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Abstract

In recent years, a large number of algorithms for label integration and noise
correction have been proposed to infer the unknown true labels of instances in
crowdsourcing. They have made great advances in improving the label quality
of crowdsourced datasets. However, due to the presence of intractable instances,
these algorithms are usually not as significant in improving the model quality as
they are in improving the label quality. To improve the model quality, this paper
proposes an instance weighting-based bias-variance trade-off (IWBVT) approach.
IWBVT at first proposes a novel instance weighting method based on the com-
plementary set and entropy, which mitigates the impact of intractable instances
and thus makes the bias and variance of trained models closer to the unknown
true results. Then, IWBVT performs probabilistic loss regressions based on the
bias-variance decomposition, which achieves the bias-variance trade-off and thus
reduces the generalization error of trained models. Experimental results indicate
that IWBVT can serve as a universal post-processing approach to significantly
improving the model quality of existing state-of-the-art label integration algo-
rithms and noise correction algorithms. Our codes and datasets are available at
https://github.com/jiangliangxiao/IWBVT.

1 Introduction

Crowdsourcing eases the difficulty of obtaining training datasets for supervised learning [8]. In
crowdsourcing scenarios, instances are annotated not by domain experts but by crowd workers
from crowdsourcing platforms [1, 12]. While crowd workers are more cost-effective compared to
domain experts, they typically possess inferior expertise and are thus more prone to assigning noisy
labels [2,13]. To mitigate the impact of noisy labels, a common practice in crowdsourcing is repeated
annotating, where each instance is annotated by multiple workers to obtain multiple noisy labels [21].
Subsequently, a multitude of algorithms have been proposed to infer the unknown true label of an
instance from its multiple noisy labels [3, 11, 15].
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Specifically, these proposed algorithms can be roughly classified into two categories, namely label
integration algorithms and noise correction algorithms. Label integration algorithms aim to integrate
multiple noisy labels of each instance to infer an integrated label that is as close as possible to
its unknown true label [16, 30]. Noise correction algorithms focus on identifying and correcting
noise in integrated labels obtained from label integration algorithms [19, 32]. Therefore, both label
integration algorithms and noise correction algorithms inevitably pay more attention to the label
quality of crowdsourced datasets, i.e., the proportion of instances in crowdsourced datasets whose
integrated labels are equal to the unknown true labels. Indeed, these proposed algorithms have
achieved empirical success in improving the label quality of crowdsourced datasets.

However, due to the presence of intractable instances, these algorithms often fall short of achieving
anticipated improvements in the model quality. Here, the model quality is the proportion of instances
whose predicted labels are equal to the unknown true labels when models classify test instances. On
the one hand, the proportion of intractable instances in datasets tends to be low, which makes them
have less impact on the label quality. For this reason, the above algorithms pay little attention to
intractable instances in improving the label quality. On the other hand, the reason why intractable
instances are hard to label and infer is that their attributes are ambiguous. Ambiguous attributes affect
the effectiveness of models in learning classification rules from crowdsourced datasets. Therefore,
intractable instances have a greater impact on the model quality compared to the label quality.
Considering the fact that collecting high-quality integrated labels is ultimately aimed at training high-
quality models, improving the model quality should be paid more attention compared to improving
the label quality in crowdsourcing.

To improve the model quality, this paper proposes an instance weighting-based bias-variance trade-off
(IWBVT) approach for crowdsourcing. IWBVT at first proposes a novel instance weighting method
based on the idea of complementary set and entropy, which mitigates the impact of intractable
instances and thus makes the bias and variance of trained models closer to the unknown true
results. Subsequently, IWBVT performs probabilistic loss regressions based on the bias-variance
decomposition, which achieves the bias-variance trade-off and thus reduces the generalization error
of trained models. In general, the contributions of this paper can be summarized as follows:

• We focus on the performance of existing algorithms in terms of the model quality and reveal
that existing algorithms are not as significant in improving the model quality as they are in
improving the label quality.

• We propose a novel instance weighting method based on the complementary set and entropy.
This new instance weighting method is more robust and can be applied to more complex
crowdsourced scenarios.

• We propose IWBVT to improve the model quality. IWBVT mitigates the impact of in-
tractable instances by instance weighting and achieves the bias-variance trade-off by proba-
bilistic loss regressions.

• We demonstrate that IWBVT can serve as a universal post-processing approach to signifi-
cantly improving the model quality of existing state-of-the-art label integration algorithms
and noise correction algorithms.

2 Related work

With repeated annotating, crowdsourcing collects multiple noisy labels for each instance in datasets.
Subsequently, label integration is usually used to integrate multiple noisy labels to infer the unknown
true label for each instance. Initiating the area of label integration, [4] leveraged an expectation-
maximization (EM) algorithm to estimate a confusion matrix, which models workers and class
priors in clinical diagnostics. In contrast, [20] performed majority voting based on multiple noisy
labels of instances, and the class receiving the highest number of votes was determined as the
integrated label. Enhancing this concept by incorporating worker reliability, [10] performed weighted
majority voting by iteratively estimating worker weights and integrated labels. [23] further proposed
max-margin majority voting, which integrates labels by maximizing the margin between classes.
Recently, [3] augmented the label space for an instance by considering the labels of its neighbors,
which distinguishes the impact of different neighbors by instance weighting. Inspired by label
distribution learning [6, 17, 26], [8] proposed multiple noisy label distribution propagation, which
absorbs label distributions of neighboring instances into the label distribution of the focal instance.
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No matter how powerful the label integration algorithms are, a certain degree of noise is always
present in integrated labels. Subsequently, noise correction has been proposed to identify and
correct these noises. Initiating the area of noise correction, [19] introduced three distinct algorithms:
polishing labels (PL), self-training correction (STC), and cluster-based correction (CC). PL divides
datasets into subsets to train multiple models and then performs majority voting based on the models’
predictions to correct the original integrated labels. STC filters the dataset into a clean set and a noise
set, iteratively training models on the clean set to predict and correct instances in the noise set. CC
estimates the probability of each instance belonging to each class through repeated clustering and
performs weighted majority voting to correct original integrated labels. Forgoing the above three
algorithms, [32] adaptively estimated the proportion of noise in datasets based on multiple noisy
labels to filter out a clean set and a noise set. Recently, drawing from multi-view learning [31], [15]
used multi-view learning for correcting noise instances. They trained dual models on the attribute
and multiple noisy label views of the clean set to correct instances in the noise set. [11] focused on
the effect of neighboring instances on noise filtering before noise correction, utilizing multiple noisy
label distributions of neighbors to identify noise instances more accurately.

