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Abstract
As deep learning models become heavier, develop-
ing lightweight models with the least performance
degradation is paramount. In this paper, we pro-
pose an algorithm, SHAP-SAE (SHapley Additive
exPlanations based Sparse AutoEncoder), that can
explicitly measure the contribution of units and
links and selectively activate only important units
and links, leading to a lightweight sparse autoen-
coder. This allows us to explain how and why the
sparse autoencoder is structured. We show that
the SHAP-SAE outperforms other algorithms in-
cluding a dense autoencoder. It is also confirmed
that the SHAP-SAE is robust against the harsh
sparsity of the autoencoder, as it shows remark-
ably limited performance degradation even with
high sparsity levels.

1. Introduction
As deep learning approaches have tackled and solved an
increasing number of real-world problems, the demand for
improved performance has led to the development of heav-
ier models (Baykal et al., 2022). However, these large and
dense networks often require a significant number of float-
ing operations (FLOPs) during inference. Consequently, it
is essential to design lightweight models that enhance scala-
bility and efficiency without compromising model quality.
The importance of lightweight models becomes even more
evident in scenarios where deep learning inference must
adhere to stringent energy constraints. This is particularly
evident when deploying models on battery-powered devices
such as mobile devices and Internet of Things (IoT) devices.
Additionally, lightweight models play a crucial role in dis-
tributed networks, particularly at the network edge, within
the context of federated learning.
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Similar to other deep learning models, autoencoders have
become heavier with the focus of how the autoencoder can
effectively compress input data (Wang et al., 2014; 2016),
rather than how to effectively compress the autoencoder.
Autoencoder is generally (Hinton & Salakhutdinov, 2006)
a dense network with fully-connected layers and most of
the existing architectures are based on this structure, e.g.,
(Kaiser & Bengio, 2018; Nguyen et al., 2020; Chen et al.,
2022). Due to the lack of research on lightweight autoen-
coders, we focus on the design of a lightweight autoencoder
by imposing sparsity constraints on the hidden units. To
make a compressed or sparse autoencoder, it is essential
to identify which units and links are important in a trained
autoencoder that is often dense and then selectively acti-
vate the units that are more important than other units. The
sparsification has been conventionally performed by the
combinations of activation functions, sampling steps, and
different types of penalties (Makhzani & Frey, 2014). While
this enables autoencoders to be sparse and efficient, the
sparse autoencoders are often lack of explainability or inter-
pretability (Makhzani & Frey, 2014; Srivastava et al., 2014;
Pal & Baskar, 2015).

In this paper, we propose a novel SHAP-SAE (SHapely Ad-
ditive exPlanations based Sparse AutoEncoder) algorithm
that can make autoencoders sparse with explainability. Un-
like prior works (Lundberg & Lee, 2017; Catav et al., 2021;
Harris et al., 2022), where the Shapely value (Shapley, 1953)
is used to measure the feature importance of input data, we
use the Shapley value to explicitly quantify the importance
of the units and links in an autoencoder. This enables us to
identify the units or links that are with higher importance,
and thus, the autoencoder can be sparsely represented by
only activating the units and links with higher Shapley val-
ues. Note that this approach is providing not only a way
of pruning the links but also a way of explaining how the
sparse autoencoder works, i.e., the links marked as higher
importance are only activated in the sparse autoencoder.
Moreover, the proposed measure of unit and link impor-
tance can permit us to directly control the sparsity of the
autoencoder, as units or links with low importance can be
pruned to meet a target sparsity level. The proposed SHAP-
SAE algorithm can completely remove the links with low
importance by assigning zero weight to the pruned links in
the sparse autoencoder. This property allows for a reduction
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in computational complexity during inference.

2. Shapley Value based Sparse Autoencoder
2.1. Overview of Autoencoder

Consider an autoencoder that consists of an encoder f and
a decoder g, where both encoder and decoder have L layers,
respectively. The encoder maps input x into a representation
z = f(x). The number of units included in the l-th hidden
layer is denoted by n(l). In the encoder, we assume that
n(l) ≤ n(l−1), for 1 ≤ l ≤ L, as dimensions are reduced
over layers. b(l) ∈ Rn(l)

denotes a bias vector in the l-th
hidden layer. A weight matrix W(l) ∈ Rn(l)×n(l−1)

can be
expressed as

W(l) =


−w

(l)T

1 −
...

