
Published as a conference paper at ICLR 2024

LLMCARBON: MODELING THE END-TO-END CAR-
BON FOOTPRINT OF LARGE LANGUAGE MODELS∗

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi†, Prateek Sharma, Fan Chen, Lei Jiang
Indiana University †Jackson State University
{afaiz,skaneda,ruhwang,prateeks,fc7,jiang60}@iu.edu
†j00967039@students.jsums.edu

ABSTRACT

The carbon footprint associated with large language models (LLMs) is a sig-
nificant concern, encompassing emissions from their training, inference, exper-
imentation, and storage processes, including operational and embodied carbon
emissions. An essential aspect is accurately estimating the carbon impact of
emerging LLMs even before their training, which heavily relies on GPU usage.
Existing studies have reported the carbon footprint of LLM training, but only
one tool, mlco2, can predict the carbon footprint of new neural networks prior
to physical training. However, mlco2 has several serious limitations. It can-
not extend its estimation to dense or mixture-of-experts (MoE) LLMs, disregards
critical architectural parameters, focuses solely on GPUs, and cannot model em-
bodied carbon footprints. Addressing these gaps, we introduce LLMCarbon, an
end-to-end carbon footprint projection model designed for both dense and MoE
LLMs. Compared to mlco2, LLMCarbon significantly enhances the accuracy of
carbon footprint estimations for various LLMs. The source code is released at
https://github.com/SotaroKaneda/MLCarbon.

1 INTRODUCTION

Large language models (LLMs) have established their supremacy in addressing a wide spectrum of
natural language processing tasks (Brown et al., 2020). However, the proliferation of these models,
coupled with increasingly expansive datasets (Sanderson, 2023; Anil et al., 2023), has woven LLM
inferences into the fabric of everyday life (Campello de Souza et al., 2023). This surge in LLM
adoption has, in turn, exacerbated the already considerable environmental impacts associated with
machine learning (ML) (Thompson et al., 2021). For instance, the creation of a transformer with
213 million parameters through neural architecture search has been likened to the carbon dioxide
equivalent (CO2eq) emissions of five cars over their entire lifespans (Strubell et al., 2019).

Given the ecological implications of LLMs, it becomes essential for both cloud service providers
and regular users to gain a profound understanding of the carbon footprint of emerging LLMs. This
awareness is particularly critical before embarking on resource-intensive training endeavors that en-
tail the utilization of thousands of GPUs. During the initial design phase, key parameters such as the
LLM’s parameter count, hardware configurations, and the energy efficiency of the hosting data cen-
ter need to be factored into a robust carbon footprint projection model. This model should possess
the capability to swiftly and accurately estimate the carbon footprint, encompassing both opera-
tional and embodied carbon emissions. Moreover, it should provide valuable insights into metrics
like test loss, training duration, and inference latency, all crucial aspects of LLM performance. The
existence of such a carbon footprint projection model empowers cloud providers to intelligently ex-
plore the trade-off between test loss and carbon footprint when designing new LLMs. Additionally,
it encourages everyday users to adopt practices that mitigate LLM carbon footprints by facilitating
quantitative comparisons across various LLM configurations.

Currently, there is a notable void in the availability of a comprehensive end-to-end carbon footprint
projection model tailored specifically for LLMs. Prior research efforts (Henderson et al., 2020; Wu
et al., 2022; Anthony et al., 2020; Schwartz et al., 2020; Patterson et al., 2021; Dodge et al., 2022;

∗This work was supported in part by CCF-2105972, and NSF CAREER AWARD CNS-2143120.

1

https://github.com/SotaroKaneda/MLCarbon

Published as a conference paper at ICLR 2024

Strubell et al., 2019; Lakim et al., 2022) have predominantly focused on recording and reporting
the carbon footprint associated with the training phase of ML models. To date, only one tool,
mlco2 (Lacoste et al., 2019), has emerged capable of predicting the carbon footprint of an ML task
based on parameters like GPU usage, training duration, and data center efficiency. However, mlco2
exhibits several serious limitations. Firstly, it is confined to convolutional neural networks (CNNs)
and cannot extend its estimations to include the carbon footprint of LLMs. Secondly, mlco2 neglects
crucial architectural aspects of ML models, such as parameter counts, resulting in overestimated
projections. Thirdly, it exclusively considers GPUs, disregarding specialized ML hardware like
TPUs (Jouppi et al., 2017), and assumes uniform peak computing throughput across GPUs, leading
to inaccuracies in its carbon footprint assessments. Lastly, although the embodied carbon footprint
of an ML task holds equal significance to its operational carbon footprint (Wu et al., 2022), mlco2 is
incapable of modeling the embodied carbon footprint of an LLM based on its hardware resources.

In this paper, we propose an end-to-end carbon footprint projection model, LLMCarbon, which can
accurately predict the carbon footprint of both dense and MoE LLMs during their training, infer-
ence, experimentation, and storage phases. LLMCarbon incorporates critical LLM, hardware, and
data center parameters, such as LLM parameter count, hardware type, system power, chip area,
and data center efficiency, to model both operational and embodied carbon footprints of an LLM.
When validated against Google’s published LLM carbon footprints, the results generated by LLM-
Carbon exhibit differences of only ≤ 8.2%, and thus are more accurate than those of mlco2.

2 BACKGROUND

LLM Carbon Footprint. The carbon footprint of a LLM comprises two fundamental compo-
nents (Gupta et al., 2022): the operational footprint, encompassing emissions stemming from hard-
ware energy consumption, and the embodied footprint, encapsulating emissions arising from hard-
ware manufacturing. Previous investigations (Henderson et al., 2020; Wu et al., 2022; Anthony
et al., 2020; Schwartz et al., 2020; Patterson et al., 2022; Dodge et al., 2022; Strubell et al., 2019)
have predominantly focused on recording and reporting the operational carbon footprint of various
ML tasks. A notable exception is Wu et al. (2022), which delved into the embodied carbon footprint
of ML tasks and revealed that within a Meta data center, the embodied carbon footprint of an LLM
constitutes ∼ 50% of its operational carbon footprint.

Neural Scaling Law. The Neural Scaling Law (Kaplan et al., 2020) delineates a power-law rela-
tionship linking an LLM’s test loss to three key factors: the number of model parameters, the scale
of the training dataset, and the computational resources utilized during training. This relationship
holds across diverse architectures and downstream ML tasks, spanning zero-shot, prompted, and
fine-tuned scenarios (Caballero et al., 2023).

