
Under review as a conference paper at ICLR 2021

COLLABORATIVE FILTERING WITH SMOOTH RECON-
STRUCTION OF THE PREFERENCE FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of predicting the rating of a set of users to a set of items in a rec-
ommender system based on partial knowledge of the ratings is widely known as
collaborative filtering. In this paper, we consider a mapping of the items into a
vector space and study the prediction problem by assuming an underlying smooth
preference function for each user, the quantization at each given vector yields the
associated rating. To estimate the preference functions, we implicitly cluster the
users with similar ratings to form dominant types. Next, we associate each dom-
inant type with a smooth preference function; i.e., the function values for items
with nearby vectors shall be close to each other. The latter is accomplished by a
rich representation learning in a so called frequency domain. In this framework,
we propose two approaches for learning user and item representations. First, we
use an alternating optimization method in the spirit of k-means to cluster users and
map items. We further make this approach less prone to overfitting by a boosting
technique. Second, we present a feedforward neural network architecture consist-
ing of interpretable layers which implicitely clusters the users. The performance
of the method is evaluated on two benchmark datasets (ML-100k and ML-1M).
Albeit the method benefits from simplicity, it shows a remarkable performance
and opens a venue for future research. All codes are publicly available on the
GitLab.

1 INTRODUCTION

Nowadays, recommender systems (RS) are among the most effective ways for large companies to
attract more customers. A few statistics are sufficient to attract attention towards the importance of
RS: 80 percent of watched movies on Netflix and 60 percent of video clicks on Youtube are linked
with recommendations (Gomez-Uribe & Hunt, 2015; Davidson et al., 2010). However, the world of
RS is not limited to video industry.

In general, recommender systems can be categorized into three groups (Zhang et al., 2019): col-
laborative filtering (CF), content-based RS, and hybrid RS depending on the used data type. In this
paper, we focus on CF, which uses historical interactions to make recommendations. There might
be some auxiliary information available to the CF algorithm (like the user personal information);
however, a general CF method does not take such side information into account (Zhang & Chen,
2019). This includes our approach in this paper.

Recently, deep learning has found its way to RS and specifically CF methods. Deep networks are
able to learn non-linear representations with powerful optimization tools, and their efficient imple-
mentations have made then promising CF approaches. However, a quick look at some pervasive
deep networks in RS (e.g., He et al. (2017) and Wu et al. (2016)) shows that the utilization of deep
architectures is limited to shallow networks. Still, it is unclear why networks have not gone deeper
in RS in contrast to other fields like computer vision (Zhang et al., 2019). We suppose that the
fundamental reason that limits the application of a deeper structure is the absence of interpretability
(look at Seo et al. (2017), for example). Here, interpretability can be defined in two ways (Zhang
et al., 2019); first, users be aware of the purpose behind a recommendation, and second, the sys-
tem operator should know how manipulation of the system will affect the predictions (Zhang et al.,
2018).

1

Under review as a conference paper at ICLR 2021

This paper addresses both issues by formulating the recommendation as a smooth reconstruction of
user preferences. Particularly, our contributions are:

• The CF problem is formulated as the reconstruction of user preference functions by mini-
mal assumptions.

• An alternating optimization method is proposed that effectively optimizes a non-convex
loss function and extracts user and item representations. In this regard, effective clustering
methods are proposed and tested.

• A feed-forward shallow architecture is introduced, which has interpretable layers and per-
forms well in practice.

• Despite the simplicity and interpretability of the methods, their performance on benchmark
datasets is remarkable.

1.1 RELATED WORKS

The applied methods in CF are versatile and difficult to name. Below, we explain a number of
methods which are well-known and are more related to our work.

Multilayer perceptron based models. A natural extension of matrix factorization (MF) methods
(Mnih & Salakhutdinov, 2008) are Neural Collaborative Filtering (NCF) (He et al., 2017) and Neural
Network Matrix Factorization (NNMF) (Dziugaite & Roy, 2015). Both methods extend the idea
behind MF and use the outputs of two networks as the user and the item representations. The inner-
product makes the prediction of two representations. Although our work has some similarity to this
method, we model users by functions and represent these functions in a so-called frequency domain.
Thus, user and item representations are not in the same space.

