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ABSTRACT

Model-based methods have recently been shown promising for offline reinforce-
ment learning (RL), which aims at learning good policies from historical data
without interacting with the environment. Previous model-based offline RL meth-
ods employ a straightforward prediction method that maps the states and actions
directly to the next-step states. However, such a prediction method tends to capture
spurious relations caused by the sampling policy preference behind the offline data.
It is sensible that the environment model should focus on causal influences, which
can facilitate learning an effective policy that can generalize well to unseen states.
In this paper, we first provide theoretical results that causal environment models
can outperform plain environment models in offline RL by incorporating the causal
structure into the generalization error bound. We also propose a practical algorithm,
oFfline mOdel-based reinforcement learning with CaUsal Structure (FOCUS), to
illustrate the feasibility of learning and leveraging causal structure in offline RL.
Experimental results on two benchmarks show that FOCUS reconstructs the under-
lying causal structure accurately and robustly, and, as a result, outperforms both
model-based offline RL algorithms and causal model-based offline RL algorithms.

1 INTRODUCTION

Offline Reinforcement Learning (RL) refers to the problem of learning policies entirely from pre-
viously collected data. Offline RL is gaining popularity since it enables RL algorithms to scale to
several real-world applications, e.g., autonomous driving (Yu et al., 2018) and healthcare (Gottesman
et al., 2019), where trial-and-error is too expensive. In the offline setting, Model-Based Reinforcement
Learning (MBRL) is a popular framework that learns a predictive environment model for policy
optimization (Yu et al., 2020), which relies on the environment model being learned accurately.

However, current offline MBRL approaches usually have poor generalization because the environment
models tend to capture spurious correlations that only exist in collected data, resulting in erroneous
predictions. For instance, in autonomous driving, if offline data is acquired from a driver who
always turns on the wiper and brake pedals on rainy days, such a preference will result in a spurious
correlation between “the wiper is turned on” and “the speed is dropped” in the data, which will also
be captured by the environment model. Once we employ this environment model for policy learning,
the agent will likely urge the driver to switch on the windshield wiper when the vehicle’s speed is too
high because it believes that “the wiper is turned on” has an effect on “the speed is dropped”, which
is not sensible and potentially hazardous. Similarly, the distinction between offline data and testing
data is influenced by sampling policies with varying preferences. Intuitively, leveraging the causal
structure of observed variables can avoid considering spurious correlations as causal influences and
thus facilitate the learning of an environment model with enhanced generalizability. Recent empirical
evidence also indicates that inducing the causal structure is important to improve the generalization
(Edmonds et al., 2018; Tenenbaum, 2018; Bengio et al., 2020; de Haan et al., 2019). Despite such
evidence, it is still unknown whether and how the causal structure improves model generalization in
offline RL.

For this purpose, we first provide theoretical support for the aforementioned intuition: we show that a
causal environment model can outperform a plain environment model on generalization for offline RL.
From the causal perspective, we divide the variables in states and actions into two categories, namely,
causal variables and spurious variables, and then formalize the process that learns an environment
model with both categories of variables. On the basis of the formalization, we quantify the effect of
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spurious dependencies on the generalization error bound and thereby demonstrate that integrating
causal structures can assist in minimizing this bound.

We also propose a practical offline causal MBRL algorithm, FOCUS, to illustrate the feasibility of
learning causal structure in offline RL. Learning the causal structure from data, also known as causal
discovery (Spirtes et al., 2000b), is a crucial phase of FOCUS. The offline RL properties of sequential
information and latent policy preference create certain difficulties but also provide some advantages
for implementing causal discovery methods. Specifically, we modified the PC algorithm (Spirtes
et al., 2000b), which seeks to uncover causal relationships based on inferred conditional independence
relations, to incorporate the constraint that the future cannot cause the past. Consequently, we can
reduce the number of conditional independence tests and determine the causal direction. In addition,
we employ kernel-based conditional independence tests (Zhang et al., 2011), which can be applied to
continuous variables without assuming a specific functional form between the variables or particular
data distribution.

In conclusion, this paper makes the following key contributions:

• It theoretically demonstrates that a causal environment model outperforms a plain environment
model in offline RL with respect to the generalization error bound.

• It proposes a practical algorithm, FOCUS, and illustrates the feasibility of learning and employing
a causal environment model for offline MBRL.

• Our experimental results validate the theoretical claims, showing that FOCUS outperforms
baseline models and other online causal MBRL algorithms in the offline setting.

2 RELATED WORK

The RL algorithms with causal structure learning can be roughly divided by the type of their causal
discovery methods. First, we will discuss relevant causal discovery methods, followed by related RL
algorithms.

Causal Discovery Methods. On the basis of whether we can do interventions or randomized
experiments, causal discovery methods can be divided into two groups. In cases where interventions
are not possible and only observational data is available, the methods broadly fall into two categories:
constraint-based methods and score-based methods. Constraint-based methods use statistic tests
(conditional independent tests) to find the causal skeleton and determine the causal directions up to
the Markov equivalence class. Score-based methods evaluate the quality of candidate causal models
with some score functions and output one or multiple graphs having the optimal score (Heckerman
et al., 2006).

RL Algorithms With Causal Structure Learning. de Haan et al. (2019) proposes an imitation
learning algorithm in RL, which learns the causal structure between states and actions. It assumes
that we can query experts for actions and uses interventioned data to do causal discovery. In model
learning for RL, such causal discovery methods with interventioned data are not available because
querying experts for the next states is not practical. For MBRL, Ke et al. (2019) (LNCM) views
data sampled from different policies as data with soft interventions and use score-based methods
with the log-likelihood on “interventional” data as the score function. Its implicit assumption that
data is sampled from multiple policies and data has been labeled by its sampling policy is not a
general assumption in offline RL, which only holds true in online RL. Given the properties of offline
RL that the sampling policy has unknown preferences and interactions with the environment are
not available, the above methods are not practical to learn the causal structure in offline RL. By
contrast, FOCUS proposes a practical algorithm that learns the causal structure with offline data,
which utilizes constraint-based methods and further reduces the testing number with the properties of
RL environments.