In essence, both label integration algorithms and noise correction algorithms aim to improve the
model quality by improving the label quality. Unfortunately, due to the presence of intractable
instances, these algorithms are usually not as significant in improving the model quality as they are in
improving the label quality. Currently, although there exist several supervised or semi-supervised
approaches focused on improving the model quality from noisy training datasets [7, 14, 28], they are
not perfectly applicable to crowdsourcing. On the one hand, they cannot utilize the multiple noisy
labels specific to crowdsourcing. On the other hand, semi-supervised approaches typically assume
that true labels of a few instances are known, which cannot be satisfied in crowdsourcing. In this
context, we propose IWBVT, as the first universal post-processing approach to improve the model
quality of both label integration algorithms and noise correction algorithms in crowdsourcing.

3 Notations and preliminaries

Let D denote a crowdsourced dataset {(xi,Li)}Ni=1, where N represents the number of instances,
and xi is the i-th instance, represented as {xi1, . . . , xim, . . . , xiM}. Here, M signifies the dimension
of attributes and xim denotes the attribute value of xi on the m-th attribute Am. Li denotes multiple
noisy labels of xi, which can be represented as {lir}Rr=1. R denotes the number of workers, lir denotes
the label of xi annotated by the r-th worker ur. lir takes a value from {−1, c1, . . . , cq, . . . , cQ},
where Q denotes the number of classes, cq denotes the q-th class and −1 denotes that ur does not
annotate xi. The purpose of label integration and noise correction is to infer an integrated label ŷi for
xi and to minimize the error between ŷi and the unknown true label yi.

3.1 Instance weighting for crowdsourcing

Given (xi,Li), the weight of xi is denoted by wi. Intuitively, the smaller the value of wi, the more
likely that xi is an intractable instance. To estimate wi, Li is first transformed into a multiple noisy
label distribution Pi = {P (cq|Li)}Qq=1, where the probability P (cq|Li) reflects the proportion of
labels in Li that take the value cq . Subsequently, several representative instance weighting methods
have been proposed based on Pi. First, [21] proposed estimating wi by P (ŷi|Li), i.e., wi ∝ P (ŷi|Li).
Take MV as an example, the probability P (ŷi|Li) consistently equals the maximum value in Pi.
This method is usually effective when Q = 2. However, when Q > 2, P (ŷi|Li) is not sufficient to
distinguish different distributions, such as {0.5, 0.3, 0.2} and {0.5, 0.4, 0.1}.

Subsequently, [27] proposed estimating wi by the entropy of Pi, i.e., wi ∝ 1
Ent(Pi)

, where

Ent(Pi) = −
Q∑

q=1

P (cq|Li) logP (cq|Li). (1)

Based on the maximum entropy principle, when Pi conforms more closely to the uniform distribution,
the entropy Ent(Pi) increases, leading to a decrease in the corresponding weight wi. Though entropy-
based methods can weight instances in multi-class datasets, they still fail to distinguish some complex
distributions, such as {0.4, 0.3, 0.3} and {0.4, 0.4, 0.2}. Recently, [3] proposed estimating wi by the
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Figure 1: The illustration of our new instance weighting method.

class margin as follows:
wi ∝ max(Pi)− sec(Pi), (2)

where max(Pi) and sec(Pi) denote the largest and second largest values in Pi, respectively. This
method focuses on the confusing classes in crowdsourced datasets. Nevertheless, it still struggles to
distinguish some complex distributions, such as {0.5, 0.3, 0.1, 0.1} and {0.4, 0.2, 0.2, 0.2}.

In addition to these methods, there are also a few methods that estimate wi with classification models
or evolutionary algorithms [22, 29]. However, these methods have not been discussed here as their
performance is affected by the selected models, loss functions, parameter settings, etc.

3.2 Bias-variance decomposition

The bias-variance decomposition is an effective way to analyze the generalization error of models.
Referring to [9], given a model f , its generalization error Ef can be denoted as follows:

Ef =

N∑
i=1

P (xi)
(
bias2i + vari + σ2

i

)
, (3)

where P (xi) denotes the probability of selecting xi from D. bias2i and vari denote the bias term
and the variance term, respectively. They are estimated as follows:

bias2i =
1

2

Q∑
q=1

[
P (cq|xi)− P (cq|f,xi)

]2
, (4)

vari =
1

2

[
1−

Q∑
q=1

P (cq|f,xi)
2
]
, (5)

where P (cq|xi) denotes the true probability that xi belongs to cq , P (cq|f,xi) denotes the probability
that f classifies xi into cq in multiple results generated by cross-validation. Therefore, P (cq|xi) is
independent of f and is only related to D. σ2

i denotes the noise term, which is also only related to D.