AutoEncoder based models. AutoRec (Sedhain et al., 2015) and CFN (Strub et al., 2016) are well-
known autoencoder (AE) structures that transform partial observations (user-based or item-based)
into full row or column data. Our method differs from AE structures as our network use item (user)
representations and predicts user (item) ratings.

2 SMOOTH RECONSTRUCTION FROM NON-UNIFORM SAMPLES

Rating as the output of the preference function. Most of the time, a finite set of features can charac-
terize users and items that constitute the recommendation problem. Although no two users or items
are exactly the same, the number of characterization features can be considerably small without los-
ing much information.
Assume that item i is characterized by the vector xi ∈ X ⊂ Rd. We further assume that all users
observe similar features of an item and user u’s ratings are determined by a preference function
fu : X → [cmin, cmax]. The recovery of a general preference function might need an indefinite
number of samples, i.e., observed ratings. However, we do not expect user attitudes to change
too much with small changes in an item’s feature. E.g., if the price is the determinative factor in
someone’s preference, small changes in the price must not change the preference over this item
significantly (look at figure 1).

!"

!#

!"

!#
liked

disliked

user 1 user 2

Figure 1: Preference function is expected to have smooth behavior over the space of items.

2

Under review as a conference paper at ICLR 2021

Reconstruction of bandlimited 1D signals. Let us start with the simplest case. Consider s[n], n =
0, 1, . . . , N − 1, a 1D signal with length N . We call s to have bandwidth M < N

2 if there is a
representation ŝ[m],m = −M,−M + 1, . . . ,M − 1,M that can represent s as:

s[n] =

M∑
m=−M

ŝ[m]ej2π(mn/N) (1)

So 2M +1 distinct samples from s would be enough to calculate ŝ. For an analytical approach, it is
useful to interpret equation 1 as a discretization of a trigonometric continuous equation:

h(x) =

M∑
(m=−M)

amej2π(mx), a ∈ C2M+1, x ∈ [0, 1) (2)

Mirroring. Smoothness usually is used to refer to bandlimited signals around the zero-frequency
which can be represented by equation 1. However, we use the smooth finite-length signal to refer
to a real-valued finite-length signal that has intuitively smooth behavior in its non-zero domain.
figure 2 shows an example. The trigonometric functions in equation 2 can not approximate such
signals well even if we shift and scale the domain to [0,1] because the original signal is not periodic.
One possible solution to make the trigonometric functions still a good representative for the finite-
length signal would be mirroring. figure 2 shows the shifted, scaled, and mirrored signals in 1D
space.

! !
1

Figure 2: Mirroring, shifting and scaling.

Extension to multi-dimensional real-valued mirrored signals. equation 2 will be simplified for a
real-valued s just to include cosine terms. One can obtain the extension of equation 2 for real-valued
mirrored signals as:

h(x) = h(x1, x2, . . . , xd) =

M∑
m1=0

. . .

M∑
md=0

Am1,m2,. . . ,md
cos
(
π(m1x1 + ...+mdxd)

)
, (3)

where x ∈ [0, 1]d and A is a d-dimensional real tensor. To simplify the notation, we use mTx to
refer m1x1 + ...+mdxd and a to refer vectorized A. Starting from m1,m2, . . . ,md all to be 0, one
can put all the possible values of m as the columns of matrix C = [c](M+1)d×d with the same order
as they appear in vectorizing of A. Now we can rewrite equation 3 with matrix operations:

h(x) =

(M+1)d∑
k=1

ak cos
(
πCk,:x

)
(4)

Vandermonde matrix. Given r non-uniform samples in [0, 1]d, the Fourier coefficients, a, are the
solution to the linear system of equations h(xi) = si, i = 1, 2, . . . , r. The Vandermonde matrix for
this system is defined as:

V = cos
(
C[x1, x2, . . . , xr]

)
, (5)

where the cos(.) is the element-wise cosine, and [. . .] shows the stacking operator of column vectors.
So, the linear system of equations can be shortened by: V Ta = s. Here s is the column vector of
r observed si put together. In contrast to the 1D case, there is no simple theorem on the conditions
to estimate a correctly. Roughly speaking, this needs the rank of V to be larger than the number of
unknowns, i.e., (M +1)d or in other words, the number of samples (r) should be enough larger than
(M + 1)d.

