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Abstract
With the arrival of the Noisy Intermediate-Scale Quantum (NISQ) era, Variational
Quantum Algorithms (VQAs) have emerged to obtain possible quantum advantage.
In particular, how to effectively incorporate hard constraints in VQAs remains
a critical and open question. In this paper, we manage to seamlessly combine
the Hamming Weight Preserving ansatz with a topological-aware parity check on
physical qubits to enforce error mitigation and further hard constraints. We demon-
strate such a combination significantly outperforms peer VQA methods on both
quantum chemistry problems and constrained combinatorial optimization problems
e.g. Quadratic Assignment Problem. Our extensive experimental results on both
simulators and superconducting quantum processors verify that the combination of
HWP ansatz with parity check is among the most promising candidates to show
quantum advantages in the NISQ era to solve more realistic problems.

1 Introduction
Variational Quantum Algorithms (VQAs) [17, 73] and their derivatives [80] have garnered increasing
attention as numerous studies investigate their potential to achieve quantum supremacy. With the
advent of the NISQ era [65, 10] and the improved deployment capability [77], the exploration of new
VQAs has accelerated, as these algorithms have shown promise in delivering quantum advantage
on near-term quantum devices [17]. However, despite their potential, commonly used VQAs such
as the QAOA [27] for Quadratic Unconstrained Binary Optimization (QUBO) and UCCSD [67] for
ground state energy estimation are not inherently designed to handle hard constraints. Typically, these
constraints are modeled as soft penalty terms within the objective function, which may not be the
most efficient approach. Addressing the natural incorporation of symmetries and hard constraints
directly into VQAs remains an open and critical challenge for advancing the field.

In this paper, we investigate Hamming Weight preserving (HWP) ansatz [78] and parity check [53]
as a novel approach for error mitigation and the imposition of hard constraints in quantum circuits,
rather than modeling these constraints as penalty terms in the Hamiltonian, as is common in the
literature [18, 48]. The HWP ansatz, operating in a constrained subspace, utilizes parameterized
gates that maintain the number of non-zero elements in the quantum state. Recent work [78]
has thoroughly analyzed the expressivity and trainability of the HWP ansatz, demonstrating its
outstanding performance in capturing fundamental symmetries, such as total spin conservation.
Meanwhile, quantum LDPC code [53, 13] and surface code [29] have been widely widely adopted in
quantum error correction through the use of stabilizers to detect and correct qubit errors. However, a
significant challenge remains in identifying quantum ansatze that naturally facilitate error correction
mechanisms. In response, we propose a combined framework that integrates the HWP ansatz with
parity check operations. Since the HWP ansatz inherently preserves the number of non-zero elements
in quantum states, it offers a promising foundation for enhancing parity check performance in
mitigating errors. By employing parity checks as projective measurements, quantum states can be
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constrained directly to the problem subspace, thereby introducing a robust mechanism for error
mitigation while expanding the utility of parity checks beyond their conventional role. This approach
allows for more effective error correction and constraint enforcement within quantum circuits.

In this paper, we first analyze the effect of utilizing parity check as an error mitigation method
for HWP ansatz on popular quantum chemistry problems, whose (symmetry) constraints can be
effectively addressed by HWP. The parity check block is constructed by a cascade of CNOT gates
which only requires nearest neighbor connectivity of physical qubits. By repeatedly inserting parity
check blocks in the quantum circuit we can mitigate the influence of unexpected bit-flip errors.
The results on noiseless simulator demonstrate that the proposed universal HWP ansatz is able to
exceed UCC ansatz with single, double, and even triple excitation. We also test the performance
of parity checks with HWP ansatz against other symmetry verification (SV) methods [38, 70] with
UCC ansatze. Under the simulated noise, we observe that only verifying the number of non-zero
elements at the end of the circuit is not enough to determine whether there is an occurrence of error,
so constantly parity checks in the circuit are essential for detecting bit-flip errors.

We then combine HWP ansatz and parity check to develop an efficient paradigm to incorporate
additional hard constraints beyond the capability of HWP, to enable solving other constrained
problems in classic computing, specifically Quadratic Assignment Problem (QAP) [55]. This problem
is known an NP-hard combinatorial optimization (CO) problem, as widely studied in literature in both
classic machine learning (ML) [79] and quantum ML [80]. It aims to find an optimal permutation
matrix with each column and row having only one non-zero element. Specifically, we map the
permutation matrix to the physical qubit lattice topology with each qubit connected to its four nearest
neighbors. We then apply HWP layers on the rows to ensure a smaller subspace with parity checks
on the columns appearing at intervals to further restrict the states to QAP subspace. The final loss is
calculated with in-constraint states so that we can find the optimal solution within the constraints.

To further illustrate the capability and efficiency of the proposed approach, we conduct experiments
on both simulators and superconducting quantum processors. We compare a wide range of baseline
methods with soft constraints, e.g., HEA [46], QAOA [27], XYmixer [39], and we also add hard
constraints to some of them with the proposed paradigm. The numerical results on the simulator
demonstrate the outstanding performance of the proposed hard constraint paradigm. We also test our
methods on the Traveling Salesman Problem (TSP) to illustrate the capability of our methods on other
CO problems by reducing it into QAP. For the hardware experiments on a superconducting quantum
processor, the proposed method also show promising performance, especially with the physical qubit
topology (no SWAP gates required in the compilation). We move the related works and preliminaries
to the Appendix. The contributions of this paper are:

1) We illustrate how to utilize parity check to mitigate quantum errors and incorporate further
constraints for HWP ansatz. The combination of these two is among the most promising candidates
to demonstrate quantum advantages in the NISQ era (for VQA) to solve more realistic problems.

2) We discuss the connection between HWP and UCC ansatze on quantum chemistry problems and
further examine the efficiency of parity check as error mitigation on the simulator with noise. Results
illustrate that universal two-qubit HWP gates exceed UCC with high-order excitation terms and parity
check in between HWP gates can mitigate errors better than SV [38, 70].

3) We propose a novel hard-constraint VQA with parity check as further constraints for HWP. We
map the permutation matrix in QAP to the physical qubit topology and enable the maximum utility
of qubit connectivity. The superior performance over peer VQAs on both simulator and quantum
processor shows the capability and efficiency of our method on constrained CO, e.g. QAP and TSP.

2 Parity Check as Error Mitigation for HWP
We first illustrate how to use parity check as error mitigation for HWP ansatz. The HWP ansatz
maintains the number of non-zero elements in the whole unitary transformation, which makes it easy
to detect any unexpected bit-flip. By constantly applying parity checks we can correct these errors.

2.1 Ground State Energy Estimation
The ground state energy estimation problem, which is the very first step in computing the ener-
getic properties of molecules and materials, has received intensive attention with various VQE
approaches [73]. The ground state of a molecule is the stationary state with the lowest allowed energy,
which can be estimated given the types and relative coordinates of the atoms in the molecule and the
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number of orbitals and electrons. Providing a molecular Hamiltonian Hm, and a trial wave function
|ψ⟩, the ground state energy E0 is bounded by [28]:

E0 ≤ ⟨ψ|Hm |ψ⟩
⟨ψ|ψ⟩

, (1)

where the equality holds if and only if the parameterized wavefunction |ψ⟩ is the ground state. To
solve this problem on a quantum computer, we need to design the ansatz wavefunction, which is
bound to be unitary operations since we are operating on a quantum computer and all the quantum
gates are unitary transformations. We then describe the unitary parameterized ansatz as U(θ). The
qubits are initialized as |0⟩n (abbreviated as |0⟩) with n as the number of orbitals under the Jordan-
Wigner transformation [45]. Notice that any quantum state is necessarily a normalized wavefunction,
so the cost function of the VQE problem is [73]:

EV QE = min
θ

⟨0|U†(θ)HmU(θ) |0⟩ . (2)

The molecular Hamiltonians often come with symmetry constraints, and we can utilize HWP ansatz
to reduce the evolving space and draw support from parity check as an error mitigation method.

