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Abstract

Our work revisits the design of mechanisms via the learning-augmented frame-
work. In this model, the algorithm is enhanced with imperfect (machine-learned)
information concerning the input, usually referred to as prediction. The goal is
to design algorithms whose performance degrades gently as a function of the pre-
diction error and, in particular, perform well if the prediction is accurate, but also
provide a worst-case guarantee under any possible error. This framework has been
successfully applied recently to various mechanism design settings, where in most
cases the mechanism is provided with a prediction about the types of the agents.
We adopt a perspective in which the mechanism is provided with an output recom-
mendation. We make no assumptions about the quality of the suggested outcome,
and the goal is to use the recommendation to design mechanisms with low approxi-
mation guarantees whenever the recommended outcome is reasonable, but at the
same time to provide worst-case guarantees whenever the recommendation signif-
icantly deviates from the optimal one. We propose a generic, universal measure,
which we call quality of recommendation, to evaluate mechanisms across various
information settings. We demonstrate how this new metric can provide refined
analysis in existing results.
This model introduces new challenges, as the mechanism receives limited infor-
mation comparing to settings that use predictions about the types of the agents.
We study, through this lens, several well-studied mechanism design paradigms,
devising new mechanisms, but also providing refined analysis for existing ones,
using as a metric the quality of recommendation. We complement our positive
results, by exploring the limitations of known classes of strategyproof mechanisms
that can be devised using output recommendation.

1 Introduction

Motivated by the occasionally overly pessimistic perspective of worst-case analysis, a recent trend has
emerged focusing on the design and analysis of algorithms within the so-called learning-augmented
framework (refer to [30] for an overview). Within this framework, algorithms are enhanced with
imperfect information about the input, usually referred to as predictions. These predictions can
stem from machine learning models, often characterized by high accuracy, leading to exceptional
performance. However, their accuracy is not guaranteed, so the predicted input may differ significantly
from the actual input. Blindly relying on these predictions can have significant consequences
compared to employing a worst-case analysis approach.
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The framework aims to integrate the advantages of both approaches. The goal is to use these
predictions to design algorithms whose performance degrades gently as a function of the inaccuracy
of the prediction, known as the prediction error. In particular, they should perform well whenever the
prediction is accurate –a property known as consistency– and also provide a worst-case guarantee
under any possible error –a property known as robustness.

Xu and Lu [39] and Agrawal et al. [2] applied the learning-augmented framework in mechanism
design settings, where there is incomplete information regarding the preferences (or types) of the
participants over a set of alternatives. Traditional mechanism design addresses this information gap
by devising strategyproof mechanisms that offer appropriate incentives for agents to report their true
types. In the learning-augmented model, it is generally assumed that the mechanism is equipped
with predictions about the types of the agents. The aim is to leverage these predicted types to design
strategyproof mechanisms that provide consistency and robustness guarantees. Since then, this model
has found application in diverse mechanism design settings [8, 11, 27, 25].

Mechanisms with output advice In this work, we propose an alternative perspective on mechanism
design with predictions. We assume that the mechanism is provided with external advice to output a
specific outcome, rather being provided with predictions of the agents’ types. For example, in a job
scheduling problem, the designer may receive a recommended partition of tasks for the machines,
rather than a prediction about the machines’ processing times. Similarly, in an auction setting, an
allocation of goods is provided, rather than a prediction about the agents’ valuations.

Following the tradition of the learning-augmented framework, we make no assumptions about the
quality of the recommended outcome, which may or may not be a good fit for the specific (unknown)
input. The goal is to use the recommendation to design a strategyproof mechanism with good
approximation guarantees whenever the recommended outcome is a good fit, but at the same time
provide worst-case guarantees whenever the recommendation deviates from the optimal one.

We observe that one can reinterpret previous models within the framework of our model, viewing it
as a more constrained version of predictions with limited information.1Since we only require limited
information regarding the outcome, our model may be better suited to handle cases where historical
input data is absent or limited, which may occur for various reasons such as privacy concerns, data
protection, challenges in anonymizing, or simply because the information is missing. For instance,
historical data in an auction may sometimes only contain information about the winners and perhaps
the prices, omitting details about their exact valuation or the values of those who lost. Additionally,
our model may be applied in cases where the designer does not need to know the specifics of the
algorithm and treats it as a black box, as long as it yields satisfactory allocations, even if the inner
workings are not fully understood.

We make no assumption about how the outcome recommendation was produced, which makes it quite
general and adaptable to different application domains. For instance, the outcome may represent
the optimal allocation with respect to predicted data (as seen in [2]), or a solution generated by an
approximation algorithm or a heuristic. Consequently, the quality of the recommended outcome may
be affected by various factors, such as the accuracy of the predicted data or limited computational
resources which prevent the computation of optimal solutions, even when the data is accurate.

A beneficial side effect of our model is that an outcome recommendation fits in a plug-and-play
fashion with a generic machinery for strategyproofness in multi-dimensional mechanism design,
particularly maximal in range VCG mechanisms (or more generally with affine maximizers) in
a straightforward manner: we simply add the recommended outcome to the range of the affine
maximizer (see Section 5).