3

Under review as a conference paper at ICLR 2021

Reconstruction of the preference function from the observed ratings. We can state the problem
of rating prediction, as the reconstruction of the preference function of each user (fu) given the
observed ratings of that user (Iu). If we assign a d-dimensional characterization vector (xi) to each
item i that is assumed to lie in X = [0, 1]d, we can estimate the user u Fourier coefficients as
au = (V T

u)†su. At the starting point we do not know how items are distributed in X which means
Vu will be inaccurate. So, optimizing the reconstruction loss gives fair characterstics for the items
in X :

min
xi,i∈I

∑
u∈U
‖V T

u (V T
u)†su − su‖2. (6)

3 LEARNING REPRESENTATIONS BY MINIMIZING RECONSTRUCTION LOSS

Minimizing equation 6, aside from the non-convexity of the cost function, implicitly involves solv-
ing V T

u au = su, which can in general be an ill-condition system of linear equations, specially when
the user u has few recorder ratings. To reliably estimate the Fourier coefficients au (user representa-
tions), group similar users into a number of clusters and use a single representative for each cluster
(virtually increasing the number of available ratings). In addition, we further consider a Tikhonov
(L2) regularizer to improve the condition number. With this approach, we need to solve

min
{xi,i∈I},c

L =min
∑
u∈U
‖V T

c(u)ac(u) − su‖2 + λ
∑
k∈C

‖ak‖2,

s.t. 0 ≤ xi < 1, (7)

where c : U → C is the mapping of the users into clusters, C is the set of clusters and Vk is the
Vandermonde matrix associated with the cluster k (considering all the users in a cluster as a super-
user). Hence, Vk is a function of {xi, i ∈ ∪{u: c(u)=k}Iu}. The penalty parameter λ shall be tuned
via cross validation. Moreover, the Fourier coefficients ak for the cluster k are obtained by:

ak = (VkV
T
k + λI)−1Vksk, (8)

where sk is the vector of all observed ratings in the cluster k. In the sequel, we propose two
approaches for minimizing equation 7. In the first approach (Section 3.1), we alternatively find
min{xi,i∈I} L and minc L; as minc L requires a combinatorial search, we introduce an approxi-
mate algorithm, named k-representation (Section 3.1.1) inspired by the k-means technique. Each
iteration of k-representation consists of assigning each user the cluster with the lowest reconstruc-
tion loss, and updating the cluster representatives. In the second approach (Section 3.2), we train a
neural network to jointly characterize the items and cluster the users. For this, the loss function of
equation 7 is modified to accommodate for soft clustering.

3.1 ALTERNATING OPTIMIZATION

3.1.1 k-REPRESENTATION FOR CLUSTERING THE USERS

The total loss in equation 7 can be divided into partial losses of the form

Lk = ‖V T
k ak − sk‖2 (9)

for each cluster k. We propose the k-representation (Algorithm 1) to minimize the overall cost it-
eratively. We first randomly set aks, k ∈ C; then, each user is assigned to a cluster k for which its
reconstruction loss (equation 7) is minimized. After dividing the users into clusters, the represen-
tative of each cluster is updated via equation 8, and we return again to the clustering task. Similar
to the k-means, there is no theoretical guarantee that the method converges to the global optimizer;
nevertheless, the overall loss is decreased in each iteration. We shall evaluate the performance of the
method in the Section ?? on both synthetic and real data.

Boosted k-representation. By introducing both the clustering andL2 regularization in equation 8, we
have improved the robustness of the inverse problem. However, increasing the number of clusters is
still a potential issue in estimating the cluster representatives. Here, we propose to learn an ensemble
of weak binary clusterings instead of learning all clusters together (Algorithm 2). The idea is to find
the residuals of predicted ratings for each user and fit a new clustering to the residuals. Due to the
linearity of the prediction, the final representation is the sum of weak representations for each user.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 k-representation

Input:
item characteristics {xi, i ∈ I}
available ratings by each user {Iu, su, u ∈ U}
number of clusters |C|
initialization variance of cluster representations σ2