2.2 HWP ansatz for Quantum Chemistry
We first introduce two basic models, namely the Fermi-Hubbard model [44] and Unitary Coupled
Cluster model (UCC) [64], to show how HWP ansatz can be linked to quantum chemistry. Both
models describe the hopping of electrons on orbitals (UCC model) or sites (Hubbard model) by
creation and annihilation operators (see definition in Apx. B.2). We have the following observation:
Remark 2.1. Both hopping terms in the UCC and Fermi-Hubbard model are HWP operators.

Recall the hopping term on adjacent sites i and j in the Fermi-Hubbard model is defined as:

HFH = a†iaj + a†jai =

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 = σx ⊗ σx + σy ⊗ σy. (3)

where a and a† are the annihilation and creation operators, respectively (see detailed definition in
Apx. B.2). Similarly, the cluster operator in the coupled cluster theory is T = a†iaj . For the state
transformation for UCC model, we follow the form |ψ⟩ = eT−T † |ψ0⟩ [5], where T − T † is an
anti-Hermitian operator which makes it suitable for quantum computers since the exponential of an
anti-Hermitian operator is a unitary operator. The Hamiltonian for the single excitation term is

HUCC =
1

i
(
T − T †) = 1

i

 0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 =

 0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (4)

Both of the above Hamiltonian fits the definition of HWP (see Eq. 21 in Apx.B for the introduction
of the preliminaries of HWP), so they are both HWP operators.
Lemma 2.2. The hopping terms in UCC and Fermi-Hubbard are not universal in the HWP subspace.

According to Theorem B.1 [66] (see details in Apx. B), an HWP operator with a given connectivity is
universal if and only if the dimension of the corresponding dynamical lie algebra (DLA) is d2k with
dk =

(
n
k

)
, where n and k is the number of orbitals and electrons, respectively. For nearest neighbor

(NN) connectivity, we can derive the dimensions of DLA for operators in Eq. 3 and Eq. 4 as follows:

dimnn(gUCC) =
1

2
n(n− 1), dimnn(gFH) =


(n+ 1)(n− 1) n is odd
1

2
n(n− 1) n is even

(5)

For fully connected (FC) connectivity, the dimensions of DLA for the two operators are:

dimfc(gUCC) =
1

2
dk(dk − 1), dimfc(gFH) =


(dk + 1)(dk − 1) n ̸= 2k

1

2
(dk + 2)(dk − 2) n = 2k

(6)

All of the dimensions do not meet the requirement of d2k, so both Eq. 5 and Eq. 6 are not universal in
the HWP subspace, which aligns with the fact that Eq. 3 and Eq. 4 are truncated hopping terms.
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Theorem 2.3. An ansatz U(θ) can solve the ground state energy estimation problem without
truncation if the ansatz is universal under the dk-dimensional HWP subspace.

The detailed proof is provided in Apx. C. In contrast to the Fermi-Hubbard model that does not have
higher-order hopping terms, the UCC model has double and triple excitation operators [41] able to
improve the accuracy of the final ground states. However, the double and triple excitation operators
require 4-qubit and 6-qubit gates respectively, which makes it unaffordable when decomposing them
into basic gates. Thus, we seek two-qubit HWP gates (much easier to implement than double and
triple excitation operators) that are universal under the HWP subspace with no truncation at all.

Definition 2.4. We propose an HWP gate namely NBS with the Hamiltonian and dimension of DLA:

HNBS =

 0 0 0 0
0 1 i 0
0 −i 1 0
0 0 0 0

 , dim(g) =

{
d2k n ̸= 2k,

d2k/2− 1 n = 2k.
(7)

NBS gate is very close to universal under NN connectivity and simpler than the one proposed
in [78]. Thus, we can use the NBS gate to construct an NN connected ansatz without any truncation
(UCCSD [67]) or prior knowledge about quantum chemistry (adaptVQE [36]).

A common error mitigation technique in VQE for the UCC and Hubbard model is SV [70, 38],
which discards runs where the final and initial occupations do not match. This method leverages the
fact that these VQE ansatze exhibit symmetries such as number conservation per spin sector and
time-reversal symmetry. Specifically, when verifying the symmetry of total spins, one counts the
number of non-zero elements in the final state to detect any unexpected bit-flip or readout errors
that may alter the total spin count. However, SV only reflects symmetries in the final state and
requires readout of all qubits (or at least an equal number of measurements), adding complexity.
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Figure 1: The overall circuit structure for par-
ity checks and HWP ansatz.

To simplify both the verification of final states and
the intermediate states during computation, we pro-
pose utilizing parity checks, a technique commonly
employed in classical and quantum error correction.
Unlike SV, which counts the number of non-zero
elements in the quantum state, parity checks only
evaluate the parity of these non-zero elements. While
a single parity check extracts less information than
SV, applying parity checks continuously throughout
the quantum circuit ensures that the final state retains
the same Hamming Weight as the initial state (as
long as the probability of multiple bit-flips occurring
between two parity checks is sufficiently low). The
HWP ansatz is an ideal complement to parity checks because it guarantees a constant HW for the
intermediate states, allowing for the seamless integration of parity checks at any point in the ansatz.
This approach not only mitigates errors but also simplifies the error detection process by embedding
it directly into the circuit, as illustrated in Fig. 1.

2.3 Simulated Experiments on State Preparation
Table 1: Statistics of molecules. n, k, dk
is the number of orbitals, electrons, and
HWP subspace dimension respectively.

Molecules H2 LiH H2O

n 4 8 8
k 2 2 4
dk 6 28 70

Dataset: We select three well-studied molecules, i.e. Hy-
drogen (H2), Lithium Hydride (LiH), and Water (H2O).
The molecular Hamiltonian is obtained from the Python
package OpenFermion [58]. The computational basis for
all the molecules is STO-3G with Jordan-Wigner transfor-
mation. To simulate the circuit with noise on Qiskit, we
utilize the Aer-simulator from Qiskit based on the density
matrix which is time-consuming. Therefore, we freeze some of the inactive orbitals to reduce the
problem size of the above molecules. The detailed molecular information is listed in Tab. 1

Baselines: To show the efficiency of the HWP ansatz and the superiority of combining HWP ansatz
with parity check, we select the well-studied UCC ansatz as our baselines. To better illustrate that
universal HWP ansatz is able to solve the state preparation problem without any truncation, we
include single excitation (UCCS), double excitation (UCCSD), and triple excitation (UCCSDT). All
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Table 2: Numerical results for state preparation. "Error" stands for the energy error with respect to
FCI energy, "prob" represents the success rate in SV and PC, "SE" stands for value less than 10−10.