Quality of recommendation In the learning augmented framework, the performance of an
algorithm (or mechanism) is evaluated based on the prediction error, which quantifies the disparity
between the predicted and actual data. Unfortunately, there is no universal definition for such an
error; it is typically domain-specific (e.g., the ratio of processing times for scheduling [27, 8] or
(normalized) geometric distance for facility location [2]). Therefore, if one modifies the information
data model for a specific problem—for instance, by assuming that only a fraction or a signal of the
predicted data is provided—it becomes necessary to redefine the prediction error.

1For example, in [2], it is assumed that the mechanism is provided with the optimal allocation with respect to
the predicted types. Refer to the discussion in Section 3 for a comparison and differences with their model.
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To address this issue, we propose a generic, universal measure that can be applied to analyze
algorithms across various information settings and application domains. We define the quality
of recommendation as the approximation ratio between the cost (or welfare) of the recommended
outcome and the optimal cost (or welfare) both evaluated w.r.t the actual input. It is worth emphasizing
that although the above definition aligns naturally with our information model, as we do not assume
the designer is provided with predicted data, it can also be applied to richer information models with
partial or even full predicted input.

We argue that it provides a unified metric for settings involving predictions, particularly when
the objective is to design mechanisms (or more generally algorithms) with low approximation or
competitive ratio. The disparity between predicted and actual data, captured by the predicted error,
may not always be relevant and can lead to misleading evaluations; there are cases where this error
may be significantly large, but the optimal solution remains largely unchanged. For example, consider
the problem of makespan minimization in job scheduling (see also Section 3 for a detailed example in
facility location). In [27, 8], the prediction error used is the maximum ratio of processing times, and
it appears in the approximation guarantees. There are simple instances where this ratio is arbitrarily
large, but the optimal allocation remains the same. Consequently, when the prediction error is
incorporated into the analysis, it may lead to overly pessimistic guarantees for mechanisms that
perform much better (see Section 3). Our metric avoids such pathological situations.

1.1 Contributions

We propose studying mechanisms augmented with output advice, a setup that utilizes limited in-
formation to provide improved approximation guarantees. Additionally, we introduce a unified
metric that can provide more accurate evaluations, even for settings with richer information models.
We explore the limitations of the class of strategyproof mechanisms that can be devised using this
limited information across various mechanism design settings. Detailed results concerning the house
allocation problem can be found in the full version of the paper. Table 1 summarizes our results.

Facility Location In the facility location problem, there are n agents each with a preferred location
and the goal is to design a strategyproof mechanism that determines the optimal facility location
based on an objective. In Section 3, we derive new approximation bounds for the facility location
problem revisiting the Minimum Bounding Box and the Coordinatewise Median mechanisms defined
in [2], as a function of the quality of recommendation. We provide tight bounds, and demonstrate
that in some cases they outperform previous analysis with the use of a prediction error.

Scheduling In Section 4, we study a scheduling problem with unrelated machines, where each
machine has a cost for each job, which corresponds to the processing time of the job on the machine.
Each job is assigned to exactly one machine, and the goal is to minimize the makespan having an
output allocation as a recommendation. We devise a new strategyproof mechanism (Mechanism
1), that takes also as input a confidence parameter β ∈ [1, n], reflecting the level of trust in the
recommendation. We show that this mechanism is (β + 1)-consistent and n2

β -robust (Theorem 3).

Altogether, we obtain a min{(β + 1)ρ̂, n+ ρ̂, n2

β } upper bound on the approximation ratio, where
ρ̂ is the quality of the recommendation, that we show that is asymptotically tight (Theorem 4). We
complement this positive result, by showing that, given only the outcome as advice, it is impossible
to achieve a better consistency-robustness trade-off in the class of the weighted VCG mechanisms
(Theorem 5).

Combinatorial Auctions Next, we study combinatorial auctions given a recommended allocation
(see Section 5). In the combinatorial auctions setting, there is a set of m indivisible objects to be sold
to n bidders, who have private values for each possible bundle of items. We observe that our advice
model fits nicely with the maximal in range VCG mechanisms or more generally with the affine
maximizers, by preserving strategyproofness. These mechanisms provide the best known bounds for
the approximation of the maximum social welfare for several classes of valuations [19, 17, 24]. By
including the recommended outcome in the range of the affine maximizer, we immediately obtain
1-consistency, while maintaining the robustness guarantees of those mechanisms.

House Allocation Finally, we switch to the house allocation problem. In this problem, we aim
to assign n houses to a set of n agents in a way that ensures strategyproofness and maximizes the
social welfare. We use the TTC mechanism [35] with the recommendation as an initial endowment,
and prove that this is min{ρ̂, n}-approximate for unit-range valuations and min{ρ̂, n2}-approximate
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Table 1: Contribution Results. Consistency, robustness and approximation results proved for the
mechanism design problems augmented with output advice. In the house allocation problem, bounds
are shown for unit-range valuations, while the ones in parentheses are for unit-sum valuations. In
combinatorial auctions, ρM is the approximation ratio guarantee of a maximal in range mechanism.