L2 penalty parameter λ.
Output:

user clustering c : U → C
cluster representatives {ak, k ∈ C}

procedure k-REPRESENTATION
init. ak from N (0, σ2)
for all k ∈ C do Calculate Vk from xis
repeat

for all u ∈ U do c(u)← argmink‖V T
u ak − su‖2

for all k ∈ C do Update ak via equation 8
until convergence
return {ak} and c

end procedure

Algorithm 2 boosted k-representation

Input:
same as Algorithm 1

Output:
user representatives {au, u ∈ U}

procedure BOOSTED k-REPRESENTATION

for all u ∈ U do au ← 0, , s(0)u ← su
for l = 1 : dlog2 |C|e do
{a(l)

k }, c(l) ← k-representation({s(l−1)u })
for all u ∈ U do a

(l)
u ← a

(l)

c(l)(u)
, s

(l)
u ← s

(l−1)
u − V T

u a
(l)
u , au ← au + a

(l)
u

end for
end procedure

3.1.2 OPTIMIZING ITEM CHARACTERISTICS

The second part of the alternating optimization is to minimize equation 7 w.r.t. item characteristics;
i.e., {xi, i ∈ I}, subject to 0 ≤ xi < 1. To simplify the equations, we rewrite the total loss in
equation 7 with small modification as:

L =
∑

(u,i)∈O+

ρ(lu,i) (10)

where lu,i is |Su,i − vTi au|2 and O+ is the set of observed ratings. Here, ρ is a saturating function
that reduces the effect of outliers. In equation 7, it is simply the identity function; however, we
chose ρ(y) = 2(

√
(1 + y) − 1) to better bound the unpredictable errors. We use the Trust Region

Reflective (TRF) algorithm of the scipy python package as the optimization algorithm, which
selects the updating steps adaptively and without supervision. To facilitate the optimization, we
need to calculate the gradient of lu,i w.r.t. {xi}. It is obvious that ∇xj

lu,i is zero for all j 6= i. For
j = i and q = 1, ..., d (dimension of X) we have:

∂

∂xi,q
lu,i = 2 (Su,i − vTi au)

(M+1)d∑
n=1

πau,n sin(πCn,:xi)Cn,q. (11)

Pre-search. Before using the TRF to optimize the loss, we make use of the current function
evaluations to update item characteristics. Consider we are in the tth iteration and the values

5

Under review as a conference paper at ICLR 2021

$%"
$%#

$%&

X-layer
#neurons = (= 3

!#,"!#,#!#,&

Item-one-hot-layer
#neurons= ℐ = 7

1
0

0

0
…

0
0

0

$/$/$/

… …

012

V-layer
#neurons = /+1 4

User-layer
#neurons = 5 = 8

#neurons = 7"

L2 reg.

drop-out

tanh

tanh

#neurons = 7"

#neurons = 7#

#neurons = 7&

Figure 3: Neural network inspired from equation 13.

{
x
(t−1)
i ,V

(t−1)
i ,a

(t−1)
i

}
from the previous iteration are available. We define

x
(t− 1

2)
i = x

(t−1)
argminj∈I ‖si−V (t−1)

j a
(t−1)
i ‖2

. (12)

Then, we use
{
x
(t− 1

2)
i

}
as the input to TRM and run a few iterations to get {x(t)

i }. This pre-search
makes the optimization process less prone to stagnate in local minima.

3.2 RECONST-NET: A FEED-FORWARD SHALLOW NETWORK FOR PREFERENCE
RECONSTRUCTION

Recent advances in deep learning have made the neural networks great tools even for traditional
well-known algebraic calculations. Specifically, neural networks can be optimized effectively with
various methods and efficient implementations that boost training. Further, some useful techniques
like batch normalization, drop-out, etc., are available, which helps to avoid overfitting. In this sec-
tion, we will reformulate equation 7 for soft clusters and design an architecture that learns items’
characteristics and users’ representations concurrently. First we modify equation 7 for soft clus-
tering. Consider c : U → C|C| is the assignment function that determines how much each user is
belonged to each cluster. We intentionally do not constraint norm of the c and let it to be scaled
appropriately for different user. The total reconstruction loss is:

