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ABSTRACT

Conformal prediction yields a prediction set with guaranteed 1 − α coverage of
the true target under the i.i.d. assumption, which may not hold and lead to a gap
between 1 − α and the actual coverage. Prior studies bound the gap using total
variation distance, which cannot identify the gap changes under distribution shift at
a given α. Besides, existing methods are mostly limited to covariate shift, while
general joint distribution shifts are more common in practice but less researched.
In response, we first propose a Wasserstein distance-based upper bound of the cov-
erage gap and analyze the bound using probability measure pushforwards between
the shifted joint data and conformal score distributions, enabling a separation of
the effect of covariate and concept shifts over the coverage gap. We exploit the
separation to design an algorithm based on importance weighting and regularized
representation learning (WR-CP) to reduce the Wasserstein bound with a finite-
sample error bound. WR-CP achieves a controllable balance between conformal
prediction accuracy and efficiency. Experiments on six datasets prove that WR-CP
can reduce coverage gaps to 3.2% across different confidence levels and outputs
prediction sets 37% smaller than the worst-case approach on average.

1 INTRODUCTION

Because of data noise, unobservable factors, and knowledge gaps, stakeholders must also consider
prediction uncertainty in machine learning applications, especially in areas such as fintech (Ryu &
Ko, 2020), healthcare (Feng et al., 2021), and autonomous driving (Seoni et al., 2023). Conformal
prediction (CP) addresses prediction uncertainty by generating a set of possible targets instead of
a single prediction (Vovk et al., 2005; Shafer & Vovk, 2007; Angelopoulos & Bates, 2021). We
focus on CP in regression tasks. With a trained model h, CP calculates the difference (conformal
score) between the predicted and actual target via a score function s(x, y) = |h(x)− y| over some
calibration instances. With the empirical 1 − α quantile τ of the conformal scores, the prediction
set C(x) of a test input x contains all targets whose scores are smaller than τ . If calibration and test
data are independent and identically distributed (i.i.d.), the probability that the prediction set C(x)
contains the true target y of x is close to 1− α (i.e. the coverage guarantee).

Denote PXY and QXY the calibration and test distributions, respectively, in space X ×Y . We assume
y|x ∼ N (fP (x), εP ) for (x, y) ∼ PXY and y|x ∼ N (fQ(x), εQ) for (x, y) ∼ QXY . In practice,
the i.i.d. assumption can be violated by a joint distribution shift such that PXY ̸= QXY , due to a
covariate shift (PX ̸= QX ), a concept shift (fP ̸= fQ), or both (Figure 1(a) left) (Kouw & Loog,
2018). With a distribution shift, the coverage guarantee fails, leading to a gap between the probability
that y ∈ C(x) and 1 − α. Formally, denoting PV and QV the calibration and test conformal
score distributions, respectively, the coverage gap is the difference between the cumulative density
functions (CDFs) of PV and QV at quantile τ (Figure 1(a) left). Prior methods are concerned with
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Figure 1: (a) Joint distribution shift can include both covariate shift (PX ̸= QX ) and concept shift (fP ̸= fQ).
Coverage gap (Eq. (3)) is the absolute difference in cumulative probabilities of calibration and test conformal
scores at the 1− α quantile τ . We address covariate-shift-induced Wasserstein distance by applying importance
weighting (Tibshirani et al., 2019) to calibration samples, and further minimize concept-shift-induced Wasserstein
distance to obtain accurate and efficient prediction sets; (b) Q(1)

V and Q
(2)
V are two distinct test conformal score

distributions. Wasserstein distance (Eq. (5)) integrates the vertical gap between two cumulative probability
distributions overall all quantiles, and is sensitive to coverage gap changes at any quantile. Total variation
distance fails to indicate coverage gap changes thoroughly as it is agnostic about where two distributions diverge.

the worst-case shifts and passively expand prediction sets as much as possible to meet the coverage
guarantee for any shifted test distribution, leading to excessively large and inefficient prediction
sets (Gendler et al., 2021; Cauchois et al., 2024; Zou & Liu, 2024; Yan et al., 2024). Recent works
assume knowledge about the distribution shifts between test and calibration distribution (Barber et al.,
2023; Angelopoulos et al., 2022; Colombo, 2024). The knowledge is further embedded as the total
variation (TV) distance between conformal score distributions PV and QV to bound and minimize
the coverage gap. However, the TV distance ignores where two conformal score distributions differ,
while the coverage gap is defined at a specific α and is location-dependent, making TV distance less
indicative of coverage gap during model optimization (Figure 1(b) right).

Opposing to TV distance, we adopt Wasserstein distance over the space of probability distributions of
conformal score to upper bound the coverage gap under joint distribution shift. Such an upper bound
integrates the vertical gap between the CDFs of two conformal score distributions PV and QV and
measures the gap at any α (Figure 1(b) left), indicating coverage gap at a given α for distribution
discrepancy minimization and coverage guarantee (Section 3.1, Appendix B). Targeting more effective
algorithms specifically for covariate and concept shifts that constitute joint distribution shift, we
further penetrate the complex landscape of joint distributional shift. We disentangle the complex
dependencies between the Wasserstein upper bound and covariate and concept shifts using a novel
pushforwards of probability measure, decomposing the bound into two Wasserstein terms so that the
effects of covariate and concept shifts on the coverage gap are independent (Eq. (7)). Theoretical
analyses crystalize the link between CP coverage gap, the smoothness of the conformal residue and
predictive model, and the amount of covariate and concept shifts (Section 4.1). The decomposition
allows representation learning using importance weighting (Tibshirani et al., 2019) that reduces
the covariate-shift-induced term, and minimization of the concept-shift-induced term (Figure 1(a))
with finite samples with an empirical error bound (Section 4.2). We proved the effectiveness of the
resulting algorithm, Wasserstein-regularized conformal prediction (WR-CP), for multi-source domain
generalization where the test distribution is an unknown mixture of training distributions. On six
datasets from applications including AI4S (Brooks & Marcolini, 2014), smart transportation (Cui
et al., 2019; Guo et al., 2019), and epidemic spread forecasting (Deng et al., 2020), experiments
across various α values (0.1 to 0.9) demonstrate that coverage gaps are reduced to 3.2% and the
prediction set sizes are 37% smaller than those generated by the worst-case approach on average.
Besides, WR-CP allows a smooth balance between prediction coverage and efficiency (Figure 5).
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2 BACKGROUND AND RELATED WORKS

2.1 CONFORMAL PREDICTION

Let X ∈ X ⊆ Rd and Y ∈ Y ⊆ R denote the input and output random variable, respectively. A
hypothesis h : X → Y is a model trained to predict target Y from feature X . We observe n instances
(X1, Y1), ..., (Xn, Yn) from calibration distribution PXY . Taking (x, y) as a realization of (X,Y ),
a score function s(x, y) : X × Y → V ⊆ R quantifies how (x, y) conforms to the model h. For
regression tasks, typically s(x, y) = |h(x) − y|. Split conformal prediction is widely-used, and
defines calibration conformal scores Vi = s(Xi, Yi) for i = 1, ..., n (Papadopoulos et al., 2002).
Letting τ ∈ V be the ⌈(1− α)(n+ 1)⌉/n quantile of V1, ..., Vn, the prediction set of input Xn+1 is

C(Xn+1) = {ŷ : s(Xn+1, ŷ) ≤ τ, ŷ ∈ Y} . (1)
Consider the instance (Xn+1, Yn+1) following a test distribution QXY . If the test and calibration
instances are i.i.d. (i.e. PXY = QXY ) , the probability that the true target Yn+1 is included in
C(Xn+1) is at least 1 − α. If calibration conformal scores are almost surely distinct, we can also
bound the probability from above by 1−α+1/(n+1) (Angelopoulos & Bates, 2021). The bounded
probability is called coverage guanrantee:

Pr (Yn+1 ∈ C(Xn+1)) ∈ [1− α, 1− α+ 1/(n+ 1)) . (2)
Vovk et al. (2005) proved that the assumption of i.i.d instances can be relaxed to exchangeability
of calibration and test instances. With exchangeability, prior CP methods proposed to improve
the adaptiveness of prediction set to different test inputs (Romano et al., 2019; 2020; Guan, 2023;
Amoukou & Brunel, 2023; Han et al., 2023) and maintain conditional coverage guarantee for sub-
populations of the test distribution (Gibbs et al., 2023; Jung et al., 2022; Feldman et al., 2021;
Cauchois et al., 2021; Foygel Barber et al., 2021; Stutz et al., 2021; Einbinder et al., 2022b). However,
when the assumption is violated so that PXY ̸= QXY , coverage guarantee may not hold.

2.2 CONFORMAL PREDICTION UNDER DISTRIBUTION SHIFTS

Covariate shift (PX ̸= QX ): Tibshirani et al. (2019) adopted importance weighting by likelihood
ratio between PX and QX to satisfy the i.i.d assumption, so coverage is ensured under covariate shift.
Concept shift (fP ̸= fQ): Einbinder et al. (2022a); Sesia et al. (2023) addressed CP under concept
shift which is represented by label noise.

Joint distribution shift (PXY ̸= QXY ) consists of covariate shift (PX ̸= QX ) and/or concept
shift (fP ̸= fQ) (Kouw & Loog, 2018). Barber et al. (2023), Angelopoulos et al. (2022), and
Angelopoulos & Bates (2021) upper-bound coverage gap via total variation distance, but TV distance
cannot identify gap changes at a fixed α. To reduce the gap, Gibbs & Candes (2021), Xu & Xie
(2021), and Gibbs & Candès (2024) focus on CP under dynamic shift (test distribution changes over
time). Meanwhile, some works concentrate on static shift (test distribution unchanged). These works
can be categorized into two pipelines. The first pipeline modifies vanilla CP upon a residual-driven
model for robust coverage (Gendler et al., 2021; Cauchois et al., 2024; Zou & Liu, 2024). The second
pipeline incorporates a conformal-based loss during training to obtain robust and efficient prediction
sets (Yan et al., 2024). However, these works treat a joint distribution shift as a whole and adopt a
worst-case principle for prediction.