4 Approach

The primary objective of IWBVT is to improve the model quality through bias-variance trade-off.
However, in crowdsourcing scenarios, P (cq|xi) can only be roughly estimated because yi is unknown
and ŷi is inaccurate. To estimate the bias and variance of f as accurately as possible, IWBVT first
mitigates the impact of intractable instances by instance weighting. Subsequently, to achieve the
bias-variance trade-off, IWBVT learns probabilistic loss by probabilistic loss regressions.

4.1 Instance weighting

As previously mentioned, existing instance weighting methods struggle to distinguish certain complex
distributions effectively. In response, IWBVT introduces a novel instance weighting method that
leverages the complementary set and entropy to overcome this limitation. The innovative aspects
of this method are depicted in Figure 1. As shown in the figure, P (ŷi|Li) reflects the proportion
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Table 1: The comparison results of instance weighting methods on complex distributions.

Complex distributions P (ŷi|Li)
1

Ent(Pi)
max(Pi)− sec(Pi) P (ŷi|Li)

Ent(P̄i)
log(Q−1)

{0.5, 0.3, 0.2} & {0.5, 0.4, 0.1} 0.50 & 0.50 × 0.67 & 0.73 × 0.20 & 0.10 ✓ 0.70 & 0.52 ✓
{0.4, 0.3, 0.3} & {0.4, 0.4, 0.2} 0.40 & 0.40 × 0.64 & 0.66 × 0.10 & 0.00 ✓ 0.58 & 0.53 ✓
{0.5, 0.3, 0.1, 0.1} & {0.4, 0.2, 0.2, 0.2} 0.50 & 0.40 ✓ 0.59 & 0.52 ✓ 0.20 & 0.20 × 0.62 & 0.58 ✓

of the integrated label in Li. A higher P (ŷi|Li) suggests more workers reach a consensus on xi,
thereby indicating a decreased likelihood of xi being an intractable instance. To extend our method to
multi-class datasets, we also focus on the entropy of P̄i, i.e., Ent(P̄i). Here, P̄i is the complementary
set of {P (ŷi|Li)} in Pi ({P (cq|Li)}Qq=1). Intuitively, workers tend to reach a consensus on a special
class on tractable instances, so they should be more randomized on other classes. The entropy of
P̄i reflects the degree of randomization. Accordingly, our instance weighting method considers four
cases, shown to the right side of the arrow in Figure 1. Among them, the case in the upper left corner
indicates that when Ent(P̄i) is fixed, a lower P (ŷi|Li) results in a lower wi. Conversely, the case in
the upper right corner indicates that a higher P (ŷi|Li) results in a higher wi. The case in the lower
left corner indicates that when P (ŷi|Li) is fixed, a lower Ent(P̄i) results in a lower wi. The case in
the lower right corner indicates that the higher Ent(P̄i) results in a higher wi. To cover these cases,
specifically, we estimate wi as follows:

wi = P (ŷi|Li)
Ent(P̄i)

log(Q− 1)
, (6)

where log(Q− 1) is the normalization factor. When Q = 2, we set Ent(P̄i)
log(Q−1) to 1.

To demonstrate the superiority of our weighting method over existing methods, we calculate instance
weights with each method on all the complex distributions mentioned in Section 3.1. Table 1 reports
the detailed comparison results. Here, "✓" and "×" indicate whether the weighting method is
effective in distinguishing the corresponding complex distribution, respectively. Empirically, the
weight corresponding to the front distribution in each example should be higher than the latter. The
results show that only our method can distinguish all these types of complex distributions, while
existing methods cannot. By Eq. (6), we calculate weights of all instances as W = {wi}Ni=1.
Theorem 1. When Ent(P̄i) remains constant, Eq. (6) covers wi ∝ P (ŷi|Li). When Q > 2 and
P (ŷi|Li) is the maximum value in Pi, Eq. (6) covers wi ∝ max(Pi)− sec(Pi).

Proof. When Q = 2, we set Ent(P̄i)/log(Q− 1) to 1, so Eq. (6) simplifies to wi ∝ P (ŷi|Li).
wi ∝ P (ŷi|Li) still holds in Eq. (6) when Q > 2 and Ent(P̄i) remains constant. When Q > 2 and
P (ŷi|Li) remains constant, wi ∝ Ent(P̄i) holds. According to the maximum entropy principle,
Ent(P̄i) takes its maximum value when any element of P̄i is equal to 1−P (ŷi|Li)

Q−1 . At this point, if
P (ŷi|Li) is the maximum value in Pi, max(Pi) − sec(Pi) takes its maximum value. Conversely,
when Ent(P̄i) takes its minimum value, max(Pi)−sec(Pi) also takes its minimum value. Therefore,
wi ∝ max(Pi)− sec(Pi) holds when Q > 2 and P (ŷi|Li) is the maximum value in Pi. Due to the
limited pages, more detailed proof of Theorem 1 is provided in Appendix A.

