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Abstract—Sensation-seeking, as a sub-dimension of impulsivity,
reflects an individual’s tendency for novel and stimulating experi-
ences. High sensation-seeking often involves novelty-seeking and
risk-taking, which may lead to risky behaviors such as reckless
driving, addiction, and substance use, significantly impacting
individuals’ social and personal functioning. Recent studies
have utilized functional magnetic resonance imaging (fMRI) to
study the neural mechanisms of sensation-seeking. However, the
influence of demographic factors like age on the neural patterns
associated with sensation-seeking remains unexplored. In this
paper, we predicted sensation-seeking scores from resting-state
fMRI data in a large-scale study involving 131 male participants
aged 20 to 79. By developing separate predictive models for
different age groups (age-specific model), we achieved an R2 of
0.38 between the actual and predicted sensation-seeking scores.
The proposed age-specific model significantly outperformed the
baseline that fitted a single model for the entire dataset, indicating
the importance of demographic factors in understanding the
neural correlates of sensation-seeking. We identified key brain re-
gions associated with sensation-seeking, including the prefrontal
areas, cerebellum, subcortical regions, parietal lobe, and cerebral
cortex areas. Notably, the brain connectivity patterns linked to
sensation-seeking varied across age groups, further demonstrat-
ing the age-related variation in neural correlates of sensation-
seeking. Our proposed age-specific modeling of sensation-seeking
acknowledges the diversity in neural patterns across different
aging stages and potentially offers more accurate insights into
the neural correlates of sensation-seeking.

Index Terms—rs-fMRI, Function Connectivity, Sensation-
seeking, Age-specific modeling

I. INTRODUCTION

Impulsivity is a multifaceted construct characterized by
the tendency to act on impulse without considering the con-
sequences, often leading to unplanned actions. Sensation-
seeking, a sub-dimension of impulsivity, is characterized by
the tendency to seek for novel and thrilling experiences [1].
While sensation-seeking can sometimes drive creativity and
exploration, it is often linked to risky behaviors such as
reckless driving, alcohol dependence, risky sexual behaviors,
and mental health conditions, including substance use disor-
ders and psychopathic personalities [1], [2]. Understanding
sensation-seeking is crucial for developing interventions and
treatments for these conditions. Assessment of sensation-
seeking generally includes self-reported surveys and behav-
ioral assessments. Self-reported questionnaires include the
Zuckerman’s Sensation Seeking Scale (SSS) [3], the Impul-
sive Sensation Seeking Scale (ImpSS) [4], and the UPPS-
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P Impulsive Behavior Scale [5], which measure sensation-
seeking either on its own or as a sub-dimension of impulsivity.
Behavioral measures include various laboratory tasks such as
the Go/No-Go task, Stop-Signal Task, Balloon Analogue Risk
Task (BART), and Iowa Gambling Task (IGT), which assess
risk-taking behavior and response inhibition that correlates
with sensation-seeking tendencies [6], [7].

Many recent studies have investigated neuroimaging-based
approaches as an objective assessment of sensation-seeking.
Unlike subjective measurements such as questionnaires and
behavioral tests, neuroimaging approaches allow for direct
investigation of the neural mechanisms of sensation-seeking
that may help develop potential interventions or treatments.
Functional magnetic resonance imaging (fMRI) is a commonly
used neuroimaging technique to study brain activities. Previous
studies have employed fMRI to identify specific brain struc-
tures involved in sensation seeking [8]. For example, previous
studies have shown increased fMRI activations in the bilateral
ventral striatum, bilateral thalamus, and cerebellum during
reward expectation in healthy subjects—a characteristic often
associated with sensation-seeking [9]. High sensation seekers
exhibit notable differences in brain activity compared to low
sensation seekers, particularly in the prefrontal cortex and
anterior insula areas, in response to reward [10]. Additionally,
high sensation seekers show greater insula and posterior me-
dial orbitofrontal cortex responses to arousing stimuli, which
reflects their tendency for novelty-seeking [11]. Event-related
potential (ERP) studies revealed that high sensation seekers
show greater responses to novel objects in the N2 ERP
component observed over frontal brain regions, correlating
with fMRI responses in the orbitofrontal gyrus [12]. Sensation-
seeking is also linked to deficits in response inhibition, with
decreased activation in the right inferior frontal gyrus, pre-
frontal cortex, anterior cingulate cortex, and anterior lateral
orbitofrontal cortex [13]–[15]. In addition to related brain
activations and connectivity, previous studies have attempted
to predict sensation-seeking from brain imaging data. For
instance, Wan et al. predicted sensation-seeking from brain
functional connectivity with a correlation coefficient r = 0.34
between the predicted and actual values. The authors also iden-
tified significant connections between the medial orbitofrontal
cortex and the anterior cingulate cortex in predicting sensation-
seeking [16]. However, the study proposed a single prediction
model for the entire population, overlooking the variations
in brain development and connectivity across different aging
phases [17], which could be crucial for improving prediction
accuracy and understanding the neural correlates of sensation-