3 PRELIMINARIES

Markov Decision Process (MDP). We describe the RL environment as an MDP with five-tuple
⟨S,A, P,R, γ⟩ (Bellman, 1957), where S is a finite set of states; A is a finite set of actions; P is the
transition function with P (s′∣s,a) denoting the next-state distribution after taking action a in state
s; R is a reward function with R(s,a) denoting the expected immediate reward gained by taking
action a in state s; and γ ∈ [0,1] is a discount factor. An agent chooses actions a according to a policy
a ∼ π(s), which updates the system state s′ ∼ P (s,a), yielding a reward r ∼ R(s,a). The agent’s goal
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is to maximize the the expected cumulative return by learning a good policy maxπ,P E[γtR(st,at)].
The state-action value Qπ of a policy π is the expected discounted reward of executing action a from
state s and subsequently following policy π: Qπ(s,a) ∶= R(s,a) + γEs′∼P,a′∼π [Qπ (s′,a′)].
Offline Model-based Reinforcement Learning. In the offline RL setting, the algorithm only has
access to a static dataset D = {(s, a, r, s′)} collected by one or a mixture of behavior policies πB ,
and further interactions with the environment is not available. When we use model-based approaches
to solve offline RL problems, we will learn a virtual environment model P̂ for transition prediction
from offline data. With the learned environment model P̂ , we can define a new MDP ⟨S,A, P̂ ,R, γ⟩.
Similarly, we can also define the value function Q̂π with P̂ . A standard model-based RL algorithm
(in an online setting) learns a virtual model by fitting it using a maximum-likelihood estimate of the
trajectory-based data collected by running the latest policy, which guarantees that the virtual model
can always be accurate when the policy keeps exploring (Williams et al., 2017; Kurutach et al., 2018).
In the offline RL setting, where we only have access to the data collected by previous policies, the
accuracy of the virtual model in exploring policy cannot be guaranteed. Therefore recent techniques
all build on the idea of pessimism that regularizes the original problem based on how confident the
agent is about the learned model (Kidambi et al., 2020; Yu et al., 2020). Specifically, the policy only
visits the states where the learned model is confident in predictions.

4 THEORY

In this section, we provide theoretical evidence that a causal environment model outperforms a plain
environment model in offline RL, which shows that utilizing a good causal structure can reduce the
generalization error bounds for offline MBRL algorithms. Specifically, we formalize the process that
learns the environment model with spurious relations induced by the offline setting and quantify the
influence of the spurious relations. We quantify the impact by assuming the causal structure is known
and factoring it into the generalization error bounds, which include the model prediction error bound
and policy evaluation error bound in RL. In this section, it is assumed that the causal relations are
linear and all causal variables are observed. The complete proof can be found in Appendix A.

4.1 MODEL PREDICTION ERROR BOUND

In this subsection, we assume a causal structure of the RL environment and spurious relations in
offline data. We point out that the spurious relations lead the model learning problem to an ill-posed
problem with multiple optimal solutions in offline data, hence increasing the model prediction error
bound. With the aforementioned statement, we present a model prediction error bound that combines
key properties of spurious relations, which is a quantitative assessment of the impact on model
learning. We provide the model prediction error bound in a supervised learning framework, as model
learning can be considered as a supervised learning problem.

Preliminary. Let D denote the data distribution where we have samples (X, Y ) ∼ D,X ∈ Rn. The
goal is to learn a linear function f to predict Y given X. From the causal perspective, Y is generated
from only its causal parent variables rather than all the variables in X. Therefore we can split the
variables in X into two categories, X = (Xcausal,Xspurious):

• Xcausal represents the causal parent variables of Y , that is, Y = f∗(Xcausal) + ϵcausal, where f∗
is the ground truth and ϵcausal is a zero mean noise variable that Xcausal á ϵcausal.

• Xspurious represents the spurious variables that Xspurious á Xcausal, but in some biased data
sets Xspurious and Xcausal have strong relatedness. In other words, Xspurious can be predicted
by Xcausal with small error, i.e., Xspurious = Xcausalγspurious + ϵspurious, where ϵspurious is the
regression error with zero mean and small variance.

For clearly representation, we use Xcau ≜ X ○ ωcau (○ represents element-wise multiplication)
to replace Xcausal, where cau records the indices of Xcausal in X and (ωcau)i = I(i ∈ cau).
Correspondingly, we also use Xspu ≜ X ○ ωspu to replace Xspurious. According to the definition
of Xcau, we have Y = (X ○ ωcau)β∗ + ϵcau, where ωcau ○ β∗ is the global optimal solution of the
optimization problem

min
β

E(X,Y )∼D[Xβ − Y ]2. (1)
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The above problem is easy if the data is uniformly sampled from D. However, in the offline setting,
we only have biased data Dtrain sampled by given policy πtrain, where the optimization objective is

min
β

E(X,Y )∼Dtrain
[Xβ − Y ]2. (2)

The Problem 2 has multiple optimal solutions due to the strong linear relatedness of Xspu and Xcau

in Dtrain, which is proved in Lemma 4.1.

Lemma 4.1. Given that ωcau ○ β∗ is the optimal solution of Problem 1, suppose that in Dtrain,
Xspu = (X ○ ωcau)γspu + ϵspu where EDtrain[ϵspu] = 0 and γspu ≠ 0, we have that β̂spu ≜ ωcau ○
(β∗ − λγspu) + λωspu is also an optimal solution of Problem 2 for any λ:

E(X,Y )∼Dtrain
[(∣X(ωcau ○ β∗) − Y ∣2) ∣ X] = E(X,Y )∼Dtrain

[(∣Xβ̂spu − Y ∣2) ∣ X]

The most popular method for solving such ill-posed problem is to add a regularization term for
parameters β (OpenAI et al., 2019):

min
β

E(X,Y )∼Dtrain
[Xβ − Y ]2 + k∥β∥2, (3)

where k is a coefficient. The form of Problem 3 corresponds to the form of the ridge regression,
which provides a closed-form solution of k by Hoerl-Kennard formula (Hoerl & Kennard, 2000).