In this work, we explore CP under multi-source domain generalization, which focuses on developing
a model that generalizes effectively to unseen test distributions by leveraging the data from multiple
source distributions (Sagawa et al., 2019; Krueger et al., 2021). A related, yet distinct area is
federated CP, which aims to train a model across decentralized data sources to perform well on a
known test distribution (typically a uniformly weighted mixture of source distributions) without
requiring centralization to ensure privacy. Regarding federated CP, FCP (Lu et al., 2023) and FedCP-
QQ (Humbert et al., 2023) aim for a coverage guarantee when the test and calibration samples are
exchangeable from the same mixture. When exchangeability does not hold, DP-FedCP (Plassier et al.,
2023) addresses scenarios where test samples are drawn from a single source distribution, assuming
that only label shifts (PY ̸= QY ) occur among the source distributions. Besides, CP with missing
outcomes is studied by Liu et al. (2024) where the samples from the test distribution are accessible.
The proposed WR-CP does not consider privacy but works on a more generalized setup: the test
samples are drawn from an unknown random mixture where both concept and covariate shifts can
occur among the source domains.
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3 METHOD

3.1 UPPER-BOUNDING COVERAGE GAP BY WASSERSTEIN DISTANCE

As shown in Figure 1(b), Wasserstein distance can effectively indicate changes in coverage gap
across different values of α. We formally upper-bound coverage gap via Wasserstein distance. Let
V ∈ V ⊆ R be the random variable of conformal score. PV and QV are calibration and test conformal
score distributions, respectively. The guarantee in Eq. (2) indicates that Pr (s(Xn+1, Yn+1) ≤ τ) ∈
[1− α, 1− α+ 1/(n+ 1)). FPV

and FQV
are CDFs of PV and QV , respectively. Under the i.i.d.

assumption, PV = QV , and thus FQV
(τ) = FPV

(τ) ∈ [1− α, 1− α+ 1/(n+ 1)). However, the
assumption can be violated by a joint distribution shift, which may results in PV ̸= QV . In this
case, FPV

(τ) is still bounded, but FQV
(τ) ̸= FPV

(τ). Inadequate coverage renders prediction sets
unreliable, while excessive coverage leads to large prediction sets, reducing prediction efficiency, and
we define coverage gap as the absolute difference1:

Coverage gap = |FPV
(τ)− FQV

(τ)|. (3)

Definition 1 (Kolmogorov Distance). (Gaunt & Li, 2023) Fµ and Fν are the CDFs of probability
measures µ and ν on R, respectively. Kolmogorov distance between µ and ν is given by K(µ, ν) =
supx∈R |Fµ(x)− Fν(x)|.

With Definition 1, as τ ∈ V ⊆ R, Eq. (3) is bounded by K(PV , QV ):

Coverage gap = |FPV
(τ)− FQV

(τ)| ≤ supv∈V |FPV
(v)− FQV

(v)| = K(PV , QV ). (4)

Definition 2 (p-Wasserstein Distance). (Panaretos & Zemel, 2019) Given two probability measures µ
and ν on a metric space (X , cX ), where X is a set and cX is a metric on X , the Wasserstein distance
of order p ≥ 1 between µ and ν is

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
X×X

cX (x1, x2)
p dγ(x1, x2)

)1/p

, (5)

where Γ(µ, ν) is the set of all joint probability measures γ on X×X with marginals γ(A×X ) = µ(A)
and γ(X × B) = ν(B) for all measurable sets A,B ⊆ X .
Proposition 1. (Ross, 2011) If a probability measure µ in space R has Lebesgue density bounded
by L, then for any probability measure ν, K(µ, ν) ≤

√
2LW1(µ, ν).

In this work, let W denote Wasserstein distance with p = 1. Applying Eq. (4) and Proposition 1 with
L as the Lebesgue density bound of PV , we can develop an upper bound by

Coverage gap ≤
√

2LW (PV , QV ). (6)

3.2 WASSERSTEIN DISTANCE DECOMPOSITION AND MINIMIZATION

In Eq. (6), we show that the Wasserstein distance W (PV , QV ) can effectively bound the coverage
gap caused by a joint distribution shift. However, it is still not clear how the two components of joint
distribution shift, namely, covariate shift in space X and concept shift in space Y lead to W (PV , QV )
in space V . Besides, we want the quantified contributions amenable to optimization techniques
to reduce W (PV , QV ). To the best of our knowledge, there is no prior work that suits this need.
Therefore, we propose to upper-bound W (PV , QV ) with two discrepancy terms due to covariate and
concept shifts, and corresponding optimization methods to reduce W (PV , QV ) via minimizing the
two terms.
Definition 3 (Pushforward Measure). If X and Y are separate measurable spaces, µ is a prbability
measure on X , and f : X → Y is a measureable function, define the pushforward f#µ of µ through
f such that f#µ(A) = µ(f−1(A)) for all measurable set A ⊆ Y .

With Definition 3, we have PY = fP#PX and QY = fQ#QX . Besides, we define sP (x) =
s(x, fP (x)) = |h(x) − fP (x)| for x ∼ PX , and sQ(x) = s(x, fQ(x)) = |h(x) − fQ(x)| for
x ∼ QX , leading to pushforwards of the conformal score PV = sP#PX and QV = sQ#QX .

1In this study, we assume that n is sufficiently large for FPV (τ) to be approximated as 1− α, allowing us to
view Eq. (3) as the difference between FQV (τ) and 1− α.
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To upper-bound W (PV , QV ) about conformal scores according to covariate (concept, resp.) shifts in
the X (Y , resp.) space, we introduce a pushforward QV,sP = sP#QX on V . Since PV and QV,sP
are pushforward measures by the same function sP from PX and QX , respectively, W (PV , QV,sP )
is a measure of covariate shift (PX ̸= QX ). Also, as QV,sP and QV are pushforward measures from
the same source QX by sP and sQ, respectively, W (QV,sP , QV ) can indicate the extent of concept
shift (fP ̸= fQ, and thus sP ̸= sQ). The relationships among the pushforward measures are shown
in Figure 2. As Panaretos & Zemel (2019) states, the triangle inequality holds that

W (PV , QV ) ≤ W (PV , QV,sP ) +W (QV,sP , QV ). (7)
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Figure 2: Pushforward measures.

With Eq. (7) bounding W (PV , QV ), we design an approach to
minimize the upper bound. First, we adopt importance weighting,
which weights calibration conformal scores with the likelihood
ratio dQX(x)/dPX(x). Tibshirani et al. (2019) prove that impor-
tance weighting can preserve the coverage guarantee when only
a covariate shift occurs. However, existing works do not include
the weighting technique when dealing with a joint distribution
shift. We prove that importance weighting can minimize covariate-
shift-induced Wasserstein distance, W (PV , QV,sP ), even if a
concept shift coincides. Given any measurable set A ⊆ X ,
B := {sP (x) : x ∈ A} ⊆ V . With Definition 3,

PV (B) =
∫
B
dPV (v) =

∫
B
d(sP#PX)(v) =

∫
A
dPX(x)

−−−−−−→
weighting

=

∫
A

dQX(x)

dPX(x)
dPX(x) =

∫
A
dQX(x) =

∫
B
d(sP#QX)(v) =

∫
B
dQV,sP (v) = QV,sP (B).

Since importance weighting can transform PV to QV,sP , W (PV , QV,sP ) is minimized, and the
remaining term in the upper bound in Eq. (7) is the concept-shift-induced component W (QV,sP , QV ).
Next, we further minimize it during training, as illustrated in Figure 1. The reasoning behind
distinguishing between covariate and concept shifts is elaborated in Appendix C.

4 THEORY

4.1 UPPER-BOUNDING WASSERSTEIN DISTANCE BY COVARIATE AND CONCEPT SHIFTS

Although Eq. (7) upper bounds for W (PV , QV ) by W (PV , QV,sP ) and W (QV,sP , QV ), it remains
unclear how these shifts lead to these terms. Covariate shift can be more accurately quantified
by W (PX , QX). Also, with QY,fP = fP#QX , W (QY,fP , QY ) is a more direct way to measure
concept shift by comparing fP and fQ based on QX . Therefore, we further upper-bound the two
terms on the right-hand side of Eq. (7) using W (PX , QX) and W (QY,fP , QY ). We extend a theorem
in Aolaritei et al. (2022), which pushes two probability measures with the same function, while
Theorem 1 considers pushing with different functions.

Theorem 1. For probability measures µ and ν on metric space (X , cX ), letting f, g : X → Y
be measurable functions, µf and νg on metric space (Y, cY) are pushforwards of µ and ν under
functions f and g, respectively. The Wasserstein distance between µf and νg holds the equivalence:

W (µf , νg) = inf
γ′∈Γ(µf ,νg)

∫
Y×Y

cY(y1, y2) dγ
′(y1, y2) = inf

γ∈Γ(µ,ν)

∫
X×X

cY(f(x1), g(x2)) dγ(x1, x2) .