Method Setting H2 LiH H2O
Energy (Ha) Error Prob Energy (Ha) Error Prob Energy (Ha) Error Prob

UCCS
noiseless -1.1173488878±2.30×10−8 1.88×10−2 — -7.8618641468±1.29×10−7 1.82×10−3 — -74.3608375081±2.04×10−1 3.76×10−1 —
noise -0.9176263520 2.19×10−1 — -7.6984769446 1.65×10−1 — -74.1416601629 5.95×10−1 —
SV -0.9706892814 1.66×10−1 0.865 -7.7302653047 1.33×10−1 0.701 -74.1720832569 5.65×10−1 0.649

UCCSD
noiseless -1.1361893704±1.06×10−7 3.91×10−10 — -7.8629191864±3.61×10−4 7.62×10−4 — -74.7359393767±1.97×10−2 9.85×10−4 —
noise -0.5626316869 5.74×10−1 — -6.8652894300 9.98×10−1 — -73.8588494832 8.78×10−1 —
SV -0.7042719212 4.32×10−1 0.716 -6.8376290127 1.03×100 0.500 -73.8500427310 8.87×10−1 0.501

UCCSDT
noiseless — — — — — — -74.7368968448±1.87×10−2 2.79×10−5 —
noise — — — — — — -73.8454283537 8.91×10−1 —
SV — — — — — — -73.8632794220 8.79×10−3 0.500

Ours

noiseless -1.1361894537±3.82×10−16 SE — -7.8636816249±1.44×10−12 SE — -74.7369247415±1.83×10−10 1.59×10−10 —
noise -0.6523354546 4.84×10−1 — -7.1394207947 7.24×10−1 — -73.9364705694 8.00×10−1 —
SV -0.7599740203 3.76×10−1 0.747 -7.1312360044 7.32×10−1 0.505 -73.9089583257 8.28×10−1 0.505
SV+PC -0.7697837117 3.66×10−1 0.674 -7.2627704120 6.01×10−1 0.073 -74.0486388806 6.88×10−1 0.072

the ansatze are implemented with Qiskit-Nature [24] and initialized with Hartree-Fock state. The
optimizer is SLSQP.

Results on Simulators The sensitivity analysis on the number of parity checks and hyperparameter
settings are listed in Apx. E. We provide the results on the simulator with noise in Tab. 2. We first
focus on the results of UCC ansatze with different excitation and the proposed HWP ansatz without
noise. Notice that H2 and LiH only have 2 active electrons so it is impossible to apply triple excitation
in the ansatz. It is shown that adding high-order excitation terms in the UCC ansatz can improve the
results, and the proposed universal HWP ansatz is able to solve the problem with no truncation at all
which leads to energy with error less than 1× 10−10. The circuit depth of HWP ansatz is also much
less than UCCSD and UCCSDT. Detailed comparisons of the circuit statistics are listed in Tab. 8

We make several important observations on the results with noise and error mitigation methods. 1)
UCCS outperforms other methods with noise since it is extremely shallow. 2) SV with deep circuit is
useless since the parity of the output state is approximate to 0.5, indicating the results for each qubit
are close to a uniform superposition state. 3) More shots per Pauli string would be beneficial to better
illustrate the performance of error mitigation methods. 4) Parity check can improve the results on
deep ansatz. By combining other error mitigation approaches (such as readout error mitigation), we
may further improve the accuracy. Therefore, we can conclude that parity check is an efficient error
mitigation method for HWP ansatz, which can improve the result quality.

3 Parity Check as Further Constraints for QAP
Apart from the quantum chemistry problems, the HWP ansatz is proved to be able to serve as a hard
constraint for combinatorial optimization problems [78]. In this section, we will demonstrate how to
utilize parity check to enforce additional hard constraints for HWP ansatz so that we are capable of
solving more complicated constraints.

3.1 Quadratic Assignment Problem
The Quadratic Assignment Problem (QAP) is a well-studied NP-hard problem dated back to [52].
A typical QAP instance of size m is given by two matrices F ∈ Rm×m, D ∈ Rm×m, defining the
flows between facilities and the distances between locations [55]. Its objective with constraints is:

min

m∑
i,j=1

m∑
k,p=1

FijDkpXikXjp s.t.
m∑
i=1

Xij = 1,

m∑
j=1

Xij = 1, 1 ⩽ i, j ⩽ m, (8)

where X ∈ {0, 1}m×m is the permutation matrix illustrated in Fig. 2(a). The essence of QAP is
to find the best permutation matrix which minimizes the objective function. Further, we define
W ∈ Rm2×m2

as the energy matrix with W = F⊗D, corresponding to the vector product form of
the flow and distance matrices. The QUBO form of QAP is:

min vec(X)⊤W vec(X) s.t.
m∑
i=1

Xij = 1,

m∑
j=1

Xij = 1, 1 ⩽ i, j ⩽ m, (9)

where vec(X) ∈ {0, 1}m2×1 denotes a vector by concatenating the columns of matrix X [79]. We
can further derive the Hamiltonian of the Ising form of QAP:

HQAP =
1

4

m∑
i,j=1

m∑
k,p=1

DijFkp(I − σz
ik)(I − σz

jl), (10)
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Figure 2: (a) The QAP instance with four facilities {A,B,C,D} mapped to four locations {0, 1, 2, 3}.
The permutation matrix encodes the mapping and satisfies the constraint that each facility is mapped
to only one location and vice versa. (b) The topology of the physical qubits of superconducting
quantum processor. For QAP with m = 3, we select n = m2 working qubits denoted as qij and m
ancilla qubits denoted as ai with the structure shown on the right. Each qubit qij maps to the element
Xij in the permutation matrix and suffice the constraints that each row and column has only one |1⟩.
(c) The overall circuit for QAP with all the working and ancilla qubits is named the same as in (b).

where HQAP ∈ R2n×2n , and σz is the pauli-z matrix. Thus, we need n = m2 qubits to solve QAP.

3.2 HWP ansatz for Combinatorial Optimization

The QAP can be seen as optimizing a matrix X ∈ {0, 1}m×m with each row and each column
having only one non-zero element. We can easily map the permutation matrix to the topology of the
superconducting qubits as illustrated in Fig. 2(b). The coupler denoted as ci between two qubits stands
for the allowance of two-qubit gates between the corresponding two qubits. It shows a commonly
used topology [3, 34] for superconducting quantum processors with each qubit connected to its four
nearest neighbors through couplers. This kind of topology on the NISQ device can produce better
connectivity than the nearest neighbor connectivity for logical qubits where each logical qubit is
connected to only two nearest neighbors. Therefore, we aim to make full use of the qubit topology to
provide an algorithm that is suitable for those existing superconducting quantum processors.

Notice that if we map each element in matrix X to a qubit, we can easily adopt the HWP ansatz
to meet the constraints of QAP. Each row and column of the qubits have exactly one |1⟩ with the
rest as |0⟩, which can be converted to an HWP problem with dimension as dk =

(
m
1

)
. Without

loss of generality, we apply m independent HWP ansatz on the row and we utilize a projective
measurement on the column to ensure the post-measurement states are feasible states for QAP. Here
we will introduce how to use parity check circuit to implement the projective measurement with only
one ancilla qubit for each column. Since each column has exactly one |1⟩, a sufficient and necessary
condition for QAP is that the parity check results for all m columns are all odd.

A detailed circuit for parity check is illustrated in Fig. 2(c). HWP ansatz is applied on each row of
physical qubits and parity check is applied on each column. We repeat the NN connected HWP layers
for L times and then apply a parity check on each ancilla qubit. After measuring the ancilla qubits,
we flip the working qubits back and reset the ancilla qubits as |0⟩. The whole block is repeated T
times before we measure all the working qubits and calculate the loss. For the working qubits, the
initial state should be a trivial state in the QAP subspace that can be easily prepared such as the
identity permutation with qubit qii as |1⟩ and the rest as |0⟩. The overall parameterized evolution can
be written in the following unitary transformation:

UQAP (θ) =

T∏
t=1

(
P ×

L∏
l=1

UHWP (θt,l)
)
, (11)

where UHWP is the unitary of the HWP layer with θt,l as the parameters in block t layer l, and P
denotes the projective measurement by parity check. We utilize a cascade of CNOT gates to transfer
the parity information from working qubits to the ancilla qubits, which will not further include SWAP
gates in execution. Note that the parity check measurement on the ancilla qubits will not destroy
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Table 3: Results on QAP simulation with the best in bold and the best in soft constraints underlined.