Reducing LLM Carbon Footprint. Efforts on reducing LLM carbon footprints have been chan-
neled into 4 domains. Firstly, sparse MoE architectures (Fedus et al., 2022) have been proposed to
enhance LLM performance by increasing model parameters while maintaining a similar computa-
tional load. Secondly, the adoption of specialized ML hardware, such as TPUs (Jouppi et al., 2017),
has emerged as a more energy-efficient alternative to power-hungry GPUs. Thirdly, ML-focused
data centers have optimized their facilities into large-scale systems, reducing cooling and infras-
tructure overhead to enhance power usage effectiveness (PUE) (Liu et al., 2020). Lastly, these data
centers are transitioning to renewable energy sources like solar and wind power (Acun et al., 2023)
to mitigate the operational carbon footprint of LLMs. However, the recent proliferation of ML-
specific hardware within these data centers, driven by the diverse demands of ML tasks, is widening
the gap between operational and embodied carbon footprints in the near future (Wu et al., 2022).

Parallelism in LLM Processing. Effective processing of LLMs necessitates the utilization of mul-
tiple computing devices, such as GPUs or TPUs, owing to significant LLM parameter counts. Four
types of parallelism, i.e., data, tensor, pipeline, and expert, are commonly employed to enhance
hardware efficiency, quantified as actual throughput relative to peak throughput.

• Data Parallelism: In data parallelism (Xing et al., 2015), the full LLM model is distributed to
each computing device, while the input dataset is divided among these devices. Periodic gradient
aggregation ensures that all devices maintain consistent model weights.

• Tensor Parallelism: Tensor parallelism (Narayanan et al., 2021) involves distributing an LLM’s
layers across multiple devices. Within a transformer layer, the self-attention block partitions key,
query, and value matrices through column-wise division. The output linear layer directly handles

2

Published as a conference paper at ICLR 2024

Table 1: The comparison of LLMCarbon against prior work.

scheme predictive MoE architectural specialized operational embodied
modeling support parameters hardware carbon carbon

mlco2 ✓ ✗ ✗ ✗ ✗
others ✗ ✗ ✗ ✗ ✓ ✓

LLMCarbon ✓ ✓ ✓ ✓ ✓ ✓

the attention operation’s partitioned output, with weight matrix partitioning by rows. In the two-
layer MLP, the first layer is divided along columns, and the second along rows. Efficient data
coordination among partitions on different devices is achieved through two all-reduce operations
in forward and backward passes.

• Pipeline Parallelism: In pipeline parallelism (Narayanan et al., 2021), an LLM’s layers are dis-
tributed across multiple devices. Each device handles an equal number of layers, and microbatches
split a batch for pipelined execution. Synchronous weight updates are ensured through pipelining.
However, periodic pipeline flushes to synchronize steps across devices introduce “pipeline bub-
bles” at batch starts and ends, which need to be minimized for efficient pipeline model parallelism.

• Expert Parallelism: Expert parallelism (Kim et al., 2021) is tailored for parallelizing the train-
ing of MoE LLMs. This approach involves distributing distinct experts across various devices,
enabling parallel execution. However, due to the separation of experts across multiple computing
devices, explicit communication using all-to-all primitives becomes essential.

3 RELATED WORK
Table 1 provides a comparison between LLMCarbon and existing research endeavors. The predom-
inant focus of prior studies (Henderson et al., 2020; Wu et al., 2022; Anthony et al., 2020; Schwartz
et al., 2020; Dodge et al., 2022; Strubell et al., 2019) has been the measurement and reporting of
carbon footprints associated with the actual training phase of ML models, denoted as “others” in
the table. Notably, only one previous model, mlco2 (Lacoste et al., 2019), possesses the capability
to predict the carbon footprint of an ML task based on metrics like GPU utilization, training dura-
tion, and data center efficiency. Nevertheless, mlco2 encounters four significant limitations. Firstly,
mlco2 cannot estimate the carbon footprint of LLMs, particularly sparse MoE LLMs. Secondly,
it overlooks essential architectural attributes of LLMs, such as LLM parameter count, resulting in
exaggerated predictions. Thirdly, mlco2 exclusively considers GPUs and neglects specialized ML
hardware like TPUs (Jouppi et al., 2017), assuming uniform peak computing throughput across all
GPUs, thereby yielding imprecise carbon footprint estimations. Lastly, mlco2 cannot model the
embodied carbon footprint of an LLM based on its hardware configuration.

4 LLMCARBON
4.1 OVERVIEW

parameter #

LLM architecture

FLOPs

FLOP
model

parameter model

test loss

neural
scaling

carbon model
operational

operational CO2eq

embodied
CO2eq

total CO2eq

configuration

d
at

a
c

en
te

r
co

n
fi

g
u

ra
ti

o
n

data, tensor,
pipe., & expert

parallelism

hardware
configuration

efficiency
hardware

model model
carbon

embodied

efficiency
hardware

Figure 1: The overview of LLMCarbon.

Figure 1 presents an overview of LLMCarbon for
predicting the carbon footprint of an LLM. The in-
puts to LLMCarbon encompass the LLM’s archi-
tectural description, data center specification, and
hardware configuration. To output the LLM’s car-
bon footprint, LLMCarbon employs a series of mod-
els, each processing specific input details. LLMCar-
bon can use the parameter model to determine the
LLM’s parameter count based on its architectural
attributes, or directly accept the LLM’s parameter
count as input. With the LLM’s parameter count and
training token count, LLMCarbon calculates the test
loss by the neural scaling law (Kaplan et al., 2020),
and employs the FLOP model to estimate the volume of FLOPs required for LLM processing.
Through the parameter count, LLMCarbon generates the optimal data, tensor, pipeline, and expert
parallelism setting. Taking into account the parallelism setting and hardware configuration, LLM-
Carbon’s hardware efficiency model computes the hardware efficiency, representing the real com-
puting throughput divided by the peak computing throughput. Utilizing data center details, hardware
efficiency, and FLOP count, LLMCarbon applies the operational carbon model to derive the LLM’s
operational carbon footprint. Similarly, by considering the hardware configuration, LLMCarbon’s

3

Published as a conference paper at ICLR 2024

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0
01 0 - 1

1 0 0
1 0 1
1 0 2
1 0 3

d a t a p i p e
va

lue

p a r a m e t e r s (B)

t e n s o r

Figure 2: The paral-
lelism setting for pro-
cessing dense LLMs.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0
01 0 - 1

1 0 0
1 0 1
1 0 2
1 0 3

p i p ee x p e r t

t e n s o rva
lue

p a r a m e t e r # (B)

d a t a

Figure 3: The paral-
lelism setting for pro-
cessing MoE LLMs.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0
00 . 0

0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

GP
U #

 (K
)

p a r a m e t e r s (B)

M o E

d e n s e

Figure 4: The com-
puting device number
for processing LLMs.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0
0

3 6
4 0
4 4
4 8
5 2
5 6

M o E

HW
 ef

fici
en

cy
(%

)

p a r a m e t e r # (B)

d e n s e

Figure 5: The hard-
ware efficiency for
processing LLMs.

embodied carbon model yields the LLM’s embodied carbon footprint. The overall carbon footprint
of the LLM is then computed by summing both the operational and embodied carbon footprints.