As V,Y ⊆ R, cV(x1, x2) = cY(x1, x2) = |x1 − x2|, Theorem 1 leads to the following

W (QV,sP , QV ) = inf
γ∈Γ(QX ,QX)

∫
X×X

|sP (x1)− sQ(x2)|dγ(x1, x2) , (8)

W (QY,fP , QY ) = inf
γ∈Γ(QX ,QX)

∫
X×X

|fP (x1)− fQ(x2)|dγ(x1, x2) . (9)
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Let γ∗ be the optimal transport plan of W (QY,fP , QY ). With η = max
x1,x2∈X

|sP (x1)−sQ(x2)|
|fP (x1)−fQ(x2)| , we have

W (QV,sP , QV ) ≤
∫
X×X

|sP (x1)− sQ(x2)|dγ∗(x1, x2)

≤
∫
X×X

η|fP (x1)− fQ(x2)|dγ∗(x1, x2) = ηW (QY,fP , QY ).

(10)

In Eq. (10), the first inequality holds as γ∗ may not be the optimal transport plan of W (QV,sP , QV ),
and the second inequality follows the definition of η. Appendix D shows a geometric intuition of η.
Theorem 2. For probability measures µ and ν on metric space (X , cX ) with a measurable function
f : X → Y , µf and νf on metric space (Y, cY) are the pushforward of µ and ν through function f ,
respectively. If f has Lipschitz continuity constant κ, i.e., cY(f(x1),f(x2))

cX (x1,x2)
≤ κ,∀x1, x2 ∈ X ,

W (µf , νf ) ≤ κW (µ, ν). (11)

As X ⊆ Rd, cX (x1, x2) = ∥x1 − x2∥2. κ is the Lipschitz constant of sP : X → V such that
|sP (x1)−sP (x2)|

∥x1−x2∥2
≤ κ,∀x1, x2 ∈ X . With Theorem 2, as PV and QV,sP are pushforwards of PX and

QX through sP , we have
W (PV , QV,sP ) ≤ κW (PX , QX). (12)

Plugging Eq. (10) and Eq. (12) into Eq. (7), W (PV , QV ) ≤ κW (PX , QX) + ηW (QY,fP , QY ).
Therefore, by utilizing Eq. (6), we can further bound the coverage gap using the magnitudes of
covariate and concept shifts:

Coverage gap ≤
√
2L (κW (PX , QX) + ηW (QY,fP , QY )). (13)

Equation (13) highlights how covariate and concept shifts impact the coverage gap. While the values
of W (PX , QX) and W (QY,fP , QY ) are inherent properties of given data and cannot be altered, the
parameters κ and η are linked to the model h, allowing minimizing κ and η via optimizing h.

4.2 EMPIRICAL UPPER BOUND OF COVERAGE GAP

In practice, PV and QV are rarely available. Sometimes we may have access to their empirical
distributions via the score function s, where P̂V is derived from n calibration samples and Q̂V

is obtained from m test samples. Having the Wasserstein distance between the two empirical
distributions W (P̂V , Q̂V ), we derive the error bound between the empirical form and W (PV , QV )
by asymptotic estimation.
Definition 4 (Upper Wasserstein Dimension). (Dudley, 1969) Given a set A ⊆ X , the ϵ-
covering number, denoted Nϵ(A), is the minimum b such that b closed balls, B1, ...,Bb, of di-
ameter ϵ achieve A ⊆ ∪1≤i≤bBi. For a distribution µ in X , the (ϵ, ζ)-dimension is dϵ(µ, ζ) =
− log(inf{Nϵ(A) : µ(A) ≥ 1− ζ})/log ϵ. The upper Wassersteion dimension with p = 1 is

dW (µ) = inf{φ ∈ (2,∞) : lim supϵ→0 dϵ(µ, ϵ
φ

φ−2 ) ≤ φ}. (14)

With the definition of upper Wasserstein dimension, Weed & Bach (2019) conducted how an empirical
distribution converges to its population by the Wasserstein distance between them.
Proposition 2. (Weed & Bach, 2019) Given a probability measure µ, σ > dW (µ). If µ̂n is an
empirical measure corresponding to n i.i.d. samples from µ, ∃λ ∈ R such that E[W (µ, µ̂n)] ≤
λn−1/σ . Furthermore, for t > 0, Pr(W (µ, µ̂n) ≥ E[W (µ, µ̂n)] + t) ≤ e−2nt2 .
Theorem 3. Given two probability measures µ and ν, σµ > dW (µ) and σν > dW (ν). µ̂n and
ν̂m are empirical measures corresponding to n i.i.d. samples from µ and m i.i.d. samples from ν,
respectively. For tµ, tν > 0, ∃λµ, λν ∈ R with probability at least (1− e−2ntµ

2

)(1− e−2mtν
2

) that

W (µ, ν) ≤ W (µ̂n, ν̂m) + λµn
−1/σµ + λνm

−1/σν + tµ + tν . (15)

Applying Theorem 3 to Eq. (6), we derive an empirical upper bound of coverage gap. Specifically,
if PV has Lebesgue density bounded by L, for tP , tQ > 0, σP > dW (PV ), and σQ > dW (QV ),
∃λP , λQ ∈ R with probability at least (1− e−2ntP

2

)(1− e−2mtQ
2

) that

Coverage gap ≤
√
2L

(
W (P̂V , Q̂V ) + λPn−1/σP + λQm−1/σQ + tP + tQ

)
. (16)
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5 APPLICATION TO MULTI-SOURCE CONFORMAL PREDICTION

In this work, we consider the test distribution to be an unknown random mixture of multiple training
distributions, referred to as multi-source domain generalization (Sagawa et al., 2019). As highlighted
by Cauchois et al. (2024), achieving 1-α coverage for each of the training distributions ensures
that the coverage on test data remains at 1-α if the test distribution is any mixture of the training
distributions. We apply the methodology outlined in Section 3 to this scenario, namely multi-source
conformal prediction. Given training distributions D(i)

XY for i = 1, .., k, we require QXY follows

QXY ∈
{∑k

i=1
wiD

(i)
XY : w1, ..., wk ≥ 0,

∑k

i=1
wi = 1

}
. (17)

In other words, QXY is an unknown random mixture of D(i)
XY for i = 1, .., k. Next, we introduce

a surrogate of W (QV,sP , QV ), allowing the minimization of W (QV,sP , QV ) even when the test
distribution QXY is unknown in practice. With the score function s(x, y) and D

(i)
V = s#D

(i)
XY ,

QV = s#QXY = s#
∑k

i=1
wiD

(i)
XY =

∑k

i=1
wis#D

(i)
XY =

∑k

i=1
wiD

(i)
V . (18)

By marginalizing out Y in Eq. (17), we obtain QX =
∑k

i=1 wiD
(i)
X . Similar to Eq. (18), with score

function sP (x) and D
(i)
V,sP

= sP#D
(i)
X , QV,sP = sP#QX =

∑k
i=1 wiD

(i)
V,sP

.

Theorem 4. In space X ⊆ R, ν is a mixture distribution of multiple distributions ν(i), i = 1, ..., k,
such that ν =

∑k
i=1 wiν

(i) with w1, ..., wk ≥ 0,
∑k

i=1 wi = 1. For any distribution µ on X ,
Wasserstein distance has the inequality that W (µ, ν) ≤

∑k
i=1 wiW (µ, ν(i)).

By Theorem 4, W (QV,sP , QV ) ≤
∑k

i=1 wiW (QV,sP , D
(i)
V ) ≤

∑k
i=1 wi

∑k
i=1 wiW (D

(i)
V,sP

, D
(i)
V ).

The inequality offers a surrogate of W (QV,sP , QV ). Even if QXY is unknown, with uniformly
distributed weights, we minimize the expectation of the surrogate with wi = 1/k for i = 1, ..., k:
min 1

k

∑k
i=1 W (D

(i)
V,sP

, D
(i)
V ). Besides reducing the coverage gap, we also want smaller prediction

errors, so we include empirical risk minimization (ERM) (Vapnik, 1991) during training. Hence, with
a loss function l and a parameterized model hθ, we merge the constant 1/k with a hyperparameter β,
and introduce the objective function

min
θ

∑k

i=1
E
(x,y)∼D

(i)
XY

[l(hθ(x), y)] + β
∑k

i=1
W (D

(i)
V,sP

, D
(i)
V ). (19)

We design Wasserstein-regularized Conformal Prediction (WR-CP) to optimize hθ by Eq. (19) with
finite samples and generate prediction sets with small coverage gaps. S(i)

XY is the sample set drawn
from D

(i)
XY for i = 1, ..., k, and SP

XY is the sample set drawn from PXY . SQ
XY is a test set containing

samples from an unknown distribution QXY . Algorithm 1 shows the implementation of WR-CP.
Kernel density estimation (KDE) is applied to obtain P̂X , D̂(i)

X , and Q̂X for the calculation of
likelihood ratios, whereas D̂(i)

V and D̂
(i)
V,sP

are estimated as discontinuous, point-wise distributions to
ensure differentiability during training. We show the details of distribution estimation in Appendix E.
As Algorithm 1 indicates, in the prediction phase, WR-CP follows the inference procedure of
importance-weighted conformal prediction (IW-CP) proposed by Tibshirani et al. (2019). When
β = 0, Eq. (19) returns to empirical risk minimization, and thus WR-CP becomes IW-CP.

6 EXPERIMENTS

6.1 DATASETS AND MODELS

Experiments were conducted on six datasets: (a) the airfoil self-noise dataset (Brooks & Marcolini,
2014); (b) Seattle-loop (Cui et al., 2019), PeMSD4, PeMSD8 (Guo et al., 2019) for traffic speed
prediction; (c) Japan-Prefectures, and U.S.-States (Deng et al., 2020) for epidemic spread forecasting.
k = 3 for the airfoil self-noise dataset, and k = 10 for the other five datasets. We conducted
10 sampling trials for each dataset. Within each trails, we sampled S(i)

XY from each subset i, for

7
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Algorithm 1 Wasserstein-regularized Conformal Prediction (WR-CP)

Require: training set S(i)
XY from distribution D

(i)
XY for i = 1, ..., k; calibration set SP

XY from PXY ; N training
epochs; model hθ; score function s(x, y) = |hθ(x)− y|; loss function l; balancing hyperparameter β.