CONSTRAINT METHOD dim
η poptimal

m = 3 m = 4 m = 5 m = 6 m = 3 m = 4 m = 5 m = 6

SOFT

HEA [46] 2n 0.7000 0.0000 — — 0.1746 0.0000 — —
QAOA [27] 2n 0.4715 0.5491 — — 0.2497 0.0000 — —
XYMIXER-NN [39]

(
n
m

)
0.5672 0.6927 — — 0.1998 0.0999 — —

XYMIXER-FC [39]
(
n
m

)
0.9957 0.4707 — — 0.8738 0.1196 — —

NBS-NN
(
n
m

)
0.7969 0.6046 — — 0.5495 0.0500 — —

NBS-FC
(
n
m

)
0.9975 0.4517 — — 0.8765 0.0788 — —

HARD
XYMIXER-HARD [39] m! 1.0000 0.9931 0.9837 0.9474 1.0000 0.8498 0.7500 0.3500
NBS-HARD m! 1.0000 0.9991 0.9919 0.9826 1.0000 0.9448 0.8500 0.5000

the in-constraint quantum states on the working qubits, so we are able to restrict the states without
collapsing the whole quantum system. After measuring the ancilla qubits, we flip back all the working
qubits and reset the ancilla qubits as |0⟩.
The parity checks can provide certain entanglement on the topological columns of qubits. The
quantum states on the working qubits before the first parity check is m independent pure states
denoted as |ψi⟩ with i ∈ [0,m) on each row. The quantum state can be written as:

δ1 = |0⟩⊗m

(m−1⊗
i=0

|ψi⟩
)(m−1⊗

i=0

|ψi⟩
)†

⟨0|⊗m
, (12)

where δ1 is a density matrix for block 1 before parity check. After the first parity check, the states on
the working qubits are transformed from m independent quantum states on the rows to feasible states
in the QAP subspace and other entangled states outside the subspace.

ρ1 =

2m−1∑
i=0

|i⟩ρ1(i) ⟨i| , (13)

where ρ1 is the density matrix for block 1 after parity check, and |i⟩ denotes the quantum states on
the ancilla qubits. We can see that the measurement changes the basis of δ1 and ρ1, resulting feasible
states for QAP in ρ1. Similarly, we denote the quantum state after the final parity check as

ρT =

2m−1∑
i=0

|i⟩ρT (i) ⟨i| . (14)

Since the quantum states on the working qubits are in QAP subspace if and only if the ancilla qubits
are all measured as |1⟩, the feasible final state on the working qubits is ρT (2

m − 1). The loss is:

LQAP = Tr
[
HQAP × ρT (2

m − 1)
]
, (15)

where HQAP is the Hamiltonian of QAP with definition in Eq. 10. We only update the parameters
based on those in-constraint states so that we are able to further find the optimal answer in the QAP
subspace. The expectation value of obtaining ρT (2

m − 1) is

E(pρT (2m−1)) =
m!

mm
, (16)

where pρT (2m−1) denotes the probability of obtaining ρT (2
m − 1) from all the possible states. We

can further derive the equation using the Stirling’s formula and we have

E(pρT (2m−1)) ≈
√
2πm(me )

m

mm
=

√
2πm

em
. (17)

The expectation of obtaining feasible states decreases exponentially with m. However, this order of
the expectation value is acceptable as the Ising model for QAP requires n = m2 qubits. We will
further show in the experiments that we generally have a better probability of obtaining feasible states
and this is much better than using soft constraints.

3.3 Simulated Experiments on Quadratic Assignment Problem
Dataset: We generated a dataset comprising random instances of QAPs, with 100 instances for each
size m = {3, 4, 5, 6}. Each instance includes a m × m distance matrix D and a flow matrix F,
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with elements Dij = Dji and Fij = Fji, drawn from a uniform distribution [0, 1]. Dij = Dji ∼
U(0, 1), Fij = Fji ∼ U(0, 1), i ̸= j.

Baselines. HEA [46]: the most commonly used quantum machine learning model with a simple
structure and only nearest neighbor connectivity is required; QAOA [27]: the originator of utilizing
VQA to solve QUBO problem; XYmixer [39]: hard constraints and is proved to be an HWP gate with
the Hamiltonian as HXY = σx ⊗ σx + σy ⊗ σy .

We apply soft constraints to the above baselines by adding a penalty term in the Hamiltonian with X
as the permutation matrix from the final state:

CPenalty =

m−1∑
i=0

(m−1∑
j=0

Xij − 1
)2

+

m−1∑
j=0

(m−1∑
i=0

Xij − 1
)2

(18)

LQAP−soft = ⟨ψ|HQAP |ψ⟩+ α× CPanelty, (19)
where |ψ⟩ is the final state and α is the penalty coefficient. Moreover, we adopt XYmixer as a HWP
gate in the proposed hard constraint paradigm to see the performance between different HWP gates.

Evaluation Metric: To better illustrate the performance difference across methods, we utilize the
approximation ratio η as the evaluation metric, defined as:

η =
Lmax − LQAP

Lmax − Lmin
, (20)

where Lmax and Lmin denote the maximum and minimum loss for in-constraint states. For an
infeasible state, the loss LQAP is equal to Lmax, so the approximation ratio η = 0. For an in-
constraint state, η is a value between 0 and 1, and it evaluates the overall performance. Apart from the
approximation ratio, we also evaluate the methods based on the probability of obtaining the optimal
solution denoted as poptimal. We utilize both metrics to avoid the situation that we converge to a
second-best solution which yields high η and low poptimal.

Hyperparameter Setting: In this section, we will discuss two crucial hyperparameters namely the
penalty weight α for soft constraints and the number of parity checks T for hard constraints. We first
analyze the number of parity checks required in our model. This experiment is conducted with L× T
remains to be a constant so that adding parity checks will not increase the number of parameters.
From Fig. 5, we can see that the probability of obtaining feasible states from the last parity check
declines slowly, but the probability of obtaining an optimal solution requires a specific number of
parity checks. Moreover, parity checks with excessively small intervals might cause the in-constraint
states to be trapped at the initial state as the HWP layers in between two parity checks are not able to
transfer the initial state to other feasible states. Thus, we set the number of parity checks T = 4 to
balance the circuit depth and the quality of results. (Details analysis for penalty weight α for soft
constraints are in Apx. F.2)

Results on simulators: The results are shown in Tab. 3. We provide the dimension of the space
in which these approaches operate. When utilizing the soft constraints, HWP ansatz can reduce
the dimension from 2n to

(
n
m

)
. However, when we use hard constraints, the dimension before the

parity check is mm and it further decreases to m! which is exactly the problem complexity of QAP.
Considering the space of those methods, we are unable to provide results for baselines with soft
constraints for m = 5 (25 qubits) and m = 6 (36 qubits).

All the results for soft constraints are conducted regardless of the physical qubit topology. HEA,
XYmixer-NN, and NBS-NN satisfy the nearest neighbor topology while QAOA, XYmixer-FC, and
NBS-FC require full connectivity of the qubits. We set the penalty α = 1 for all the soft constrained
baselines based on the analysis in Fig. 5. The results show that: (1) HWP ansatz with soft-constraints
are generally better than QAOA and HEA; (2) the dimension of DLA of HWP ansatz matters to
the results see Tab. 4; (3) FC leads to better exploration of the subspace and will lead to more
out-of-constrained states, which indicates lower η when α is set the same as NN.

Table 4: DLA dimension when n = m2.
NBS XYmixer

NN FC NN FC

(
n
m

)2 (
n
m

)2 n2 − 1 n is odd
1
2
n(n− 1) n is even

(
n
m

)2 − 1

While soft constraints often face difficulties in identifying
optimal solutions at larger scales, hard constraints consis-
tently demonstrate notable effectiveness and robustness.
For the hard constrained methods, we show results with
NN connectivity only since our method is qubit topology
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Figure 3: Results for QAP on quantum processor. The upper one is results on noiseless simulator as a
standard, the lower one is on superconducting quantum processor, under the same parameter setting.
oriented. XYmixer can obtain a relatively high approximation ratio but with a rapid decrease in the
probability of obtaining the optimal solution as m increases. The results verify the capability and
efficiency of our hard constrained method as well as the expressivity of the proposed NBS gate.