4.2 PARAMETER MODEL

Among all LLM architectural attributes, the LLM parameter count has the largest impact on test
loss (Kaplan et al., 2020). To reduce projection errors, LLMCarbon can take the parameter count as
direct input, or estimate the parameter count by the parameter model. The parameter model’s input
comprises the LLM’s architectural parameters including the hidden size (h), the number of layers
(l), the vocabulary size (V), and the number of experts (Ne). For a dense LLM, we calculate its
parameter count (Pd) by Equation 1 (Narayanan et al., 2021). An MoE LLM (Rajbhandari et al.,
2022) replaces ρ (ρ ∈ (0, 1]) feed-forward layers in its counterpart dense LLM with MoE layers.
An MoE layer’s parameter count is the sum of the expert parameter count (Pexp = 8h2Ne) and
the self-attention parameter count (Patt = 4h2), so the parameter count (Pe) of an MoE LLM
can be computed using Equation 2. The parameter model of LLMs adopting an encoder-decoder
architecture can be viewed in Appendix A.

Pd ≈ 12lh2 + V h (1) Pe ≈ (1− ρ)Pd + ρ(4h2 + 8h2Ne)l (2)

4.3 NEURAL SCALING LAW

The neural scaling law (Kaplan et al., 2020) predicts an LLM’s test loss based on its parameter
count P and the training dataset size D. For ensuring the comparability of test losses across various
models, sizes, and datasets, we adopt the Chinchilla scaling law (Hoffmann et al., 2022) formulated
as Equation 3, where A, B, α, β, and E are fitting constants. The test loss L equals to the summation
of an irreducible term E and a reducible term diminishing through the scaling of P and D.

L(P,D) =
A

Pα
+

B

Dβ
+ E (3) TC ≈ 6PD (4) IC ≈ 2PD (5)

4.4 FLOP MODEL

The FLOP model receives two inputs: the count of parameters (P) and the number of tokens (D)
processed by the LLM processing. The primary component of FLOPs is the multiply-accumulate
operations involving LLM weights and intermediate results. Within our FLOP model, the FLOP
count necessary for training a dense LLM (TC) is estimated using Equation 4. For dense LLM
inferences, the FLOP count (IC) is approximated as per Equation 5. To compute the FLOP count
for MoE LLM processing, we input the parameter number of the dense base model (Rajbhandari
et al., 2022) of the MoE LLM into Equations 4 and 5, respectively.

4.5 HARDWARE EFFICIENCY MODEL

Efficient processing of LLMs relies on achieving high hardware efficiency, which is calculated as
the actual computing throughput divided by the peak throughput. This efficiency is largely deter-
mined by the optimal configuration of data, tensor, pipeline, and expert parallelism, along with the
number of devices used for the task. Using too few or too many devices or improperly configuring
parallelism can lead to reduced hardware efficiency. For example, achieving optimal parallelism for
GPT-3 with 175 billion parameters requires 1.5K V100 GPUs, resulting in a hardware efficiency of
47% (Narayanan et al., 2021). Conversely, an unoptimized configuration using 10K V100 GPUs
yields a substantially lower hardware efficiency of only 19.7% (Patterson et al., 2021).

Optimal Parallelism Setting. The optimal parallelism setting is represented as (p, t, d, e), where
each variable corresponds to a degree of pipeline, tensor, data, and expert parallelism, respectively.
For dense LLMs, optimal settings are derived from (Narayanan et al., 2021), depicted in Figure 2,

4

Published as a conference paper at ICLR 2024

where e = 1 is omitted. Initially, we increase tensor parallelism (t) up to z (e.g., z = 8) when
employing z-device servers (Narayanan et al., 2021), each containing z interconnected devices. This
increment in t is confined to avoid exceeding communication bandwidth limits. Once z is reached,
further scaling for larger LLMs involves increasing pipeline parallelism (p) (Narayanan et al.,
2021). However, the product of t and p (t ·p) must not exceed a certain threshold to ensure that LLM
parameters and intermediate data fit into device memory. The number of devices required to achieve
optimal hardware efficiency for dense LLM processing is calculated as n = t · p · d (Narayanan
et al., 2021), and can be viewed in Figure 4. A polynomial regression model is used to predict
optimal hardware efficiency based on these parameters. For MoE LLMs, the optimal parallelism
settings are adopted from (Chen et al., 2023). As Figure 3 shows, assuming 64 experts within an
MoE LLM, expert parallelism (e) is always set to 64, intertwining d and e for a uniform expert
distribution. To reduce inter-device all-to-all communications, d is fixed at 1. Scaling MoE LLM
parallelism is achieved by increasing pipeline parallelism (p). The number of devices required for
optimal hardware efficiency in MoE LLM processing is also calculated as n = t · p · d. As Figure 4
exhibits, MoE LLMs require fewer devices compared to dense LLMs with equivalent parameter
counts due to their lower computational overhead. The optimal hardware efficiency during MoE
LLM processing is represented in Figure 5. MoE LLMs achieve ∼ 80% (Chen et al., 2023) of the
optimal hardware efficiency of their dense base models, due to extra host-device memory swaps.

eff re =

{
γ0 · re

n · eff n re < n

γ1 · n
re · eff n + γ2 re > n

(6) tdev =
TFLOP

ndev · FLOPpeak · eff
(7)

Fewer or More Computing Devices. When the number of computing devices is not equal to
t · p · d, the hardware efficiency decreases. The efficiency (eff re) with re devices can be calculated
using Equation 6, where γ0 ∼ γ2 are fitting constants, eff n means the highest hardware efficiency,
and n indicates the number of devices that can achieve eff n.

energyhard =
∑

i∈hardware set

(Pi · eff i · ni · ti) (8) energyoper = energyhard · PUE (9)

4.6 OPERATIONAL CARBON MODEL

By using the FLOP count (TFLOP), the hardware efficiency (eff), and the computing device num-
ber (ndev), we can determine the execution time of a device through Equation 7, where FLOPpeak

represents the device peak throughput. The total energy (energyhard) consumed by all hardware
units can be calculated using Equation 8, where Pi denotes the peak power of hardware unit i; eff i
represents the hardware efficiency of hardware unit i; ni indicates the count of hardware unit i; and
ti means the execution time of hardware unit i. Hardware units encompass a range of components,
including CPUs, LLM computing devices, memories, SSDs, and others.