L =
∑
u∈U
‖(
∑
k∈C

ck(u)V
T
k ak)− su‖2 + λ

∑
k∈C

‖ak‖2 (13)

figure 3 shows an inspired architecture from 13. It consists of six layers (four hiddens) which three
of them are trainable. The observed ratings will be supplied per item. Each neuron corresponds to
an item at the input layer, and the input data should be one-hot vectors. The next layer is X-layer,
which is a dense layer with d units. We interpret the weights from unit i in the input layer to the
X-layer as xi. At the V-layer, the item’s representation (xi) is multiplied by C (EQ) and forms
vi. V-layer does not have any trainable parameters. Next, there is the soft-clustering layer, a dense
layer with n1 neurons. We interpret weights going from the V-layer to unit k of the soft-clustering
layer as ak, i.e., the representation of the kth soft cluster. Finally, the output layer or equivalently
the User-layer is a dense layer with |U| units. Weights going from the soft-clustering layer to unit u
determine c(u).
The drop-out layer (not depicted) after V-layer has an important role in preventing the network from
overfitting. Dropping-out makes sense because the observed ratings usually come with a lot of
uncertainty in a real application, i.e., the same user might rate the same item differently when asked
for re-rating, and this is the nature of real data. The drop-out layer prevents overfitting by stopping
the network from relying on a specific part of the items’ characteristics.

One way to increase the capacity of the method and capture non-linear interactions is to let the user’s
representation be a nonlinear function of clusters’ reconstructed ratings. i.e., to change equation 13

6

Under review as a conference paper at ICLR 2021

Table 1: Datasets summary

DATASET #USER #ITEM #RATINGS #DENSITY RATING RANGE
Synthetic 50 200 variable variable 1, 2, ..., 5
ML-100k 943 1,682 100,000 0.063 1, 2, ..., 5
ML-1M 6,040 3,706 1,000,209 0.045 1, 2, ..., 5

Table 2: Training settings

METHOD DATASET d M λ OTHERS

Alternating optimization 3.1 ML-100k 3 4 0.1 boosted k-rep. with 4 learners
ML-1M 3 4 0 boosted k-rep. with 5 learners

RECONST-NET 3.2 ML-100k 3 10 10 n1 = 10, n2 = 100, n3 = 10, drop-out= 0.1
ML-1M 4 10 10 n1 = 15, n2 = 100, n3 = 15, drop-out= 0.1

as:
L =

∑
u∈U
‖
∑
k∈C

ck(u)g({V T
q aq})− su‖2 + λ

∑
k∈C

‖ak‖2 (14)

here g can be an arbitrary non-linear function. In figure 3 we have proposed g as two additional
hidden layers in right panel with tanh activation. Here, we usually choose n1 = n3 and equals our
expectation from the number of soft clusters in the data. Still one can interpret the last hidden layer
as the soft clustering layer.

3.3 COMBINING MULTI PREDICTORS

Combining user-based and item-based methods. Till now, we have assumed that items are mapped
to a vector space, and users have preference functions (user-based method), but there is no reason
not to consider it reversely (item-based method). A simple way of combining user-based and item-
based methods is to do a linear regression from each method’s output to the observed ratings. The
validation part of the data will be used for estimating the coefficients of regression. We will see that
combining user-based and item-based methods significantly improve the prediction of test data.
Leveraging ensemble of predictors. A more complicated but effective way of combining is to lever-
age an ensemble of combined user-based and item-based methods. Consider we have a predictor
f (t)(S) at iteration t that predicts observed ratings S for training the model. At each iteration,
we calculate the residuals of the predicted ratings and pass it to the next predictor: S(t+1) =
S(t) − f (t)(S(t)). The next predictor, f (t+1), uses S(t+1) for training its model. The final pre-
dictor leveraged from f (t), t = 1, 2, ..., T , uses the sum of all predictions: f(S) =

∑T
t=1 f

(t)(S).