−w
(l)T

n(l)−

 (1)

where the weight vector for the k-th unit in the l-th layer
w

(l)
k ∈ Rn(l−1)

is given by
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(l)
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[
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(l)

kn(l−1)

]T
. (2)

The decoder of the autoencoder maps the representation z ∈
Rn(L)

into its reconstruction x̂ ∈ Rn(0)

of input x ∈ Rn(0)

,
i.e., x̂ = g(z). The decoder has a symmetric structure to the
encoder, so we assume that n(2L−l) = n(l) for 0 ≤ l ≤ L.
Specifically, the decoder corresponds to the layers from
the (L + 1)th layer to the 2L-th layer of the autoencoder.
W′(l) ∈ Rn(l)×n(l−1)

and b′(l) ∈ Rn(l)

are weight matrix
and bias vector in the l-th hidden layer of the autoencoder,
respectively.

The goal is to determine the set of optimal parameters for the
autoencoder, θ = {W(l),b(l)| 1 ≤ l ≤ L} for the encoder
and θ′ = {W′(l),b′(l)| L + 1 ≤ l ≤ 2L} for the decoder,
by minimizing the loss associated with the reconstruction
error, i.e., L(x, x̂). Hence, the optimal parameters θ∗ and
θ′∗ for the minimum reconstruction error are expressed as

{θ∗, θ′∗} = argmin
θ,θ′

L(x, x̂) = argmin
θ,θ′

L(x, g(f(x))).

2.2. Importance of Link based on Shapley Value

In order to estimate the contribution of each link in the au-
toencoder, we use the Kernel SHAP method, which approx-
imate SHAP values based on LIME (Local Interpretable
Model-agnostic Explanations) (Ribeiro et al., 2016) and
Shapley values (Shapley, 1953). To measure the importance
of links based on their contributions to the output of a layer,
where the output of the layer is computed by the weights of

Figure 1. An illustration of sparse autoencoder based on SHAP-
SAE algorithm with 2L layers. Dotted lines and white nodes indi-
cate the removed links and nodes.

the links, we define the link importance (LI) based on the
Shapley value. The LI of the link that connects the j-th unit
in the (l − 1)th layer and the i-th unit in the l-th layer is
denoted by φ(l)ij and is defined as

φ
(l)
ij =

∑
J⊆I\{j}

|J |!(|I| − |J | − 1)!

I!
(v(J ∪ {j})− v(J)),

(3)
where I is a set of links that are connected to i-th unit in
the l-th layer for 1 ≤ l ≤ 2L. J(⊆ I) denotes a subset
excluding j-th link that is connected to the i-th unit in the
l-th layer. In this paper, the Kernel SHAP method is used to
compute v(·). Note that l = 0 means the input layer of the
autoencoder, and thus, φ(1)ij is LI of the link that connects
the j-th unit in the input layer and the i-th unit in the first
layer.

In order to measure the impact of each unit on its next layer,
we define the unit importance (UI). The UI of the j-th unit
in the (l − 1)th layer is expressed as

v
(l−1)
j =

1

n(l)

n(l)∑
i=1

|φ(l)ij |, for 1 ≤ l ≤ 2L, (4)

which represents an average impact on the computation
of output in the l-th layer. Hence, a larger value implies a
greater impact on its next layer.

2.3. SHAP-SAE

Let {W,W′} be the set of parameters in a trained autoen-
coder that is a fully connected network. In order to make
a lightweight sparse autoencoder, we design a mask func-
tionM that can activate only important links in the trained
autoencoder. The importance of each link is measured by
Equation (3) and the masking process is performed in the
sparsification stage. The results of the masking process in
the encoder and decoder are denoted by

W∗ =M(W), and W′∗ =M(W′), (5)
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respectively, where the elements in W∗ or W′∗ become
zero if they are considered as unimportant by M. An il-
lustration of a sparse autoencoder based on SHAP-SAE is
shown in Figure 1.

