with a memory of 12 GB. In summary, MAC remains hundreds of orders of magnitude lower
for INR-V compared to its 3D convolution-based counterparts as it mainly comprises inexpensive MLPs.

A.4 Insights on the learned latent space

Unlike the existing video generation networks that are conformed to a predefined latent space (Gaussian
or Uniform), INR-V learns a space that best fits a given distribution. The experiments (Sec. 5.1 and
Sec. 5.3) and our observations indicate that the learned space is continuous, supports inversion, and smooth
video interpolations. Thus, such a space learns a structure in the dataset. For instance, we observe a
smooth transition across different poses, expressions, mouth movements, and identity on How2Sign-Faces
(best viewed in the Supplementary Video). Therefore, novel instances are observed as we traverse the path
between seen latent points A and B. We use this property to generate novel videos by sampling latent points
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Figure 14: t-SNE visualization of the latent codes (mn) learned by INR-V with and without CLIP regular-
ization on RainbowJelly. In Epoch 1, the latent codes are bounded within a very small region when INR-V
is trained without any regularization (top-left). With CLIP regularization, the latents are more spread out
(bottom-left). In the final epochs (top & bottom right), both latent representations have spread out farther.
INR-V without regularization forms a denser space; and with regularization converges faster. Both spaces
are continuous, form meaningful interpolations, and support inversion.

Figure 15: We demonstrate the ability of INR-V to learn the underlying structure of a dataset. To do so, we create
a toy video dataset called BouncingBall consisting of a blue ball bouncing horizontally at different heights. Given 50
instances of such videos, INR-V learns the structure and we demonstrate the learned structure through interpolation.
In this example, we show the 16th frame of each video with the novel interpolated videos in gray boxes. The videos
in red boxes are seen during training. We can observe a correct interpolation with smooth transition in motion: the
height and the horizontal position of the ball gradually shifts from bottom to top and left to right respectively.
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through Slerp interpolation. In this section, we aim to validate the space learned by INR-V and answer the
following question: what does INR-V learn? We analyse this in two ways: (1) by visualizing the latent codes
learned by INR-V through t-SNE visualization and (2) by training INR-V on a structured toy dataset to see
if it learns the underlying structure.

A.4.1 t-SNE visualization

Figure 16: BouncingBall dataset
with an infused structure. Each
video instance is 100 × 100 and
has a ball bouncing horizontally at
a specific height. Red lines are
added to show the height of the
ball and is not a part of the videos.

Figure 17: Videos generated by
INR-V on BouncingBall. Novel
video is generated at an unseen
height. Red lines are for demon-
stration and not generated.

Fig. 14 plots t-SNE4 on the latent codes learned by INR-V on the Rain-
bowJelly dataset. We see a clear pattern of "interpolation" occurring in
the learned latent space in both cases (with and without CLIP regular-
ization). No progressive training is used in this visualization. At the
end of the first epoch, the latent codes are tightly bounded when trained
without CLIP regularization. As the model is trained with CLIP, the
latent vectors are more spread out possibly in a semantically meaningful
manner. In both the cases, by the final epoch, we observe patterns of
interpolation evolve.

A.4.2 Learning Bouncing Ball

In this section, we want to analyze if INR-V can learn the structure of
a dataset. To do so, we generate a toy dataset, BouncingBall, with an
artificially infused structure. The dataset is made of 50 video instances
where each video instance consists of a blue ball bouncing horizontally
at different heights as shown in Fig. 16. The videos are of dimension
100 × 100 and are 25 seconds long each.

As shown in Fig. 15, INR-V is able to learn the infused structure when
trained on BouncingBall. We demonstrate interpolated videos by sam-
pling intermediate points through Slerp interpolation. The intermedi-
ate videos (grey boxes) demonstrate a smooth interpolation, and have
heights and horizontal displacements gradually varying from Video A to
B (red boxes). An example of an intermediate video shown in Fig. 17.