seeking.
To address the gap in previous studies regarding the po-

tential age-related differences in how brain activity relates
to sensation-seeking, we investigated age-specific prediction
models to improve the predictive accuracy of sensation-
seeking. We evaluated the modeling on the 131 male par-
ticipants from the MPI Leipzig Mind-Brain-Body (LEMON)
dataset. The male subset was selected for its larger sample size
and greater variability in sensation-seeking scores compared to
the female population in the dataset. This focus allowed us to
investigate age-related differences without the confounding ef-
fects of gender-associated differences (investigating the multi-
demographic factors requires an even larger and more gender-
balanced sample, and should be considered in future work).
Through unsupervised methods, we observed distinct age-
related clusters of functional connectivity features, indicating
varied functional connectivity distributions across age groups.
This variation suggested that the associations between func-
tional connectivity and sensation-seeking were not uniform
across ages. Therefore, we proposed an age-specific modeling
approach to capture these distinct brain connectivity patterns.
As a baseline, we used a single prediction model across all
ages, following prior research methodologies [16]. Our results
demonstrated that the age-specific model outperformed the sin-
gle all-ages model. By capturing the distinct brain connectivity
patterns present in different age groups, we achieved better
prediction and understanding of sensation-seeking traits.

II. MATERIALS AND METHODS

A. Data

1) Participants: The dataset used in this study is part of
the large MPI Leipzig Mind-Brain-Body (LEMON) dataset
designed to provide a comprehensive resource for studying
the complex relationships between mind, brain, and body func-
tions [18]. The dataset comprises multi-modal data, including
brain imaging data (MRI and EEG), cognitive assessments,
emotional measures, and peripheral physiology data collected
from 227 healthy participants. Participants were recruited at
the University of Leipzig, Germany, and the data collection
protocol was in accordance with the Declaration of Helsinki.
The participants fell into two age groups: a younger group
aged 20−35 (N = 153, 108 males) and an older group aged
59 − 77 (N = 74, 37 males). We excluded the participants
with incomplete sensation-seeking scores, and the final dataset
comprises 205 individuals, with 139 from the young age group
(aged 20−35, 96 males) and 66 from the old age group (aged
59−77, 35 males).

2) Self-reported sensation-seeking score: The LEMON
dataset measures sensation-seeking using the UPPS impulsiv-
ity questionnaire [19]. UPPS evaluates the level of impulsivity
across four sub-dimensions:

• Urgency: This sub-dimension describes the impulsive
tendency triggered by intense emotions.

• Lack of Premeditation: This refers to acting without
considering consequences beforehand.

• Lack of Perseverance: This involves difficulty in main-
taining focus on tasks.

• Sensation-Seeking: This reflects a preference for stimu-
lation and excitement, often leading to risky behaviors.

Participants rated 45 questionnaire items on a 4-point Likert
scale (1 = strongly agree to 4 = strongly disagree). Each
item relates to one of the impulsivity sub-dimensions, and the
aggregated score is used to assess impulsivity levels across
these sub-dimensions.

Figure 1 illustrates the distribution of sensation-seeking
scores across different age and gender groups. Notably,
sensation-seeking scores decrease with age, and males tend
to exhibit higher levels of sensation-seeking than females,
which aligns with previous literature [20]. Given the larger
sample size of males within each age range and the wider
dynamic range of sensation-seeking scores, our study focused
on examining age-related differences in the neural correlates
of sensation-seeking among the male population, remaining
insensitive to possible gender-related differences.

Fig. 1. Number of participants (a) and distribution of sensation-seeking scores
(b) across different age and gender groups.