In the following, we will first introduce the solution of λ under Problem 3 in Lemma 4.2, and then
introduce the model prediction error bound with λ in Theorem 4.4. For ease of understanding, we
provide a simple version where the dimensions of Xcau and Xspu are both one (∣Xcau∣ = ∣Xspu∣ = 1).

Lemma 4.2 (λ Lemma). Given λ as the coefficient in Lemma 4.1, and k in Problem 3 chosen by
Hoerl-Kennard formula, we have the solution of λ in Problem 3 that:

λ = β∗γspu

β∗2 + γ2
spu + 1 +

σ2
spu

σ2
cau
(1 + 1

(β∗)2 )
(4)

Based on Lemma 4.2, we can find that the smaller σ2
spu (it means that Xspu and Xcau have stronger

relatedness in the training dataset Dtrain), the larger λ. And we also have its bound:

Proposition 4.3. Given λ as Formula 4, the bound of λ is that − 1
2
≤ λ ≤ 1

2
.

Theorem 4.4 (Spurious Theorem). Let D = {(X, Y )} denote the data distribution, β̂spu denote the
solution in Lemma 4.1 with λ in Lemma 4.2, and Ŷspu = Xβ̂spu denote the prediction. Suppose that
the data value is bounded: ∣Xi∣1 ≤ Xmax, i = 1,⋯, n and the error of optimal solution ϵcau is also
bounded: ∣ϵcau∣1 ≤ ϵc, we have the model prediction error bound:

E(X,Y )∼D[(∣Ŷspu − Y ∣1) ∣ X] ≤Xmax∣λ∣1(∣γspu∣1 + 1) + ϵc. (5)

Theorem 4.4 shows that

• The upper bound of the model prediction error ∣Ŷspu − Y ∣1 increases by Xmax∣λ∣1(∣γspu∣1 + 1)
for each induced spurious variable Xspu in the model.

• When Xspu and Xcau have stronger relatedness (which means a bigger λ), the increment of the
prediction model error bound led by Xspu is bigger.

4.2 POLICY EVALUATION ERROR BOUND

Although in most cases, an accurate model ensures a good performance in MBRL, the model error
bound is still an indirect evaluation compared to the policy evaluation error bound for MBRL. In this
subsection, we apply the spurious theorem (Theorem 4.4) to offline MBRL and provide the policy
evaluation error bound with the number of spurious variables.

Suppose that the state value and reward are bounded that ∣St,i∣1 ≤ Smax,Rt ≤ Rmax, let λmax denote
the maximum of λ and γmax denote the maximum of ∣γspu∣1, we have the policy evaluation error
bound in Theorem 4.5.
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Figure 1: The architecture of FOCUS. Given offline data, FOCUS learns a p value matrix by KCI
test and then gets the causal structure by choosing a p threshold. After combining the learned causal
structure with the neural network, FOCUS learns the policy through an offline MBRL algorithm.

Theorem 4.5 (RL Spurious Theorem). Given an MDP with the state dimension ns and the action
dimension na, a data-collecting policy πD, let M∗ denote the true transition model, Mθ denote
the learned model that M i

θ predicts the ith dimension with spurious variable sets spui and causal
variables caui, i.e., Ŝt+1,i = M i

θ((St,At) ○ ωcaui∪spui). Let V Mθ
π denote the policy value of the

policy π in model Mθ and correspondingly V M∗

π . For an arbitrary bounded divergence policy π, i.e.
maxS DKL(π(⋅∣S), πD(⋅∣S)) ≤ ϵπ , we have the policy evaluation error bound:

∣V Mθ
π − V M∗

π ∣ ≤ 2
√
2Rmax

(1 − γ)2
√
ϵπ +

Rmaxγ

2(1 − γ)2Smax[nsϵc + (1 + γmax)λmaxns(ns + na)Rspu]

where Rspu = ∑
ns
i=1 ∣spui∣

ns(ns+na) , which represents the spurious variable density, that is, the ratio of spurious
variables in all input variables .

Theorem 4.5 shows the relation between the policy evaluation error bound and the spurious variable
density, which indicates that:

• When we use a non-causal model that all the spurious variables are input, Rspu reaches its
maximum value R̄spu < 1. By contrast, in the optimal causal structure, Rspu reaches its minimum
value of 0.

• The density of spurious variables Rspu and the correlation strength of spurious variables λmax

both influence the policy evaluation error bound. However, if we exclude all the spurious variables,
i.e., Rspu = 0, the correlation strength of spurious variables will have no effect.

5 ALGORITHM

After demonstrating the necessity of a causal environment model in offline RL, in this section we
propose a practical offline MBRL algorithm, FOCUS, to illustrate the feasibility of learning and using
causal structure in offline RL. First, we assume the Causal Markov condition and Faithfulness in the
environment transition, with which we can use conditional independence tests to infer the causal
graph (Spirtes et al., 2000b). Second, we claim that the offline data and the data obtained through the
learned policy share the same causal structure, through which the learned structure can be applied
in unseen states. Specifically, policy preference affects the relations between variables by causing
quantitative changes in causal relations and spurious relations in independent relations. Thanks to the
ability to distinguish between spurious correlations and causal influences, the policy preference will
not result in qualitative changes in the causal structure. Consequently, the above statement holds true
in offline RL.