3.4 QAP on Superconducting quantum processors
We further conduct the experiment with a superconducting quantum processor. The 12 qubits (see
Fig. 4) are chosen from a 66-qubit superconducting quantum processor. The processor has qubits
lying on a 2D lattice, and the qubits are capacitively coupled to their four nearest neighbors. Detailed
information about this processor is listed in Sec.D.2. None of the experiments on the quantum
processor involve quantum error mitigation methods to post-process data. Considering the qubit
quality and coupling strength, here we only conduct experiments for the case of m = 3 for QAP, as a
primary verification of the feasibility of executing the algorithm on quantum processors. Detailed
hyperparameter setting see Apx. F.1

Evaluation Metric: Apart from the approximation ratio η and the probability of obtaining the optimal
solution poptimal used for the simulator, we introduce two more metrics to analyze the performance
on the quantum processor. The first one is the approximation ratio for the in-constraint solution
denoted as ηin. Since all the infeasible solutions are counted as 0 in η, ηin can be seen as the true
approximation ratio. Thus, it is very important to include the probability pin of obtaining feasible
solutions from all the output solutions as the second metric. Since the circuit error will greatly
infect the solutions and η will become very small, ηin can enlarge the difference when conducting
experiments on the quantum processor.

Results: The numerical results on the quantum processor are illustrated in Fig. 3. Quantum noise
greatly affects the results, although we only utilize twelve qubits. QAOA and HEA demonstrate
better performance with very few parameters and shallow circuits. All the methods requiring full
connectivity will include SWAP gates during compilation, which leads to worse performance on the
quantum processor. Our method consistently outperforms other soft constrained methods over all the
metrics and further enlarges the overhead when executed on the quantum processor, except for HEA
on pin since HEA is extremely shallow and it may perform better on quantum processor some time.
We believe the results will be much better if deeper circuits and more two-qubit gates are allowed.
Notice that the parity checks on the columns are also able to correct the bit flip errors on the column.
This may be another reason why we can achieve better performance with noise.

4 Conclusion and Limitations
In this paper, we first demonstrate the efficiency of HWP ansatz on ground state energy estimation
problem and explain why HWP ansatz is a perfect testbed for parity check. Results on simulator with
noise verify that parity check is a powerful error mitigation method for HWP ansatz. We then propose
a novel method to utilize parity check as projective measurement to enforce further hard constraints
for HWP ansatz. Intensive experimental results on QAP on both simulator and superconducting
quantum processor illustrate the superior performance against peer VQA methods relying on soft
constraints. To conclude, we provide detailed evidence in this paper to show that the combination
of HWP ansatz and parity check is among the most promising candidates to demonstrate quantum
advantages in the NISQ era to solve realistic problems.

Limitation and Future Work: We are aware that quantum algorithms might not exhibit any
advantage (at least currently) under inevitable quantum noise and the extremely small problem size.
However, we believe this paper still break through the upper limit of existing constrained quantum
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algorithms for CO. We will further study the performance of our methods on inequality constraints in
future. At the moment, our work does not have any negative societal impacts.
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A Related Work
In this section, we first briefly review the related works of this paper. A typical way for quantum
computers to solve the optimization problem is to transform the optimization problem into a Quadratic
Unconstrained Binary Optimization (QUBO) problem and then model the QUBO problem using
the Ising model. The Ising model can be solved with variational quantum algorithms (VQAs) with
QAOA [27] as the most famous one. However, this paradigm is not natively designed to deal with
constraints. Thus, we need to develop special strategies for constrained optimization problems to be
solved on quantum computers.

Existing approaches tackle constraints either by adding soft constraints to the Hamiltonian [76, 23, 20],
or hard constraints to the quantum circuit [39, 30, 61]. Soft constraints are easy to realize but are
hindered by the problem of balancing the objective and constraints [80], which makes hard constraints
a better choice in general. However, hard constraints are quite hard to enforce on the quantum
circuit since it is impossible to restrict the quantum state to a smaller subspace only by unitary
transformations. Different from designing hard constrained ansatz from mining in all the gates, the
very recent work [78] proposed a pipeline to analyzing an HWP ansatz. However, they have not yet
figured out a proper way to estimate the dimension of the Dynamic Lie Algebra (DLA) of different
HWP gates.

QAP, as one of the most significant NP-hard CO problems [68], is defined as finding a minimum cost
allocation of facilities to locations, with the costs being the sum of all possible distance-flow products.
There have been only very few quantum algorithms for QAP due to the constraints. [71, 49, 4, 21]
focus on using soft constraints to solve QAP and [80] utilize QNN to learn from data oriented QAP
with constraints are enforced by classical Sinkhorn layer.

Finally we also briefly mention the develop in classic machine learning for solving combinatorial opti-
mization [8], especially those with hard constraints, whereby the constrained are mostly incorporated
by penalty term [47]. While some exceptions [74, 75] design specific neural layers to accommodate
the permutation constraint or others. By contrast, in this paper, we focus on the quantum realm.

A.1 LDPC
Classical LDPC codes, first proposed by Gallager in 1962 [31], are binary linear codes defined by a
paritycheck matrix H . These codes have seen renewed interest due to their low bit error rates under
fixed signal-to-noise ratios, particularly with the development of turbo codes and iterative decoding
techniques. The defining properties of LDPC codes are: 1) Each row contains ρ ones. 2) Each column
contains γ ones. 3) The number of ones in common between any 2 columns, denoted λ, is at most 1.
4) Both ρ and γ are small relative to the code length.

Quantum LDPC codes extend the principles of classical LDPC codes into the quantum domain,
functioning as stabilizer codes where the stabilizer generators are low-weight operators, thus ensuring
efficient error correction in quantum systems. Significant advancements in QLDPC codes began
with the introduction of CSS codes [16], which utilized classical codes for quantum error correc-
tion. MacKay et al. [56] pioneered sparse graph-based QLDPC codes, enhancing error correction
efficiency. Hagiwara and Imai [40] developed quantum quasi-cyclic LDPC codes, which simplified
encoding and decoding processes. Camera et al. Gottesman [35] demonstrated that QLDPC codes
could significantly reduce the overhead required for fault-tolerant quantum computing. Recent
advancements include work by Baspin and Krishna [6], who explored connectivity constraints and
provided bounds on code distance and dimension. Panteleev and Kalachev [63] demonstrated the
existence of asymptotically good QLDPC codes by leveraging the lifted product construction over
non-abelian groups. Additionally, Gu et al. [37]showed that quantum Tanner codes enable single-shot
error correction, crucial for practical fault-tolerant quantum computing. LDPC codes are widely
regarded as the most promising approach for realizing quantum error correction. However, there is
currently no clear evidence of their application on real-world quantum ansatz [12].

A.2 Constrained Quantum Optimization
Constrained Optimization is one of the most focused applications in the quantum computing domain.
For unconstrained optimization problems, quantum processors have established methods, typically
involving the transformation of optimization problems into QUBO problems, subsequently reformu-
lated as Ising models, and ultimately solved using Variational Quantum Algorithms. Thus, the key to
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solving Constrained Optimization lies in handling constraints, which are divided into soft constraints
that encode penalty terms into the Hamiltonian, and hard constraints that restrict the evolutionary
space using quantum circuits.