4.2 Bias-variance trade-off

After instance weighting, the impact of intractable instances is mitigated. Therefore, P (cq|xi) can
be calculated more accurately, and then bias and variance can be estimated more accurately. Based
on this result, the bias-variance trade-off will be more effective. After instance weighting, we train
a classification model f on D with W . Let C denote the label space {c1, . . . , cq, . . . , cQ}, in this
paper, f classifies the test instance x with the bias-variance trade-off as follows:

c(x) = argmax
cq∈C

(f(cq|x) + hq(x)), (7)

where f(cq|x) denotes the probability that x belongs to cq predicted by f . hq(x) is the prediction of
the regression model hq trained on the following probabilistic loss regression task:

Tq = (X ;W ;Lq), (8)
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where X is the attribute matrix consisting of all training instances. Lq is the probabilistic loss vector
for cq , which can be represented as {L1q, . . . ,Liq, . . . ,LNq}T . Liq is calculated as follows:

Liq =

{
1− f(cq|xi) cq = ŷi
0− f(cq|xi) cq ̸= ŷi

. (9)

Theorem 2. When the probabilistic loss is defined as in Eq. (9), performing probabilistic loss
regressions constructed by Eq. (8) ensures that Eq. (7) asymptotically achieves the bias-variance
trade-off.

Proof. When f is adjusted, P (cq|f,xi) changes with f , and this change is denoted as ∆iq . Let ˜bias
2

i
and ˜vari denote the changed bias term and variance term, they can be calculated as follows:

˜bias
2

i = bias2i +

Q∑
q=1

∆iqP (cq|f,xi) +
1

2

Q∑
q=1

∆2
iq −

Q∑
q=1

∆iqP (cq|xi) . (10)

˜vari = vari −
Q∑

q=1

∆iqP (cq|f,xi)−
1

2

Q∑
q=1

∆2
iq. (11)

Due to the limited pages, more detailed derivation of Eqs. (10) - (11) is provided in Appendix
B. Comparing Eq. (10) and Eq. (11) shows that the common terms

∑Q
q=1 ∆iqP (cq|f,xi) and

1
2

∑Q
q=1 ∆

2
iq in ˜bias

2

i and ˜vari have opposite signs. Therefore, when improving Ef , the bias and
variance tend to change in opposite trends, which is known as the bias-variance dilemma. Improving
Ef by synergistically considering changes in both bias and variance is known as the bias-variance
trade-off. According to Eqs. (3), (10), and (11), we can get the changed Ẽf as follows:

Ẽf = Ef −
N∑
i=1

P (xi)

Q∑
q=1

∆iqP (cq|xi) . (12)

In general, when cq is the true label of xi, P (cq|xi) tends to 1, otherwise it tends to 0. However,
the true label yi is unknown in crowdsourcing scenarios. After instance weighting, the impact of
intractable instances is mitigated, so we assume that ŷi is equal to yi. Therefore, when cq ̸= ŷi,
∆iqP (cq|xi) tends to 0. When cq = ŷi, since the probability terms P (xi) and P (cq|xi) in Eq. (12)
are non-negative, Ẽf is guaranteed to be less than Ef as long as ∆iq is greater than 0. In summary,
the key factor of the bias-variance trade-off is ∆iq (cq = ŷi). To make ∆iq (cq = ŷi) greater than 0,
the following optimization task can be constructed:

maximize
xi

f(ŷi|xi)

s.t. f(ŷi|xi)− max
cq∈C∧cq ̸=ŷi

f(cq|xi) ≥ 0.
(13)

Here, maximizing f(ŷi|xi) ensures that ∆iq (cq = ŷi) is greater than 0, while the constraint ensures
that the prediction of f will be ŷi. Then, according to the Lagrange multiplier, the Lagrange function
can be constructed as follows:

L(xi) = f(ŷi|xi) + λ
[
f(ŷi|xi)− max

cq∈C∧cq ̸=ŷi

f(cq|xi)
]
, (14)

where λ ≥ 0. For simplicity, L′(xi) can be further constructed as follows:
L′(xi) = L(xi)− max

cq∈C∧cq ̸=ŷi

f(cq|xi)

= (1 + λ)
[
f(ŷi|xi)− max

cq∈C∧cq ̸=ŷi

f(cq|xi)
]
.

(15)

Since the probability maxcq∈C∧cq ̸=ŷi f(cq|xi) ≥ 0, so L(xi) ≥ L′(xi). Ultimately, Eq. (13) can be
optimized to achieve a better result by maximizing L′(xi). At the same time, since λ ≥ 0, the value
of L′(xi) is positively correlated with the following difference:

f(ŷi|xi)− max
cq∈C∧cq ̸=ŷi

f(cq|xi). (16)

According to Eq. (9), through probabilistic loss regressions, when cq = ŷi, f(cq|x) + hq(x) in Eq.
(7) tends to 1. Conversely, when cq ̸= ŷi, f(cq|x) + hq(x) tends to 0. Therefore, Eq. (7) is effective
in maximizing the difference Eq. (16). Ultimately, Theorem 2 is proved.

6



The whole learning process of IWBVT is shown in Algorithm 1. In Algorithm 1, lines 1-3 learn
a weight for each instance and their time complexity is O(NRQ). Line 4 trains a classification
model f whose training time complexity is denoted as O(t1). Lines 5-11 learn a probabilistic loss
regression model hq for each class cq and their time complexity is O(Q(Nt2+ t3)). Here, t2 denotes
the prediction time complexity of f on each class and t3 denotes the training time complexity of hq .
In this paper, we select NB as the classification model and linear regression as the regression model.
Therefore, t1, t2, t3 are equal to O(NM), O(M), and O(NM2 + M3), respectively. If only the
highest order terms are taken, the time complexity of IWBVT is O(NRQ+NQM2 +QM3).

Algorithm 1 The learning process of IWBVT

Require: D̂ = {(xi,Li, ŷi)}Ni=1 - a crowdsourced dataset with integrated labels.
Ensure: classification model f , regression model set H .