3) MRI data acquisition: Functional magnetic resonance
imaging (fMRI) is a non-invasive neuroimaging technique
used to study brain functions. fMRI measures brain activity by
detecting the blood oxygen level-dependent (BOLD) signals
that reflect changes in blood flow and oxygenated hemoglobin
in response to neural activity. Resting-state fMRI (rs-fMRI)
measures spontaneous brain activity during a state of rest
without specific tasks or external stimuli. Rs-fMRI has been
widely used to quantify temporal correlations between brain
regions, known as brain connectivity, which relates to various
physical and psychological processes in the human body [21]–
[23]. In the LEMON dataset, rs-fMRI and structural MRI scans
were obtained using a 3 Tesla scanner equipped with a 32-
channel head coil. Participants were instructed to stay awake
with their eyes open during rs-fMRI acquisition. The raw rs-
fMRI data was preprocessed using Nipype [24], following



TABLE I
CANDIDATE MODELS FOR SELECTION AND OPTIMIZATION THROUGH

INNER CROSS-VALIDATION

Model Hyperparameters for tuning

Support Vector Regression choice of the kernel,
regularization parameter

Lasso regularization parameter

Elastic Net regularization parameter,
ratio of L1 and L2 penalty

XGBoost tree depth, booster,
and loss reduction for node split

the procedure provided by the LEMON dataset. For each
individual, the preprocessing steps included: 1) discarding the
first 5 slices to ensure stable signals; 2) 3D motion correction;
3) distortion correction; 4) rigid-body coregistration to each
participant’s anatomical image; 5) signal denoising; 6) band-
pass filtering; 7) mean centering and variance normalization;
8) spatial normalization to MNI152 2mm standard space. After
preprocessing, the time series extracted from each brain region
were used to construct functional brain connectivity networks.

B. Methods

1) Brain functional connectivity: Brain functional connec-
tivity represents the temporal correlations of neural activity
between pairs of brain regions. In this study, we utilized
resting-state fMRI data to construct brain functional connec-
tivity networks.

As illustrated in Figure 2 (a), to construct the brain func-
tional connectivity network, we first partitioned the voxel-level
fMRI data into regions of interest (ROIs) using the pre-defined
Automated Anatomical Labelling (AAL) Atlas [25] to reduce
the high dimensionality. In this study, 116 ROIs were identified
with the AAL atlas. Next, we extracted the time series data
from each ROI by averaging the BOLD signal across all
voxels within the ROI. The resulting time series represents
the neural activity within the ROI over time. We quantified the
brain functional connectivity as pair-wise Pearson’s correlation
coefficient between the time series of all ROIs. This yields a
116×116 functional connectivity matrix for each individual,
representing the brain connectivity network. Subsequently, we
applied min-max normalization to each functional connectivity
across participants to standardize the correlation values onto
the same scale before fitting them into the model.

2) Sensation-seeking score prediction framework: We em-
ployed nested cross-validation for model selection and perfor-
mance evaluation to predict sensation-seeking from functional
connectivity, as illustrated in Figure 2 (b). Nested cross-
validation combines an inner loop for model selection and
hyperparameter tuning with an outer loop for unbiased model
performance evaluation [26]. We adopted leave-one-subject-
out cross-validation as the outer loop to evaluate the model’s
predictive performance and generalization ability across indi-
viduals. Within each training set of the outer cross-validation,
we split the data into 10-fold cross-validation as the inner loop
to optimize model selection and parameter settings.

To identify the optimal model for predicting sensation-
seeking, we evaluated a variety of machine-learning models
to capture either linear or non-linear relationships between
functional connectivity and sensation-seeking. Support Vector
Regression (SVR), Generalized Linear Model (GLM) - Elastic
Net and Lasso, and Extreme Gradient Boosting (XGBoost)
were considered as candidate models for their ability to
effectively handle high-dimensional data and prevent over-
fitting. These models provide a range of linear to non-linear
approaches with increasing model complexities. The optimal
model was selected through inner cross-validation. Table I
shows the candidate models and the hyperparameters tuned
via inner cross-validation.

3) Effects of demographic factors in predicting sensation-
seeking: In order to understand how demographic features
such as age and gender contribute to the prediction of
sensation-seeking, we evaluated the sensation-seeking predic-
tion framework under two scenarios with the entire dataset
(N = 205):

(1) Integrated age and gender alongside functional con-
nectivity data as predictors. We encoded gender as a
categorical feature and age as a numerical feature (min-
max normalized).

(2) Included only functional connectivity as predictors.
4) Age-specific models: Baseline: To demonstrate the need

for age-specific modeling, we evaluated a baseline model from
the literature that did not employ the age-specific approach. To
our knowledge, Wan et al. ’s study [16] is, to our knowledge,
the only work predicting sensation-seeking from rs-fMRI. The
authors used an Elastic Net model for prediction. To establish
a baseline for comparison with our proposed age-specific
modeling, we applied an Elastic Net-based prediction model to
the entire male population of the LEMON dataset (N = 131).

