TOWARDS A MORE HOLISTIC EVALUATION OF OBJECT-CENTRIC LEARNING

Anonymous authorsPaper under double-blind review

ABSTRACT

Object-centric learning (OCL) methods were developed by taking inspiration from how humans perceive a scene. It is conjectured that they achieve compositional generalisation by decomposing the scene into objects, making the learned models robust to out-of-distribution (OOD) scenes. However, the recent OCL literature, by and large, evaluates the learned models only on the proxy task of object discovery, which gives no information about which object properties are actually encoded in the object-centric latent representation. Moreover, these models are not evaluated for the broader goals behind object-centric methods such as compositional generalisation, OOD performance, counterfactural reasoning, etc. Our work argues that the present evaluation protocols for OCL methods are significantly limited or not scalable. We propose using vision-language models (VLMs) on top of OCL methods for evaluating them on various visual question answering tasks. We are the first to evaluate OCL methods on multiple dimensions, ranging from counterfactual, OOD and compositional reasoning. We also propose a new metric that unifies the evaluation of the 'what' and 'where' attributes, making the evaluation of OCL methods more holistic compared to existing metrics. Finally, we complement our analysis with a simple multi-feature reconstruction-based OCL method that outperforms the state of the art across several tasks.

1 Introduction

Object-centric learning (OCL) aims to decompose a scene into a set of latent representations. Instead of using a global encoding, object-centric representations help in tasks that require reasoning at an object level. OCL methods aim to enable vision systems to reason about a scene by decomposing it into its constituent objects, akin to how humans reason about a scene (Baillargeon et al., 1985; Spelke, 1990; Téglás et al., 2011). It is thought that reasoning about objects in a scene enables compositional or systematic generalisation (Greff et al., 2020; Wiedemer et al., 2024; Kapl et al., 2025), leading OCL methods to be more robust to out-of-distribution samples (Dittadi et al., 2021; Arefin et al., 2024) and enabling causal reasoning (Schölkopf et al., 2021; Mansouri et al., 2023). Among various approaches (Greff et al., 2019; Engelcke et al., 2020; Lin et al., 2020), slot-attention-based methods (Locatello et al., 2020) have gained popularity for their strong performance on real-world data (Everingham et al., 2010; Lin et al., 2014). Slot-attention methods find adoption in diverse areas, such as building world models, robotics, compositional generation, and visual navigation (Li et al., 2021; Huo et al., 2023; Wu et al., 2023a; Villar-Corrales & Behnke, 2025).

For OCL methods to be successfully applied to these diverse areas, they need to learn object representations that both capture the object properties ('what') and also the location of the object ('where'). However, existing evaluation schemes suffer from two key issues: (1) Limited evaluation of broader properties. Scaling existing schemes for evaluating the representation quality, such as linear probing, is infeasible due to the requirement of a large paired dataset for training and the limited capacity of linear probes. Moreover, these linear probes themselves do not generalise well beyond their training data, making them unable to evaluate broader goals behind OCL methods like out-of-distribution (OOD) generalisation, counterfactual reasoning, and compositional generalisation to new scenes. Mamaghan et al. (2025) proposed using transformer-based probes trained with visual question answering (VQA) datasets. However, their evaluation framework is also trained with small VQA datasets, making it hard to evaluate broader properties like counterfactual reasoning, OOD generalisation, and more. (2) Disjoint evaluation metrics. Separately evaluating the 'what' and 'where'

Figure 1: **Limitations of existing OCL evaluation schemes.** (*Left*) Using linear probing to evaluate OCL models M1 and M2 would result in assigning the same score for both models, but as seen, M1 localises the object much better than M2. We refer to this as *Type1* inconsistency. (*Right*) Using VQA as an evaluation metric is problematic, too, due to additional *Type2* inconsistencies: We cannot be sure which slot was responsible for answering the question. For example, when evaluating via VQA, model M4, which correctly answers the question using the correct slot, is given the same score as model M3, which uses the slot bound to sheep to answer the question, albeit correctly.

qualities leads to the following inconsistencies: (*Type1* inconsistencies) A model predicts properties well but fails to localise the object correctly. (*Type2* inconsistencies) Multiple slots may redundantly encode the same object, leading to representation fragmentation. Linear probing suffers from *Type1* inconsistencies, while VQA evaluation suffers from both *Type1* and *Type2* inconsistencies (see Fig. 1).

We propose to use large language models (LLMs) to evaluate the representational performance of object-centric learning methods. Specifically, we employ the visual instruction tuning method of Liu et al. (2023), which modifies an LLM into a vision-language model (VLM). We use object-centric models as the vision encoders, enabling us to evaluate OCL methods through visual question answering (VQA) via the VLM. By using a pre-trained LLM for reasoning, we can leverage the open-world capabilities of LLMs and assess OCL models efficiently on multiple VQA datasets and therefore more holistically across a wide range of dimensions, including counterfactual reasoning, out-of-distribution generalisation, *etc.*, and thus tackle issue *1*. However, simply using VLMs for evaluation still suffers from *Type1* and *Type2* inconsistencies due to the disjoint evaluation of localisation and property prediction capabilities. To tackle this issue, we introduce a new metric, attribution-aware grounded accuracy (AwGA), which jointly considers both object localisation and property prediction capabilities when evaluating an OCL model and also tackles the representation fragmentation issue.