Our algorithm consists of two steps, namely, discovering the causal structure from offline data
and properly merging the discovered structure with an offline MBRL algorithm. In the first step,
offline RL features restrict the selection of causal discovery methods. Specifically, the methods with
intervention or randomized experiments are not available because interactions with environments
are prohibited. In the approaches for observational data, score-based methods rely on the data from
distinct sampling policies and the form of causal mechanisms, neither of which is present in offline
data gathered from a single policy. Constraint-based methods do not presuppose any particular form
of causal mechanisms, but cannot distinguish structures in one Markov equivalence class and may be
inefficient due to many independence tests. Therefore FOCUS extends the PC algorithm (derived
from constraint-based methods) and addresses its flaws by incorporating sequential information. In
the second step, FOCUS initializes the environment model with the learned causal structure and then
learns the environment model as well as the policy.
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5.1 PRELIMINARY

Conditional Independence Test. Independence and conditional independence (CI) play a central
role in causal discovery (Pearl et al., 2000; Spirtes et al., 2000a; Koller & Friedman, 2009). Generally
speaking, the CI relationship X á Y ∣ Z allows us to drop Y when constructing a probabilistic
model for X with (Y,Z). There are multiple CI testing methods for various conditions, which
provide the correct conclusion only given the corresponding condition. The kernel-based Conditional
Independence test (KCI-test) (Zhang et al., 2011) is proposed for continuous variables without
assuming a specific functional form between the variables as well as the data distributions.

Figure 2: The three basic structures for (X,Y,Z).

Conditional Variables. Besides the specific
CI test method, the conclusion of conditional
independence testing also depends on the con-
ditional variable Z, that is, different conditional
variables can lead to different conclusions. Tak-
ing the triple (X,Y,Z) as an example, there are
three typical structures, namely, Chain, Fork,
and Collider as shown in Fig 2. Chain: There exists causation between X and Y but conditioning on
Z leads to independence. Fork: There does not exist causation between X and Y but not conditioning
on Z leads to non-independence. Collider: There does not exist causation between X and Y but
conditioning on Z leads to non-independence.

5.2 CAUSAL STRUCTURE LEARNING

Applying the Independence Test in RL. Based on the preliminaries, given the two target variables
X,Y and the condition variable Z, the KCI test returns a probability value p = fKCI(X,Y,Z) ∈
[0,1], which measures the probability that X and Y are conditionally independent given the condition
Z. To transform a probability into a binary conclusion of whether the causation exists, we design a
threshold p∗ that:

Causation(X,Y ) = I(fKCI(X,Y,Z) ≤ p∗) ∈ {0,1},

where Causation(X,Y ) = 1 represents independence and 0 represents that causation exists. Details
of choosing p∗ can be found in Appendix B.1.

In model learning of RL, variables are composed of states and actions of the current and next timesteps
and the causal structure refers to whether a variable in t timestep (e.g., the ith dimension, Xi

t ) causes
another variable in t+1 timestep (e.g., the jth dimension, Xj

t+1). With the KCI test, we get the causal
relation through the function Causation(⋅, ⋅) for each variable pair (Xi

t ,X
j
t+1) and then form the

causal structure matrix G:

Gi,j = Causation(Xi
t ,X

j
t+1),

where Gi,j is the element in row i and column j of G.

Choosing the Conditional Variable in RL. As stated in preliminaries, unsuitable conditional
variables can reverse the conclusion of independence testing. The conditional variable set must include
the intermediate variable of Chain and the common parent variable of Fork, but not the common
son variable of Collider. Traditionally, the independence test traverses all possible combinations of
the conditional variables and then reaches a conclusion, which is inefficient. However, in RL we
can reduce the number of conditional independence tests by imposing the restriction that the future
cannot cause the past. Actually, this constraint restricts the possible conditional variable sets to a tiny
number. Consequently, we can have a classified discussion for every feasible collection of conditional
variables. For simplicity, we eliminate two types of scenarios from the discussion:

• Impossible situations. We exclude some impossible situations as Fig 3 (i) (bottom left) by the
temporal property of data in RL. Specifically, the direction of the causation cannot be from the
variable of t + 1 time step to that of t time step because the effect cannot happen before the cause.

• Compound situations. We only discuss the basic situations and exclude the compound situations,
e.g., Fig 3 (j) (bottom right), which is a compound of (a) and (c). It is because in such compound
situations, the target variables Xi

t and Xj
t+1 have direct causation (or it can not be a compound

situation) and the independence testing only misjudges independence as non-independence but
not non-independence as independence.
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As seen in Fig 3, we list all conceivable circumstances involving target variables Xi
t ,X

j
t+1 and

condition variable Xk
t/t+1 in the environment model. Based on the preliminary knowledge of causal

discovery, we investigate the following fundamental situations:

Figure 3: The basic, impossible and compound situations
of the causation between target variables and condition vari-
ables. In the basic situations, Top Line: (a)-(d) list the
situations that the condition variable Xk is in the t time step.
Bottom Line: Similarly, (e)-(h) list the situations that the
condition variable Xk is in the t + 1 time step.

Top Line: In (a)(b), whether Xk
t is in-

cluded in the conditional variable set
does not affects the conclusion of cau-
sation; In (c), although Xk

t is an inter-
mediate variable in a Chain and con-
ditioning on Xk

t leads to the conclu-
sion of independence of Xi

t and Xj
t+1,

the causal parent set of Xj
t+1 will in-

clude Xk
t when testing the causal re-

lation between Xk
t and Xt+1j, which

can offset the influence of excluding
Xi

t . In (d), conditioning on Z is neces-
sary for getting the correct conclusion
of causation since Xk

t is the common
causal parent in a Fork structure.

Bottom Line: In (e)(f), whether Xk
t+1

is included in the conditional variable
set does not affects the conclusion of
causation; In (g), not conditioning on
Xk

t+1 is necessary to get the correct
conclusion of causation since Xk

t+1 is
the common son in a Collider struc-
ture; In (h), although Xk

t+1 is an inter-
mediate variable in a Chain and not
conditioning on Xk

t+1 leads to the conclusion of non-independence of Xi
t and Xj

t+1, including Xi
t

in the causal parent set of Xj
t+1 will not induce any problem since Xi

t does indirectly cause Xj
t+1.

Based on the classified discussion above, we can conclude our principle for choosing conditional
variables in RL that:

• Condition on the other variables in t time step.
• Do not condition on the other variables in t + 1 time step.