Training Phase:
1: Obtain P̂X and D̂

(i)
X for i = 1, ..., k by kernel density estimation;

2: for j = 1 to N do
3: SP

V = {s(x, y) : (x, y) ∈ SP
XY };

4: for i = 1 to k do
5: Obtain D̂

(i)
V from S(i)

V := {s(x, y) : (x, y) ∈ S(i)
XY } by point-wise distribution estimation;

6: Weight all v ∈ SP
V with normalized dD̂

(i)
X

(x)

dP̂X (x)
, where x is the feature that (x, y) ∈ SP

XY , s(x, y) = v

7: Obtain D̂
(i)
V,sP

from the weighted SP
V by point-wise distribution estimation;

8: end for
9: Optimize hθ by minθ

∑k
i=1 E(x,y)∈S(i)

XY

[l(hθ(x), y)] + β
∑k

i=1 W (D̂
(i)
V,sP

, D̂
(i)
V );

10: end for
Prediction Phase:
11: Obtain Q̂X by kernel density estimation;
12: SP

V = {s(x, y) : (x, y) ∈ SP
XY };

13: Weight all v ∈ SP
V with normalized dQ̂X (x)

dP̂X (x)
, where x is the feature that (x, y) ∈ SP

XY , s(x, y) = v;

14: τ = 1− α quantile of the weighted SP
V ;

15: for (x, y) ∈ SQ
XY do

16: C(x) = {ŷ : s(x, ŷ) ≤ τ, ŷ ∈ Y};
17: end for

i = 1, ..., k. Given that calibration and training data are commonly assumed to follow the same
distribution in CP, we sampled SP

XY from the union of the k subsets. Additionally, we generated 10k
test sets for each dataset in every trial. A multi-layer perceptron (MLP) with an architecture of (input
dimension, 64, 64, 1) was utilized in all experimental setups to maintain comparison fairness. The
detailed information about datasets and sampling procedure is shown in Appendix F.1. The code of
our work is released on https://github.com/rxu0112/WR-CP.

6.2 CORRELATION BETWEEN WASSERSTEIN DISTANCE AND COVERAGE GAP

We demonstrated Wasserstein distance can indicate coverage gap changes across α from 0.1 to
0.9 comprehensively, as illustrated in Figure 1(b). Specifically, for each dataset, hθ was optimized
by empirical risk minimization. Then, we applied vanilla conformal prediction to each test set
and calculated the average value of coverage gaps for α values from 0.1 to 0.9. Meanwhile, we
also computed the Wasserstein distances between the calibration and each test conformal score
distributions. Our findings highlighted a strong positive monotonic relationship between Wasserstein
distance and the average value, indicating its sensitivity to coverage gap changes across different α.

Baselines. Three baseline distance measures were selected. First of all, total variation (TV) distance
was chosen as Barber et al. (2023) aimed to use it to bound coverage gap. Besides, Kullback-Leibler
(KL)-divergence and expectation differenec (∆E) were selected as they are widely applied in domain
adaptation researches (Nguyen et al., 2021; Magliacane et al., 2018).

Metric. We applied Spearman’s coefficient, −1 ≤ rs ≤ 1 to quantify the monotonic relationship
between distance measures and the average coverage gap. The absolute value of the coefficient
represents the strength of the correlation. Its sign indicates if a correlation is positive or negative. A
higher positive rs means a stronger positive monotonic relation. We show the detailed definition of
Spearman’s coefficient in Appendix F.2.

Result. Table 1 presents Spearman’s coefficients between distance measures and the average coverage
gap across the six datasets, with the standard deviations shown in parentheses. The highest coefficient
is bold and the second-highest coefficient is underlined. The result shows that the Wasserstein distance
consistently exhibits a high coefficient, suggesting that Wasserstein distance is an effective indicator
of the average coverage gap, and establishing it as a suitable optimization metric for maintaining
coverage guarantees across various α values.
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Table 1: Spearman’s coefficients between distance measures and the average coverage gap

Dataset Airfoil PeMSD4 PeMSD8 Seattle U.S. Japan

W 0.59 (0.24) 0.84 (0.03) 0.90 (0.03) 0.84 (0.05) 0.77 (0.06) 0.57 (0.05)
TV 0.45 (0.16) 0.88 (0.03) 0.86 (0.06) 0.75 (0.09) 0.67 (0.10) 0.37 (0.06)
KL 0.40 (0.21) 0.49 (0.17) 0.51 (0.09) 0.45 (0.17) 0.60 (0.11) 0.53 (0.05)
∆E 0.55 (0.19) 0.78 (0.05) 0.85 (0.04) 0.71 (0.06) 0.68 (0.08) 0.37 (0.09)

6.3 EVALUATION OF WR-CP IN WASSERSTEIN DISTANCE MINIMIZATION

We proved that WR-CP, utilizing importance weighting, can effectively minimize the Wasserstein
distances resulting from both concept shift and covariate shift.

Baselines. Besides WR-CP, we also conducted vanilla CP and IW-CP on all sampled datasets.

Metric. These approaches were compared based on the Wasserstein distance between calibration and
test conformal scores. To place greater emphasis on the vertical coverage gap between conformal
score CDFs, the distances were normalized to mitigate the impact of varying score scales across
datasets, enabling more meaningful comparisons.

Result. Figure 3 shows that WR-CP consistently reduces Wasserstein distance. The extent of these
reductions is dependent on the value of β. However, despite the ability to address covariate-shift-
induced Wasserstein distance, importance weighting may not always lead to a reduction, as seen in the
case of the Seattle-loop dataset. Further explanation of the phenomenon is provided in Appendix C.
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Figure 3: Comparison of vanilla CP, IW-CP, and WR-CP based on normalized Wasserstein distance
between calibration and test conformal scores: IW-CP can only address the distance caused by covariate shift,
while WR-CP reduces the distance from concept shift. The β values for the WR-CP method are 9, 11, 9, 10, 13,
and 13, respectively.

6.4 ROBUST AND EFFICIENT PREDICTION SETS BY WR-CP

We experimentally demonstrated that, compared with prior works, WR-CP is capable of reducing
coverage gap without significantly sacrificing prediction efficiency.

Baselines. Besides vanilla CP and IW-CP (Tibshirani et al., 2019), conformalized quantile regression
(CQR) (Romano et al., 2019) was chosen as a representative method for adaptive CP. We also included
the worst-case conformal prediction (WC-CP), which is an implement of the worst-case approach
proposed by Gendler et al. (2021); Cauchois et al. (2024); Zou & Liu (2024) in the convex hull setup.

Metric. We compared the coverage gaps and sizes of prediction sets generated by WR-CP and
baselines as α ranges from 0.1 to 0.9 across all sampled datasets. Prediction sets are better when
actual coverages are more concentrated around 1− α and have smaller sizes.

Result. With α = 0.2, Figure 4 confirms that WR-CP consistently exhibits the most concentrated
coverages around 1− α compared to vanilla CP, IW-CP, and CQR across datasets. While WC-CP
maintains coverage guarantees under joint distribution shift, it leads to inefficient predictions. In
contrast, WR-CP mitigates this inefficiency through smaller set sizes. We show the results with
other α values in Appendix F.3. It is important to observe that vanilla CP and and IW-CP always
have smaller prediction sets than WR-CP. Since WR-CP is trained with the additional Wasserstein
regularization term in Eq. (19), the trade-off inevitably causes an increase in prediction errors, which
are proportional to conformal scores. Consequently, methods based on empirical risk minimization,
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Figure 4: Coverages and prediction set sizes of WR-CP and baselines with α = 0.2: WR-CP makes
coverages on test data more concentrated around the 1 − α level compared to vanilla CP, IW-CP, and CQR.
While WC-CP ensures coverage guarantees, it leads to inefficient predictions due to large set sizes, whereas
WR-CP mitigates this inefficiency. The β values for the WR-CP method are 4.5, 9, 9, 6, 8, and 20, respectively.
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Figure 5: Pareto fronts of coverage gap and prediction set size obtained from WR-CP with varying β:
WR-CP effectively balances conformal prediction accuracy and efficiency, providing a flexible and customizable
solution. When β = 0, WR-CP returns to IW-CP.

like vanilla CP and IW-CP, tend to yield smaller prediction sets compared to WR-CP due to their
lower conformal scores. We further discuss the trade-off in WR-CP in Subsection 6.5. Lastly, we
can see IW-CP have worse coverages than vanilla CP on Seattle-loop dataset, reflecting the fact that
importance weighting enlarges Wasserstein distance on that dataset in Figure 3.

6.5 ABLATION STUDY

As outlined in Eq. (19), WR-CP is regulated by a hyperparameter β, which governs the trade-off
between coverage gap and prediction set size. It is essential to investigate the performance of WR-CP
under different β values, which are listed in Appendix F.4. To achieve this, we conducted WR-CP on
all sampled datasets with varying β values. At each β value, we calculated the average coverage gap
and set size over α from 0.1 to 0.9. Finally, we obtained a Pareto front for each dataset in Figure 5.
In particular, when β = 0, WR-CP reverts back to IW-CP, so we emphasize the outcomes in this
scenario as boundary solutions derived from IW-CP. The results indicate that WR-CP allows users to
customize the approach based on their preferences for conformal prediction accuracy and efficiency.
We further explore whether WR-CP can achieve efficient prediction with a coverage guarantee in
Appendix G. The limitations of our study are presented in Appendix H.