Soft Constraints

The soft constraint method, currently the most commonly employed, incorporates penalty terms
into the objective function, offering adaptability to a wide range of constraints and high versatility.
However, the quality of the solution is highly sensitive to the balance between the objective and
constraints [76]. Under soft constraints, quantum circuits may return all infeasible and feasible solu-
tions, with penalty terms ensuring a higher probability of feasible solutions appearing in the outcome.
This approach requires the algorithm to explore the entire Bn space, where Bn represents the binary
string typically equivalent to the number of qubits. Compared to the feasible space of solutions, this
represents a significantly larger search domain, leading to a decrease in the feasibility rate and search
efficiency of solutions.There is extensive research on methods employing soft constraints.For instance,
the Constrained Binary Model solver (CQM) developed by D-Wave[23] incorporates a series of
linear constraints and inequality constraints.[20]discusses various approaches to encoding constrained
optimization and constraint satisfaction problems into QUBO issues, specifically targeting problems
that involve at most one constraint.[26] utilizes the quantum phase estimation method, which enables
the search for an item in a sorted or unsorted database. However, it does not guarantee a feasible
solution.[11] primarily addresses the constraints of quantum annealing hardware and proposes new
algorithms for mapping Boolean constraint satisfaction problems onto quantum annealing hardware.

Hard Constraints

Hard constraints involve restricting quantum evolution within a in-constraint subspace, ensuring
that all obtained solutions are feasible.Hard constraints involve restricting quantum evolution within
an in-constraint subspace, ensuring that all obtained solutions are feasible. However, most hard
constraint methods are still only capable of solving specific and relatively simpler forms of problems.
An example of this approach is the Quantum Alternating Operator Ansatz(QAOA-c) proposed by [39].
This method is an extension of QAOA and allows for alternation between families of unitary operators
with general parameterizations. The challenge with QAOA-c lies in the complexity of implementing
constraint-preserving mixers and the necessity to introduce a large number of auxiliary qubits, leading
to a lack of universality. Under current hardware conditions, preparing a uniform superposition
of constrained states also presents a significant challenge.[30]Additionally, this approach suffers
from limited flexibility in its application.There has been much research related to QAOA-c. For
instance, [61] executed the Quantum Alternating Operator Ansatz algorithm on a trapped-ion quantum
computer, utilizing Hamming-weight-preserving XYmixer circuits to restrict quantum evolution to
the in-constraint subspace. [69] proposed the dynamic quantum variational ansatz, which dynamically
adapts to ensure maximum utilization of a fixed allocation of quantum resources.

In addition to QAOA-c and its derivative algorithms, there are also works on other hard con-
straint methods. For example, [78] analyzed the capability, expressivity, and trainability of
Hamiltonian-weight preserving ansatz and verified these theoretical results on the unitary approxima-
tion problem.[42] restricts quantum evolution to the constrained subspace through repeated projective
measurements. However, this method has not been effectively validated on many quantum gates and
is particularly sensitive to the number of measurements.

A.3 Quadratic Assignment Problem
The Quadratic Assignment Problem (QAP) is defined as finding a minimum cost allocation of
facilities to locations, with the costs being the sum of all possible distance-flow products. The QAP
is one of the most significant combinatorial optimization problems, and it has been proven to be
NP-hard [68].

Classic Algorithms

The predominant methodologies for solving this encompass the exact, heuristic, and metaheuristic
approaches. In the following sections, we will discuss these methodologies and present typical
techniques within each category.

Obtaining exact solutions for QAP is extremely challenging, and current methodologies are only
capable of achieving global optimal solutions for small-scale QAP instances. Existing approaches
include branch-and-bound, cutting planes, or combinations of these methods. The branch-and-
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bound algorithm[57, 2] commences with a heuristic-derived initial feasible solution, setting the
upper bound, and then segments the problem into lower-bounded sub-problems. [1]The cutting
planes method[7] employs Mixed Integer Linear Programming formulations but is characterized by
extended computational times. The branch-and-cut algorithm[62] amalgamates the aforementioned
methodologies, offering an advantage over cutting planes as the cuts are associated with the polytope’s
facets, enabling swifter convergence.Additionally, dynamic programming[55] is another method[19]
for obtaining exact solutions , yet it is incapable of running in polynomial time.

Heuristic methods, although unable to guarantee optimal solutions, can yield reasonable solutions
within a shorter time frame.Numerous heuristic methods have been proposed for addressing QAP.
For instance, [32] introduced the constructive method. [14] applied enumerative methods, and
improvement methods were utilized by [15].

Metaheuristics represent a more universal paradigm, essential to which are a priori strategies adapted
to the problem structure. Metaheuristics can be categorized into single-based solutions and population-
based solutions.[1] For instance, Simulated Annealing [51] is a type of single-based solution, while
Genetic Algorithms [43] fall under population-based solutions. Other methods include Scatter
Search[33] and Ant Colony Optimization[25].

Quantum Algorithms

Due to the complexity of QAP, there are currently few quantum solvers specifically designed for QAP.
Most of the existing solvers predominantly employ the method of soft constraints.[49, 50]utilize
traditional soft constraint encoding, experiments were conducted on IBM’s quantum devices using the
VQE and Quantum QAOA solvers, respectively.[54]focuses on solving sparse Quadratic Assignment
Problems (QAP), the approach involves transforming quadratic terms generated by penalty items
into linear terms, followed by a post-processing step to derive feasible solutions. [80]presents the
construction of a novel quantum neural network, whereby feasible solutions are obtained through
classical post-processing. [4]focuses on extending the method to bi-objective QAP expressed in the
form of Quadratic Unconstrained Binary Optimization (QUBO), without altering the original soft
constraints.[71, 21]employ quantum annealing to solve problems, similarly incorporating constraints
as penalty terms.[9]proposes an approach of updating cycles as a substitute for constraints in QAP.
However, the energy calculation for cycles is only feasible for certain specialized versions of QAP,
such as the three-dimensional shape correspondence problems highlighted in the paper.

B Preliminaries
We will first introduce one of the most common type of symmetry-preserving ansatz, namely the
HWP ansatz, and basic ideas of parity check in the quantum circuits. Then we will provide details
about quantum computing and machine learning.

B.1 Hamming Weight Preserving Ansatz
Now we give a brief review of the Hamming Weight Preserving ansatz. The HWP ansatz aims to
solve a fundamental physical symmetry which is the number of spin-ups in the quantum states. For a
n-qubit quantum system with the number of |1⟩s in the quantum states is k, we say that this problem
is in an HWP subspace with the dimension of the subspace as dk =

(
n
k

)
. The work [78] provides a

detailed definition of the HWP ansatz as well as a thorough analysis of the expressivity, capability,
and trainability of the ansatz.

For two-qubit HWP situation, all four basis states {|00⟩ , |01⟩ , |10⟩ , |11⟩} have three Hamming
weights: 0, 1, and 2. Thus, a two-qubit HWP gate should only operate on basis states |01⟩ and |10⟩.
The general form of the two-qubit HWP gates is:

HHW =

 0 0 0 0
0 a b 0
0 b̄ c 0
0 0 0 0

 , (21)

where a, c ∈ R, b ∈ C, and b̄ denotes the conjugate of b. HHW is a Hermitian matrix that satisfies
H†

HW = HHW . Taking the Hermitian matrices of the allowed gates as generators, we have a set of
generators G = {Hp}Pp=1, we can define the Dynamical Lie Algebra (DLA):

g = span ⟨iH1, iH2, · · · , iHP ⟩Lie , (22)
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where ⟨·⟩Lie denotes the Lie closure. We then repeatedly take the commutators of the elements in the
generator set. For a N -dimensional quantum system, we have the following important theorem [66].
Theorem B.1. [66] A necessary and sufficient condition for complete controllability of a N -
dimensional quantum system Ĥ is that the dimension of the DLA g is N2 where N is the dimension
of quantum system.

B.2 Quantum Chemistry

We provide the definition of annihilation operator and creation operator in second quantization.
Definition B.2.

a†i =

(
0 1
0 0

)
, aj =

(
0 0
1 0

)
, (23)

where aj denotes the annihilation operator on qubit j and a†i denotes the creation operator on qubit i.