Problem Cons Rob f(t, ρ̂)-approximation
Facility Location (egalitarian) 1 [2] 1+

√
2 [2] min{ρ̂, 1 +

√
2}

Facility Location (utilitarian)
√
2λ2+2
1+λ [2]

√
2λ2+2
1−λ [2] min{

√
2ρ̂, ρ̂+

√
2,

√
2λ2+2
1−λ }

Scheduling β + 1 n2

β min{(β + 1)ρ̂, n+ ρ̂, n2

β }
Combinatorial Auctions 1 ρM min{ρ̂, ρM}

House Allocation 1 n (or n2) min{ρ̂, n (or n2)}

for unit-sum valuations, where ρ̂ is the quality of recommendation. Finally, we prove it is optimal
among strategyproof, neutral and nonbossy mechanisms using the characterization of [38] and the
correspondence between serial dictator mechanisms and TTC mechanisms [1].

1.2 Related Work

Learning-augmented mechanism design Recently, there has been increased interest in leveraging
predictions to improve algorithms’ worst case guarantees. The influential framework of Lykouris and
Vassilvitskii [28] is applied on caching, formally introducing the notions of consistency and robustness,
under minimal assumptions on the machine learned oracle. The learning-augmented framework is
naturally brought to the algorithmic mechanism design field by [2] and [39] independently. Agrawal
et al. [2] design learning-augmented strategyproof mechanisms for the problem of facility location
with strategic agents. Xu and Lu [39] apply the algorithmic design with predictions framework on
revenue-maximizing single-item auctions, frugal path auctions, scheduling, and two-facility location.
Another version of the facility location problem, obnoxious facility location, is studied by Istrate
and Bonchis [25]. Prasad et al. [31] develop a new methodology for multidimensional mechanism
design that uses side information with the dual objective of generating high social welfare and high
revenue. Strategyproof scheduling of unrelated machines is studied in [8], achieving the best of both
worlds using the learning-augmented framework. Revenue maximization is also considered in [9]
in the online setting, while Lu et al. [27] study competitive auctions with predictions. Caragiannis
and Kalantzis [11] assume that the agent valuations belong to a known interval and study single-item
auctions with the objective of extracting a large fraction of the highest agent valuation as revenue.
Other settings enhanced with predictions include the work of Gkatzelis et al. [22], where predictions
are applied to network games and the design of decentralized mechanisms in strategic settings. In
[10], the scenario includes a set of candidates and a set of voters, and the objective is to choose a
candidate with minimum social cost, given some prediction of the optimal candidate.

Facility Location For single facility location on the line, the mechanism that places the facility
on the median over all the reported points is strategyproof and optimal for the utilitarian objective,
and it achieves a 2-approximation for the egalitarian social cost, which is the best approximation
achievable by any deterministic and strategyproof mechanism [32]. In the two-dimensional Euclidean
space, the Coordinatewise Median mechanism achieves a

√
2-approximation for the utilitarian

objective [29], and a 2-approximation for the egalitarian objective [23]; these approximation bounds
are both optimal among deterministic and strategyproof mechanisms. In [2], they consider as a
prediction the position of the facility to improve the above results. Concerning the egalitarian
social cost and the two-dimensional version of the problem, they achieve perfect consistency, and a
robustness of 1 +

√
2. They also prove that their mechanism provides an optimal trade-off between

robustness and consistency. Regarding the utilitarian social cost in two dimensions, they propose a
deterministic mechanism achieving

√
2λ2+2
1+λ -consistency,

√
2λ2+2
1−λ -robustness and optimal trade-off

among deterministic, anonymous, and strategyproof mechanisms.

Scheduling Christodoulou et al. [15] validated the conjecture of Nisan and Ronen, and proved that
the best approximation ratio of deterministic strategyproof mechanisms for makespan minimization
for n unrelated machines is n. Even if we allow randomization, the best known approximation
guarantee achievable by a randomized strategyproof mechanism is O(n) [13]. Following the pre-
diction framework, Xu and Lu [39] study the problem with predictions t̂ij denoting the predicted
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processing time of job j by machine i. They propose a deterministic strategyproof mechanism
with an approximation ratio of O(min{γη2, m3

γ2 }), where γ ∈ [1,m] is a configurable consistency
parameter and η ≥ 1 is the prediction error. Balkanski et al. [8] extend these results by identifying a
deterministic strategyproof mechanism that guarantees a constant consistency with a robustness of
2n, achieving the best of both worlds.

Combinatorial Auctions An important direction in combinatorial auctions related to our work is
the design of strategyproof mechanisms that approximate the optimal social welfare using polynomi-
ally many queries, see e.g. [17, 24, 19, 18]. Auctions incorporating predictions have been explored
across various settings such as revenue maximization auctions [11, 39], competitive auctions [27]
and the online setting [9]. It is noteworthy that the design of strategyproof, near-optimal auctions
using neural networks [20, 36] has been studied extensively for automated mechanism design.