5.3 COMBINING LEARNED CAUSAL STRUCTURE WITH AN OFFLINE MBRL ALGORITHM

We combine the learned causal structure with an offline MBRL algorithm, MOPO (Yu et al., 2020),
to create a causal offline MBRL algorithm as in Fig 1. The entire learning procedure can be found
in Algorithm 1 and Algorithm 2 (Appendix B.2). Notice that our causal model learning method
can be combined with any offline MBRL algorithm theoretically. More implementation details and
hyperparameter values are summarized in Appendix B.1.

6 EXPERIMENTS

In order to demonstrate that (1) FOCUS enables learning a causal environment model in offline RL
and (2) a causal environment model can outperform a plain environment model and other related
methods in offline RL, we evaluate (1) causal structure learning and (2) policy learning on the
Toy Car Driving and MuJoCo benchmarks. We evaluate FOCUS on the following indexes: (1)
The accuracy, efficiency and robustness of causal structure learning. (2) The policy return and
generalization ability in offline MBRL.

Baselines. We compare FOCUS with the sota offline MBRL algorithm, MOPO, and other online
RL algorithms that also learn causal structure. (1) MOPO (Yu et al., 2020) is a popular and well-
known offline MBRL algorithm that outperforms standard model-based RL algorithms and prior sota
model-free offline RL algorithms on existing offline RL benchmarks. The central idea of MOPO is
to artificially penalize rewards by the uncertainty of model predictions, hence avoiding erroneous
predictions in unseen states. MOPO can be seen as the blank control with a plain environment model.
(2) Learning Neural Causal Models from Unknown Interventions (LNCM) (Ke et al., 2019) is an
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online MBRL algorithm, in which the causal structure learning method can be transformed to the
offline setting with a simple adjustment. We take LNCM as an example to show that an online method
cannot be directly converted into offline RL algorithms.

Environment. Toy Car Driving. Toy Car driving is a typical RL environment where the agent can
control its direction and velocity to finish various tasks including avoiding obstacles and navigating.
In this paper, we use a 2D Toy Car driving as the RL environment where the task of the car is to arrive
at the destination (The visualization can be found in Appendix C.1). The state includes the direction
d, the velocity v, the velocity on the x-axis vx, the velocity on the y-axis vy and the position (px, py).
The action is the steering angle a. We design the underlying causal structure to better demonstrate
how spurious relations appear and highlight their influence in model learning (The structure can
be found in Appendix C.1). MuJoCo. The MuJoCo (Todorov et al., 2012) is the most popular
benchmark for evaluating performance in continuous controlling, where the variables of the state
represent the positions, angles, and velocity of the agent. Each dimension in MuJoCo of the state
has a specific meaning and is highly abstract, which provides the convenience of causal structure
learning.

Offline Data. We prepare three offline data sets, Random, Medium, and Replay for the Car Driving
and MuJoCo. Random represents that data is collected by random policies. Medium represents that
data is collected by a fixed but not well-trained policy, which is the least diverse. Medium-Replay is a
collection of data that is sampled during training of the Medium policy, which is the most diverse.
The heat map of the data diversity is shown in Appendix C.1.

Table 1: The results on causal structure learning of our model and the baselines. Both the accuracy
and the variance are calculated by five times experiments. FOCUS (-KCI) represents FOCUS with
a linear independence test. FOCUS (-CONDITION) represents FOCUS with choosing all other
variables as conditional variables.

INDEX FOCUS LNCM FOCUS(-KCI) FOCUS(-CONDITION)

ACCURACY 0.993 0.52 0.62 0.65
ROBUSTNESS 0.001 0.025 0.173 0.212
EFFICIENCY(SAMPLES) 1 × 106 1 × 107 1 × 106 1 × 106

6.1 CAUSAL STRUCTURE LEARNING

We compare FOCUS with baselines on the causal structure learning with the indexes of the accu-
racy, efficiency, and robustness. The accuracy is evaluated by viewing the structure learning as a
classification problem, where causation represents the positive example and independence represents
the negative example. The efficiency is evaluated by measuring the samples for getting a stable
structure. The robustness is evaluated by calculating the variance in multiple experiments. The results
in Table 1 show that FOCUS surpasses LNCM in accuracy, robustness, and efficiency in causal
structure learning. Noticed that LNCM also has a low variance because it predicts the probability of
existing causation between any variable pairs with around 50%, which means that its robustness is
meaningless.

Table 2: The comparison on converged policy return in the two benchmarks. The detailed training
curves are in Appendix C.1.

ENV CAR DRIVING MUJOCO(INVERTED PENDULUM)

RANDOM MEDIUM REPLAY RANDOM MEDIUM REPLAY

FOCUS 68.1 ± 20.9 −58.9 ± 41.3 86.2 ± 18.2 23.5 ± 17.9 24.9 ± 14.1 49.2 ± 19.0

MOPO −30.3 ± 49.9 −50.1 ± 34.2 46.2 ± 28.1 8.5 ± 6.2 2.5 ± 0.08 43.4 ± 7.7

LNCM 9.9 ± 42.5 −5.4 ± 32.5 11.4 ± 24.0 13.3 ± 0.9 3.1 ± 0.7 16.3 ± 6.4

6.2 POLICY LEARNING

Policy Return. We evaluate the performance of FOCUS and baselines in the two benchmarks on
three typical offline data sets. The results in Table 2 show that FOCUS outperforms baselines by a
significant margin in most data sets. In Random, FOCUS has the most significant performance gains
to the baselines in both benchmarks because of the accuracy of causal structure learning in FOCUS.
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Figure 4: Top: The comparison for data
size. The X% in the x-axis represents
that the data size is X% of the original
size. The ratio Y% in the y-axis repre-
sents the score ratio of FOCUS over the
baseline MOPO. Bottom: The compar-
ison for data diversity. The dataset is
produced by mixing up Medium-Replay
and Medium with different ratios. The
X% in the x-axis represents that the data
is mixed by (100 −X)% of the Medium
and X% of the Medium-Replay.