7 CONCLUSION

In this work, we point out that the coverage gap of conformal prediction under joint distribution shift
relies on the distance between the CDFs of calibration and test conformal score distributions. Based on
this observation, we propose an upper bound of coverage gap utilizing Wasserstein distance, offering
better identifiability of gap changes at different α. We conduct a detailed analysis of the bound by
utilizing probability measure pushforwards from the shifted joint data distribution to conformal score
distributions. This approach allows us to explore the separation of the impact of covariate and concept
shifts on the coverage gap. Based on the separation, we design Wasserstein-regularized conformal
prediction (WR-CP) via importance weighting and regularized representation learning, which can
obtain accurate and efficient prediction sets with controllable balance. The performance of WR-CP is
experimentally analyzed with diverse baselines and datasets.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

Sihong Xie was supported by the Department of Science and Technology of Guangdong
Province (Grant No. 2023CX10X079), the National Key R&D Program of China (Grant No.
2023YFF0725001), the Guangzhou-HKUST(GZ) Joint Funding Program (Grant No. 2023A03J0008),
and Education Bureau Guangzhou Municipality.

REFERENCES

Salim I Amoukou and Nicolas JB Brunel. Adaptive conformal prediction by reweighting nonconfor-
mity score. arXiv preprint arXiv:2303.12695, 2023.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
risk control. arXiv preprint arXiv:2208.02814, 2022.

Liviu Aolaritei, Nicolas Lanzetti, Hongruyu Chen, and Florian Dörfler. Distributional uncertainty
propagation via optimal transport. arXiv preprint arXiv:2205.00343, 2022.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
prediction beyond exchangeability. The Annals of Statistics, 51(2):816–845, 2023.

Alberto Bernacchia and Simone Pigolotti. Self-consistent method for density estimation. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 73(3):407–422, 2011.

Pope D. Brooks, Thomas and Michael Marcolini. Airfoil Self-Noise. UCI Machine Learning
Repository, 2014. DOI: https://doi.org/10.24432/C5VW2C.

Maxime Cauchois, Suyash Gupta, and John C Duchi. Knowing what you know: valid and validated
confidence sets in multiclass and multilabel prediction. Journal of machine learning research, 22
(81):1–42, 2021.

Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident
predictions even when distributions shift. Journal of the American Statistical Association, pp.
1–66, 2024.

Nicolo Colombo. Normalizing flows for conformal regression. arXiv preprint arXiv:2406.03346,
2024.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEE Transactions on Intelligent Transportation Systems, 2019.

Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. Cola-gnn: Cross-
location attention based graph neural networks for long-term ili prediction. In Proceedings of the
29th ACM international conference on information & knowledge management, pp. 245–254, 2020.

Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. The Annals of
Mathematical Statistics, 40(1):40–50, 1969.

Bat-Sheva Einbinder, Stephen Bates, Anastasios N Angelopoulos, Asaf Gendler, and Yaniv Romano.
Conformal prediction is robust to label noise. arXiv preprint arXiv:2209.14295, 2, 2022a.

Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, and Yanfei Zhou. Training uncertainty-aware
classifiers with conformalized deep learning. Advances in Neural Information Processing Systems,
35:22380–22395, 2022b.

Shai Feldman, Stephen Bates, and Yaniv Romano. Improving conditional coverage via orthogonal
quantile regression. Advances in neural information processing systems, 34:2060–2071, 2021.

11



Published as a conference paper at ICLR 2025

Di Feng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer. A review and comparative
study on probabilistic object detection in autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, 23(8):9961–9980, 2021.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
distribution-free conditional predictive inference. Information and Inference: A Journal of the
IMA, 10(2):455–482, 2021.

Robert E Gaunt and Siqi Li. Bounding kolmogorov distances through wasserstein and related integral
probability metrics. Journal of Mathematical Analysis and Applications, 522(1):126985, 2023.

Asaf Gendler, Tsui-Wei Weng, Luca Daniel, and Yaniv Romano. Adversarially robust conformal
prediction. In International Conference on Learning Representations, 2021.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Advances
in Neural Information Processing Systems, 34:1660–1672, 2021.

Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
distribution shifts. Journal of Machine Learning Research, 25(162):1–36, 2024.

Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
guarantees. arXiv preprint arXiv:2305.12616, 2023.

Leying Guan. Localized conformal prediction: A generalized inference framework for conformal
prediction. Biometrika, 110(1):33–50, 2023.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 922–929, 2019.

Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu. Split localized conformal prediction, 2023.
URL https://arxiv.org/abs/2206.13092.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Proof. We define f × g by f × g(x1, x2) = (f(x1), g(x2)) = (y1, y2). Let IdX be the identity
mapping function on X , and let πi be the mapping function to the i-th marginal. The proof follows
Proposition 3 in the work by Aolaritei et al. (2022).

First, we prove the inclusion that (f × g)#Γ(µ, ν) ⊂ Γ(f#µ, g#ν). Consider γ ∈ Γ(µ, ν), so it is
equivalent to prove that (f × g)#γ ∈ Γ(f#µ, g#ν), which means the marginals of (f × g)#γ are
f#µ and g#ν. For any continuous and bounded function ϕ : Y → R, we have∫

Y×Y
ϕ(y1) d((f × g)#γ)(y1, y2) =

∫
X×X

ϕ(f(x1)) dγ(x1, x2)

=

∫
X
ϕ(f(x1)) dµ(x1) =

∫
Y
ϕ(y1) d(f#µ)(y1),

(20)

so we obtain π1#((f × g)#γ) = f#µ and similarly derive π2#((f × g)#γ) = g#ν.

Secondly, we need to prove Γ(f#µ, g#ν) ⊂ (f × g)#Γ(µ, ν). With γ′ ∈ Γ(f#µ, g#ν), we
seek γ ∈ Γ(µ.ν) such that (f × g)#γ = γ′. To do so, let γ12 := (IdX × f)#µ ∈ Γ(µ, f#µ),
γ23 := γ′ ∈ Γ(f#µ, g#ν), and γ34 := (g × IdX )#ν ∈ Γ(g#ν, ν). As π2#γ12 = π1#γ23 = f#µ,
and π1#γ34 = π2#γ23 = g#ν, Santambrogio (2015) ensures a joint probability measure γ̄ on
X × Y × Y × X satisfying (π1 × π2)#γ̄ = γ12, (π2 × π3)#γ̄ = γ23, and (π3 × π4)#γ̄ = γ34. We
demonstrate that γ := (π1 × π4)#γ̄ is the probability measure we are seeking. For this, we prove
γ ∈ Γ(µ, ν) with any continuous and bounded function ϕ : X → R by∫

X×X
ϕ(xi) dγ(x1, x2) =

∫
X×Y×Y×X

ϕ(x1) dγ̄(x1, y1, y2, x2)

=

∫
X×Y

ϕ(x1) dγ12(x1, y1) =

∫
X
ϕ(x1) dµ(x1) .

(21)

Eq. (21) indicates π1#γ = µ. Similarly, we can derive π2#γ = ν. As a result, we can prove
(f × g)#γ = γ′ with any continuous and bounded function ϕ : Y × Y → R by∫

Y×Y
ϕ(y1, y2) d((f × g)#γ)(x1, x2)

=

∫
X×X

ϕ(f(x1), g(x2)) dγ(x1, x2)

=

∫
X×Y×Y×X

ϕ(f(x1), g(x2)) dγ̄(x1, y1, y2, x2)

=

∫
X×Y×Y×X

ϕ(y1, y2) dγ̄(x1, y1, y2, x2)

=

∫
Y×Y

ϕ(y1, y2) dγ23(y1, y2) =

∫
Y×Y

ϕ(y1, y2) dγ
′(y1, y2).

(22)

As (f × g)#Γ(µ, ν) ⊂ Γ(f#µ, g#ν) and Γ(f#µ, g#ν) ⊂ (f × g)#Γ(µ, ν), we obtain (f ×
g)#Γ(µ, ν) = Γ(f#µ, g#ν). Finally, we prove Theorem 1 by

W (µf , νg) = W (f#µ, g#ν)

= inf
γ′∈Γ(f#µ,g#ν)

cY(y1, y2) dγ
′(y1, y2)

= inf
γ′∈(f×g)#Γ(µ,ν)

∫
Y×Y

cY(y1, y2) dγ
′(y1, y2)

= inf
γ∈Γ(µ,ν)

∫
Y×Y

cY(y1, y2) d((f × g)#γ)(y1, y2)

= inf
γ∈Γ(µ,ν)

∫
Y×Y

cY(f(x1), g(x2)) dγ(y1, y2)

(23)
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A.2 PROOF OF THEOREM 2

Proof. Let γ′ ∈ Γ(µf , νf ) be the pushforward of γ ∈ Γ(µ, ν) via function f × f . We can apply
Theorem 1 to W (µf , νf ) and obtain

W (µf , νf ) = inf
γ∈Γ(µ,ν)

∫
X×X

cY(f(x1), f(x2)) dγ(x1, x2) . (24)

If the optimal transport plan for W (µ, ν) is γ∗, and κ bounds the Lipschitz continuity of f , we have

W (µf , νf ) ≤
∫
X×X

cY(f(x1), f(x2)) dγ
∗(x1, x2)

≤
∫
X×X

κcX (x1, x2) dγ
∗(x1, x2) = κW (µ, ν).

(25)

In Eq. (25), the first inequality holds because γ∗ may not be the optimal transport plan for W (µf , νf ),
and the second inequality holds due to the definition of κ.