CO2eqoper = energyoper · carb inten (10) CO2eqchip = area · CPA (11)

PUE. Power Usage Effectiveness (PUE) (Henderson et al., 2020) serves as the industry standard
metric for evaluating a data center’s energy efficiency. It is defined as the ratio of the total
energy consumption of the data center, including all auxiliary components like cooling, to the
energy consumed solely by the computing hardware within the data center. The operational
energy (energyoper) associated with LLM processing can be calculated using Equation 9, where
energyhard denotes the energy used by the computing hardware within a data center, and PUE
indicates the PUE of the specific data center.

CO2eqemb =
∑

i∈hardware set

ti · CO2eqchipi

lifetimei
(12) CO2eq = CO2eqoper + CO2eqemb (13)

Carbon Intensity. Carbon intensity is a metric that assesses the environmental impact of a data cen-
ter’s energy consumption. Carbon-free energy (CFE) denotes the proportion of renewable, carbon-
free energy utilized within a data center. As a data center increases its utilization of renewable
energy, it experiences an increase in CFE and a corresponding decrease in carbon intensity. Table 2
provides insights into the carbon intensity and CFE values for some data centers. The operational
carbon footprint (CO2eqoper) attributed to LLM processing is calculated using Equation 10, where
energyoper represents the operational energy for LLM processing, and carb inten denotes the car-
bon intensity of the specific data center.

5

Published as a conference paper at ICLR 2024

Table 2: The data center efficiency.

data carbon carbon
center free intensity
name energy gCO2eq/kWh

asia-east2 28% 360
europe-north1 91% 127

us-central1 97% 394
us-south1 40% 296

Table 3: The comparison of embodied carbon footprints.

hardware description unit CPA

CPU TSMC 16nm 147 mm2 1 kgCO2/cm2

DRAM Micron 18nm 256 GB 0.4 kgCO2/GB

SSD Samsung 20nm 32 TB 0.018kgCO2/GB

TPUv3 TSMC 16nm 700 mm2 1 kgCO2/cm2

TPUv4 TSMC 7nm 400 mm2 1.6 kgCO2/cm2

V100 TSMC 12nm 815 mm2 1.2 kgCO2/cm2

H100 TSMC 4nm 814 mm2 1.8 kgCO2/cm2

4.7 EMBODIED CARBON MODEL

To quantify the chip’s embodied carbon footprint (CO2eqchip) within a specific hardware unit,
Equation 11 is employed, where area represents the chip’s area. The Carbon emitted Per unit Area
(CPA) is contingent on various semiconductor fabrication parameters, including yield, energy con-
sumption per unit area during manufacturing, emissions from chemicals utilized in hardware pro-
duction, and emissions associated with raw material sourcing for fabrication. Specific values for area
and CPA for distinct hardware units are elaborated in Table 3, where area values for CPU, DRAM,
SSD, TPU, and GPU are drawn from sources such as (Singh et al., 2020), (Choe, 2021), (Wiki,
2023b), and (Wiki, 2023a). CPA values for Micron, Samsung, and TSMC are extracted from (Gar-
cia Bardon et al., 2020), and (TSMC, 2019). The total embodied carbon footprint (CO2eqemb) orig-
inating from all hardware units involved in LLM processing is assessed using Equation 12, where
CO2eqchipi

denotes the chip’s embodied carbon footprint for hardware unit i, lifetimei means the
lifespan of hardware unit i, and ti represents the execution duration of hardware unit i. The hardware
units mentioned in Equation 12 include CPUs, LLM computing devices, memories, SSDs, and other
components. Notably, Meta’s data centers achieve an average utilization rate of 60% throughout the
5-year lifespan of hardware units (Wu et al., 2022).

4.8 TOTAL CARBON FOOTPRINT

The total carbon footprint (CO2eq) resulting from LLM processing is determined using Equation 13,
where CO2eqoper indicates the operational carbon footprint of the LLM, and CO2eqemb denotes
the embodied carbon footprint of the LLM.

5 VALIDATION

We employ LLMCarbon to compute the operational footprints of five LLMs, including dense and
MoE architectures, developed by Google, OpenAI, and Meta during their training phases. We also
compute the operational footprint of another LLM, Noor (Lakim et al., 2022), during its storage
phase. To validate the predictions of LLMCarbon, we compare our calculated operational footprint
values with the previously published data for these LLMs. Moreover, we utilize LLMCarbon to
predict the embodied footprint of an LLM developed by Meta and validate the result by comparing
it with the actual embodied footprint data.

5.1 OPERATIONAL CARBON FOOTPRINT VALIDATION

Training Phase. Table 4 presents the validation results of LLMCarbon’s predictions on the train-
ing operational carbon footprint. To validate the training operational carbon footprint estimations
yielded by LLMCarbon, we selected five LLMs: T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020),
GShard (Lepikhin et al., 2021), Switch (Fedus et al., 2022), and XLM (Conneau et al., 2020). We
list the inputs and outputs of LLMCarbon in Table 4. Within the table, “device TPD (W)” indicates
the Chip Thermal Design Power of a computing device, while “avg. system power (W)” conveys the
average system power per computing device, including TPU/GPU, host CPU, DRAM, and network
interface. The inputs on the parameters of LLMs, hardware, and data centers, and the actual train-
ing operational carbon footprint values of these LLMs were collected from (Patterson et al., 2021)
and (Wu et al., 2022). Since the parameter count of an LLM is considered as an architectural param-
eter of the LLM in (Patterson et al., 2021) and (Wu et al., 2022), we skipped the parameter model
and directly used the parameter count as an input to LLMCarbon. The validation of the parameter

6

Published as a conference paper at ICLR 2024

Table 4: The validation on the operational carbon footprints of various LLMs.