In our proposed age-specific modeling approach, we parti-
tioned the male population into different age groups and im-
plemented the sensation-seeking prediction framework within
each age group. By comparing the performance of these age-
specific models against the baseline single-model approach,
we aimed to demonstrate that age-specific models improve
prediction accuracy and underscore the importance of consid-
ering age differences when modeling sensation-seeking.

5) Evaluation metric: Pearson’s correlation coefficient r,
R2, Root Mean Squared Error (RMSE), and Normalized Root
Mean Squared Error (NRMSE) were used to evaluate the
predictive performance, which is calculated as follows:

r =
∑

n
i=1(yi − ȳ)(ŷi − ¯̂y)√

∑
n
i=1(yi − ȳ)2 ∑

n
i=1(ŷi − ¯̂y)2

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2

RMSE =

√
∑

n
i=1(yi − ŷi)2

n

NRMSE =
RMSE

ymax − ymin



Fig. 2. Sensation-seeking score prediction from brain functional connectivity. The proposed framework comprised two steps: (a) The functional connectivity
matrix was constructed as the pair-wise correlation of the BOLD signals extracted from brain regions; (b) The functional connectivities then served as input
features of the prediction framework to predict sensation-seeking scores.

where yi is the actual sensation-seeking score, ŷi is the
predicted sensation-seeking score. ȳ and ¯̂y are the mean
values of the actual and predicted sensation-seeking scores,
respectively.

6) Feature importance: we assessed the contribution of
each functional connectivity feature across multiple model
iterations within the leave-one-out cross-validation. To identify
the most robust predictors of sensation-seeking, we focused
on features consistently chosen by over 80% of the cross-
validation folds. This approach ensured that the selected
features had high predictive relevance across the individuals.
For the selected predictors, we extracted the normalized coef-
ficients from the fitted models to evaluate the importance of
each predictor in predicting sensation-seeking.

III. RESULTS

A. Effects of demographic factors in predicting sensation-
seeking

To assess the effect of demographic factors on sensation-
seeking prediction, we evaluated the prediction framework
under two scenarios: with and without age and gender as pre-
dictors. Both scenarios were assessed with the whole dataset
of 205 participants.

Figure 3 shows the scatter plots of the predicted and actual
sensation-seeking score with and without age and gender
as predictors. Lasso regression was the optimal model in
both scenarios. With age and gender included as predictors,
the model achieved the accuracy of R2 = 0.30,RMSE =
5.79,NRMSE = 19.0%. After removing age and gender from
the predictors, the prediction accuracy dropped to R2 =
0.13,RMSE = 6.46,NRMSE = 24.3%. We calculated the
mean coefficient of age and gender across the fitted models as
follows:

• Age: β =−1.79, p = 5.50×10−4, ∆R2 = 0.13
• Gender: β = 3.08, p = 6.88×10−5, ∆R2 = 0.072

where β and p denote the coefficient and p-value of each
predictor in the linear regression model. ∆R2 shows the
reduction in R2 if a predictor is excluded from the model,
which indicates its value added to the prediction. Our findings
showed that including age and gender significantly increased
the accuracy of sensation-seeking predictions. Age emerged
as a significant predictor (p = 5.50 × 10−4); all else being
equal, each additional year of age reduces sensation-seeking
by 1.79 points. Gender also emerged as a significant predictor
(p= 6.88×10−5); all else being equal, males have 3.08 points
higher sensation-seeking scores than females. These findings
align with existing literature that indicates age-related and
gender-related variations in sensation-seeking [20].

Fig. 3. Sensation-seeking prediction result with and without age and gender
features (N = 205) through leave-one-out cross-validation. (a) The prediction
with age and gender as predictors (R2 = 0.3). (b) The prediction without age
and gender as predictors (R2 = 0.13).



Fig. 4. t-SNE visualization of functional connectivity distribution across dif-
ferent ages, with each dot representing a data sample. Functional connectivity
is distributed differently between young (depicted in blue) and older (depicted
in red) age clusters.