By contrast, in Medium-Replay, the performance gains of
FOCUS are least since the high data diversity in Medium-
Replay leads to weak relatedness of spurious variables
(corresponds to small λ), which verifies our theory. In
Medium, the results in the two benchmarks are different.
In Car Driving, the relatively high score of LNCM does not
mean that LNCM is the best but all three fail. The failure
indicates that extremely biased data makes even the causal
model fail to generalize. However, the success of FOCUS
in the Inverted Pendulum indicates that causal environment
models depend less on the data diversity since FOCUS can
still reach high scores in such a biased dataset where the
baselines fail. Here we only provide the results in Inverted
Pendulum but not all the environments in MuJoCo due
to the characteristics of the robot control, specifically the
frequency of observations, which we present a detailed
description in Appendix C.1.

Generalization Ability. The generalization ability of FO-
CUS refers to whether it can learn a good policy from the
data with limited data size and low data diversity. There-
fore we designed datasets from 1% to 100% of the original
data size and datasets with a mix of 20% to 80% other
datasets, where we can compare FOCUS and baselines in
datasets with different sizes and diversities. The results
in Fig 4 (Top) show that the advantage of FOCUS over
MOPO is much more significant in small data size. In the
dataset of 1% size, the advantage of FOCUS is relatively
not significant because the size is too small. The results in
Fig 4 (Bottom) show that FOCUS can performs well with
a small ratio of Medium-Replay data while the baseline
performs well only with a big ratio, which indicates that
FOCUS is less dependent on the diversity of data. Re-
lated experiments on more environments can be found in
Appendix C.2.

6.3 ABLATION STUDY

To evaluate the contribution of each component, we perform an ablation study for FOCUS. The
results in Table 1 show that the KCI test and our principle of choosing conditional variables contribute
to the causal structure learning of both accuracy and robustness.

7 CONCLUSION

In this paper, we point out that the spurious correlations hinder the generalization ability of current
offline MBRL algorithms, and that incorporating the causal structure into the model can improve
generalization by removing spurious correlations. We provide theoretical support for the statement
that utilizing a causal environment model reduces the generalization error bound in offline RL. We
also propose a practical algorithm, FOCUS, to address the problem of learning causal structure
in offline RL. The main idea of FOCUS is to leverage conditional independence tests for causal
discovery, which does not need further assumptions on the causal mechanism. In FOCUS, we
address the difficulties of extending the PC algorithm in offline RL, particularly to reduce the
number of independence tests by leveraging sequential information. Extensive experiments on the
typical benchmarks demonstrate that FOCUS performs accurate and robust causal structure learning,
surpassing offline RL baselines by a significant margin.

We would like to note that: In our theoretical results (Theorem 4.4 and 4.5), we assume that the
true causal structure is already known. However, in practice, we must learn it from data before
applying it (section 5), which will introduce additional theoretical errors. As it is recognized that
quantifying the uncertainty in the learned causal structure from data is a difficult task, we will derive
the generalization error bound with the learned causal structure as part of our future study.
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A THEORY

Definition A.1 (Optimization objective in data distribution D:).

min
β

E(X,Y )∼D[Xβ − Y ]2. (6)

Definition A.2 (Optimization objective in data Dtrain:).

min
β

E(X,Y )∼Dtrain
[Xβ − Y ]2. (7)

Definition A.3 (Optimization objective in data Dtrain with regularization:).

min
β

E(X,Y )∼Dtrain
[Xβ − Y ]2 + k∥β∥2, (8)

Lemma A.4. Given that ωcau ○ β∗ is the optimal solution of Problem 1, suppose that in Dtrain,
Xspu = (X ○ ωcau)γspu + ϵspu where EDtrain[ϵspu] = 0 and γspu ≠ 0, we have that β̂spu ≜ ωcau ○
(β∗ − λγspu) + λωspu is also an optimal solution of Problem 2 for any λ:

E(X,Y )∼Dtrain
[(∣X(ωcau ○ β∗) − Y ∣2) ∣ X] = E(X,Y )∼Dtrain

[(∣Xβ̂spu − Y ∣2) ∣ X]

Proof.

E(X,Y )∼Dtrain
[(∣(X ○ ωcau)β∗ − Y ∣2) ∣ X]

=E(X,Y )∼Dtrain
{[∣(X ○ ωcau)(β∗ − λγspu + λγspu) − Y ∣2] ∣ X}

=E(X,Y )∼Dtrain
{[∣(X ○ ωcau)(β∗ − λγspu) + (X ○ ωcau)λγspu − Y ∣2] ∣ X}

=E(X,Y )∼Dtrain
{[∣(X ○ ωcau)(β∗ − λγspu) + λ(Xspu − ϵspu) − Y ∣2] ∣ X}

=E(X,Y )∼Dtrain
{[∣X(ωcau ○ (β∗ − λγspu)) + λ(X ○ ωspu) − Y ∣2] ∣ X}

(Since E(X,Y )∼Dtrain
[ϵspu] = 0)

=E(X,Y )∼Dtrain
{[∣X(ωcau ○ (β∗ − λγspu) + λωspu) − Y ∣2] ∣ X}

=E(X,Y )∼Dtrain
{[∣Xβ̂spu − Y ∣2] ∣ X}

(Let β̂spudenote ωcau ○ (β∗ − λγspu) + λωspu)

Lemma A.5 (λ Lemma). Given λ as the coefficient in Lemma 4.1, and k in Problem 3 chosen by
Hoerl-Kennard formula, we have the solution of λ in Problem 3 that:

λ = β∗γspu

β∗2 + γ2
spu + 1 +

σ2
spu

σ2
cau
(1 + 1

(β∗)2 )
(9)

Proof. Since the solution of the ridge regression is

β(k) = (XT X + kI)−1XT Y,

we take β̂spu into this solution and get:

λ = σ2
cauβ

∗γspuk

σ2
cauσ

2
spu + σ2

cauγ
2
spuk + σ2

cauk + σ2
spuk + k2

(10)
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Since k is chosen by Hoerl-Kennard formula that k = σ2
spu