House Allocation Regarding the house allocation problem, Filos-Ratsikas et al. [21] prove that a
randomized mechanism, called the Random Priority Mechanism, has approximation ratio of Θ(

√
n),

and that this is optimal among all strategyproof mechanisms. There exist lower bounds for all
deterministic strategyproof mechanisms which are Ω(n2) for unit-sum and Ω(n) for unit-range,
respectively. To the best of our knowledge there is no single point of reference, for these bounds,
but can follow from known results in the literature, after observing that deterministic strategyproof
mechanisms are ordinal, see [14, 4]. A lower bound of Ω(n2) on the Price of Anarchy for any
deterministic mechanism (not necessarily strategyproof) is proved in [14]. In [4], a Θ(n2) bound is
proved for the distortion of all ordinal deterministic mechanisms.

2 Model

We consider various mechanism design scenarios that fall into the following abstract mechanism
design setting. There is a set of n agents and a (possibly infinite) set of alternatives A. Each agent
i ∈ {1, . . . , n} can express their preference over the set of alternatives via a valuation function ti
which is private information known only to them (also called the type of agent i). The set Ti of
possible types of agent i consists of all functions bi : A → R. Let also T = ×i∈NTi denote the
space of type profiles.

A mechanism defines for each agent i a set Bi of available strategies the agent can choose from. We
consider direct revelation mechanisms, i.e., Bi = Ti for all i, meaning that the agents’ strategies are
to simply report their types to the mechanism. Each agent i provides a bid bi ∈ Ti, which may not
match their true type ti, if this serves their interests. A mechanism (f, p) consists of two parts:

A selection algorithm: The selection algorithm f selects an alternative based on the agents’
inputs (bid vector) b = (b1, . . . , bn). We denote by f(b) the alternative chosen for the bid vector
b = (b1, . . . , bn).

A payment scheme: The payment scheme p = (p1, . . . , pn) determines the payments, which also
depend on the bid vector b. The functions p1, . . . , pn represent the payments that the mechanism
hands to each agent, i.e., pi : T → R.

The utility ui of an agent i is the actual value they gain from the chosen alternative minus the payment
they have to pay, ui(b) = ti(f(b))− pi(b). We consider strategyproof mechanisms. A mechanism
is strategyproof, if for every agent, reporting their true type is a dominant strategy. Formally,

ui(ti,b−i) ≥ ui(t
′
i,b−i), ∀i ∈ [n], ti, t

′
i ∈ Ti, b−i ∈ T−i,

where T−i denotes all parts of T except its i-th part.

In some of our applications (e.g. facility location and scheduling settings), it is more natural to con-
sider that the agents are cost-minimizers rather than utility-maximizers. Therefore, for convenience
we will assume that each agent i aims to minimize a cost function rather than maximizing a utility
function. We stress that some of our applications (e.g. facility location, one-sided matching) fall into
mechanism design without money, In those cases we will assume pi(t) = 0,∀t and i ∈ [n].

Social objective We assume that there is an underlying objective function that needs to be optimized.
We consider both cost minimization social objectives (facility location in Section 3, scheduling in
Section 4) and welfare maximization (house allocation in Section ??, auctions in Section 5). In
the context of a cost minimization problem, we assume that we are given a social cost function
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C : T × A → R+. If all agents’ types were known, then the goal would be to select the outcome a
that minimizes C(t, a).

The quality of a mechanism for a given type vector t is measured by the cost MECH(t) achieved by
its selection algorithm f , MECH(t) = C(t, f(t)), which is compared to the optimal cost OPT(t) =
mina∈A C(t, a). We denote an optimal alternative for a given bid vector t by a∗.

In most application domains, it is well known that only a subset of algorithms can be selection
algorithms of strategyproof mechanisms. In particular, no mechanism’s selection algorithm is
optimal for every t, prompting a natural focus on the approximation ratio of the mechanism’s
selection algorithm. A mechanism is ρ-approximate, for some ρ ≥ 1, if its selection algorithm is
ρ-approximate, that is, if ρ ≥ MECH(t)

OPT(t) for all possible inputs t.

Mechanisms with advice We assume that in addition to the input bid b, the mechanism is also
given as a recommendation/advice, a predicted alternative â ∈ A, but without any guarantee of its
quality2. A natural requirement, known as consistency, requires that whenever the recommendation
is accurate, then the mechanism should achieve low approximation. A mechanism is said to be
β-consistent if it is β-approximate when the prediction is accurate, that is, the predicted outcome â is
optimal for the given t vector. On the other hand, if the prediction is poor, robustness requires that
the mechanism retains some reasonable worst-case guarantee. A mechanism is said to be γ-robust if
it is γ-approximate for all predictions:

max
t

MECH(t, a∗)

OPT(t)
≤ β ; max

t,â

MECH(t, â)

OPT(t)
≤ γ .

In order to measure the quality of the prediction, we define the recommendation error, denoted by ρ̂,
as the approximation ratio of the recommended outcome cost to the optimal one i.e., ρ̂ = C(t,â)

OPT(t) .