B.3 Quantum Computing
In quantum computing, ‘qubit’ (abbreviation of ’quantum bit’) is a key concept which is similar
to a classical bit with a binary state. The two possible states for a qubit are the state |0⟩ and |1⟩,
which correspond to the state 0 and 1 for a classical bit respectively. We refer the readers to the
textbook [60] for comprehension of quantum information and quantum computing. Here we give a
brief introduction to the background.

A quantum state is commonly denoted in bracket notation. It is also common to form a linear
combination of states, which we call a superposition: |ψ⟩ = α|0⟩ + β|1⟩. Formally, a quantum
system on n qubits is an n-fold tensor product Hilbert space H = (C2)⊗d with dimension 2d. For
any |ψ⟩ ∈ H, the conjugate transpose ⟨ψ| = |ψ⟩†. The inner product ⟨ψ|ψ⟩ = ||ψ||22 denotes
the square of the 2-norm of ψ. The outer product |ψ⟩⟨ψ| is a rank 2 tensor. Computational basis
states are given by |0⟩ = (1, 0), and |1⟩ = (0, 1). The composite basis states are defined by e.g.
|01⟩ = |0⟩ ⊗ |1⟩ = (0, 1, 0, 0).

B.4 Quantum Machine Learning
[17] proposed the concept of Variational Quantum Algorithms (VQA), which leverages quantum
advantages to solve machine learning problems on a near-term quantum device. Then, Parameterized
Quantum Circuits (PQC) are the concrete implementation of certain VQA. For each qubit we have
rotation operator Rx(θ) which rotate through angle θ (radias) around the x-axis. A PQC is mainly
composed of Rx(θ), Ry(θ) and Rz(θ) with θ as the parameters. The parameters θ are updated by a
classical optimizer to minimize the loss function L(θ) which evaluates the dissimilarity between the
output of PQC and the target result. The derivative of the i-th parameter θ(i) can be computed by
using the shifting technique proposed by [59]. It requires running the whole circuit twice but with
shifting θ(i) to θ(i) + π/2 and θ(i)− π/2

∂L
(
θ)

∂θ(i)
=
1

2
×
(
L
(
θ(1), · · · ,θ(i) + π

2
, · · ·

)
− L

(
θ(1), · · · ,θ(i)− π

2
, · · ·

))
(24)

C Proof of Theorem 2.3

We first restate the theorem:
Theorem. An ansatz U(θ) can solve the ground state energy estimation problem without truncation
if the ansatz is universal under the dk-dimensional HWP subspace.

Proof. Firstly, the ground state energy estimation problem has the physical symmetry that the number
of total spins and total particles will not change during the evolution. So the final state will have
exactly the same number of |1⟩s as the initial state (usually the Hatree-Fock state). Thus, the
ground state energy estimation problem can be solved within a HWP subspace with the dimension as
dk =

(
n
k

)
.
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Figure 4: Selected qubits on the superconducting quantum processor

Secondly, an ansatz U(θ) is universal if and only if the reachable unitary matrices from arbitrary
parameters θ satisfies:

{U(θ)}θ = SU(dk), (25)

where {U(θ)}θ denotes the reachable unitary matrices from arbitrary parameters θ and SU(dk)
denotes the super unitary group with dimension as dk. Thus, we can approximate any unitary matrix
within the HWP subspace with arbitrary precision by optimizing the parameters in the universal
ansatz.

Back to the ground state energy estimation problem. Since we are finding the optimal eigenstate
with the smallest eigenvalue, we can take this problem as a state preparation problem. If we have
a universal ansatz in HWP subspace, then we can reach arbitrary state in the HWP subspace with
any legit initial state. Therefore, we conclude that the ansatz U(θ) can solve the ground state energy
estimation problem without truncation if the ansatz is universal under the dk-dimensional HWP
subspace.

D Implementation Detail

All the numerical simulations are performed on a machine with 190GB memory, one physical CPU
with 32 cores AMD Ryzen Threadripper 3970X CPU, and 5 GPUs (Nvidia GeForce RTX 3090).
We implement a Python quantum simulator so that we are able to simulate a quantum system for
our method with up to 42 qubits (m = 6 with ancilla qubits). Implementation details are shown in
Appendix D.1. The results on the quantum processor are conducted on a superconducting quantum
processor with detailed information shown in Appendix D.2.

D.1 Implementation Detail for the Classical Simulator

self-built simulator Since the quantum circuit of the proposed hard constrained method is executed
in the mm dimensional subspace, we utilize a implementation trick to reduce the dimension of the
simulation. For a traditional quantum simulator based on quantum states, the space we need to store
a quantum state is 2m×m. However, we can utilize a mapping function to map the corresponding
state to the mm dimensional vector. For each two-qubit gates on the row, the gate is operating on a
m ∗ 1 dimensional quantum state, which indicates the gate is a m×m unitary operator. Therefore,
the time complexity of applying a quantum gate on the state is O(mm−1m2), which is much faster
than O(2m×m). Moreover, to simulate the projective measurement, we simulate the results on the
shot basis, enabling us to simulate the in-circuit measurement.

D.2 Implementation Detail for Superconducting Quantum Processor

In the experiment, we utilized a 12-qubit Superconducting Quantum Processor with an intercoupled
topology as shown in the Fig. 4.Tab. 5 presents the performance information regarding Single-Qubit
Operations, while Tab. 6 presents the fidelity of the controlled-Z gate between two qubits.
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Qubit q00 q01 q02 q10 q11 q12 q20 q21 q22 a0 a1 a2

ω/2π(GHz) 4.8661 4.6814 4.6302 4.9031 4.7910 4.7097 4.8504 4.9323 4.8387 4.709 4.5704 4.7247
T1(µs) 26.298 33.374 28.819 28.239 20.626 36.092 21.695 24.781 28.757 31.169 37.170 31.313
T ∗
2 (µs) 2.8271 2.6789 2.2952 5.8565 2.9713 3.1998 3.8482 4.8506 1.873 4.459 1.6298 1.1544

F0 0.9414 0.9222 0.9168 0.9242 0.9268 0.9478 0.9400 0.9206 0.9592 0.9364 0.9604 0.9240
F1 0.8732 0.8022 0.8690 0.8062 0.7378 0.8686 0.8430 0.8166 0.8484 0.703 0.8404 0.8276
FG 0.9990 0.9993 0.9992 0.9993 0.9992 0.9994 0.9991 0.9993 0.9989 0.9993 0.9987 0.9989

Table 5: Performance of Single-Qubit Operations. ω is the working frequency. Coherence times T1
and T2∗ representing the energy relaxation time and dephasing time. The term F0 (F1) represents
the readout fidelity, specifically denoting the probability of accurately measuring the qubit state in |0⟩
(|1⟩) after it has been successfully initialized in the |0⟩ (|1⟩) state. FG denotes the gate fidelity of
native gates.

Qubit q00 q01 q02 q10 q11 q12 q20 q21 q22 a0 a1 a2

q00 - 0.9839 - 0.9827 - - - - - - - -
q01 0.9798 - 0.9806 - 0.9778 - - - - - - -
q02 - 0.9806 - - - 0.9798 - - - - - -
q10 0.9827 - - - 0.9868 - 0.9867 - - - - -
q11 - 0.9778 - 0.9868 - 0.9852 - 0.9840 - - - -
q12 - - 0.9798 - 0.9852 - - - 0.9873 - - -
q20 - - - 0.9867 - - - 0.9880 - 0.9822 - -
q21 - - - - 0.9840 - 0.9880 - - - 0.9783 -
q22 - - - - - 0.9873 - - - - - 0.9791
a0 - - - - - - 0.9822 - - - - -
a1 - - - - - - - 0.9783 - - - -
a2 - - - - - - - - 0.9791 - - -

Table 6: The controlled-Z gate fidelity between qubit pairs, which is symmetric along the main
diagonal due to the undirected nature of qubit coupling.