1: for i = 1 to N do
2: Calculate the weight wi of xi by Eq. (6);
3: end for
4: Train the classification model f on D̂ with W = {wi}Ni=1;
5: for q = 1 to Q do
6: for i = 1 to N do
7: Calculate the probabilistic loss Liq by Eq. (9);
8: end for
9: Construct the regression task Tq by Eq. (8);

10: Learn the regression model hq on Tq;
11: end for
12: return classification model f , H = {h1, h2, . . . , hQ}.

5 Experiments

To validate the effectiveness of IWBVT, we conduct a series of experiments on the whole 34
simulated and 2 real-world crowdsourced datasets published on the Crowd Environment and its
Knowledge Analysis (CEKA) [33] platform. First, we illustrate the setup of our experiments,
including comparison algorithms and their parameter settings. Next, we describe the simulation
process and present the simulated experimental results in terms of the model quality. Finally, to further
validate the strength of IWBVT, we analyze the experimental results of comparative experiments and
ablation experiments on real-world crowdsourced datasets.

5.1 Experimental setup

We select seven state-of-the-art algorithms for experiments, including: majority voting (MV) [20], it-
erative weighted majority voting (IWMV) [10], label augmented and weighted majority voting
(LAWMV) [3], multiple noisy label distribution propagationg (MNLDP) [8], adaptive voting
noise correction (AVNC) [32], multi-view-based noise correction (MVNC) [15], and neighbor-
hood weighted voting-based noise correction (NWVNC) [11]. Among them, MV is the simplest label
integration algorithm and is used as a baseline for all algorithms. IWMV, LAWMV and MNLDP are
three state-of-the-art label integration algorithms. AVNC, MVNC and NWVNC are three state-of-
the-art noise correction algorithms. They are used to validate the effectiveness of IWBVT for label
integration and noise correction. All these algorithms are implemented based on the CEKA platform
and their parameter settings are consistent with the corresponding published papers. AVNC, MVNC
and NWVNC are all performed based on integrated labels inferred by MV. Besides, we use linear
regression as hq in IWBVT. All experiments are conducted on a Windows 10 machine with an AMD
Athlon(tm) X4 860K Quad Core Processor @ 3.70 GHz and 16 GB of RAM.

5.2 Experiments on simulated datasets

Datasets and simulation process. We conduct our simulated experiments on all simulated datasets
published on the CEKA platform. These datasets come from a wide variety of application domains
and represent plentiful crowdsourcing scenarios. Considering that the selected label integration
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Table 2: The model quality (%) comparisons of MV, IWMV, LAWMV, MNLDP, AVNC, MVNC and
NWVNC before and after using IWBVT on 34 simulated datasets.