We define the total LI φ(l)T of the l-th layer as the sum of
individual LIs in its layer, i.e.,

φ
(l)
T =

n(l)∑
i=1

n(l−1)∑
j=1

φ
(l)
ij , 1 ≤ l ≤ 2L. (6)

Moreover, the set of descending ordered Shapely values in
the l-th layer is expressed as

Φ(l) =
[
Φ(l)(1),Φ(l)(2), . . . ,Φ(l)(n(l−1)n(l))

]
(7)

where Φ(l)(k) ≥ Φ(l)(k + 1) for integer k (1 ≤ k <
n(l−1)n(l)). With an importance level denoted by m (0 <
m ≤ 1), the support set Γ(l) is constructed as

Γ(l) =

{
(i, j)

∣∣∣∣∣
k∗∑
k=1

Φ(l)(k) ≥ m · φ(l)T

}
, (8)

which is the set of the pairs (i, j) of the units i and j that
have the k∗ largest contribution. In other words, since each
Φ(l) corresponds to the value of φ(l)ij in the descending order,
the pairs (i, j) of the link that has the k∗ largest LIs in the
layer are elements of Γ(l). The set of other elements that are
not included in Γ(l) is denoted by Γ(l)c. Correspondingly,
the sparsity level η can be computed as

η =

∑2L
l=1 |Γ(l)c|∑2L

l=1 |Γ(l) ∪ Γ(l)c|
. (9)

The mask functionM is a simple mapping for an element
w
∗(l)
ij or w′∗(l)ij such that{

w
∗(l)
ij = 0, if (i, j) ∈ Γ(l)c

w
′∗(l)
ij = 0, if (i, j) ∈ Γ(l)c

(10)

and the rest of the weights remain unchanged. Note that the
unit should be removed if all links connected from the unit
are deactivated, regardless of the mask function.

3. Experiment Results
3.1. SHAP-SAE with Synthetic Dataset

Dataset. To confirm the performance of the proposed SHAP-
SAE, we first consider the synthetic dataset that consists of
15,000 instances. x1 is a set of values that are constant. x2

and x3 are generated from the uniform distribution U(a, b)
of the interval [a, b]. The data in x2 is sampled from U(0, 1).
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Figure 2. Statistics of importance value, including (a) The UIs, (b)
the variance of LI, and (c) the LIs, in the encoder for the synthetic
dataset.

x3 contains the data equally sampled from two classes,
one from U(0, 1/4) and the other from U(3/4, 1). Simi-
larly, x4 contains the data sampled from two classes, one
from N (1/4, 0.1) and the other from N (3/4, 0.1), where
N (µ, σ2) denotes Gaussian distribution. The other two data
sets x5 and x6 are generated by the sum of other data sets,
i.e., x5 = x1 + x2 and x6 = x3 + x4.

Sparsification. We consider a simple autoencoder structure
that has an input layer with six units, one hidden layer with
three units, and an output layer with six units, i.e., L = 1.
Given the synthetic data sets, the weight matrices {W,W′}
of the autoencoder are determined in the training stage.

For the SHAP-SAE, some of the activated links in
{W,W′} of the trained autoencoder can be deactivated
in the sparsification stage. In the experiments, we set the
importance level m = 0.8. The support sets Γ(1),Γ(2) at the
first layer and second layer are constructed as

Γ(1) = {(1, 2), (1, 4), (1, 5), (1, 6), (3, 5)} ,

and

Γ(2) = {(2, 1), (2, 3), (3, 1), (3, 3), (4, 1), (5, 3), (6, 1)}

with the parameters of k∗ = 8 and Φ(l)(8) = 0.073
for l = 0. Note that |Γ(1)| = 5 because three pairs of
(2, 3), (2, 5), (2, 6) that were included in the eight elements
in Γ(1) are excluded as unit z2 is not activated.

Explainability. To discuss the explainability of the pro-
posed SHAP-SAE, we quantify how much the UIs of fea-
ture xj attribute to the change of the representation in the
hidden layer. v(0)j represents an average impact of xj on the
computation of z in the hidden layer.