B. Differences across age groups in predicting sensation-
seeking

We computed the residuals between our model’s predictions
and the ground truth across different age and gender sub-
groups. The residual distribution varied significantly between
the age groups 25−29, 60−65, and 70−75 (p < 0.05). This
variation suggested that the associations between functional
connectivity and sensation-seeking may differ across differ-
ent demographics. To further investigate the demographic-
associated differences in brain functional connectivity, we
applied the t-distributed Stochastic Neighbor Embedding (t-
SNE) to visualize the functional connectivity distribution. As
shown in Figure 4, the visualization shows distinct clusters
corresponding to young (age 20−39) and older (age 55−79)
age groups, indicating distinct functional connectivity distri-
bution within young and older cohorts. Additionally, we per-
formed Principal Component Analysis (PCA) on the functional
connectivity data. Figure 5 shows the top four components
(explained 45% of the variance), for instance. The principal
components (PCs), as linear combinations of original func-
tional connectivities, exhibited different distributions across
young and older age groups, as shown in PC2 (p= 0.008), PC3
(p = 2.4× 10−4), PC4 (p = 2.9× 10−13). These results show
that functional connectivity is distributed differently across
different aging phases. Therefore, a single predictive model
may not be able to account for the age-related differences in
functional connectivity patterns. Based on these observations,
we hypothesized that developing separate models for each age
subgroup would offer more accurate predictions by capturing
the distinct neural patterns of sensation-seeking within each
group.

C. Predicting sensation-seeking within age groups

To test our hypothesis that fitting separate models for differ-
ent age groups better captures the diverse neural correlates of
sensation-seeking across various aging stages, we segmented
the dataset into age subgroups. We focused on the male
population due to its higher variability in sensation-seeking

Fig. 5. Top four principal components distributions across different ages.
Particularly, the distribution of principal component 2, 3, and 4 differs
significantly across young (age 20−39) and older (age 55−79) age groups
(PC2: p = 0.008, PC3: p = 2.4×10−4, PC4: p = 2.9×10−13).

scores and a larger sample size in each age group. Given
the small number of participants in certain age ranges, we
merged the age groups 30− 34 (5 participants) and 35− 39
(1 participant) with the 25 − 29 group. Similarly, the age
group 55− 59 (2 participants) was merged with the 60− 64
group, and the age groups 65 − 69, 70 − 74, and 75 − 79
were combined to ensure sufficient data samples in each
group. Then we developed predictive models tailored to each
subgroup.

The baseline of the Elastic Net model fitted on the entire
male group (N = 131) yielded prediction performance of
R2 = 0.067,RMSE = 6.25. Table II presents the best mod-
els and their respective performances for each subgroup,
and Figure 6 illustrates the prediction results within each
age subgroup. While Table III and Figure 7 compare the
aggregated predictions from each subgroup to the baseline
prediction result of the single-model approach. The results
show a substantial improvement in prediction performance
when fitting age-specific models to subgroups compared to the
baseline model. The age-specific models achieved relatively
high prediction performance in age groups 20− 24, 25− 39,
and 65 − 79 but failed to capture sufficient information in
the 55− 64 age group. This result may be attributed to the
smaller sample size and lower variability in sensation-seeking
scores within this group, not allowing the model to capture
the difference in functional connectivity as sensation-seeking
changes.

D. Functional connectivity associated with sensation-seeking
within age groups

Our analysis revealed distinct associations between func-
tional connectivity and sensation-seeking across different age



TABLE II
SELECTED MODEL AND EVALUATION METRIC OF THE MODEL FITTED IN EACH SUBGROUP (FC = FUNCTIONAL CONNECTIVITY)

Participants (N: number of individuals) Predictors Model r R2 RMSE NRMSE

Male aged 20-24 (N=46) FC XGBoost 0.56 0.31 5.03 19.0
Male aged 25-39 (N=50) FC Lasso regression 0.40 0.15 5.22 20.0
Male aged 55-64 (N=14) FC SVR -0.83 -0.16 6.47 32.0
Male aged 65-79 (N=21) FC Lasso regression 0.67 0.44 4.84 19.0

TABLE III
SELECTED MODEL AND EVALUATION METRIC OF THE BASELINE AND AGE-SPECIFIC MODELS (FC = FUNCTIONAL CONNECTIVITY)

Participants (N: number of individuals) Predictors Model r R2 RMSE NRMSE

Male population (N=131) FC Elastic Net regression (baseline) 0.30 0.067 6.25 19.5
Male population (N=131) FC Age-specific models 0.62 0.38 5.12 18.0

Fig. 6. Prediction result within each age group. (a) Prediction within age
group 20− 24 (R2 = 0.31, p = 5.1× 10−5). (b) Prediction within age group
25 − 39 (R2 = 0.15, p = 0.004). (c) Prediction within age group 65 − 79
(R2 = −0.16, p = 2.4 × 10−4). (d) Prediction within age group 65 − 79
(R2 = 0.44, p = 0.001).

groups. To identify strong predictors of sensation-seeking, we
determined the connectivities that were consistently selected
by over 80% of the 131 cross-validation iterations. These
robust predictors potentially provide valuable insights into
the neural correlates of sensation-seeking. Table IV lists the
selected functional connectivities within each subgroup and
their normalized feature importance. Figure 8 shows the brain
connectivity network in each group.