Dataset MV IWMV LAWMV MNLDP AVNC MVNC NWVNC

ORI IWBVT ORI IWBVT ORI IWBVT ORI IWBVT ORI IWBVT ORI IWBVT ORI IWBVT

anneal 68.60 80.42 • 68.27 81.29 • 75.18 80.27 • 67.84 81.15 • 74.83 81.39 • 73.94 81.96 • 67.84 79.49 •
audiology 59.93 61.39 58.05 60.08 61.15 63.49 58.43 60.50 68.93 65.49 ◦ 64.77 64.09 59.10 61.50
autos 54.31 59.98 • 52.13 58.82 • 56.20 60.73 • 56.12 59.24 • 57.55 59.87 57.10 60.61 • 56.51 60.01 •
balance-scale 86.57 87.67 88.38 88.68 88.62 89.02 88.95 89.24 84.98 87.37 • 84.34 87.12 • 86.58 88.28 •
biodeg 68.34 72.28 • 68.33 72.26 • 76.05 77.02 71.32 75.33 • 74.01 76.95 • 70.43 75.19 • 72.76 74.77 •
breast-cancer 70.41 67.75 ◦ 70.24 68.13 72.50 71.56 70.55 69.90 72.86 72.80 72.89 72.22 72.62 72.83
breast-w 96.18 94.99 ◦ 96.12 95.10 ◦ 96.04 96.07 96.11 96.15 96.01 95.87 96.29 96.25 96.16 96.16
car 77.88 81.94 • 80.09 83.69 • 71.12 72.28 • 73.07 76.36 • 80.02 81.59 • 76.93 81.25 • 75.81 78.72 •
credit-a 77.55 80.19 • 77.91 79.88 • 81.64 82.99 • 78.36 80.81 • 82.49 83.41 79.61 81.12 • 80.07 81.72 •
credit-g 72.38 72.54 72.55 73.04 73.29 72.89 72.72 72.97 74.12 74.31 73.47 73.96 73.76 74.41
diabetes 73.85 74.13 74.24 74.27 72.43 73.01 74.65 75.24 74.75 75.33 74.49 75.20 74.59 75.46
heart-c 82.86 81.45 82.65 81.95 84.05 84.09 83.72 83.08 83.10 82.52 83.34 83.23 83.67 83.37
heart-h 82.74 81.77 82.70 81.51 84.17 83.57 83.50 82.58 83.95 83.99 83.31 82.33 83.55 83.07
heart-statlog 82.52 79.89 ◦ 82.81 80.78 ◦ 84.78 84.19 83.81 82.56 83.52 82.56 83.33 82.37 84.26 84.00
hepatitis 78.98 76.97 79.72 76.50 ◦ 85.78 84.32 84.05 83.18 83.15 81.32 82.70 80.95 83.45 83.05
horse-colic 74.69 76.90 • 75.12 76.63 76.84 80.69 • 73.94 77.55 • 80.67 82.35 77.29 80.59 • 75.37 79.50 •
hypothyroid 93.50 93.66 92.57 93.49 • 92.29 92.29 93.68 93.76 95.07 95.14 94.44 94.40 93.84 93.99
ionosphere 81.23 82.22 81.08 81.57 77.90 81.39 • 81.03 86.24 • 83.05 86.46 • 81.45 85.12 • 79.32 87.03 •
iris 90.67 93.07 • 91.33 93.47 • 95.53 95.60 95.13 95.40 95.53 95.47 94.73 95.73 95.80 95.80
kr-vs-kp 85.26 93.22 • 85.29 93.19 • 80.48 90.07 • 81.27 91.14 • 87.22 94.42 • 85.57 93.90 • 83.36 92.23 •
labor 84.30 77.28 ◦ 79.90 74.03 ◦ 90.20 86.57 88.38 86.87 85.53 82.15 82.35 79.88 86.82 84.73
letter 63.48 64.55 • 62.94 64.38 • 63.95 64.77 64.00 64.73 64.05 65.09 • 64.05 64.93 • 63.58 64.63 •
lymph 79.53 74.68 ◦ 80.45 75.40 ◦ 80.82 79.63 80.32 79.00 79.17 76.94 80.18 77.82 80.64 81.34
mushroom 91.72 97.07 • 91.75 97.03 • 89.23 89.37 93.42 97.15 • 95.47 97.97 • 95.06 97.84 • 92.61 96.72 •
segment 74.06 83.91 • 72.41 82.59 • 79.94 86.52 • 79.78 86.40 • 80.71 87.10 • 80.09 86.49 • 78.88 86.15 •
sick 46.48 93.88 • 46.61 93.93 • 89.10 92.83 • 75.59 93.94 • 75.44 87.40 • 63.52 93.92 • 46.60 93.52 •
sonar 66.18 63.26 66.23 63.49 66.33 68.01 65.99 69.35 • 66.34 67.36 65.99 65.40 64.73 67.86 •
spambase 71.84 76.11 • 71.73 76.10 • 74.03 81.33 • 69.71 77.14 • 74.96 79.25 • 69.65 77.24 • 71.13 73.13 •
tic-tac-toe 68.78 68.86 68.54 69.11 70.63 71.00 65.59 65.90 71.02 71.02 70.09 70.55 71.02 71.52
vehicle 43.54 67.98 • 44.47 68.28 • 43.25 66.02 • 42.85 66.95 • 43.72 65.85 • 43.99 68.44 • 45.11 66.42 •
vote 89.36 90.80 • 89.35 90.48 89.20 89.63 89.32 90.43 90.29 93.18 • 89.47 90.67 89.39 90.38
vowel 59.28 63.31 • 59.51 62.92 • 59.56 62.94 • 63.01 64.32 60.24 62.65 • 62.05 64.07 • 60.35 63.21 •
waveform 78.45 82.31 • 77.73 81.40 • 79.51 81.45 • 79.57 81.70 • 80.40 82.83 • 78.74 82.43 • 79.12 81.76 •
zoo 89.73 90.48 89.30 90.38 90.25 91.98 90.90 91.77 88.27 88.81 87.63 87.66 89.92 91.70

Average 75.45 79.03 75.31 78.94 78.00 80.22 76.96 80.24 78.57 80.77 77.16 80.44 76.42 80.54

W/T/L - 17/12/5 - 16/13/5 - 13/21/0 - 15/19/0 - 15/18/1 - 17/17/0 - 18/16/0

algorithms and noise correction algorithms handle the missing values of datasets differently, we use
the unsupervised attribute filter ReplaceMissingValues in the Waikato Environment and Knowledge
Analysis (WEKA) [25] platform to replace all missing values. Specifically, ReplaceMissingValues
uses the mean of numerical attribute values or the modes of the nominal attribute values from the
available data to replace missing values. Subsequently, to generate multiple noisy labels for each
instance, we simulate the crowdsourcing process for these datasets. First, we randomly generate five
workers whose label quality follows a normal distribution with N(0.65, 0.052). The label quality
of a worker reflects the probability that the noisy label annotated by this worker to an instance is
the same as this instance’s unknown true label. Then, we hide true labels and use these simulated
workers to annotate datasets. Finally, we use the selected algorithms to infer integrated labels for
these datasets. For each simulation, we evaluate the original model quality and the corresponding
model quality improved using IWBVT through stratified 10-fold cross-validation. Here, we use Naive
Bayes (NB) [5] as the target model. The above processes are repeated ten times independently for
each algorithm on each dataset.

Experimental results. Table 2 shows the detailed model quality (%) comparisons of each algorithm
on each dataset, respectively. The columns ORI and IWBVT correspond to the original model quality
and the model quality using IWBVT, respectively. The symbols • and ◦ in the table denote the model
quality has a statistically significant improvement or degradation using our proposed IWBVT with
a corrected paired two-tailed t-test with the significance level α = 0.05 [18], respectively. Besides,
the averages and the Win/Tie/Lose (W/T/L) values are summarized at the bottom of Table 2. The
W/T/L implies that when improving the original model quality, IWBVT wins on W datasets, ties on
T datasets, and loses on L datasets. These experimental results validate the effectiveness of IWBVT,
and we can summarize the following highlights:

• The average model quality of MV using IWBVT on 34 datasets is 79.03%, which is
higher than the original model quality of all selected algorithms. This demonstrates both the
limitations of label integration algorithms or noise correction algorithms and the effectiveness
of IWBVT in improving the model quality.
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Figure 2: The model quality (%) comparisons of MV, IWMV, LAWMV, MNLDP, AVNC, MVNC
and NWVNC before and after using IWBVT on Leaves and Income.