A.3 PROOF OF THEOREM 3

Proof. As Wasserstein distance satisfies triangle inequality, W (µ, ν) and W (µ̂n, ν̂m) follow

W (µ, ν) ≤ W (µ̂n, µ) +W (µ̂n, ν) ≤ W (µ̂n, µ) +W (µ̂n, ν̂m) +W (ν̂m, ν). (26)

Given E[W (µ, µ̂n)] ≤ λµn
−1/σµ and E[W (ν, ν̂m)] ≤ λνm

−1/σν from Proposition 2, with probabil-
ities at least 1− e−2ntµ

2

and 1− e−2mtν
2

, respectively, we have

W (µ, µ̂n) ≤ λµn
−1/σµ + tµ, W (ν, ν̂m) ≤ λνm

−1/σν + tν . (27)

It is reasonable to assume the two events in Eq. (27) are independent, so we can apply them to
Eq. (26), and thus obtain Eq. (15) with probability at least (1− e−2ntµ

2

)(1− e−2mtν
2

).

A.4 PROOF OF THEOREM 4

Proof. We denote Fµ, Fν , and Fν(i) the corresponding CDFs of µ, ν, and ν(i) for i = 1, ..., k.

When two distributions are on the real number set R with Euclidean distance, W of the two distribu-
tions equals the area between their CDFs. Therefore, the 1-Wasserstein distance between µ and ν is
given by

W (µ, ν) =

∫
X
|Fµ(x)− Fν(x)|dx . (28)

Since ν =
∑k

i=1 wiν
(i), we have Fν(x) =

∑k
i=1 wiFν(i)(x). As ν, ν(i), and µ are definded on

X ⊆ R, we can derive

W (µ, ν) =

∫
X
|Fµ(x)− Fν(x)|dx =

∫
X

∣∣∣∣∣Fµ(x)−
k∑

i=1

wiFν(i)(x)

∣∣∣∣∣ dx
=

∫
X

∣∣∣∣∣
k∑

i=1

wiFµ(x)−
k∑

i=1

wiFν(i)(x)

∣∣∣∣∣dx =

∫
X

∣∣∣∣∣
k∑

i=1

wi (Fµ(x)− Fν(i)(x))

∣∣∣∣∣dx
≤

∫
X

k∑
i=1

wi |Fµ(x)− Fν(i)(x)|dx =

k∑
i=1

wi

∫
X
|Fµ(x)− Fν(i)(x)|dx

=

k∑
i=1

wiW (µ, ν(i)).

(29)
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B COMPARISON BETWEEN TOTAL VARIATION AND WASSERSTEIN DISTANCE

The total variation (TV) distance between two univariate distributions is defined as half of the absolute
area between their probability density functions (PDFs). For instance, given two distributions µ and
ν with PDFs pµ and pν , respectively, on space R≥0, the TV distance is given by

TV (µ, ν) =
1

2

∫
R≥0

|pµ(x)− pν(x)|dx . (30)

In contrast, we expand W (µ, ν) according to Eq. (28) by

W (µ, ν) =

∫
R≥0

|Fµ(x)− Fν(x)|dx =

∫
R≥0

∣∣∣∣∫ x

0

pµ(t) dt−
∫ x

0

pν(t) dt

∣∣∣∣dx
=

∫
R≥0

∣∣∣∣∫ x

0

pµ(t)− pν(t) dt

∣∣∣∣dx . (31)

The inner integration between 0 and x indicates Wasserstein distance cares where two distributions µ
and ν differ, whereas the total variation distance in Eq. (30) does not take this into consideration.

We would like to introduce a toy example to illustrate further why total variation distance can not
consistently capture the closeness between two cumulative distribution functions (CDFs). Consider
three conformal score distributions PV , Q

(1)
V , Q

(2)
V on space R≥0 with their PDFs:

pPV
(v) = 1, v ∈ [0, 1];

p
Q

(1)
V

(v) =

{
1 if v ∈ [0, 0.9],

2 if v ∈ (0.9, 0.95];

p
Q

(2)
V

(v) =

{
2 if v ∈ [0, 0.04],

1 if v ∈ (0.04, 0.96].

Therefore, we calculate TV (PV , Q
(1)
V ) = 0.05 and TV (PV , Q

(2)
V ) = 0.04, while W (PV , Q

(1)
V ) =

0.0025 and W (PV , Q
(2)
V ) = 0.0384. In this example, a reduction in total variation distance results

in a larger Wasserstein distance between two CDFs. Intuitively, TVD only measures the overall
difference between two distributions without accounting for the specific locations where they diverge.
In contrast, the Wasserstein distance will be high when divergence occurs early (i.e., at a small
quantile), especially if the discrepancy persists until the ”lagging” CDF catches up. We visualize the
example in Figure 6.
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Figure 6: Comparison between total variation distance and Wasserstein distance: a reduction in the total
variation distance does not necessarily result in CDFs becoming closer.
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C RATIONALE FOR DIFFERENTIATING COVARIATE AND CONCEPT SHIFTS

There are two key reasons to differentiate between covariate and concept shifts. First, making this
distinction enables the application of importance weighting. Minimizing the Wasserstein regulariza-
tion term inevitably increases prediction residuals. By applying importance weighting, we expect
to reduce the distance, mitigating the adverse effects of regularization on optimizing the regression
loss function in Eq. (19). Figure 3 shows this expectation is met on five out of the six datasets.
This occurs because, in most cases, covariate shifts exacerbate the distance caused by concept shifts
(fP ̸= fQ). Consequently, importance weighting effectively reduces this distance, as illustrated in
Figure 7(a) and evidenced by the results for the airfoil self-noise, PeMSD4, PeMSD8, U.S.-States,
and Japan-Prefectures datasets in Figure 3. However, there are instances where covariate shifts can
alleviate the Wasserstein distance induced by concept shifts. In such cases, applying importance
weighting may increase the distance, as demonstrated in the results for the Seattle-loop dataset in
Figure 3. This phenomenon is further illustrated in Figure 7(b).
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Figure 7: Effect of importance weighting on Wasserstein distance: (a) Scenario where importance weighting
reduces Wasserstein distance; (b) Scenario where importance weighting enlarges Wasserstein distance.

Secondly, in multi-source CP, different training distributions D(i)
XY can suffer from different degrees

of covariate and concept shifts. Importance weighting allows the regularized loss in Eq. (19) to
minimize the distance between training conformal score distribution D

(i)
V and its correspondingly

weighted calibration conformal score distribution D
(i)
V,sP

, so the model can be more targeted on
those whose remaining Wasserstein distances are large. Also, since various non-exchangeable test
distributions will weight calibration conformal score distribution differently in the inference phase,
prediction set sizes can be adaptive to different test distributions. In contrast, without importance
weighting, the model can only regularize

∑k
i=1 W (PV , D

(i)
V ), and use the same quantile of PV to

generate prediction sets for samples from all test distributions, resulting in the same prediction set
size and lack of adaptiveness.

To further demonstrate the two reasons we mentioned above, we modify Wasserstein-regularization
based on unweighted calibration conformal scores (i.e.

∑k
i=1 W (PV , D

(i)
V )) during training. Also,

the weighting operation in the prediction phase in Algorithm 1 is removed accordingly. This method
is denoted as WR-CP(uw). We performed WR-CP(uw) on the sampled data from the 10 trials of each
dataset at α = 0.2 and compared its results with those of WR-CP.

The comparison is depicted in Figure 8. Although the average coverage gaps between WR-CP
and WR-CP(uw) are quite similar, at 3.1% and 2.3% respectively, the average prediction set size
for WR-CP is 28.0% smaller than that of WR-CP(uw). This observation proves our first reason
that importance weighting effectively reduces the Wasserstein distance between calibration and test
conformal scores. By doing so, it mitigates the side effect of optimizing the regularized objective
function in Eq. (19), which increases prediction residuals. Since larger residuals result in larger
prediction sets, reducing residuals directly helps minimize prediction set size. Additionally, the
standard deviations of the prediction set sizes observed in WR-CP(uw) are typically smaller than
those found in WR-CP. This proves the second reason that removing importance weighting will make
prediction sets less adaptive to different test distributions.
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Figure 8: Comparison between WR-CP and WR-CP(uw) at α = 0.2. Both methods were implemented using
the same β values of 4.5, 9, 9, 6, 8, and 20 across the datasets.

D GEOMETRIC INTUITION OF η

To provide a geometric intuition of η, we expand the definition of η as

η = max
x1,x2∈X

|sP (x1)− sQ(x2)|
|fP (x1)− fQ(x2)|

= max
x1,x2∈X

|s (x1, fP (x1))− s (x2, fQ(x2)) |
|fP (x1)− fQ(x2)|

= max
x1,x2∈X

||h(x1)− fP (x1)| − |h(x2)− fQ(x2)||
|fP (x1)− fQ(x2)|

.

(32)

We first simplify the definition by assuming x1 = x2, so the denominator is the absolute difference
between two ground-truth mapping functions fP and fQ at x1, and the numerator is the absolute
difference of the residuals of fP and fQ with a given model h at x1. η is the largest ratio between
the two absolute differences. A small η means even if fP and fQ differ significantly, h results in
similar prediction residuals on fP and fQ. When x1 ̸= x2, η is the largest ratio of the two absolute
differences at two positions, x1 and x2, so a small η means that h can lead to similar residuals when
fP (x1) and fQ(x2) differ. The expanded definition above includes both x1 = x2 and x1 ̸= x2

conditions and Figure 9 (a) and (b) present the two conditions, respectively. Intuitively, the residual
difference caused by concept shift will be constrained by η.
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Figure 9: Geometric intuition of η when (a) x1 = x2 and (b) x1 ̸= x2: Intuitively, the residual difference
caused by concept shift will be constrained by η.
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E DISTRIBUTION ESTIMATION

E.1 KERNEL DENSITY ESTIMATION

P̂X and D̂
(i)
X for i = 1, ..., k are obtained by kernel density estimation (KDE), and based on the

estimated distributions we calculate the likelihood ratio.