In the age group 20 − 24, the XGBoost model, which
captures non-linear relationships, provided the best predictive
performance. The functional connectivities of hippocampus-
superior parietal gyrus, cerebellum-thalamus, and cerebellum-
paracentral lobule exhibited strong non-linear relationships
with sensation-seeking. In the age group 25−39, Lasso regres-
sion more accurately modeled the functional connectivity and

Fig. 7. Prediction result of the male population (N=131). Figure (a) shows the
prediction from the baseline of the single-model approach (R2 = 0.067, p =
5.9×10−4). Figure (b) shows the aggregated prediction from the age-specific
approach that fits separate models within age subgroups (R2 = 0.38, p = 5.6×
10−15).

sensation-seeking associations. Nine functional connectivities
were consistently selected by Lasso, among which amygdala-
vermis connectivity was the strongest predictor of sensation-
seeking. Within the age group 65− 79, the connectivities of
middle frontal gyrus-amygdala, supramarginal gyrus-pallidum,
and vermis-superior parietal gyrus, selected by Lasso re-
gression, exhibited strong linear associations with sensation-
seeking. Since the prediction accuracy in the age group 55−64
was not promising, the functional connectivities selected in
this group were not considered valid predictors.

Fig. 8. Visualization of the selected brain connectivities within each age
group denoted by different colors. The brain regions involve the parietal lobe,
subcortical region, frontal gyrus, vermis, cerebellar hemisphere, thalamus, and
cerebral hemisphere.



TABLE IV
SELECTED FUNCTIONAL CONNECTIVITIES WITHIN EACH AGE GROUP AND

THE NORMALIZED FEATURE IMPORTANCE

Subgroup Functional Connectivity
Between Brain Regions

Feature
Importance

Age 20-24

Hippocampus R - Parietal Sup L 0.26
cerebellum 4 5 R - Thalamus R 0.18

cerebellum 4 5 R - Paracentral Lobule R 0.12
Frontal Mid L - Vermis 9 0.08

cerebellum 3 R - Cingulum Post R 0.04

Age 25-39

Amygdala L - Vermis 1 2 0.10
Occipital Mid R - Occipital Inf L 0.07

Frontal Sup L - Angular R 0.06
Frontal Med Orb R - Angular L 0.06

Frontal Mid R - Angular L 0.06
cerebellum 7b L - Vermis 10 0.06

cerebellum 3 L - Postcentral L 0.06
Cingulum Post L - Caudate L 0.06

Temporal Inf L - Rectus R 0.05
Age 55-64 * *

Age 65-79

Frontal Mid Orb R - Amygdala R 0.21
SupraMarginal R - Pallidum R 0.12

Vermis 9 - Parietal Inf R 0.1
cerebellum 7b L - Pallidum R 0.09

IV. DISCUSSION

A. Comparison with existing study

In this study, we used functional connectivity derived from
resting-state fMRI (rs-fMRI) to predict the sensation-seeking
scores of 131 healthy male individuals in the LEMON dataset.
Our predictive model achieved an R2 value of 0.38 and RMSE
of 5.12, indicating that sensation-seeking can be predicted
from rs-fMRI with reasonable accuracy. The results obtained
in our work suggest that brain connectivity patterns capture
relevant information about the underlying neural mechanisms
of sensation-seeking.

A previous study investigating sensation-seeking prediction
from rs-fMRI reported a Pearson correlation r = 0.34 between
the predicted and actual sensation-seeking scores in the cohort
of 414 participants [16]. The study, however, did not acknowl-
edge or address the variations in brain patterns associated
with sensation-seeking across different demographic groups.
Our analysis showed that functional connectivity is distributed
differently across young and older age groups (Figure 4). The
age-related variability in brain connectivity suggests that neu-
ral mechanisms underlying sensation-seeking may not be uni-
form between younger and older individuals, likely reflecting
age-related neural changes. Therefore, a one-size-fits-all model
is insufficient for sensation-seeking modeling in the all-ages
population. By fitting age-specific models, we demonstrated
that distinct models for different age subgroups offered more
accurate predictions by capturing the diverse neural pattern
associated with sensation-seeking across different aging phases
(Figure 7).