LLM T5 GPT3 GShard Switch XLM

reference (Patterson et al., 2021) (Wu et al., 2022)
developer Google OpenAI Google Google Meta
type dense dense MoE MoE dense
parameter # (B) 11 175 619 1500 0.55
base model param. # (B) - - 2.3 7.41 -
token # (B) 500 300 1K 2K 7K
CO2eq/KWh 0.545 0.429 0.177 0.33 0.413
PUE 1.12 1.1 1.09 1.1 1.1
computing device TPUv3 V100 TPUv3 TPUv3 V100
device TPD (W) 450 300 450 450 300
avg. system power (W) 310 330 288 245 342
peak TFLOPs/s 123 125 123 123 125
achieved TFLOPs/s 45.6 24.6 48 34.4 26.5
hardware efficiency 37% 19.7% 39% 28% 21.2%
device # 512 10K 1K 1K 512
total zettaFLOPs 40.5 314 13.3 82.2 23.9
training days 20 14.8 3.1 27 20.4

actual tCO2eq 46.7 552.1 4.3 59.1 39

mlco2 predicted tCO2eq 89.4 955.2 8.4 137.3 66.96
mlco2 ∆ +91.3% +73% +95.3% +132% +69%

LLMCarbon predicted tCO2eq 45.66 553.87 4.46 63.9 37.6
LLMCarbon ∆ −2.22% +0.32% +3.8% +8.2% −3.54%

model of LLMCarbon can be found in Appendix B. Owing to the adoption of suboptimal parallelism
settings, the hardware efficiencies for training these LLMs hover within the range of 39% to 19.7%,
lower than the hardware efficiencies achieved with optimal parallelism configurations. Comparing
the predicted operational carbon footprints to actual data, LLMCarbon’s projections display dispari-
ties of ≤ 8.2%. When predicting the operational carbon footprint during the training of MoE LLMs,
LLMCarbon incurs a higher margin of error, due to the intricacy of MoE architectures. On the con-
trary, when compared to actual data, the training operational carbon footprint estimations made by
mlco2 (Lacoste et al., 2019) suffer from huge disparities of more than 69%, because mlco2 assumes
all devices consistently operate at the peak computing throughput and consume the peak power.

Inference Phase. To validate the operational carbon footprint predictions generated by LLMCarbon,
we consider the inferences of GPT3 with 175B parameters (Yu et al., 2022). These inferences were
carried out on 16 A100 GPUs, using a batch size of 32 and an input size of 128 tokens (Yu et al.,
2022). According to the hardware efficiency model, this specific hardware configuration yields a
hardware efficiency of 9.26%. Achieving the optimal hardware efficiency for GPT3 requires ∼1.5K
GPUs, which is significantly more than what was used for these inferences. LLMCarbon’s predicted
latency for this inference batch is 3.1s, while the actual latency for this inference batch is 3s (Yu et al.,
2022). We assume the inference experiments took place in a data center with a PUE of 1.1 and a
carbon intensity of 0.429 CO2eq/KWh . The difference between the predicted and actual inference
operational carbon footprints does not exceed +3.3%.

Storage Phase. The typical power consumption of cloud storage is reported as 11.3W/TB (Posani
et al., 2018), while the power consumption for data transfer within a data center is around
1.48W/TB (Baliga et al., 2011). Over a six-month storage phase, the Noor LLM (Lakim et al.,
2022) encompasses 32.7TB of storage data, comprising curated data, bulk data, and the model. Ad-
ditionally, it transfers a data volume of 277.4TB. Based on LLMCarbon’s estimations, the storage
data energy is predicted as 1.596MWh (compared to the actual 1.69MWh (Lakim et al., 2022)),
while the energy consumption attributed to data transfer is projected to be 1.77MWh (compared
to 1.8MWh (Lakim et al., 2022)). Notably, the projection accuracy of LLMCarbon regarding the
operational energy during the storage phase showcases an error margin of less than 3.6%.

7

Published as a conference paper at ICLR 2024

T 5 X L M
S w i t c h T 5 X L M

S w i t c h T 5 X L M
S w i t c h0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

o p t i m a l p a r a l . s e t t i n gr e n e w a b l e e n e r g y

ca
rbo

n f
oo

tpr
int

 (tC
O 2eq

) s t o r a g e e x p e r i m e n t i n f e r e n c e
 t r a i n i n g e m b o d i e d

w h o l e l i f e c y c l e

j e t p l a n e r o u n d t r i p
S a n F r a n - N e w Y o r k

Figure 6: The carbon footprint of three
LLMs in case studies.

V 1 0 0 H 1 0 0
T P U V 3

T P U V 4 V 1 0 0 H 1 0 0
T P U V 3

T P U V 4 V 1 0 0 H 1 0 0
T P U V 3

T P U V 40

1 0 0

2 0 0

3 0 0

4 0 0

S w i t c hX L M

ca
rbo

n f
oo

tpr
int

 (tC
O 2eq

)

 s t o r a g e e x p e r i m e n t i n f e r e n c e t r a i n i n g e m b o d i e d

T 5

Figure 7: The carbon footprint of GPT3
trained by different computing devices.

Experimentation Phase. The experimentation phase consisting of various activities of training,
inference, and storage (Wu et al., 2022). And we have validated the training phase, inference phase,
and storage phase of an LLM in previous sections.

5.2 EMBODIED CARBON FOOTPRINT VALIDATION

Table 5: The embodied carbon footprint validation
against Meta XLM.

hardware number CO2eqchip time
lifetime

CO2eqemb
(kgCO2eq) (tCO2eq)

GPU 512 9.78 1.12% 0.056
CPU 64 1.47 1.12% 0.0018
SSD 64 576 1.12% 0.412
DRAM 64 102.4 1.12% 0.073
others 64 148.2 1.12% 0.096
predicted sum 0.64

actual 0.66 tCO2eq , ∆ −3.05%

Table 5 presents the validation results of
the embodied carbon footprint estimated
by LLMCarbon in comparison to the pub-
lished data of XLM (Wu et al., 2022). This
is the only publicly available data regard-
ing the embodied carbon footprint of a
LLM training hardware infrastructure to
our best knowledge. The setup consists
of 512 V100 GPUs organized into 64 8-
GPU servers, each equipped with a CPU,
a 32TB SSD disk, and a 256GB DRAM
main memory system. Using the unit and
CPA data from Table 3, we computed the
values of CO2eqchip presented in Table 5. The training duration of XLM is 20.4 days, and Wu
et al. (2022) assumed a hardware unit lifetime of 5 years. Consequently, the time

lifetime values for
all hardware units were determined to be 1.12%. Apart from CPU, GPU, SSD, and DRAM, other
hardware components (others) such as the motherboard, chassis, and PSU collectively contribute to
15% (Tannu & Nair, 2022) of the anticipated total embodied carbon footprint. In contrast to the
reported embodied carbon footprint of XLM (Wu et al., 2022), the predictions produced by LLM-
Carbon reveal a disparity of −3.05%.

6 CASE STUDIES USING LLMCARBON

We used LLMCarbon to demonstrate the following case studies.