4 EXPERIMENTS

To evaluate the proposed methods, we use three datasets: a synthetic dataset besides the well known
ML-100k and ML-1M datasets (Harper & Konstan, 2015). The details of each dataset can be found
in Table 1. The synthetic data is created to assess our clustering methods; for this purpose, a num-
ber of cluster representatives are randomly chosen in the low-frequncy domain (Guaranteed to be
smooth) and then, each user is placed randomly around one of the representatives. The distance of
the users to the associated representative (within-cluster variance) is varied in different tests. Look
at the Appendix for detailed discussion.

The MovieLens datasets1 ML-100k and ML-1M are two of the most common benchmarks for col-
laborative filtering. For the ML-100k, we follow the pre-specified train-test split; i.e., 75%, 5%, and
20% of the total available data is used for training, validation, and test, respectively. For ML-1M,
these numbers are 90%, 5%, and 5%, respectively.

1https://grouplens.org/datasets/movielens/

7

Under review as a conference paper at ICLR 2021

Table 3: RMSE comparison

METHOD ML-100k ML-1M
PMF 0.952 0.883
GMC (Kalofolias et al., 2014) 0.996 -
Factorized EAE (Hartford et al., 2018) 0.920 0.860
IGMC (Zhang & Chen, 2019) 0.905 0.857
GC-MC (Berg et al., 2017) 0.910 0.832
Bayesian timeSVD++ (Rendle et al., 2019) 0.886 0.816
sRGCNN (Monti et al., 2017) 0.929 -
GRALS (Rao et al., 2015) 0.945 -
Alternating optim. (ours) 0.920 0.860
RECONST-NET (ours) 0.909 0.862

0 10 20 30 40
iter.

0.75

0.80

0.85

0.90

0.95

RM
SE user tr.

user va.
item tr.
item va.
va.
te.

(a) Alternating optimization in ML-1M

0 25 50 75 100 125 150
epoch

0.6

0.8

1.0

1.2

1.4

RM
SE

train batch loss
val. batch loss
val. loss
test loss

(b) RECONST-NET training with ML-100k

Figure 4: Training process for different methods

4.1 PREDICTION EVALUATION

Training process. The training settings of both proposed methods, alternating optimization, and
RECONST-NET for each dataset are provided in Table 2. Figure 4 shows the RMSE on two different
datasets during the training stage. The validation is reserved for parameter tuning, and performance
on test data is reported for both methods. Figure 4a clearly reveals the performance gain achieved
by combining the user- and item-based techniques. Further, the stair shape decrease of the training
loss (and validation loss) confirms the suitability of leveraging the ensemble of predictors.

Performance comparison. We further conduct experiments on ML-100k and ML-1M datasets. We
have ignored the available side information in both datasets. Therefore, for the performance compar-
ison in Table 3, we have included only methods that do not take into account these side information.
Although neither of the alternating optimization and RECONST-NET record the best RMSE, they
yield very good results despite their simplicity and interpretability.

5 CONCLUSION

In this article, we formulated the rating prediction problem as a reconstruction problem with a
smoothness assumption. The proposed methods are all simple and interpretable but show significant
performance comparing to state-of-the-art methods. Specifically, we interpreted different layers of
the designed network and evaluated our interpretation in synthetic design. The proposed architecture
and rich frequency-domain feature can be a basis for future research on interpretable recommender
systems.

REFERENCES

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

8

Under review as a conference paper at ICLR 2021

James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi,
Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The youtube video recommendation
system. In Proceedings of the fourth ACM conference on Recommender systems, pp. 293–296,
2010.

Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization. arXiv preprint
arXiv:1511.06443, 2015.

Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4):
1–19, 2015.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Jason Hartford, Devon R Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh. Deep models
of interactions across sets. arXiv preprint arXiv:1803.02879, 2018.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural col-
laborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Vassilis Kalofolias, Xavier Bresson, Michael Bronstein, and Pierre Vandergheynst. Matrix comple-
tion on graphs. arXiv preprint arXiv:1408.1717, 2014.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. In Advances in neural
information processing systems, pp. 1257–1264, 2008.

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recur-
rent multi-graph neural networks. In Advances in Neural Information Processing Systems, pp.
3697–3707, 2017.

Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Collaborative filtering
with graph information: Consistency and scalable methods. In Advances in neural information
processing systems, pp. 2107–2115, 2015.