A.5 Inferring at Multiple Resolutions and Multiple Lengths

An underlying property of INRs is a continuous representation of the
signal. This allows inferring INR-V on multiple spatial and tempo-
ral resolutions directly without changing the model’s architecture or
additional finetuning. To generate a video of an arbitrary dimension
Ĥ × Ŵ × T̂ , those many number of equally spaced points are sampled
between [−1, 1]. In Table 6, we report FVD16 scores on random videos
generated on INR-V with varying spatial dimensions on 25 frames. To infer at multiple resolutions, INR-V
pretrained on 100×100 dimensional videos of 25 frames was used. Note that the FVD scores do not degrade
even at higher spatial resolutions. Additionally, we compare INR-V with existing SOTA superresolution
techniques Chen et al. (2022) in Table 7 on 2048 videos randomly sampled from the RainbowJelly dataset.
As can be seen, INR-V performs comparably with methods on the task of superresolution. Moreover, INR-V
can be superresolved to any arbitrary resolution (3.6×) and aspect ratio. Please note that we do not solve
the task of superresolution but rather show superresolution as a potential application of our work.

A.6 Discussion

Limitations. Although INR-V has learned a powerful video space demonstrating several intriguing prop-
erties, the videos generated by the model are sometimes blurry. This is prominent when moving away to
unseen points in the video space far from the seen instances. Fig. 18 demonstrates the enhancement on one

4 https://lvdmaaten.github.io/tsne/
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such blurry sample. This is done by training a standard VQVAE2 network in a denoising fashion (please
refer to Sec. 4.2). However, the entire process is broken into generating a relatively lower quality output and
relying on a second network to improve its quality. A single end-to-end network capable of retaining the
demonstrated powerful properties while generating high-quality videos is a potential future work.

128 × 128 256 × 256 360 × 360
INR-V (Ours) 260.72 232.43 251.14

Table 6: FVD16 (↓) metrics on random video generation
at multi-resolution on INR-V. Training was done on only
100 × 100 dimensional videos of 25 frames. Inference
was taken directly on multiple resolutions without any
finetuning or architectural changes.

2× 3× 3.6×
200 × 200 300 × 300 360 × 360

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Bicubic 31.53 0.884 32.13 0.915 32.31 0.920

VideoINR 31.59 0.883 33.01 0.913 - -
INR-V 28.62 0.892 29.17 0.894 29.05 0.896

Table 7: Quantitative metrics on video superresolu-
tion using INR-V and SOTA superresolution networks on
video instance seen at the time of training. INR-V was
trained at 100 × 100 video resolution. INR-V performs
comparably with the SOTA superresolution networks.

Another limitation of INR-V is generating infinitely
long videos. Although coupling the content and time
into a single latent has clear advantages, it removes
the network’s ability to leverage the temporal dimen-
sion separately and find infinitely long temporally co-
herent paths in the image space. This can be tackled
by training INR-V to encode video segments of mul-
tiple lengths in a single space (1 to 50 or more frames
long video segments). A temporally and semantically
coherent trajectory between these video segments can
then be learned. Such a generation technique would
directly leverage video segments and potentially re-
move repetitions in the long videos. We believe that
leveraging a video space for generating infinitely long
videos at multiple resolutions presents an interesting
and exciting direction for future research.

Lastly, we observed that INR-V does not learn a
meaningful representation space when trained on
datasets like UCF-101 that have extreme diversity
and limited structure in motion. A similar issue was
observed when training the baseline models on such
datasets. However, INR-V can be trained on a single action class of UCF-101 (such as JumpRope) to learn
a meaningful representation space even with significant camera motion and in-video subject movement. A
single action class limits the visual and motion diversity in the dataset.

Figure 18: Denoising VQVAE2 reconstructions to
enhance the visual quality of relatively blurry videos
generated by INR-V. Please refer Sec. 4.2.

Broader Impact. The potential negative impact of
our work is similar to existing image-based and video-
based GANs: creating "photorealistic-deepfakes" and us-
ing them for malicious purposes. Our simple training
strategy makes it easier to train a model which pro-
duces realistic-looking videos. However, this is partly
addressed for the following reasons: (1) Even though
our network produces diverse novel videos, the percep-
tual quality of our generated videos falls short of the ex-
isting state-of-the-art image-based generators that pro-
duce high-resolution images. (2) The availability of high-
quality video datasets limits the intended malicious use of this codebase. Despite these limitations, we believe
that the potential of our work far outweighs its limitations. A continuous video representation space offers
tremendous applications in areas requiring video prediction, interpolation, and conditional video generation.
E.g. pedestrian trajectory prediction is an important area of research for self-driving cars. Pedestrian trajec-
tory prediction through future frame generation can serve to reduce accidents in fully-autonomous vehicles
in the future. Similarly, conditional video generation can be used for synthesizing novel sign language videos
that can be integrated into schools and universities to encourage and enable hard-of-hearing students.