Large Embodied Carbon Footprint. The embodied carbon footprint throughout the life-cycle of
an LLM is significant. Even when no computing activities occur, the LLM still incurs embodied car-
bon overhead due to the idle hardware allocated to the LLM. As illustrated in Figure 6, the embodied
carbon footprint of an LLM across its entire life-cycle contributes to approximately 24% ∼ 35% of
the overall carbon footprint (including embodied, training, inference, experimentation, and storage
carbon footprints) of the LLM. We adopted the ratio between training, inference, and experimen-
tation activities from (Wu et al., 2022). Furthermore, as data centers progressively shift towards
adopting renewable energy sources, the embodied carbon footprint of an LLM will dominate the
entire life-cycle carbon footprint of the LLM in the near future. For instance, 97% of the operational
energy in a Meta data center (Wu et al., 2022) is provided by renewable sources. The embodied
carbon footprints of diverse LLMs operating within this data center constitute 92% ∼ 95% of their
entire life-cycle carbon footprints. This underscores the pivotal role of accounting for embodied
carbon in the sustainability evaluation of LLMs.

Optimal Parallelism Setting. As discussed in Section 5.1, the training processes of the LLMs
used in our validation lacked optimized parallelism settings. By using LLMCarbon, we pinpoint
the optimal configurations for data, tensor, pipeline, and expert parallelism pertaining to these three

8

Published as a conference paper at ICLR 2024

LLMs. As illustrated in Figure 6, the adoption of these optimal parallelism settings leads to a
noteworthy decrease (i.e., 16% ∼ 39%) in their operational carbon footprints.

New Accelerators. When employing distinctive computing devices for the LLM processing, the
operational carbon footprints of an LLM tend to differ, while the embodied carbon footprints re-
main similar. Figure 7 showcases the outcomes derived from training, inferring, and experimenting
with three LLMs utilizing V100 GPU, H100 GPU, TPUv3, and TPUv4. Their embodied carbon
footprints exhibit similarity, as the embodied carbon emissions of SSD and DRAM dominate their
total embodied carbon footprints. However, compared to V100 GPUs, the operational carbon foot-
prints of these LLMs are notably curtailed by 71% and 41% when employing H100 and TPUv4
accelerators, respectively. Embracing novel computing devices for LLMs presents a pragmatic path
to mitigate their operational carbon footprints.

1 0 0 1 0 1 1 0 2 1 0 3 1 0 41 . 8 5
1 . 9 0
1 . 9 5
2 . 0 0
2 . 0 5
2 . 1 0
2 . 1 5
2 . 2 0
2 . 2 5

B l o o mM T - N L GG L M
C h i n C h i l l aP a L M

G P T 3Y a L M
L a M D AT 5

N o o r

X L M
P R - M o E

F B - M o E

S T - M o E
G s h a r d

G L a MS w i t c h
tes

t lo
ss

t r a i n i n g c a r b o n t C O 2 e q

J u r a s s i c
G o p h e r

Figure 8: The trade-off between train-
ing carbon footprint and test loss.

Training Carbon Footprint Scaling. In addition to
the LLMs (i.e., T5, GPT3, GShard, Switch, XLM, and
Noor) we used in validations, we also included other
LLMs in our analysis, such as PaLM (Chowdhery et al.,
2022), Gopher (Rae et al., 2021), Chinchilla (Hoff-
mann et al., 2022), LaMDA (Thoppilan et al., 2022),
Jurassic-1 (Lieber et al., 2021), MT-NLG (Smith et al.,
2022), Bloom (Scao et al., 2022), YaLM (Yandex, 2022),
GLM (Zeng et al., 2023), GLaM (Du et al., 2022), FB-
MoE (Artetxe et al., 2021), ST-MoE (Zoph et al., 2022),
and PR-MoE (Rajbhandari et al., 2022). Among these
LLMs, GShard, Switch, GLaM, FB-MoE, ST-MoE, and
PR-MoE use sparse MoE architectures, while the other
LLMs adopt dense architectures. We do not aim to di-
rectly compare the accuracy and carbon emissions of
these original LLMs, since they were trained by different
datasets and in different data centers. Instead, we study
the test losses and training operational carbon footprints
of some new LLM designs adopting the same architectures as these LLMs. We assume these new
LLM designs are trained using the same dataset and the same hardware infrastructure in the same
data center. We present the test losses and training operational carbon footprints of these LLMs in
Figure 8. To compute the test loss, we adopt the fitting constants including α = 0.34, β = 0.28,
A = 406.4, B = 410.7, and E = 1.69 for Equation 3 from (Hoffmann et al., 2022). Since the test
loss of an MoE LLM with P parameters is similar to that of its dense counterpart with only P/8
parameters (Rajbhandari et al., 2022), we decreased the P of MoE LLMs to P/8 in Equation 3. The
training processes of all LLMs use their optimal parallelism settings and the corresponding numbers
of V100 GPUs hosted by a data center where PUE is 1.1 and CO2eq/KWh is 0.431. Overall, an
LLM with a larger number of parameters and trained on more tokens achieves a lower test loss but
also consumes a larger training operational carbon footprint. Compared to dense LLMs, the Pareto
front of MoE LLMs is closer to the origin point, indicating that an MoE LLM can obtain a lower
test loss by the same training carbon footprint.

7 CONCLUSION

In this paper, we propose LLMCarbon, an end-to-end carbon footprint modeling tool for dense and
MoE LLMs, which contribute significantly to carbon emissions during training, inference, experi-
mentation, and storage processes. LLMCarbon can accurately assess the operational and embodied
carbon footprints of an LLM, enabling efficient exploration of the design space by considering the
trade-off between carbon footprint and test loss. It also promotes the adoption of carbon footprint
reduction measures by facilitating quantitative comparisons among various LLM configurations.

REFERENCES

Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj Chakkaravarthy,
David Brooks, and Carole-Jean Wu. Carbon explorer: A holistic framework for designing carbon
aware datacenters. In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pp. 118–132, 2023.

9

Published as a conference paper at ICLR 2024

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Track-
ing and predicting the carbon footprint of training deep learning models. arXiv preprint
arXiv:2007.03051, 2020.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victo-
ria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

Jayant Baliga, Robert W. A. Ayre, Kerry Hinton, and Rodney S. Tucker. Green cloud computing:
Balancing energy in processing, storage, and transport. Proceedings of the IEEE, 99(1):149–167,
2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901, 2020.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=sckjveqlCZ.

Bruno Campello de Souza, Agostinho Serrano de Andrade Neto, and Antonio Roazzi. Are the new
ais smart enough to steal your job? iq scores for chatgpt, microsoft bing, google bard and quora
poe. IQ Scores for ChatGPT, Microsoft Bing, Google Bard and Quora Poe (April 7, 2023), 2023.

Xin Chen, Hengheng Zhang, Xiaotao Gu, Kaifeng Bi, Lingxi Xie, and Qi Tian. Pipeline moe: A
flexible moe implementation with pipeline parallelism. arXiv preprint arXiv:2304.11414, 2023.