Steffen Rendle, Li Zhang, and Yehuda Koren. On the difficulty of evaluating baselines: A study on
recommender systems. arXiv preprint arXiv:1905.01395, 2019.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders
meet collaborative filtering. In Proceedings of the 24th international conference on World Wide
Web, pp. 111–112, 2015.

Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Interpretable convolutional neural networks
with dual local and global attention for review rating prediction. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, pp. 297–305, 2017.

Florian Strub, Romaric Gaudel, and Jérémie Mary. Hybrid recommender system based on autoen-
coders. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp.
11–16, 2016.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization and correction for chance. The Journal of
Machine Learning Research, 11:2837–2854, 2010.

Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Con-
ference on Web Search and Data Mining, pp. 153–162, 2016.

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks. arXiv
preprint arXiv:1904.12058, 2019.

Shuai Zhang, Lina Yao, Aixin Sun, Sen Wang, Guodong Long, and Manqing Dong. Neurec: On
nonlinear transformation for personalized ranking. arXiv preprint arXiv:1805.03002, 2018.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey
and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38, 2019.

9

Under review as a conference paper at ICLR 2021

101

discriminability

0.25

0.00

0.25

0.50

0.75

1.00

AR
I

K-Rep
Boosted K-Rep
RECONST-NET

10 2 10 1

density

0.25

0.00

0.25

0.50

0.75

1.00

2 4 6
#cluster

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5: The performance of the clustering techniques on synthetic data

A APPENDIX

A.1 CLUSTERING EVALUATION

In Section 3.1.1, we proposed the k-representation clustering and its boosted version. Here, we study
their performances via experiments on synthetic data. We recall that the mentioned methods do not
explicitly penalize miss-clustering; instead, they minimize the within-cluster reconstruction loss. As
a result, we expect these methods to perform fairly well when the clusters are distinguishable. To
measure the matching between the identified clusters and the original ones, we employ the Adjusted
Rank Index (ARI) (look at Vinh et al. (2010)). For two clusterings c1 and c2 with the same domain
U , if we form the contingency matrix N with the (i, j) element as |{u, c1(u) = i, c2(u) = j}|,
then, ARI defined based on the elements, column and row sums of N , intuitively shows the rate
of agreement between the two clusterings if u is randomly chosen from U . It takes the maximum
value 1 for identical clusterings and the minimum value 0 when the clusterings are perceived as
fully random with respect to each other. As explained, ARI has the advantage of comparing two
clusterings even with different number of clusters.

To use the ARI metric, we need a hard clustering of the users. For this purpose, we associate each
user in our User-layer (soft clustering layer) in Figure 3 to the neuron (cluster) in the last hidden unit
with the largest absolute weight. Although this technique violates the main goal in soft clustering, it
provides us with a measure of clustering accuracy.
In Figure 5, the performance of k-representation (1), boosted k-representation (2) and modified re-
sults from the soft clustering layer (Figure 3) are depicted for three scenarios. As expected, we
obtain inferior result from the soft-clustering layer; however, as ARI is above zero, the clustering of
this layer is not irrelevant. In the left plot in Figure 5, the ARI curves in terms of the discrimination
index of the clusters (the ratio of between-cluster to within-cluster variances) are presented. We ob-
serve that the boosted k-representation works better in cases with higher discrimination index, but
loses its performance in case of cluttered clusters.
The center plot in Figure 5, shows ARI changes by varying the density in the rating matrix (ratio
of the number of observed to non-observed entries). While the k-representation has the best per-
formance at low densities, its performance drops when the density exceeds a threshold; this might
be due to the involved regularization term. Finally, in the right plot of Figure 5, we have changed
the number of clusters in all methods; the correct number of clusters is kept fixed at 4. As we see
in these plots, none of the k-representation and its boosted version dominate the other one in all
regimes.

10

	Introduction
	Related works

	Smooth reconstruction from non-uniform samples
	Learning representations by minimizing reconstruction loss
	Alternating optimization
	k-representation for clustering the users
	Optimizing item characteristics

	RECONST-NET: a feed-forward shallow network for preference reconstruction
	Combining multi predictors

	Experiments
	Prediction evaluation

	Conclusion
	Appendix
	Clustering evaluation