(β∗)2 , we have:

λ = σ2
cauβ

∗γspu
σ2
cauσ

2
spu/k + σ2

cauγ
2
spu + σ2

cau + σ2
spu + k

= σ2
cauβ

∗γspu

σ2
cauσ

2
spu/(

σ2
spu

(β∗)2 ) + σ2
cauγ

2
spu + σ2

cau + σ2
spu +

σ2
spu

(β∗)2

= σ2
cauβ

∗γspu

σ2
cauβ

∗2 + σ2
cauγ

2
spu + σ2

cau + σ2
spu +

σ2
spu

(β∗)2

= σ2
cauβ

∗γspu

σ2
cau(β∗2 + γ2

spu + 1) + σ2
spu +

σ2
spu

(β∗)2

= β∗γspu

β∗2 + γ2
spu + 1 +

σ2
spu

σ2
cau
(1 + 1

(β∗)2 )

Proposition A.6. Given λ as Formula 4, we have

−1
2
≤ λ ≤ 1

2
.

Proof.

∣λ∣ = ∣β∗γspu∣
∣β∗2 + γ2

spu + 1 +
σ2
spu

σ2
cau
(1 + 1

(β∗)2 )∣

≤ ∣β∗γspu∣
∣β∗2 + γ2

spu + 1∣ + ∣
σ2
spu

σ2
cau
(1 + 1

(β∗)2 )∣

≤ ∣β∗γspu∣
∣β∗2 + γ2

spu + 1∣

≤ ∣β∗γspu∣
∣2β∗γspu + 1∣

≤ 1

2

So we have : − 1
2
≤ λ ≤ 1

2
.

Theorem A.7 (Spurious Theorem). Let D = {(X, Y )} denote the data distribution, β̂spu denote the
solution in Lemma 4.1 with λ in Lemma 4.2, and Ŷspu = Xβ̂spu denote the prediction. Suppose that
the data value is bounded: ∣Xi∣1 ≤ Xmax, i = 1,⋯, n and the error of optimal solution ϵcau is also
bounded: ∣ϵcau∣1 ≤ ϵc, we have the model prediction error bound:

E(X,Y )∼D[(∣Ŷspu − Y ∣1) ∣ X] ≤Xmax∣λ∣1(∣γspu∣1 + 1) + ϵc. (11)
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Proof. Let Ŷcau denote (X ○ ωcau)β∗, we have

E(X,Y )∼Dtest
[(∣Ŷspu − Y ∣1) ∣ X]

=E(X,Y )∼Dtest
[(∣(Ŷspu − Ŷcau) + (Ŷcau − Y )∣1) ∣ X]

≤E(X,Y )∼Dtest
[(∣(Ŷspu − Ŷcau)∣1) ∣ X] +E(X,Y )∼Dtest

[(∣(Ŷcau − Y )∣1) ∣ X]

≤E(X,Y )∼Dtest
[(∣Xλ(−ωcau ○ γspu + ωspu)∣1) ∣ X] + ϵc

=E(X,Y )∼Dtest
[(∣Xλ(−γspu + ωspu)∣1) ∣ X] + ϵc

≤E(X,Y )∼Dtest
[(Xmax∣λ∣1 ∗ ∣ − γspu + ωspu∣1) ∣ X] + ϵc

≤E(X,Y )∼Dtest
[(Xmax∣λ∣1 ∗ (∣γspu∣1 + 1)) ∣ X] + ϵc

=Xmax∣λ∣1(∣γspu∣1 + 1) + ϵc

Theorem A.8 (RL Spurious Theorem). Given an MDP with the state dimension ns and the
action dimension na, a data-collecting policy πD, let M∗ denote the true transition model, Mθ

denote the learned model that M i
θ predicts the ith dimension with spurious variable sets spui and

causal variables caui, i.e., Ŝt+1,i = M i
θ((St,At) ○ ωcaui∪spui). Let V Mθ

π denote the policy value
of the policy π in model Mθ and correspondingly V M∗

π . For any bounded divergence policy π, i.e.
maxS DKL(π(⋅∣S), πD(⋅∣S)) ≤ ϵπ , we have the policy evaluation error bound:

∣V Mθ
π − V M∗

π ∣ ≤2
√
2Rmax

(1 − γ)2
√
ϵπ+

Rmaxγ

2(1 − γ)2Smax[nsϵc+(1 + γmax)λmaxns(ns + na)Rspu]

(12)

where Rspu = ∑
ns
i=1 ∣spui∣

ns(ns+na) , which represents the spurious variable density, that is, the ratio of spurious
variables in all input variables .

Proof. Before proving, we first introduce three lemmas:

Lemma A.9.
∣V Mθ

π − V M∗

π ∣ ≤∣V M∗

π − V M∗

πD
∣ + ∣V Mθ

πD
− V M∗

πD
∣ + ∣V Mθ

πD
− V Mθ

π ∣

≤2
√
2Rmax

(1 − γ)2
√
ϵπ + ∣V Mθ

πD
− V M∗

πD
∣

Lemma A.10.