In some of our applications, the social objective is a welfare maximization problem, where there is an
underlying welfare function W : T ×A → R+ that needs to be maximized. We adapt our definitions
for approximation and for the prediction error accordingly. In particular, the quality of a mechanism
for a given type vector t is measured by the welfare MECH(t, â) = W (t, f(t, â)), which is compared
to the optimal welfare OPT(t) = maxa∈A W (t, a). A mechanism is ρ-approximate, if ρ ≥ OPT(t)

MECH(t)

for all possible inputs t. Consistency and robustness are defined similarly to the cost minimization
version, while the recommendation error is defined as the approximation ratio ρ̂ = OPT(t)

W (t,â) . Note that
for both versions, the quality of recommendation ρ̂ exceeds 1, with 1 indicating perfect quality and
higher values indicating poorer quality. Additionally, we require a smooth decay of the approximation
ratio as a function of the quality of the recommendation as it moves from being perfect to being
arbitrarily bad. We say that an algorithm is smooth if its approximation ratio degrades at a rate that is
at most linear in ρ̂ [5, 6, 33].

3 Facility Location

In this section, we study mechanisms for the facility location problem in the two-dimensional
Euclidean space. There are n agents each with a preferred (private) location zi = (xi, yi), 1 ≤ i ≤ n
in R2. The goal of the mechanism is to aggregate the preferences of the agents and determine the
optimal facility location at a point f(t) in R2. Given a facility at point a ∈ R2, the private cost ti(a)
of each agent is measured by the distance of zi from a, i.e., ti(a) = d(zi, a), and the private objective
of each agent is to minimize their cost. Two different social cost functions have been used to evaluate
the quality of a location a [2]; the egalitarian cost, which measures the maximum cost incurred by
a among all agents C(t, a) = maxi ti(a), and the utilitarian cost, which considers the sum of the
individual costs i.e., C(t, a) =

∑
i ti(a).

We assume that the mechanism is equipped with a recommended point â ∈ R2. This is perceived as
a recommendation to place the facility at â. For a given t we denote by a∗(t) the optimal location
minimizing the social cost, and by ρ̂(t) the quality of the recommended outcome, which is defined as

2We adapt the notation accordingly to incorporate the recommendation â, e.g. the selected alternative is now
denoted by f(t, â), and the cost of the mechanism by MECH(t, â) etc.
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the approximation ratio C(t, â)/OPT(t) and measures the approximation that would by achieved by
placing the facility at â. We use the simpler notation a∗ and ρ̂ when t is clear from the context.

We note that for this problem our model coincides with the model studied in [2] for facility location
problems, although our perspective is slightly different. Their paper considers that the missing
information is the type of the agents, and they assume that they receive a signal of the predicted input
â, the optimal location w.r.t. the predicted types. Due to this perspective, they defined as prediction
error the (normalized) distance of their prediction, comparing to the optimal solution w.r.t the actual
types. We perceive â as an output advice. Clearly, one can interpret the output as a signal of some
sort of predicted data. However, we treat the advice as a recommendation, with unknown quality,
and under this perspective in the context of this paper, it makes more sense to measure it by the
approximation ratio w.r.t the actual (but unknown) input.

We showcase this effect in the following example of the facility location problem in the line for the
utilitarian social cost, and we further discuss it in Section 3.3. Consider 2m− 1 agents, see Figure 1,
whose preferred locations are clustered in two different points, the one at position (0, 0) and the other
at position (1, 0), where the first point is preferred by m agents and the other is preferred by m− 1
agents. The solution a∗ that minimizes the social cost places the facility at point (0, 0) (preferred by
m agents) resulting in a total cost of OPT(t) = m− 1. Now, take two different recommendations â1
and â2 at points (−1, 0) and (1, 0) respectively. The prediction error is the same for both points and
it is equal to 1

m−1 . However, any recommendation between a∗ and â2 is almost optimal for large
m, in contrast to â1. The quality of the recommendation captures this difference: the social cost for
the two recommendations are C(â1) = 3m − 2 and C(â2) = m, and therefore the quality of the
recommendation for â1 and â2 are respectively ρ̂1 = 3m−2

m−1 and ρ̂2 = m
m−1 , which converge to 3 and

1 respectively as m grows.

â1 a∗ â2
m
×

m− 1
×

Figure 1: Quality of recommendation versus prediction error

In Section 3.1, we study the egalitarian cost and show that the Minimum Bounding Box Mechanism,
defined by Agrawal et al. [2], achieves an approximation ratio of ρ̂, which combined with the
robustness bound of [2] gives an overall approximation guarantee of min{ρ̂,

√
2 + 1}. In Section 3.2

we focus on the utilitarian cost and show that the Coordinatewise Median Mechanism with predictions,
defined in [2], achieves an approximation ratio of at most

√
2ρ̂ which combined with the robustness

bound of [2] gives an overall approximation guarantee of min{
√
2ρ̂,

√
2λ2+2
1−λ }, where λ ∈ [0, 1) is

a parameter that models the confidence of the designer on the recommendation; larger values of λ,
correspond to increased confidence about the advice. Finally, in Section 3.3 we compare the bounds
obtained as a function of ρ̂ to previously known results obtained as a function of the prediction error.