B. Brain functional connectivity linked to sensation-seeking

The selected functional connectivities that are associated
with sensation-seeking included the brain areas such as pre-
frontal areas (e.g., middle frontal gyrus, superior frontal

gyrus), cerebellum, subcortical regions (e.g., amygdala, hip-
pocampus), parietal lobe (e.g., angular gyrus, supramarginal
gyrus), and cerebral cortex areas (e.g., paracentral lobule), as
listed in Table IV. The cerebellum is involved in cognitive
functions, emotional regulation, and behavioral inhibition.
Structural connections between the cerebellum and several
cerebral cortex areas (including the precentral gyrus, paracen-
tral lobule, precuneus, fusiform gyrus), thalamus, and puta-
men, are linked to individual novelty-seeking scores [27]. The
prefrontal cortex area has a well-established role in impulse
control and novelty detection. The interaction between pre-
frontal and subcortical regions such as the amygdala, striatum,
and hippocampus have been found to be positively associated
with novelty expectation and novelty seeking [28], [29]. The
hippocampus is linked to novelty signal processing, which is
involved in the dopaminergic neurotransmission that mediates
the novelty and reward processing [30], [31].

Although previous studies have explored the brain regions
identified in our work for their association with sensation-
seeking, our study demonstrated that these associations are
not uniform across all age groups. The brain connectivities
associated with sensation-seeking vary significantly in differ-
ent age groups. For instance, in the age group 20− 24, the
association between brain connectivity and sensation-seeking
score is non-linear, as captured by the XGBoost model. While
in other groups, GLM captures the linear relationship between
brain connectivity and sensation-seeking (Table II). These
variations in functional connectivity indicate the complex
neural interaction involved in sensation-seeking and highlight
the importance of employing different models within each age
group to identify these diverse neural patterns.

C. Effects of normalization and age group division

To ensure the robustness of our age-specific results, we
examined the effects of normalization and age group division
on the prediction of sensation-seeking. First, to test whether
the improved performance in age-specific models was due to
per-group normalization, we normalized the functional con-
nectivity data within each age group and evaluated the predic-
tion framework on the entire male population. This approach
yielded R2 = 0.001, significantly lower than our proposed age-
specific model. This result confirmed that the accuracy gain
in our age-specific modeling was not from normalization. In
addition, to determine whether the age group division was
meaningful or random while yielding favorable results, we
performed a permutation test. We randomly shuffled the ages
of participants and ran the prediction framework 5 times. We
did not observe consistent prediction patterns in these shuffled
datasets, which demonstrated that the prediction results were
not due to random chance or false positives.

D. Limitation and future directions

A limitation of this study is the small sample sizes within the
older age groups, especially in age groups 55−64 and 65−79.
The limited data samples within these age ranges may limit
the generalizability of our findings to older populations. On



the other hand, the younger age groups of 20−24 and 25−39
have larger sample sizes of 44 and 50 participants, respectively.
In these subgroups, we demonstrated the impact of age on
the neural patterns associated with sensation-seeking. Another
limitation is we did not investigate gender differences in the
neural correlates of sensation-seeking due to the limited num-
ber of female participants in each age group. Future research
could include a larger and more gender-balanced dataset to
explore the gender-related difference in neural mechanisms of
sensation-seeking. We will also conduct a validation study on
external datasets in future work to validate the generalizability
of our findings, and provide a comprehensive investigation into
the role age and gender play in the neural basis of sensation-
seeking traits.

V. CONCLUSIONS
Our study explored the predictive power of brain functional

connectivity in predicting sensation-seeking and revealed the
age-related difference in brain connectivity patterns associated
with sensation-seeking. Our proposed age-specific prediction
model achieved a prediction accuracy of R2 = 0.38, consider-
ably higher than the baseline that fitted a single model for the
all-ages population (R2 = 0.067). Our findings pointed out the
limitations of the one-size-fits-all approach and demonstrated
the necessity for subgroup-specific models that consider age
differences in modeling sensation-seeking. Future research
could extend this subgroup-specific modeling approach to
other demographic groups, such as gender, to provide a com-
prehensive understanding of the neural correlates of sensation-
seeking, and further explore more effective assessments and
interventions for sensation-seeking behaviors.
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H. L. Schaare, M. Uhlig, A. Anwander, P.-L. Bazin et al., “A mind-brain-
body dataset of mri, eeg, cognition, emotion, and peripheral physiology
in young and old adults,” Scientific data, vol. 6, no. 1, pp. 1–21, 2019.