In our experiments, we applied the Gaussian kernel, which is a positive function of x ∈ X ⊆ Rd

given by

K(x, b) =
1

(
√
2πb)d

e−
∥x∥2

2b2 , (33)

where ∥·∥ is Euclidean distance and b is bandwidth. Given this kernel form, the estimated probability
density, denoted by p̂, at a position xa within a group of points x1, ..., xn is

p̂(xa,K) =
∑n

i=1
K(xa − xi, b). (34)

To find the optimized bandwidth value of P̂X and D̂
(i)
X for i = 1, ..., k on each dataset, we applied the

grid search method with a bandwidth pool using scikit-learn package (Pedregosa et al., 2011). With
the approximated marginal distribution densities, we can calculate the likelihood ratio to implement
the weighting technique proposed by Tibshirani et al. (2019).

E.2 POINT-WISE DISTRIBUTION ESTIMATION

D̂
(i)
V and D̂

(i)
V,sP

for i = 1, ..., k are estimated as discontinuous, point-wise distributions to ensure

differentiability during training. Specifically, as D̂(i)
V and D̂

(i)
V,sP

are conformal score distributions on

real number set R, W (D̂
(i)
V , D̂

(i)
V,sP

) is equal to area between their CDFs, as Eq. (28) shows. Hence,

our focus is on estimating the CDFs of D̂(i)
V and D̂

(i)
V,sP

for i = 1, ..., k.

For the details of point-wise distribution estimation, consider we have a x1, ..., xn drawn from a
probability measure µ in space X ⊆ R, so the approximated CDF of µ is given by

Fµ̂(x) =
1

n

∑n

j=1
δxi1xi<x, (35)

where 1 is the indicator function and δxi
represents the point mass at xi (i.e., the distribution placing

all mass at the value xi). In other words, Eq. (35) counts the partition of samples that are smaller
than x. This point-wise estimation ensures that the Wasserstein-1 distance between the estimated
distributions is differentiable.

F SUPPLEMENTARY EXPERIMENTAL INSIGHTS

F.1 DATASETS

The airfoil self-noise dataset from the UCI Machine Learning Repository (Brooks & Marcolini, 2014)
was intentionally modified to introduce covariate shift and concept shift among them. It includes
1503 instances. The target variable is the scaled sound pressure level of NASA airfoils, and there are
5 features: log frequency, angle of attack, chord length, free-stream velocity, and log displacement
thickness of the suction side. To introduce covariate shift, we divided the original dataset into three
subsets based on the 33% and 66% quantiles of the first dimension feature, log frequency, and partially
shuffled them. Therefore, k = 3 for this dataset. We further introduced concept shifts among the
three subsets by modifying target values. With ξ following a normal distribution N(0, 10), for y in
the first set, y+ = y/1000 ∗ ξ; for y in the second set, y+ = y/ξ; for y in the third set, y+ = ξ.
With the modified data, we conducted sampling trials to generate 10 randomly sampled datasets.

The Seattle-loop dataset Cui et al. (2019), as well as the PeMSD4 and PeMSED8 datasets Guo et al.
(2019), consist of sensor-observed traffic volume and speed data gathered in Seattle, San Francisco,
and San Bernardino, respectively. The data was collected at 5-minute intervals. Our goal for each
dataset is to forecast the traffic speed of a specific interested local road segment in the next time step
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by utilizing the current traffic speed and volume data from both the local segment and its neighboring
segments. Before sampling, we selected 10 segments of interest for each dataset randomly, setting
k = 10 for them. There are natural joint distribution shifts present among these segments because of
the varying local traffic patterns.

The U.S.-States and Japan-Prefectures datasets Deng et al. (2020) contain data on the number of
patients infected with influenza-like illness (ILI) reported by the U.S. Department of Health and
Human Services, Center for Disease Control and Prevention (CDC), and the Japan Infectious Diseases
Weekly Report, respectively. The data in each dataset is structured based on the collection region.
Our objective is to utilize the regional predictive features, including population, the increase in
the number of infected patients observed in the current week, and the annual cumulative total of
infections, to forecast the rise in infections for the following week in the corresponding region.
We also randomly selected 10 regions for both datasets, so k = 10. Due to the diverse regional
epidemiological conditions, there are inherent joint distribution shifts among these regions.

For each dataset, we began by sampling S(i)
XY from each subset i, for i = 1, ..., k, without replacement.

After this step, we allocated the remaining elements within each subset for calibration and testing
purposes. The parts intended for calibration across all subsets were then unified to form SP

XY .
Lastly, to create diverse testing scenarios, we generated multiple test sets by randomly mixing the
parts designated for testing from each subset with replacement. For each dataset, we conducted the
sampling trial for 10 times, and calculated the mean and standard deviation of the results from these
trials, as shown in Figure 3, Figure 4, and Figure 5. For efficiency, all CP methods were conducted as
split conformal prediction.

We introduce a toy example to further illustrate that exchangeability does not hold. Consider we have
two training distributions:

D
(1)
XY = N

(
[0, 0],

[
1 0.7
0.7 1

])
;D

(2)
XY = N

(
[1, 1],

[
1 −0.6

−0.6 1

])
.

A calibration distribution is a mixture of these two training distributions with known weights, such as
a uniformly weighted mixture (w1 = w2 = 0.5). A test distribution is a mixture of D(1)

XY and D
(2)
XY

with unknown random weights. To visualize the non-exchangeability in Figure 10, we assume the
unknown test distribution has weights of 0.2 for D(1)

XY and 0.8 for D(2)
XY .
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Figure 10: Calibration and test samples are not exchangeable as they are from different distributions.

F.2 SPEARMAN’S COEFFICIENT

We first provide the definition of Pearson coefficient.
Definition 5 (Pearson coefficient). With n pairs of samples, (xi, yi) for i = 1, ..., n, of two random
variables X and Y , Pearson coefficient, rp, is calculated as the covariance of the samples divided by
the product of their standard deviations. Formally, it is given by

rp =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (36)

where x and y are the means of the samples of X and Y , respectively.
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Based on Pearson coefficient, the definition of Spearman’s coefficient is given as follows.
Definition 6 (Spearman’s coefficient). With n pairs of samples, (xi, yi) for i = 1, ..., n, of two
random variables X and Y , letting r(·) be the rank function (i.e., r(x1) = 3 indicates that x1 is
the third largest sample among x1, ..., xn), Spearman’s coefficient, rs, is defined as the Pearson
coefficient between the ranked samples:

rs =

∑n
i=1 (r(xi)− r(x)) (r(yi)− r(y))√∑n

i=1 (r(xi)− r(x))
2
√∑n

i=1 (r(yi)− r(y))
2
, (37)

where x and y are the means of the samples of X and Y , respectively.

We calculated Spearman’s coefficient between each distance measure and the largest coverage gap in
Section 6 to confirm that Wasserstein distance holds the strongest positive correlation compared with
other distance measures.

F.3 ADDITIONAL EXPERIMENT RESULTS OF SUBSECTION 6.4

In addition to the results shown in Figure 4, we present further experimental findings from Subsec-
tion 6.4 with α values of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 on Figure 11, 12, 13, 14, 15, 16, 17,
and 18, respectively. Clearly, WR-CP demonstrates the ability to generate more tightly concentrated
coverages near 1− α compared to vanilla CP and IW-CP. Additionally, it yields smaller prediction
set sizes than the state-of-the-art method WC-CP. These figures also reveal a trend where as the α
value increases, WR-CP requires a smaller β to achieve acceptable coverages around 1− α, so the
prediction set sizes produced by WR-CP are closer with those of vanilla CP and IW-CP, as evidenced
by the results on the PeMSD4 in Figure 11 and Figure 18. This phenomenon could be attributed
to the trade-off between conformal prediction accuracy and efficiency under joint distribution shift.
The Wasserstein regularization term in Eq. (19) tends to prioritize aligning smaller conformal scores
initially, as it reduces the Wasserstein penalty with a lesser increase in the empirical risk minimization
term. Hence, as the hyperparameter β increases, the model gradually aligns larger conformal scores
from two different distributions, which will adversely impact the risk-driven term more. When
considering a higher α value, the focus is on ensuring that the coverages on test data are close to the
smaller 1− α, indicating the importance of aligning small conformal scores. Consequently, a high β
value is not necessary in this case, leading to smaller prediction set sizes being achieved.

F.4 EXPERIMENT SETUPS IN ABLATION STUDY

To visualize a comprehensive and evenly-distributed set of optimal solutions on Pareto fronts, we
utilized WR-CP with varying values of β to produce the results depicted in Figure 5. As mentioned
in Section 5, it is worth noting that when β = 0, WR-CP reverts to IW-CP. The selected β values for
the results of Figure 5 are shown in Table 2.

Table 2: β values of WR-CP in ablation study

Dataset β values
Airfoil 1, 1.5, 2, 2.5, 3, 3.5, 4.5, 6, 8, 9, 13, 20.