E Further Experimental Results for Parity Check as Error Mitigation

E.1 Hyperparameter Setting

Here we provide the noise levels we used in the experiments. We set the depolarizing error for single
qubit as 1.6 × 10−3 and for two-qubit gates as 6.4 × 10−3. The bit-flip and phase-flip error for
each gate are set as 5× 10−3. We also set a 1× 10−2 readout error for obtaining |1⟩ given |0⟩, and
5× 10−2 vise versa. To simulate the computing way on quantum computers, we set the number of
shots per Pauli string in the measurement stage at 5000, which makes at least 500,000 shots in total
for LiH and H2O since they all have more than 100 Pauli strings.

E.2 Sensitivity Analysis on the Number of Parity Checks

Now we discuss the impact of the number of parity check layers. It is clear that more parity checks
can reduce the probability of errors but it also brings in more CNOT gates which can also hinder the
results. Thus, it is crucial to seek equilibrium in the number of parity checks in the NISQ era. From
the results in Tab. 7, we conclude that applying a parity check for every 6 HWP gates can achieve the
best performance. Thus, we insert 2 parity check blocks for H2 and 10 blocks for LiH and H2O. We
omit the analysis on H2 since the ansatz is very shallow for H2. Consider that we have 63 HWP gates
in the 8-qubit ansatz, we set the number of parity checks as 6, 8, 10, 12, 15, which is a parity check
per 10, 8, 6, 5, 4 gates respectively. The results illustrate that a parity check for every 6 HWP gates
can have the best performance considering the additional CNOT gates brought in by parity checks.

E.3 Ansatz statistics

Detailed statistical information for both UCC ansatze and the proposed HWP ansatz in Tab. 8. We
provide the number of gates, number of CNOT gates and the number of parameters to show the
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energy error num_PC=6 num_PC= 8 num_PC=10 num_PC=12 num_PC=15

LiH 0.657022752 0.661989975 0.600911213 0.65741316 0.675546743
H2O 0.748342082 0.72675715 0.688285861 0.743041427 0.745211306

Table 7: Sensitivity analysis on the number of parity checks for the proposed HWP ansatz. The best
results are in bold.

H2 LiH H2O
UCCS UCCSD ours UCCS UCCSD ours UCCS UCCSD UCCSDT ours

num_gates 32 107 84 108 1067 441 144 2002 5871 441
num_CNOT 8 56 36 48 732 189 64 1376 4304 189
num_params 2 3 12 6 15 63 15 26 34 63

Table 8: Statistics for UCC and proposed HWP ansatze.
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Figure 5: From left to Right. (a) and (b) Sensitivity study on penalty weight α: (a) XYmixer-NN
with m = 3; (b) XYmixer-FC with m = 4. (c) and (d) Sensitivity study on the number of parity
checks T . (c) NBS-NN with m = 5; (d) NBS-NN with m = 6.

difference between the baseline methods and ours. It is shown that the proposed HWP ansatz can
achieve precise energy results with much shallower circuit than UCCSD and UCCSDT.

F Further Experimental Results for Parity Check as Further Constraints

F.1 Hyperparameter Setting

QAP on simulator: The layer of XYmixer-FC, NBS-FC, HEA, and QAOA are set to 2×m and
XYmixer-NN, NBS-NN, XYmixer-hard, and NBS-hard have the same number of parameters as
NBS-FC. Learning rate is set to 0.05 and the number of iterations is 1000.

QAP on Superconducting Quantum Processors: Due to limited coherence time and noise, the
parameter setting is a bit different from that on the simulator. We are only able to apply one layer of
NBS-FC considering the number of CNOTs, so the rest of the methods are set with the same amount
of parameters as one layer of NBS-FC. As QAOA has a parameter-sharing strategy, we set its number
of layers as 2. For NBS-Hard, we set T = 2. Each circuit is measured with 20K shots.

F.2 Sensitivity Analysis for QAP

The penalty weight is very sensitive and may vary significantly with different models and different
problem sizes. We set α = 1 as a constant based on the sensitivity results on XYmixer since it is
impossible to fine-tune α for each instance. As illustrated in Fig. 5, the approximation ratio η achieves
a peak at α = 1 (figures for other scenarios are listed in Fig. 6). We provide η as the approximation
ratio for all states, ηin as the approximation ratio for feasible states, and pin as the probability of
obtaining feasible states. We observe that smaller α leads to a better in-constraint approximation
ratio but a relatively small in-constraint probability. A large α leads to a high pin, yet it results in
convergence to a random in-constrain state due to the dominance of the penalty term.

F.3 Simulated Experiments on TSP
Reduction to QAP: The complexity of QAP lies in its inclusion of dual relationships, namely the
interrelations between locations and the interactions between facilities. When the dual relationship is
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Figure 6: Sensitivity study on penalty weight α. From left to right. (a) XYmixer-FC with m = 3. (b)
XYmixer-FC with m = 4. (c) XYmixer-NN with m = 3. (d) QAOA with m = 3.

Table 9: Results on the simulator for TSP with the best in bold and the best results by soft constraints
are underlined.

CONSTRAINT METHOD dim
η poptimal

m = 3 m = 4 m = 5 m = 6 m = 3 m = 4 m = 5 m = 6

SOFT

HEA [46] 2n 0.7885 0.0009 — — 0.6500 0.0000 — —
QAOA [27] 2n 0.7242 0.6686 — — 0.4996 0.1996 — —
XYMIXER-NN [39]

(
n
m

)
0.6857 0.7355 — — 0.5497 0.3995 — —

XYMIXER-FC [39]
(
n
m

)
1.0000 0.7096 — — 1.0000 0.4531 — —

NBS-NN
(
n
m

)
0.9975 0.8042 — — 0.9492 0.3495 — —

NBS-FC
(
n
m

)
1.0000 0.5834 — — 1.0000 0.1815 — —

HARD
XYMIXER-NN [39] m! 1.0000 0.9991 0.9920 0.9670 1.0000 0.9500 0.8500 0.6500
NBS-NN m! 1.0000 1.0000 0.9933 0.9698 1.0000 1.0000 0.9000 0.7500

simplified to a singular relationship, the problem evolves from a complex assignment decision to a
singular sequence or path problem, which is the quest for a Hamiltonian cycle with minimal cost,
degenerating QAP into the Traveling Salesman Problem (TSP) formulated as:

min
∑
k,p

Dkp

∑
i

XikX(i⊕1)p, (26)

where i⊕ 1 = (i+ 1) mod m. Therefore, TSP can be considered as a special case of QAP under
specific simplified assumptions, enabling us to utilize QAP solvers directly for deriving solutions to
TSP problems.

Dataset: Similar to the QAP dataset, we generate a dataset of random TSP instances, with 100
instances for each size m = {3, 4, 5, 6}. For each TSP instance, we included a m × m distance
matrix D, which was constructed using randomly generated real points [72].

Results on Simulator: The results in Tab. 9 demonstrate a similar pattern as those of QAP. Notice
that the TSP problem can be solved by dynamic programming with the algorithm complexity as
O(n22n) [22], it is theoretically a simpler problem than QAP. This explains why all the methods
perform better on TSP. The results further verify the capability and efficiency of the proposed hard
constrained method.
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Answer: [Yes]
Justification: We mentioned our hyperparameter settings in section 2 and section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will make our code available after the publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides comprehensive details about the experimental setup,
including the training and test data splits, the choice of hyperparameters. Additionally, full
details are provided in the Appendix D .
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation in Table. 2 . For each noiseless case, We run
10 times with different seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mentioned the compute resources in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, our research conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive and negative societal impacts in Sec. 4.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use the existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce the new assets about QAP problem, and the corresponding details
are demonstrated in Sec. 3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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