• The average model quality of IWMV (78.94%), LAWMV (80.22%), and MNLDP (80.24%)
using IWBVT are higher than the original results of these state-of-the-art label integration
algorithms. This demonstrates that IWBVT is still effective for more sophisticated label
integration algorithms in improving the model quality.

• The average model quality of AVNC (80.77%), MVNC (80.44%), and NWVNC (80.54%)
using IWBVT are also higher than the original results of these state-of-the-art noise correc-
tion algorithms. This demonstrates that IWBVT can serve as a universal post-processing
approach to significantly improving the model quality.

• Based on the t-test results, the number of datasets in which IWBVT wins significantly (W )
is always much higher than the number of datasets in which it loses significantly (L) for all
algorithms. This strongly demonstrates the effectiveness and robustness of IWBVT.

5.3 Experiments on real-world datasets

Datasets. To demonstrate the robustness of IWBVT, the above simulation process pays more
attention to common factors of crowdsourcing. However, training models on real-world datasets may
also be affected by other factors, such as sparsity and annotating bias. To verify the effectiveness
of IWBVT in real-world crowdsourced scenarios, we also construct our experiments on two widely
used real-world crowdsourced datasets, Leaves and Income, published on the CEKA platform [34].
Here, Leaves and Income are selected through the online platform Amazon Mechanical Turk (AMT).
Leaves is annotated by 83 workers and each instance is annotated by 10 workers. There are 6
classes, 384 instances, 3840 labels, 64 numeric attributes, and 0 missing values in Leaves. Income
is annotated by 67 workers and each instance is also annotated by 10 workers. There are 2 classes,
600 instances, 6000 labels, 10 nominal attributes, and 0 missing values in Income. We only evaluate
the original model quality and the corresponding model quality using IWBVT by stratified 10-fold
cross-validation one time because real-world datasets do not have a random simulation process.

Experimental results. Figure 2 shows the model quality (%) comparisons of MV, IWMV, LAWMV,
MNLDP, AVNC, MVNC and NWVNC before and after using IWBVT on Leaves and Income. With
Figures 2a and 2b, we can find that IWBVT can also serve as a universal post-processing approach to
significantly improving the model quality in real-world crowdsourced scenarios. Besides, we can also
find the original model quality of several state-of-the-art algorithms is even lower than the original
model quality of MV. These results once again demonstrate the limitation of label integration and
noise correction in improving the model quality.

Ablation experiment. The above results only demonstrate the effectiveness of IWBVT as a whole,
yet they do not delineate the contributions of its two key components: instance weighting and
bias-variance trade-off. In IWBVT, instance weighting is used to mitigate the impact of intractable
instances to make the bias and variance of trained models closer to the unknown true results. Therefore,
to independently verify the effectiveness of instance weighting, we first observe the bias and variance
of trained models before and after instance weighting. To estimate the bias and variance, referring
to [24], NB is tested on Leaves and Income by ten runs of three-fold cross-validation. Figure 3a shows
the bias and variance comparisons before and after using instance weighting on Leaves and Income.
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Figure 3: The ablation experiment comparisons of IWBVT and its components on Leaves and Income.

In Figure 3a, object1 denotes the estimation results of NB trained directly with true labels. object2
denotes the estimation results of NB trained with integrated labels inferred by MV. The conditions
for object3 and object2 are the same, besides considering instance weighting. As can be seen in
Figure 3a, the bias and variance of models trained only with integrated labels are usually higher
than unknown true results. When instance weighting is introduced, both the bias and variance of
models tend to be closer to unknown true results. These results demonstrate that instance weighting
successfully corrects the bias and variance of trained models by mitigating the impact of intractable
instances. Therefore, IWBVT performs the instance weighting before the bias-variance trade-off,
which is more effective in improving the generalization performance of trained models.

Additionally, we also analyze the effectiveness of another component, the bias-variance trade-off, in
improving model quality. Similarly, we still fix the label integration algorithm to be MV, and then
introduce the instance weighting and bias-variance trade-off individually to observe their influence in
improving model quality. Figure 3b shows the model quality (%) comparisons of MV using IWBVT
or its components on Leaves and Income. In Figure 3b, object1 denotes the model quality of MV,
object2 denotes the model quality of MV using the bias-variance trade-off, object3 denotes the model
quality of MV using the instance weighting, and object4 denotes the model quality of MV using
the whole IWBVT. As can be seen in Figure 3b, both the instance weighting and the bias-variance
trade-off effectively improve the model quality of MV. This demonstrates that the two components of
the IWBVT are both effective. Moreover, the model quality of MV using the whole IWBVT is the
highest on both Leaves and Income, which suggests that it is reasonable for IWBVT to utilize both
components at the same time. In addition, in Figure 3b, we can also find that the instance weighting
is more effective on Leaves, while the bias-variance trade-off is more effective on Income. This is
because the average label quality of Leaves is low. Instance weighting helps to identify rare instances
that are inferred correctly, and therefore has a greater impact on Leaves. However, the average label
quality of Income is high, and more instances can be correctly inferred than in Leaves. Therefore, the
bias and variance are estimated closer to the unknown true values, so the bias-variance trade-off is
more effective on Income.

6 Conclusion and future work

To improve the model quality of models trained on crowdsourced datasets, we propose a universal
post-processing approach called IWBVT. IWBVT first mitigates the impact of intractable instances by
instance weighting to make the bias and variance of trained models closer to the unknown true results.
Then, IWBVT reduces the generalization error of trained models by the bias-variance trade-off.
Experimental results suggest that IWBVT can significantly improve the model quality of existing
state-of-the-art label integration algorithms and noise correction algorithms.