3.1 Egalitarian Cost

The main result of this section is an approximation ratio of ρ̂ for the egalitarian cost, by analyzing the
Minimum Bounding Box mechanism defined in [2]. The robustness result for this mechanism [2],
gives a total approximation ratio of min{ρ̂,

√
2 + 1}, which we prove that is tight in the full version.

Intuitively, the Minimum Bounding Box mechanism works as follows3: If the minimum rectangle
that contains all the input points zi, i ∈ {1, . . . , n}, contains the recommendation point â, then we
output â. Otherwise, we select the boundary point with the minimum distance from â.

Theorem 1. The Minimum Bounding Box mechanism is min{ρ̂,
√
2 + 1}-approximate.

Proof.

MECH(t, â) = max
i

d(zi, f(t, â)) ≤ C(t, â) = ρ̂OPT(t)

The inequality holds because, whenever the prediction is outside the minimum bounding box, the
mechanism projects the prediction on its boundaries, in a way that improves the egalitarian loss
compared to the initial prediction. When the prediction is inside the bounding box, then f(t, â) = â
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and the inequality holds with equality. The term (
√
2 + 1) follows from the robustness guarantee

proved in [2]. By selecting the minimum of the two bounds, we get the approximation above.

Remark 1. We remark that when f(t, â) = â, the upper bound of ρ̂ is tight. In practice, this happens
whenever the recommendation is inside the minimum bounding box defined by the agents’ locations.

3.2 Utilitarian Cost

Next, we show a
√
2ρ̂ upper bound for the utilitarian cost by using the Coordinatewise Median with

predictions mechanism defined in [2]. This mechanism specifies a parameter λ ∈ [0, 1) which models
how much the recommendation is trusted. Intuitively,3 the mechanism works as follows; it creates
⌊λn⌋ copies of the recommendation â = (xâ, yâ). Then, by treating each coordinate separately, it
selects the median point among n + ⌊λn⌋ in total points; the n actual bids zi = (xi, yi) and the
⌊λn⌋ copies of the recommendation. After calculating the medians xa and ya for each coordinate,
it defines the outcome to be f(t, â) = (xa, ya). In the full version of the paper, we show that our
analysis is tight.

Theorem 2. The Coordinatewise Median with Predictions mechanism is min{
√
2ρ̂, ρ̂+

√
2,

√
2λ2+2
1−λ }-

approximate.

3.3 Comparison of Error Functions

In this section, we compare the quality of recommendation ρ̂ to the error η defined in [2] and find
instances for which our bounds are tight while previous known bounds are not. We first establish
that ρ̂ ≤ η + 1 holds for both the egalitarian and the utilitarian objective. We then show that for both
objectives, there exist instances that our bounds are strictly better than the ones proved in [2].

Lemma 1. For the egalitarian social cost, there exists an instance where ρ̂ < η + 1.

Lemma 2. For the utilitarian social cost, there exists an instance where
√
2ρ̂ <

√
2λ2+2
1+λ + η

We give all the proofs in the full version of the paper. Note that for the egalitarian objective, our bound
is a refinement of the (tight) bound η + 1 from [2]. On the other hand, for the utilitarian objective,
there exist instances for which the

√
2λ2+2
1+λ + η bound of [2] is better than ours. For this reason, in the

full version of the paper we observe the behaviour of ρ̂, η in real-world datasets [26, 7, 37, 12, 16, 3].

4 Scheduling

In this section, we study strategyproof mechanisms for the makespan minimization scheduling
problem. In this problem, we have a set N of n unrelated machines (the agents) and a set M of m
jobs. Each machine i has a (private) cost tij for each job j, which corresponds to the processing time
of job j in machine i. Since we consider only strategyproof mechanisms, each machine i declares
their true cost tij for each job j; let ti = (ti1, . . . , tim). The goal of the mechanism is to process the
machines’ declarations t = (t1, . . . , tn) and subsequently determine both an allocation a(t) of the
jobs to the machines and a payment scheme p(t) = (p1(t) . . . , pn(t)), where pi(t) is given to each
machine i for processing their allocated jobs. An allocation is given by a vector a = (a1, . . . , an),
where ai = (ai1, . . . , aim), and aij is set to 1 if job j is assigned to machine i and 0 otherwise. An
allocation a is feasible if each job is allocated to exactly one machine, i.e.,

∑
i∈N aij = 1, for all

j ∈M , and
∑

i∈N,j∈M aij = m; we denote by A the set of all feasible allocations.

The cost experienced by each machine i under an allocation a is the total cost of all jobs assigned to
it: ti(a) = ti(ai) =

∑
j∈M tijaij = ti · ai. The private objective of each machine i is to maximize

their utility ui(t) = pi(t)− ti(a(t)). In the strategyproof mechanisms that we consider here, this
happens when each machine declares its true cost. The social cost function that is usually used in this
problem in order to evaluate the quality of an allocation a, is the maximum cost among all machines,
which is known as the makespan: C(t, a) = maxi ti(a).