The UIs for data sets are shown in Figure 2(a). It is clearly
observed that v(0)5 and v(0)6 are larger than other UIs of data
sets. This is because x5 = x1 + x2 and x6 = x3 + x4,
so that they can include the information of other data sets.
Hence, larger contributions can be made by x5 and x6 to
the training of the autoencoder. This also means that the
contribution of x1, . . . , x4 to the training of autoencoder
could be marginal, as they can be considered as redundant
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Figure 3. (a) Performance improvement of SHAP-SAE against dense autoencoder on the MNIST dataset. Performance of lightweighted
sparse autoencoders based on SHAP-SAE algorithm and other pruning algorithms on (b) the MNIST dataset and (c) the Fashion-MNIST
dataset.

Figure 4. Outputs of SHAP-SAE depending on importance levels
on the MNIST dataset.

to x5 or x6. The UIs also confirm this explanation, i.e.,

v
(0)
5 > v

(0)
2 , v

(0)
6 > v

(0)
3 and v

(0)
6 > v

(0)
4 .

Note that v(0)1 = 0 because x1 is the set of constant values,
which is obviously irrelevant to z, i.e., x1 can be considered
dummy so that no contributions are made.

In order to analyze the impact of the distribution of input
data on the UIs and LIs, we study the variance of LIs. It is
observed from Figure 2(b) that the data sets with similar
UIs may have different variances. For example, x5 and x6

have similar UIs, but the variance of LIs related to x5 is
significantly low. This is because x5 is uniformly distributed
over the entire input range so that it can evenly affect all
units in the next layer. This is similar to x2, which is also
uniformly distributed. However, other data sets, such as x3,
x4 and x6, show larger variances, meaning that their impact
on the next units is more focused as shown in Figure 2(c).

3.2. SHAP-SAE with Real-World Dataset

Datasets. We consider MNIST (LeCun et al., 2010) and
Fashion MNIST datasets (Xiao et al., 2017). Each image in
the datasets is reshaped into a column vector and the pixel
values are normalized in the range of [0, 1].

Performance Analysis. Figure 3(a) shows the performance
improvement of the SHAP-SAE in terms of accuracy com-
pared to the dense autoencoder. While it can be expected
that the performance degrades as the autoencoder becomes
sparser, interestingly, we can observe that the SHAP-SAE

outperforms the dense autoencoder up to the sparsity level
η = 0.8. This is because the initial pruning may lead to
the reduction of learned noise following the principle of
Occam’s hill (Rasmussen & Ghahramani, 2000). Intuitively,
the smaller model may enforce the learning process to focus
on more important and general aspects of the models. Figure
4 visualizes the outputs of SHAP-SAE with different impor-
tance levels m, where gray pixels represent the locations
where the weights are zero. As importance levelm increases,
the mask functionM removes less important weights, so
that edges of the images are removed first. Since the im-
pact of the edges on the classification could be marginal,
the performance degradation is limited (e.g. only 1.37%
performance degradation with 0.90 sparsity level).

Performance Comparisons. Figure 3(b) and Figure 3(c)
show the experimental results comparing the performance of
the SHAP-SAE with other autoencoder pruning algorithms,
namely the k-sparse autoencoder (Makhzani & Frey, 2014)
and Dropout autoencoder (Srivastava et al., 2014), as well
as other neural network pruning algorithms, namely LAP
(Look Ahead Pruning) (Park et al., 2020) and MINT (Mutual
Information-based Neuron Trimming) (Ganesh et al., 2021).
It is clearly shown that the SHAP-SAE outperforms all other
benchmarks over the range of sparsity levels. Note that the
SHAP-SAE is remarkably robust against the sparsity of the
autoencoder.

4. Conclusion
In this paper, we propose the SHAP-SAE algorithm to de-
sign a lightweight autoencoder. The SHAP-SAE algorithm
can explicitly measure the unit and link importance of an au-
toencoder based on the Shapely value so that only important
units and links can be activated. This allows the sparse au-
toencoder to be explainable and robust against high sparsity
levels. Experimental results show that SHAP-SAE outper-
forms the other pruning algorithms.
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