PeMSD4 1, 1.5, 2, 2.5, 3, 5, 7, 9, 11, 15, 20.
PeMSD8 1, 1.5, 2, 2.5, 3, 4, 5, 7, 9, 17.
Seattle 1, 2, 3, 4, 4.5, 5, 5.5, 6, 7, 8, 10, 13, 15, 20.
U.S. 1, 1.5, 2, 2.5, 3, 5, 6, 8, 13.
Japan 1, 2, 3, 4, 6, 8, 10, 13, 20.
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Figure 11: Coverages and set sizes of WR-CP and baselines with α = 0.1: The β values for the WR-CP
method are 9, 11, 9, 8, 13, and 20, respectively.
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Figure 12: Coverages and set sizes of WR-CP and baselines with α = 0.3: The β values for the WR-CP
method are 3, 5, 5, 5, 8, and 13, respectively.
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Figure 13: Coverages and set sizes of WR-CP and baselines with α = 0.4: The β values for the WR-CP
method are 3, 5, 5, 5, 8, and 13, respectively.
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Figure 14: Coverages and set sizes of WR-CP and baselines with α = 0.5: The β values for the WR-CP
method are 3, 5, 3, 5, 8, and 13, respectively.
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Figure 15: Coverages and set sizes of WR-CP and baselines with α = 0.6: The β values for the WR-CP
method are 3, 5, 3, 5, 8, and 13, respectively.
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Figure 16: Coverages and set sizes of WR-CP and baselines with α = 0.7: The β values for the WR-CP
method are 2, 2, 2, 5, 8, and 10, respectively.
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Figure 17: Coverages and set sizes of WR-CP and baselines with α = 0.8: The β values for the WR-CP
method are 2, 2, 2, 5, 5, and 10, respectively.
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Figure 18: Coverages and set sizes of WR-CP and baselines with α = 0.9: The β values for the WR-CP
method are 2, 1, 1, 5, 2, and 6, respectively.
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G PREDICTION EFFICIENCY WITH COVERAGE GUARANTEE

Although Wasserstein-regularized loss in Eq. (19) offers a controllable trade-off with significantly
improved prediction efficiency and a mild coverage loss, it is worth investigating if this efficiency can
be achieved with a coverage guarantee. In this section, we first derive a coverage lower bound of
WR-CP via the multi-source setup in Appendix G.1. Then, we show that the combination of WC-CP
and the Wasserstein-regularized loss can not achieve small prediction sets with ensured coverage in
Appendix G.2.

G.1 COVERAGE GUARANTEE FROM MULTI-SOURCE SETUP

Under the setup of multi-source conformal prediction, with τ as the 1− α quantile of the weighted
calibration conformal score distribution QV,sP , we can derive the coverage gap upper bound by

|FQV,sP
(τ)− FQV

(τ)| =

∣∣∣∣∣
k∑

i=1

wiFD
(i)
V,sP

(τ)−
k∑

i=1

wiFD
(i)
V

(τ)

∣∣∣∣∣
≤

k∑
i=1

wi|FD
(i)
V,sP

(τ)− F
D

(i)
V

(τ)|

≤ sup
i∈{1,...,k}

|F
D

(i)
V,sP

(τ)− F
D

(i)
V

(τ)|.

(38)

In other words, the coverage gap on a test distribution must be less or equal to the largest gap at τ
among multiple training distributions. Denoting αD = supi∈{1,...,k} |FD

(i)
V,sP

(τ) − F
D

(i)
V

(τ)|, we

have a coverage guarantee Pr(Yn+1 ∈ Xn+1) ≥ 1− α− αD.

The regularization term
∑k

i=1 W (D
(i)
V,sP

, D
(i)
V ) in Eq. (19) can minimize αD, and thus making

1− α− αD closer to the desired 1− α. It is important to highlight that αD is adaptive to variations
in test distribution QV , as evident from Eq. (38). This adaptivity ensures that the lower bound
dynamically adjusts to different QV . To evaluate the prediction efficiency of WR-CP under this
guarantee, we set α = 0.1 and computed the corresponding αD for various test distributions.
Additionally, we calculated the coverage and prediction set size of WC-CP on each test distribution,
using the corresponding guarantee at 1− α− αD for comparison.
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Figure 19: Coverages and set sizes of WC-CP and WR-CP with coverage guarantee at 1− α− αD .

The experiment results are depicted in Figure 19, demonstrating improved prediction efficiency
on the PeMSD4, PeMSD8, U.S.-States, and Japan-Prefectures datasets. However, the efficiency
remains almost unchanged on the Seattle-loop dataset and even declines on the airfoil self-noise
dataset. This phenomenon can be attributed to the regularization mechanism. While WR-CP
enhances prediction efficiency by leveraging the calibration distribution to generate prediction sets,
regularization inevitably increases prediction residuals, leading to larger prediction sets. These two
opposing effects can interact differently depending on the dataset characteristics. When the efficiency
gains outweigh the drawbacks of regularization, we observe reduced prediction set size. Conversely,
in datasets like the Seattle-loop and airfoil self-noise, the benefits of regularization are outweighed by
the increased prediction residuals, resulting in unchanged or diminished efficiency. The averaged
prediction set size reduction across the six datasets is 26.9%.
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G.2 POOR COMPATIBILITY BETWEEN WASSERSTEIN-REGULARIZED LOSS AND WC-CP

Since the WC-CP is a conservative post-hoc uncertainty quantification method but the proposed
regularized loss in Eq. (19) is applied during training, one may consider applying WC-CP upon
the model trained by the regularized loss to obtain guaranteed coverage. However, WC-CP and the
model are not suitable for complementing each other. While regularization enhances the reliability of
calibration distributions, the worst-case approach depends exclusively on the upper bound of 1− α
test conformal score quantile, rendering it unable to benefit from regularization. In contrast, the
WC-CP may result in larger prediction sets under this condition, as the regularization inevitably
increases the prediction residuals, which in turn increases the upper bound of the test conformal score
quantile. Experiment results in Figure 20 demonstrate the analysis, where WC-CP is the worst-case
method based on a residual-driven model (same as the WC-CP method in Section 6.4), and Hybrid
WC-WR represents applying WC-CP to a model trained by Eq. (19).

0.8

0.9

1.0

Co
ve

ra
ge

Airfoil

0.8

0.9

1.0

PeMSD4

0.8

0.9

1.0

PeMSD8

0.8

0.9

1.0

Seattle

0.8

0.9

1.0

US

0.8

0.9

1.0

Japan

0.00

2.00

4.00

Pr
ed

. S
et

 S
ize

0.00

2.50

5.00

7.50

0.00

2.00

4.00

6.00

0.00

10.00

20.00

0.00

5.00

10.00

0.00

5.00

10.00

WC-CP Hybrid WR-WC 1

Figure 20: Coverages and set sizes of WC-CP and Hybrid WC-WR with coverage guarantee 1− α = 0.9.

H LIMITATIONS

H.1 SUSCEPTIBILITY TO DENSITY ESTIMATION ERRORS

Given that Wasserstein regularization relies on importance-weighted conformal scores, its perfor-
mance is greatly influenced by the accuracy of the estimated likelihood ratio obtained through KDE.
Inaccurate estimation can significantly impact the effectiveness of WR-CP. For instance, in Figure 4,
WR-CP yields larger prediction set sizes with less concentrated coverages on the airfoil self-noise
dataset compared to other datasets. This can be attributed to the airfoil self-noise dataset having the
highest feature dimension (5) and the smallest size of the sampled SP

XY (500). These challenges in
KDE lead to suboptimal performance of WR-CP on the airfoil self-noise dataset when compared to
its performance on others.

The main reason for KDE error is numerical instability, which can arise from several factors. A poor
choice of kernel is a critical contributor; for instance, kernels with sharp edges or discontinuities, such
as rectangular or triangular kernels, can result in jagged density estimates and amplify errors near
boundaries. Fat-tailed kernels, such as the Cauchy kernel, may assign excessive weight to distant data
points, leading to inaccuracies in density estimates and numerical precision challenges. Additionally,
the lack of feature normalization can exacerbate the effects of extreme values, skewing the density
estimation process and reducing computational stability. Lastly, inappropriate bandwidth selection,
either too small (overfitting) or too large (underfitting), can disrupt the balance between bias and
variance, further contributing to instability in the estimation.

In our work, we first adopted the Gaussian kernel, valued for its smoothness and numerical stability.
To mitigate the influence of extreme values, we applied feature normalization, ensuring a more stable
density estimation process. Additionally, we conducted a comprehensive grid search to fine-tune the
bandwidth, achieving an optimal balance between bias and variance for robust and accurate results.
The bandwidth candidates were selected from a logarithmically spaced range between 10−2 and
100.5, consisting of 20 evenly distributed values on a logarithmic scale.
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H.2 COMPUTATIONAL CHALLENGES IN KDE

We applied a grid search approach to identify the optimal bandwidth for KDE, which ensures an
effective balance between bias and variance in density estimation. However, this method often
involves extensive computational effort, particularly when working with high-dimensional datasets,
as it requires repeated calculations over a range of bandwidth values. To address this challenge,
Bernacchia–Pigolotti KDE (Bernacchia & Pigolotti, 2011) introduces an innovative framework that
combines a Fourier-based filter with a systematic approach for simultaneously determining both
the kernel shape and bandwidth. This method not only reduces subjectivity in kernel selection but
also offers a more efficient computational pathway. Building on this foundation, FastKDE (O’Brien
et al., 2016) adapts and extends the Bernacchia–Pigolotti approach for high-dimensional scenarios,
incorporating optimizations that significantly improve computational speed and scalability. These
advancements represent promising directions for mitigating the computational overhead in our own
work, where similar strategies could be leveraged to streamline the bandwidth selection process and
enhance the overall efficiency of KDE in complex datasets.

H.3 OTHER CHOICES OF THE CALIBRATION DISTRIBUTION

In the experiments conducted in Section 6, we specifically examine the scenario where the calibration
data follows a mixture distribution of D(i)

XY for i = 1, ..., k with equal weights. However, this
may not always be the case in real-world situations. Given that the calibration distribution plays a
crucial role in determining the difficulty of minimizing Eq. (19) during training, it is valuable to
investigate the performance of WR-CP with a calibration distribution different from a mixture of
training distributions.
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