3For completeness we include the definition of the mechanism in the full version. We further refer the reader
to [2] for the exact definition and for the proof of strategyproofness and robustness.
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We assume that the mechanism is provided with a recommendation â ∈ A, which can be seen as a
suggestion on how to allocate the jobs to the machines. For a given t we denote by a∗(t) the optimal
allocation minimizing the social cost function, i.e., a∗(t) ∈ argmina∈A C(t, a), and by OPT(t)
the minimum social cost, i.e., OPT(t) = C(t, a∗(t)). We measure the quality of the recommended
outcome with ρ̂(t), which is defined as the approximation ratio C(t, â)/OPT(t) and measures the
approximation that we would achieve if we selected the recommended allocation â. In the notation of
a∗ and ρ̂, we drop the dependency on t when it is clear from the context.

In the remainder of this section, we introduce a strategyproof mechanism that we call Allocation-
ScaledGreedy (Mechanism 1). We prove that, given a confidence parameter 1 ≤ β ≤ n, it exhibits
(β+1)-consistency and n2

β -robustness (Theorem 3). Next, we investigate the smoothness of this mech-

anism and demonstrate that its approximation ratio is upper bounded by min{(β + 1)ρ̂, n+ ρ̂, n2

β },
which is asymptotically tight (Theorem 4). Furthermore, we establish that, when provided with
the outcome as advice, it is impossible to achieve a better consistency-robustness trade-off than the
AllocationScaledGreedy mechanism within the class of weighted VCG mechanisms (Theorem 5).

4.1 AllocationScaledGreedy Mechanism

In this subsection, we introduce a strategyproof mechanism called AllocationScaledGreedy, which
achieves a (β + 1)-consistency (more precisely, (n−1

n β + 1)-consistency which converges to β + 1

for large n) and a n2

β -robustness, where β is a confidence parameter ranging from 1 to n, with 1

corresponding to full trust and n corresponding to mistrust. For β = n, which can be interpreted
as ignoring the recommendation, the AllocationScaledGreedy mechanism corresponds to the VCG
mechanism; in that case, consistency and robustness bounds coincide, giving an n-approximation
(same as VCG). Regarding the smoothness of our mechanism, we prove an asymptotically tight
approximation ratio of min{(β + 1)ρ̂, n+ ρ̂, n2

β }.

AllocationScaledGreedy The mechanism sets a weight rij for every machine i and every job j
based on the recommendation â. rij is set to 1 wherever âij = 1, and n

β wherever âij = 0, for some
β ∈ [1, n]. It then decides the allocation by running the weighted VCG mechanism for each job j
separately, and by using rij as the (multiplicative) weight of machine i, i.e., each job j is allocated to
some machine in argmini{rijtij} that we denote by ij .

Mechanism 1 The AllocationScaledGreedy mechanism

Input: instance t ∈ Rn×m, recommendation â ∈ Rn×m

Output: a
1: rij ← 1 if âij = 1, n

β otherwise, (β ∈ [1, n])

2: ij ← argmini{rijtij}
3: if i = ij then aij = 1 else aij = 0, for each (i, j) ∈ N ×M

Remark 2. We remark that the AllocationScaledGreedy mechanism for β = 1 is a simplification
of the SimpleScaledGreedy mechanism of [8]. In [8], it is assumed that the mechanism is equipped
with predictions of the entire cost matrix t̂ij , for every machine-job pair. The SimpleScaledGreedy
mechanism utilizes this information to define weights rij that may take values in the range [1, n].
In contrast, AllocationScaledGreedy uses weights with values only 1 or n, for β = 1. Notably,
despite the limited information available to AllocationScaledGreedy, both mechanisms share the
same consistency and robustness, but SimpleScaledGreedy lacks the nice property of being smooth,
as for a very small prediction error, the approximation ratio has a large discontinuity gap (see full
version for an example) as opposed to AllocationScaledGreedy (Theorem 4). SimpleScaledGreedy
served as an intermediate step in [8] in the design of the more sophisticated mechanism ScaledGreedy,
(which again relies heavily on the prediction of the entire cost matrix) which achieves the best of both
worlds, constant consistency and O(n)-robustness. However, for similar reasons, ScaledGreedy is
not smooth either.
Theorem 3. The AllocationScaledGreedy mechanism is

(
n−1
n β + 1

)
-consistent and n2

β -robust.

In the following theorem, we show the smoothness result for the AllocationScaledGreedy mechanism;
we show a tight approximation ratio depending on ρ̂. We prove this theorem in the lemmas. In the
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first one, we show that min{(β + 1)ρ̂, n + ρ̂, n2

β } is an upper bound, and in the second one that

min{n−1
n βρ̂, n+ρ̂−1

2 , n2−1
2β } is a lower bound on the approximation ratio of the AllocationScaled-

Greedy mechanism. We defer the reader to the full version for the complete proof.

Theorem 4. The AllocationScaledGreedy mechanism is at most min{(β + 1)ρ̂, n + ρ̂, n2

β }-
approximate and this bound is asymptotically tight.