[19] S. P. Whiteside, D. R. Lynam, J. D. Miller, and S. K. Reynolds,
“Validation of the upps impulsive behaviour scale: a four-factor model
of impulsivity,” European Journal of personality, vol. 19, no. 7, pp. 559–
574, 2005.

[20] I. L. Ball, D. Farnill, and J. F. Wangeman, “Sex and age differences
in sensation seeking: Some national comparisons,” British Journal of
Psychology, vol. 75, no. 2, pp. 257–265, 1984.

[21] H. W. Chase, A. M. Segreti, T. A. Keller, V. L. Cherkassky, M. A. Just,
L. A. Pan, and D. A. Brent, “Alterations of functional connectivity and
intrinsic activity within the cingulate cortex of suicidal ideators,” Journal
of affective disorders, vol. 212, pp. 78–85, 2017.

[22] A. T. Drysdale, L. Grosenick, J. Downar, K. Dunlop, F. Mansouri,
Y. Meng, R. N. Fetcho, B. Zebley, D. J. Oathes, A. Etkin et al., “Resting-
state connectivity biomarkers define neurophysiological subtypes of
depression,” Nature medicine, vol. 23, no. 1, pp. 28–38, 2017.

[23] M. A. Just, L. Pan, V. L. Cherkassky, D. L. McMakin, C. Cha, M. K.
Nock, and D. Brent, “Machine learning of neural representations of
suicide and emotion concepts identifies suicidal youth,” Nature human
behaviour, vol. 1, no. 12, pp. 911–919, 2017.

[24] K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko,
M. L. Waskom, and S. S. Ghosh, “Nipype: a flexible, lightweight
and extensible neuroimaging data processing framework in python,”
Frontiers in neuroinformatics, vol. 5, p. 13, 2011.

[25] E. T. Rolls, C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot, “Automated
anatomical labelling atlas 3,” Neuroimage, vol. 206, p. 116189, 2020.

[26] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas, “Cross-
validation pitfalls when selecting and assessing regression and classi-
fication models,” Journal of cheminformatics, vol. 6, pp. 1–15, 2014.

[27] L. Wei, T. Weng, H. Dong, C. Baeken, T. Jiang, and G.-R. Wu, “The
cortico-basal-cerebellar neurocircuit is linked to personality trait of
novelty seeking,” Neuroscience, vol. 488, pp. 96–101, 2022.

[28] M. Petrides, “The orbitofrontal cortex: novelty, deviation from expecta-
tion, and memory,” Annals of the New York Academy of Sciences, vol.
1121, no. 1, pp. 33–53, 2007.

[29] S. Qi, G. Schumann, J. Bustillo, J. A. Turner, R. Jiang, D. Zhi, Z. Fu,
A. R. Mayer, V. M. Vergara, R. F. Silva et al., “Reward processing
in novelty seekers: a transdiagnostic psychiatric imaging biomarker,”
Biological psychiatry, vol. 90, no. 8, pp. 529–539, 2021.

[30] T. Ljungberg, P. Apicella, and W. Schultz, “Responses of monkey
dopamine neurons during learning of behavioral reactions,” Journal of
neurophysiology, vol. 67, no. 1, pp. 145–163, 1992.

[31] M. Legault and R. A. Wise, “Novelty-evoked elevations of nucleus
accumbens dopamine: dependence on impulse flow from the ventral
subiculum and glutamatergic neurotransmission in the ventral tegmental
area,” European Journal of Neuroscience, vol. 13, no. 4, pp. 819–828,
2001.


	INTRODUCTION
	Materials and Methods
	Data
	Participants
	Self-reported sensation-seeking score
	MRI data acquisition

	Methods
	Brain functional connectivity
	Sensation-seeking score prediction framework
	Effects of demographic factors in predicting sensation-seeking
	Age-specific models
	Evaluation metric
	Feature importance


	Results
	Effects of demographic factors in predicting sensation-seeking
	Differences across age groups in predicting sensation-seeking
	Predicting sensation-seeking within age groups
	Functional connectivity associated with sensation-seeking within age groups

	Discussion
	Comparison with existing study
	Brain functional connectivity linked to sensation-seeking
	Effects of normalization and age group division
	Limitation and future directions

	CONCLUSIONS
	References