∣V Mθ
πD
− V M∗

πD
∣ ≤ Rmax

1 − γ ∑s
∣dMθ

πD
(s) − dM

∗

πD
(s)∣∑

a

πD(a∣s)

Lemma A.11.
∣dMθ

πD
(s) − dM

∗

πD
(s)∣ ≤ γ

(1 − γ) ∑s,a,s′
∣Mθ(St,At) −M∗(St,At)∣πD(a∣s)dM

∗

πD
(s)

The detailed proof of these lemmas can be found in (Xu et al., 2020), which is omitted in this paper.
Based on the model prediction error bound in Theorem 4.4, we have:

∣Mθ(St,At) −M∗(St,At)∣ =
ns

∑
i=1
∣M i

θ(St,At) −M∗,i(St,At)∣

≤
ns

∑
i=1

Smax[ϵc + (γmax + 1)λmax∣spui∣]

=Smax[nsϵc + (γmax + 1)λmax

ns

∑
i=1
∣spui∣]

=Smax[nsϵc + (γmax + 1)λmaxns(ns + na)Rspu]
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With above lemmas, we have:

∣V Mθ
π − V M∗

π ∣ ≤2
√
2Rmax

(1 − γ)2
√
ϵπ+

Rmaxγ

2(1 − γ)2Smax[nsϵc+(γmax + 1)λmaxns(ns + na)Rspu]

B ALGORITHM

B.1 CHOOSING THE THRESHOLD OF P-VALUE

To be fair, we share a common p∗ for the testing between any two variables. The choice of p∗
significantly influences the accuracy of causal discovery that too small and too big both lead to causal
misspecification. The intuition behind our choosing principle is that there is a significant gap in the p
value between the causal relation and non-causal relation. Based on this intuition, we partition the
probability range [0,1] into several intervals [0, p1), [p1, p2),⋯, [pn,1] according to the sorted p
values {pi}ni=1 and design p∗ by the formula:

p∗ = argmax
pi

pi+1
i + 1 −

pi
i
. (13)

If we only consider the biggest gap between pi, then we will easily choose a big but improper p∗ due
to the distribution of pi in some intervals (e.g., [0.5,1]) may be very sparse and thus leads to a big
gap.

(a) Random (b) Medium (c) Medium-Replay

Figure 5: The heat map of the three offline data sets. The high brightness represents high data density.

B.2 CAUSAL STRUCTURE NETWORK

The complete process is shown in Algorithm 1, where the details of Causal Structure Network is
shown in Algorithm 2.

Algorithm 1 Causal Model Framework for Offline MBRL
Input: offline data set D = {(st,at, st+1, rt)}; modelM(⋅; θ);
Stage 1: Causal Structure Learning
Get p value matrix Gp by KCI testing.
Get the threshold p∗ by Gp.
Get causal structure mask matrix G by the threshold p∗.
Stage 2: Offline Reinforcement Learning
Choose an offline model-based reinforcement learning algorithm Algo(⋅) and replace its model
M(⋅) byMCausal(⋅,G,M) (Algorithm 2 in Appendix).
Obtain the optimal policy π∗ = Algo(D).
Return π∗
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Algorithm 2 Causal Structure NetworkMCausal(⋅)
Input: state st ∈ Rns , action at ∈ Rna ,
causal structure mask matrix G ∈ {0,1}(ns,na)×ns ,
MakeMi(⋅; θi) as the copy of the basic modelM(⋅; θ), where i = 1,⋯, ns.
for i = 1 to ns do

Let G⋅,i denote the ith column of G
Get the masked input X = (st,at) ○G⋅,i
Get prediction Ỹ =Mi(X; θi) ∈ Rns

Let Yi denote the ith element of Ỹ .
end for
Return Y = (Yi)ns

i=1.

C EXPERIMENTS

C.1 ENVIRONMENT DETAILS

The heat map of the data diversity is shown in Fig 5. In Random, the data is clustered around the
origin. In Medium, the data is gathered on a fixed trajectory from the origin to the destination. In
Medium-Replay, the data is much more diverse where a lot of unseen data in above data sets is also
sampled.

The visualization of the state in Car Driving and the ground truth of its causal graph are shown in
Fig 9.

Figure 6: The visualization of
the example. The red dotted
arrow presents that (vx)t is a
spurious variable for (py)t+1.

For example, when the velocity vt−1 maintains stationary due to an
imperfect sample policy, (vx)t and (vy)t have strong relatedness
that (vx)2t + (vy)2t = v2t−1 and one can represent the other. Since
we design that (py)t+1 − (py)t = (vy)t, (vx)t and (py)t+1 − (py)t
also have strong relatedness, which leads to that (vx)t becomes a
spurious variable of (py)t+1 given (py)t, despite that (vx)t is not
the causal parent of yt+1. By contrast, when the data is uniformly
sampled with various velocities, this spuriousness will not exist.

MuJoCo formulates robot control into MDPs with discrete timestep
via equal interval sampling of the continuous-time. Therefore, for
each timestep t, st+1 is the result of numerous times of simulation
based on st with repeated action at. Even if spurious variables are
existed in one time of simulation, after numerous simulations, the
causal effect will be propagated to almost variables, which leads
to a full-connection causal graph (Rspu = 0). Therefore FOCUS
degrades into vanilla MOPO in this scenario, which is meaningless
to test. Fortunately, after analyzing the propagate progress of the
dynamics, we found that the Inverted Pendulum is a special case where the causal graph will keep
sparse after numerous simulations.

MuJoCo formulates robot control into MDPs with discrete timestep via equal interval sampling of the
continuous-time. Therefore, for each timestep t, st+1 is the result of numerous times of simulation
based on st with repeated action at. Even if spurious variables are existed in one time of simulation,
after numerous simulations, the causal effect will be propagated to almost variables, which leads to
a full-connection causal graph (Rspu = 0). Therefore FOCUS degrades into vanilla MOPO in this
scenario, which is meaningless to test. Fortunately, after analyzing the propagate progress of the
dynamics, we found that the Inverted Pendulum is a special case where the causal graph will keep
sparse after numerous simulations.

C.2 EXPERIMENT RESULT DETAILS

The detailed training curves are shown in Fig 7. The detailed comparisons on data size are shown in
Fig 8.
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Figure 7: Comparison of FOCUS and the baselines in the two benchmarks. (a)-(c): The comparison
in the Car Driving on the three datasets. (d)-(f): The comparison in the Inverted Pendulum of MuJoCo
on the three datasets.
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Figure 8: Comparison of FOCUS and the baselines in three offline datasets of three environments.

Figure 9: The visualization of the state and the causal structure for the Car Driving benchmark. Left:
the Toy Car Driving. The goal of the agent is to arrive at the star-shape destination. Right: The
ground truth of the causal structure in Toy Car Driving. The state is vector-based and its value is
continuous.
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