Jeongdong Choe. Memory technology 2021: Trends & challenges. In 2021 International Con-
ference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 111–115. IEEE,
2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. In Annual Meeting of the Association
for Computational Linguistics, pp. 8440–8451, July 2020.

Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma
Strubell, Alexandra Sasha Luccioni, Noah A. Smith, Nicole DeCario, and Will Buchanan. Mea-
suring the carbon intensity of ai in cloud instances. In ACM Conference on Fairness, Accountabil-
ity, and Transparency, pp. 1877—-1894, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450393522.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):
5232–5270, 2022.

10

https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=sckjveqlCZ

Published as a conference paper at ICLR 2024

M. Garcia Bardon, P. Wuytens, L.-A. Ragnarsson, G. Mirabelli, D. Jang, G. Willems, A. Mallik,
A. Spessot, J. Ryckaert, and B. Parvais. Dtco including sustainability: Power-performance-area-
cost-environmental score (ppace) analysis for logic technologies. In IEEE International Electron
Devices Meeting, pp. 41.4.1–41.4.4, 2020.

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon Wei, David
Brooks, and Carole-Jean Wu. Chasing carbon: The elusive environmental footprint of computing.
IEEE Micro, 42(4):37—-47, jul 2022.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau. To-
wards the systematic reporting of the energy and carbon footprints of machine learning. Journal
of Machine Learning Research, 21(1), jan 2020. ISSN 1532-4435.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis
of a tensor processing unit. In IEEE/ACM International symposium on computer architecture, pp.
1–12, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and effi-
cient moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Imad Lakim, Ebtesam Almazrouei, Ibrahim Abualhaol, Merouane Debbah, and Julien Launay. A
holistic assessment of the carbon footprint of noor, a very large Arabic language model. In Pro-
ceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large
Language Models, pp. 84–94, may 2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evalua-
tion. White Paper. AI21 Labs, 1, 2021.

Yanan Liu, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian. Energy consumption and
emission mitigation prediction based on data center traffic and pue for global data centers. Global
Energy Interconnection, 3(3):272–282, 2020.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. Efficient large-scale language model training on gpu clusters
using megatron-lm. In ACM International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2021.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David R So, Maud Texier, and Jeff Dean. The carbon footprint of machine
learning training will plateau, then shrink. Computer, 55(7):18–28, 2022.

11

https://openreview.net/forum?id=qrwe7XHTmYb

Published as a conference paper at ICLR 2024

Lorenzo Posani, Alessio Paccoia, and Marco Moschettini. The carbon footprint of distributed cloud
storage. arXiv preprint arXiv:1803.06973, 2018.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International Conference on Machine
Learning, pp. 18332–18346, 2022.

Katharine Sanderson. Gpt-4 is here: what scientists think. Nature, 615(7954):773, 2023.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54—-63, nov 2020.

Teja Singh, Sundar Rangarajan, Deepesh John, Russell Schreiber, Spence Oliver, Rajit Seahra, and
Alex Schaefer. zen 2: The amd 7nm energy-efficient high-performance x86-64 microprocessor
core. In 2020 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 42–44. IEEE,
2020.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in nlp. In Annual Meeting of the Association for Computational Linguistics, pp.
3645–3650, 2019.

Swamit Tannu and Prashant J Nair. The dirty secret of ssds: Embodied carbon. In The 1st Workshop
on Sustainable Computer Systems Design and Implementation, 2022.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. Deep learning’s
diminishing returns: The cost of improvement is becoming unsustainable. IEEE Spectrum, 58
(10):50–55, 2021. doi: 10.1109/MSPEC.2021.9563954.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

TSMC. TSMC Corporate Social Responsibility Report. https://esg.tsmc.com/
download/file/2019-csr-report/english/pdf/e-all.pdf, 2019.

Wiki. Ampere (microarchitecture). http://en.wikipedia.org/w/index.php?title=
Ampere%20(microarchitecture)&oldid=1160464393, 2023a.

Wiki. Tensor Processing Unit. http://en.wikipedia.org/w/index.php?title=
Tensor%20Processing%20Unit&oldid=1158650479, 2023b.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental impli-
cations, challenges and opportunities. Proceedings of Machine Learning and Systems, 4:795–813,
2022.

12

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://esg.tsmc.com/download/file/2019-csr-report/english/pdf/e-all.pdf
https://esg.tsmc.com/download/file/2019-csr-report/english/pdf/e-all.pdf
http://en.wikipedia.org/w/index.php?title=Ampere%20(microarchitecture)&oldid=1160464393
http://en.wikipedia.org/w/index.php?title=Ampere%20(microarchitecture)&oldid=1160464393
http://en.wikipedia.org/w/index.php?title=Tensor%20Processing%20Unit&oldid=1158650479
http://en.wikipedia.org/w/index.php?title=Tensor%20Processing%20Unit&oldid=1158650479

Published as a conference paper at ICLR 2024

Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Peng-
tao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed machine
learning on big data. IEEE Transactions on Big Data, 1(2):49–67, 2015.

Yandex. Yalm 100b. https://github.com/yandex/YaLM-100B, 2022.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In USENIX Symposium
on Operating Systems Design and Implementation, pp. 521–538, 2022.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual
pre-trained model. In The Eleventh International Conference on Learning Representations, 2023.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

13

https://github.com/yandex/YaLM-100B

Published as a conference paper at ICLR 2024

Table 6: The architectural details of dense LLMs for validations and explorations. The dense LLMs
we selected include T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020), XLM (Conneau et al.,
2020), Noor (Lakim et al., 2022), PaLM (Chowdhery et al., 2022), Gopher (Rae et al., 2021), Chin-
chilla (Hoffmann et al., 2022), LaMDA (Thoppilan et al., 2022), Jurassic-1 (Lieber et al., 2021),
MT-NLG (Smith et al., 2022), Bloom (Scao et al., 2022), YaLM (Yandex, 2022), and GLM (Zeng
et al., 2023).

Name Param.(B) V h dff dhead Nhead l Equ. Pd (B) Diff.∆

T5 11 32K 1024 65536 128 128 24 14 11.3 +2.79%
GPT3 175 51.2K 12288 49152 128 96 96 1 174.58 -0.24%
XLM 0.55 250K 1024 4096 64 16 24 1 0.557 +1.45%
Noor 13 - - - - - - - - -

PaLM 540 256K 18432 73728 256 48 118 15 539.24 -0.14%
Gopher 280 51.2K 16384 65536 128 128 80 1 258.54 -7.66%
Chinchilla 70 51.2K 8192 32768 128 64 80 1 64.84 -7.36%
LaMDA 137 51.2K 8192 65536 128 128 64 15 137.86 +0.63%
Jurassic-1 178 256K 13824 55296 144 96 76 1 175 -1.68%
MT-NLG 530 51.2K 20480 81920 160 128 105 1 529.53 -0.09%
Bloom 176 51.2K 14336 57344 128 112 70 1 173.37 -1.49%
YaLM 100 - - - - - - - - -
GLM 130 51.2K 12288 49152 128 96 70 1 127.46 -1.95%

A MORE ON THE LLM PARAMETER MODEL

We listed the architectural parameters of dense LLMs we selected in Table 6, and the architectural
parameters of MoE LLMs we used in Table 7.