A.7 Additional Qualitative Results

We encourage our readers to view the supplementary video results of INR-V. Fig. 19 presents the real video
instances in the training set. Fig. 20 and Fig. 21 presents qualitative results on the reconstruction of video
instances from different training datasets. Fig 22 presents random videos generated by INR-V on different
datasets. Fig 23 and Fig. 24 present spatio-temporal view of video interpolations on How2Sign-Faces and
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Figure 19: Examples of real videos instances of How2Sign-Faces (H2S) Duarte et al. (2020), Moving-MNIST
(MNIST) Srivastava et al. (2015), RainbowJelly (Jelly), and SkyTimelapse (Sky) Xiong et al. (2017) datasets.

SkyTimelapse respectively. Fig. 25 presents the random generation of INR-V on multiple resolutions starting
from 32 × 32 to 256 × 256 jumping a scale factor of 8×. The visualization is up to scale, and one can see the
scale jump. INR-V can also be inferred at multiple frame rates. The supplementary videos include inferences
at 50 frames. Fig. 26 - Fig. 32 present the qualitative results and comparisons on the proposed inversion
tasks. Fig. 30 presents an example of multi-modal future segment prediction. Additional results on several
inversion tasks can also be found in the supplementary video.
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Figure 20: Examples of video instances in the training set reconstructed by INR-V.
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Figure 21: Examples of video instances in the training set reconstructed by INR-V.
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Figure 22: Examples of random videos generated by INR-V.
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Figure 23: Examples of video interpolation in INR-V on How2Sign-Faces. Two latent points are sampled
from the training dataset. Intermediate videos are then generated by sampling intermediate latent points
using Slerp interpolation technique. We urge the readers to view the supplementary video for best experience.
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Figure 24: Examples of video interpolation in INR-V on SkyTimelapse. Two latent points are sampled from
the training dataset. Intermediate videos are then generated by sampling intermediate latent points using
Slerp interpolation technique. We urge the readers to view the supplementary video for best experience.
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Figure 25: Examples of random videos generated by INR-V at multiple resolutions of 32 × 32, 64 × 64,
128 × 128, and 256 × 256 on How2Sign-Faces (top) and RainbowJelly (bottom). The videos are 25 frames
long each. The videos are upto scale. INR-V was trained on videos of only 100 × 100 resolution. Please refer
the supplementary videos for better experience and additional results on 50 frames long video generation.
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Figure 26: Comparison of video inversion. Red boxes highlight the differences and matches between the
ground truth (GT) and the various methods. To note, INR-V is able to preserve the finer mouth movements.
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Figure 27: Comparison of half-context inversion in an inpainting setting. At the time of optimization, the
model only sees the top half of the video. It then generates the full video back. There can be multiple correct
predictions, we showcase one such prediction.
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Figure 28: Comparison of half-context inversion in a sparse context setting. At the time of optimization,
the model only sees 25% of the full video. INR-V preserve the identity including finer content details like
earrings. It also preserves motion like pose and mouth movements.
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Figure 29: Comparison of half-context inversion in a future frame prediction setting. At the time of opti-
mization, the model only sees the first 4 frames of the video. There can be multiple correct predictions given
the identity is preserved across the video. We show one such example.
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Figure 30: Multimodal Future Frame Prediction: Given the first few frames of a video, we want to predict
multiple different outcomes. This can be achieved using INR-V by conditionally optimizing the video’s latent
vector on half-context. In this example, we condition the latent by varying the number of frames used for
inversion or by adding Gaussian noise to the optimized latent. As can be seen, the inversion preserves the
seen context; and the future predictions have varying mouth movements, pose, and eye gazes.
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Figure 31: Comparison of half-context inversion in a frame interpolation setting. At the time of optimization,
the model only sees the first and last frames of the video. As can be seen, the first and the last frame generated
by INR-V match the context (pose, identity, mouth movements), whereas the intermediate frames are very
different from the ground truth.
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Figure 32: Comparison of video superresolution. A video of 32 × 32 is given as input to INR-V for opti-
mization. Once the video is optimized, INR-V regenerates the video at a higher resolution of 128 × 128.
VideoINR and Bicubic directly see the 32 × 32 video and superresolves it to 128 × 128. Here, INR-V is not
influenced by the glaze on the spectacles and superresolves to a higher dimension closer to the ground truth.
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