4.2 Mechanism Optimality

In this subsection, we provide general impossibility results for the class of weighted VCG mecha-
nisms4, the most general known class of strategyproof mechanisms for multi-dimensional mechanism
design settings, such as the scheduling problem. We prove that it is impossible to improve upon the
AllocationScaledGreedy mechanism, given the recommended outcome. More specifically, there is
no weighted VCG mechanism with β-consistency that can achieve a robustness better than Θ(n

2

β ),
highlighting the optimality of AllocationScaledGreedy in this class of mechanisms.
Theorem 5. Given any recommendation â, any weighted VCG mechanism that is β-consistent, must
also be Ω(n

2

β )-robust, for any 2 ≤ β ≤ n.

Proof sketch. We provide a proof sketch of Theorem 5 and refer the reader to the full version for
the complete proof. We will consider instances with n machines and n2 jobs. Let a β-consistent
weighted VCG mechanism and a recommendation â that assigns every n jobs to a distinct machine.
Focusing on each machine i, we specify the cost vector t, such that the optimal allocation matches â.
The costs are such that the mechanism must assign each job j either to machine i or to machine ı̂j
that receives job j in â. Machine i should not receive many jobs, otherwise β-consistency is violated.
Consequently, there are many (approximately n2

2 ) weights rij with value much higher comparing to
the weight rı̂jj , i.e., rij

rı̂j j
≥ n

2β .

Since this is true for each machine i, there exists a machine ı̂, such that, focusing only on the n jobs
that ı̂ receives in â, there exist approximately n2

2 jobs with value much higher (comparing to ı̂) among
all machines. Then it holds that we can assign approximately n

2 jobs to distinct machines such that
those machines have high-valued weight for their assigned job; let J be the set of those jobs. We
finally consider the instance where each of those machines has a cost of 1 for their assigned job and
sufficiently high cost5 for any other job in J , machine ı̂ has a cost slightly less than n

2β for jobs in J ,
and all other machines have infinite cost for jobs in J . The cost for any other job that does not belong
to J is 0 for any machine. In this instance t, OPT(t) = 1, but the mechanism allocates all jobs of J
to machine ı̂, resulting in MECH(t, â) being approximately n2

4β . Hence, any β-consistent weighted

VCG mechanism is Ω(n
2

β )-robust.

5 Combinatorial Auctions

In this section, we show how output advice can integrate with truthful maximal in range (MIR)
mechanisms where the goal is to optimize the social welfare (or more generally an affine function) over
a restricted outcome space. Let M be a MIR mechanism with an approximation guarantee ρM . We
define a mechanism that compares the outcome of M with a suggested solution â and selects the one
that achieves the highest social welfare. This mechanism remains MIR, as it simply expands the range
of possible outcomes to include â, ensuring it remains strategyproof, and is min{ρ̂, ρM}-approximate.
Combining with the results of [34, 17] we obtain strategyproof mechanisms for combinatorial
auctions with approximation ratio of min{ρ̂,m/logm} for general valuations, min{ρ̂,

√
m/logm} for

subadditive valuations, and min{ρ̂, 2} for multi-unit valuations.
4Technically, weighted VCG mechanisms choose weights ri for each machine i, rather than the more general

case of choosing rij for each machine i and job j, that we consider here. In scheduling, where the valuation
domain is additive, jobs can be grouped into clusters, and a distinct VCG mechanism can be applied to each
cluster. The composition of these mechanisms remains strategyproof for additive domains. The extreme (and
more general) case considered here is to cluster the jobs into m clusters.

5We choose ∞ cost for clarity, in fact it suffices to choose instead tij >
mini′{ri′jti′j}

rij
, such that the

mechanism does not allocate job j to machine i.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The model introduced in the abstract and introduction sections is well defined
and applied on several mechanism design problems. Both consistency and robustness guar-
antees are proved for each problem while the applicability of the quality of recommendation
is well established on all problems.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Despite the fact that the proposed model (output prediction and quality of
recommendation) can be applied to a wide range of problems, it is clearly stated that
the output prediction is limited in the sense that it considers less amount of information
compared to e.g. input prediction.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper ensures that each theoretical result is accompanied by a comprehen-
sive set of assumptions and a meticulously crafted proof. The proofs are well-organized,
typically following a logical progression with lemmas presented in the correct order to
support the main theorem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of all algorithms both theoretically and
with accompanying code. Additionally, the supplementary material includes comprehensive
guides that allow readers to reproduce and study the experimental results in depth.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Full code and data are provided in order to make the result reproduction
possible. Data is open-source and helpful references and links are provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper justifies the dataset selection as suitable for the facility location
problem and exposes the parameters of the mechanism used and the predictions created.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In the experimental section, our purpose is to compare the behavior of our
error with other defined errors based various predictions. The experiments do not contain
any randomization or uncertainty.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: While there is no need for intense computational power, the details of the
computing machine’s CPU are included in the experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: NeurIPS Code of ethics is fully respected by our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: Our work does not have any societal impact, as it is merely a theoretical work.
The proposed new mechanisms can be used to promote strategyproofness among agents and
efficiency.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not contain any results or data that could be misused in any
way.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets are cited properly and owners are given credit.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

19

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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