GPT3-like Dense LLMs: The parameter count for most dense LLMs structured on a GPT3-like
architecture (Brown et al., 2020) can be determined using Equation 1. In each layer of these dense
LLMs, there exists a self-attention layer and a feed-forward layer. The Wq , Wk, and Wv matrices
of the self-attention layer possess dimensions of hNheaddhead, with h representing the hidden size,
Nhead indicating the number of heads, and dhead denoting the head dimension. The Wo matrix
that links the self-attention layer to the feed-forward layer also has a dimension of hNheaddhead.
In the feed-forward layer, two hdff weight matrices are used, where dff signifies the dimension
of the feed-forward layer. In a conventional LLM architecture, we have nheaddhead = h and
dff = 4h. Consequently, the parameter count for a single dense LLM layer can be calculated
as 4hNheaddhead + 2hdff = 12h2. Additionally, a dense LLM possesses V h token embedding
parameters, where V denotes the vocabulary size. In total, a dense LLM utilizing a GPT3-like
architecture incorporates 12h2l + V h parameters, where l stands for the number of layers.

Encoder-Decoder Dense LLMs: Certain dense LLMs from Google, such as T5 (Raffel et al.,
2020), employ an encoder-decoder transformer architecture. Within a single layer of these LLMs,
there exist both an encoder and a decoder. The encoder comprises a self-attention layer and a
feed-forward layer, while the decoder includes two self-attention layers and a feed-forward layer.
The parameter count for the encoder is 4hNheaddhead+2hdff , whereas the parameter count for the
decoder is 8hNheaddhead+2hdff . Therefore, the total parameter count for a single LLM resembling
T5 becomes 12hNheaddhead + 4hdff . In the case of a T5-like LLM, where nheaddhead ̸= h and
dff ̸= 4h, we cannot derive a further simplified equation. The overall parameter count for a T5-like
LLM can be estimated as:

Pd ≈ (12hNheaddhead + 4hdff)l + V h. (14)

For some dense LLMs like LaMDA (Thoppilan et al., 2022), which consist of only a decoder in
each layer, the total parameter count for a LaMDA-like LLM is:

Pd ≈ (8hNheaddhead + 2hdff)l + V h. (15)

MoE LLMs: In the case of certain MoE LLMs, especially those developed by Google, we also
encounter scenarios where nheaddhead ̸= h and dff ̸= 4h. Consequently, within an MoE layer,

14

Published as a conference paper at ICLR 2024

Table 7: The architectural details of MoE LLMs for validations and explorations. The MoE LLMs
we selected include Gshard (Lepikhin et al., 2021), Switch (Fedus et al., 2022), GLaM (Du et al.,
2022), FB-MoE (Artetxe et al., 2021), ST-MoE (Zoph et al., 2022), and PR-MoE (Rajbhandari et al.,
2022).

Name Param.(B) Pd (B) ρ h dff dhead Nhead l Ne Equ. Pe (B) Diff.∆

Gshard 600 2.3 0.5 1024 8192 128 16 36 2048 16 618.47 +3.07%
Switch 1571 7 1 2048 6144 32 64 15 2048 16 1546.19 -1.58%

GLaM 1200 95 0.5 8192 32768 128 128 64 64 2 1133.87 -5.51%
FB-MoE 1100 2.3 0.5 4096 16384 128 32 32 512 2 1103.81 +0.35%
ST-MoE 269 32 0.25 5120 20480 128 64 27 64 16 273.17 +1.55%
PR-MoE 31 1.3 0.5 2048 8192 128 16 24 64/128 16 31.8 +2.5%

we can compute the expert parameter count as Pexp = 2hdffNe, while the self-attention parameter
count can be determined as Patt = 4hnheaddhead. The overall parameter count for such an MoE
LLM can be estimated as follows:

Pe ≈ (1− ρ)Pd + ρ(2hdffNe + 4hnheaddhead)l (16)

B PARAMETER MODEL VALIDATION

Validation of Dense LLMs: We present the architectural parameters of dense LLMs in Table 6. It’s
worth noting that while Noor was utilized in the validation of training operational energy and YaLM
in LLM scaling, their original papers (Lakim et al., 2022; Yandex, 2022) do not provide architectural
specifications, thus preventing us from determining their parameter count using LLMCarbon. In
Table 6, we apply Equation 1 to calculate the parameter count for models such as GPT3, XLM,
Gopher, Chinachilla, Jurassic-1, MT-NLG, Bloom, and GLM. Additionally, we use Equation 14 to
estimate the parameter count for T5, and Equation 15 for PaLM and LaMDA. Among all dense
LLMs, Gopher and Chinchilla exhibit the most substantial disparities between the predicted and
actual parameter numbers. This deviation is primarily attributed to the usage of positional encoding
mechanisms in these LLMs, with the weights employed in their relative positional encodings not
included in our calculations. For instance, Gopher incorporates 21.5 billion weights in its relative
positional encoding, contributing to this observed difference.

Validation of MoE LLMs: We present the architectural parameters of MoE LLMs in Table 7. To
compute the parameter count for GLaM, and FB-MoE, we utilize Equation 2. For Gshard, Switch,
ST-MoE, and PR-MoE, we apply Equation 16. In PR-MoE, a portion of MoE layers have 64 experts,
and the other MoE layers have 128 experts. In the table, Gshard, GLaM, and PR-MoE encounter the
largest disparities between the predicted and actual parameter counts. The deviation is caused by
the usage of positional encoding mechanisms in these MoE LLMs, and the unaccounted parameters
in their routing networks.

15

	Introduction
	Background
	Related Work
	LLMCarbon
	Overview
	Parameter Model
	Neural Scaling Law
	FLOP Model
	Hardware Efficiency Model
	Operational Carbon Model
	Embodied Carbon Model
	Total Carbon Footprint

	Validation
	Operational Carbon Footprint Validation
	Embodied Carbon Footprint Validation

	Case Studies Using LLMCarbon
	Conclusion
	More on the LLM Parameter Model
	Parameter Model Validation