Though the above experimental results sufficiently demonstrate the effectiveness of IWBVT, some
anomalies are found in experiments. Table 2 shows that IWBVT degrades the model quality on
a few datasets such as labor and lymph. The datasets such as labor and lymph contain some
numerical attributes that are significantly higher in magnitude than other attributes. However, the
linear regression chosen for IWBVT in experiments is not robust to regression tasks constructed for
these datasets. Therefore, in the future, we will further improve the robustness of IWBVT to make
trained models insensitive to anomalous attributes.
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Appendix A Additions to the proof of Theorem 1

In the proof of Theorem 1, according to the maximum entropy principle, we get that Ent(P̄i)

takes its maximum value when any element of P̄i is equal to 1−P (ŷi|Li)
Q−1 . Here, we provide its

detailed derivation. First, by the definition of P̄i, we simplify it to P̄i = {Pq}Q−1
q=1 with

∑Q−1
q=1 Pq =

1− P (ŷi|Li). Then, we can find the maximum value of Ent(P̄i) as follows:

argmax
Pq

Ent(P̄i) = argmax
Pq

−
Q−1∑
q=1

[
Pq ∗ logPq

]

s.t.

Q−1∑
q=1

Pq = 1− P (ŷi|Li).

(17)

Then, according to the Lagrange multiplier, the Lagrange function L(P̄i) can be constructed as
follows:

L(P̄i) = −
Q−1∑
q=1

[
Pq ∗ logPq

]
+ λ(

Q−1∑
q=1

Pq − 1 + P (ŷi|Li)). (18)

Now, to obtain the maximum value of L(P̄i), we can take the partial derivative of L(P̄i) concerning
Pq , and set this derivative equal to zero as follows:

∂L(P̄i)

∂Pq
= −(logPq + 1) + λ = 0. (19)

According to Eq. (19), we can obtain Pq = 2λ−1. Bringing this result into the constraints, we can
obtain

∑Q−1
q=1 Pq = (Q−1)2λ−1 = 1−P (ŷi|Li). Therefore, it is clear that Pq = 2λ−1 = 1−P (ŷi|Li)

Q−1 .

Finally, bringing Pq = 1−P (ŷi|Li)
Q−1 into Eq. (17), we can calculate the maximum value of Ent(P̄i)

as (1− P (ŷi|Li)) log
Q−1

1−P (ŷi|Li)
.

Appendix B Derivation of Eqs. (10) - (11)

Due to the limited pages, Eqs. (10) - (12) in the main text only give the derived results. Here, we
provide their detailed derivation. First, when f is adjusted, P (cq|f,xi) changes with f , and this
change is denoted as ∆iq. Then, we bring ∆iq into Eq. (4) and Eq. (5), respectively. The following
derivation can be obtained:

˜bias
2

i =
1

2

Q∑
q=1

[
P (cq|xi)− (P (cq|f,xi) + ∆iq)

]2
=

1

2

Q∑
q=1

[
P (cq|xi)

2 + (P (cq|f,xi) + ∆iq)
2 − 2P (cq|xi)(P (cq|f,xi) + ∆iq)

]

=
1

2

Q∑
q=1

[
P (cq|xi)

2 + P (cq|f,xi)
2 +∆2

iq + 2∆iqP (cq|f,xi)− 2P (cq|xi)P (cq|f,xi)− 2∆iqP (cq|xi)
]

=
1

2

Q∑
q=1

[
P (cq|xi)

2 + P (cq|f,xi)
2 − 2P (cq|xi)P (cq|f,xi)

]
+

1

2

Q∑
q=1

[
∆2

iq + 2∆iqP (cq|f,xi)− 2∆iqP (cq|xi)
]

=
1

2

Q∑
q=1

[
P (cq|xi)− P (cq|f,xi)

]2
+

1

2

Q∑
q=1

[
∆2

iq + 2∆iqP (cq|f,xi)− 2∆iqP (cq|xi)
]

= bias2i +

Q∑
q=1

∆iqP (cq|f,xi) +
1

2

Q∑
q=1

∆2
iq −

Q∑
q=1

∆iqP (cq|xi).

(20)
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˜vari =
1

2

[
1−

Q∑
q=1

(
P (cq|f,xi) + ∆iq

)2]

=
1

2

[
1−

Q∑
q=1

(
P (cq|f,xi)

2 +∆2
iq + 2∆iqP (cq|f,xi)

)]

=
1

2

[
1−

Q∑
q=1

P (cq|f,xi)
2
]
− 1

2

Q∑
q=1

[
∆2

iq + 2∆iqP (cq|f,xi)
]

= vari −
Q∑

q=1

∆iqP (cq|f,xi)−
1

2

Q∑
q=1

∆2
iq.

(21)
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mentioned the limitations of our IWBVT in the Conclusion and future
work section. IWBVT is not robust on datasets containing anomalous attributes.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• While the authors might fear that complete honesty about limitations might be used by
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: We give proofs to theorems that appear in the paper.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

15



(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to the data and code, and provides a document
to guide readers in reproducing all experimental results in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper specifies all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We explain in detail the experimental metrics in the paper and provide the
results of the significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe in detail the experimental setting on the computer resources in
this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The new approach proposed in this paper helps to train models more efficiently
from crowdsourced datasets. There are no negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We used the datasets and algorithmic implementations published by the CEKA
platform, which is described in detail in the paper. The license and terms of use explicitly
are properly respected in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper provides open access to the data and code, and provides a document
to guide readers in reproducing all experimental results in supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper did not select new crowdsourced datasets. The datasets used for
experiments are publicly available and their information is described in detail in the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve the research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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