In summary, our work aims to build a holistic evaluation framework for object-centric learning methods. Our contributions are as follows: (i) We propose a general-purpose evaluation framework for object-centric methods based on visual instruction tuning (Liu et al., 2023), where the image encoders are OCL models. (ii) Our work is the first to benchmark several state-of-the-art (SOTA) OCL methods along diverse dimensions like compositional understanding, counterfactual reasoning, and out-of-distribution robustness. We show that OCL methods are comparable to foundational models such as DINOv2 (Oquab et al., 2024) on many of these settings. (iii) We propose a new metric, called attribution-aware grounded accuracy (AwGA). AwGA is the first metric that provides a holistic benchmark that jointly evaluates the 'where' and 'what' properties of OCL methods and tackles the issue of Type1 and Type2 inconsistencies. (iv) Based on our assessments, we propose a simple object-centric learning method named mFRESA, which uses multiple features in the reconstruction loss to learn better object-centric representations, outperforming SOTA OCL methods on many tasks.

2 RELATED WORK

Object-centric learning (OCL) seeks to learn a latent representation for each object in a scene *without supervision*, enabling more robust and compositional representations (Dittadi et al., 2021; Wiedemer et al., 2024) that can be applied to any scene in general. Early OCL works built on the VAE architecture (Burgess et al., 2019; Greff et al., 2019) but were limited by scalability and permutation variance. In order to overcome these issues, slot attention (SA; Locatello et al., 2020) introduced iterative clustering of features via attention, though initially had been restricted to synthetic data (Johnson et al., 2017; Groth et al., 2018; Karazija et al., 2021). Seitzer et al. (2023) scaled SA to real-world scenes (Everingham et al., 2010; Geiger et al., 2013; Lin et al., 2014) by reconstructing DINO features (Caron et al., 2020) instead of pixels. Modern approaches can broadly be classified based on their reconstruction loss: image-based methods (Jiang et al., 2023; Wu et al., 2023b; Singh et al., 2025; Akan & Yemez, 2025) rebuild pixels with strong decoders like StableDiffusion (Rombach

et al., 2022), whereas feature-based ones (Seitzer et al., 2023; Kim et al., 2024; Kakogeorgiou et al., 2024) reconstruct pre-trained features from DINO/DINOv2 (Caron et al., 2020; Oquab et al., 2024).

Evaluation of OCL methods. Object-centric learning methods can be considered a general class of representation learning methods, similar to foundational models like CLIP (Radford et al., 2021), DINO (Caron et al., 2020; Oquab et al., 2024), VQ-VAE (Van Den Oord et al., 2017), etc. A key distinction between OCL and these foundational methods is that OCL methods learn a unique latent representation per object in the scene. The unsupervised object discovery (UOD) task is the most popular way of evaluating OCL methods. However, as Rubinstein et al. (2025) pointed out, the UOD task is a poor proxy as it does not assess several important properties such as compositional generation, counterfactual reasoning, and OOD generalisation. Linear probing has been used for evaluating the representation quality of slots (Locatello et al., 2020; Jiang et al., 2023; Singh et al., 2025), but it is hard to scale and cumbersome, especially for real-world complex scenes, as obtaining annotated data and training a separate MLP for each property becomes untenable and expensive. To overcome the simplicity of linear probing, Mamaghan et al. (2025) proposed using visual question answering (VQA) to evaluate OCL methods. However, unlike our evaluation framework, their approach cannot be used to evaluate slot attention-based methods along a broad range of dimensions, as it requires training a large-scale transformer model from scratch. Moreover, the disjoint evaluation in (Mamaghan et al., 2025) does not address Type1 and Type2 inconsistencies together, which our work does.

Going beyond linear probing, using vision-language models (VLM) as evaluators. Linear probing and end-to-end finetuning have been popular ways of evaluating representation learning methods, including OCL methods (He et al., 2022; Seitzer et al., 2023; Jiang et al., 2023; Oquab et al., 2024). However, recently Tong et al. (2024) questioned their use, stating that these do not reflect diverse perception challenges of the real world. Cambria-1 (Tong et al., 2024) uses a visual instruction tuning setup (Liu et al., 2023) for evaluating the performance of several vision encoder models. They show that using visual instruction tuning allows to utilise several high-quality datasets and benchmarks (Goyal et al., 2017; Hudson & Manning, 2019; Singh et al., 2019; Yu et al., 2023; Fu et al., 2024) to evaluate diverse properties of vision encoders, going far beyond simple linear probing. Insipred by this, we employ visual instruction tuning for evaluating OCL methods as vision encoders in the vision language model. However, directly applying LLaVA-style training (Liu et al., 2023) does not assess if the slots have a direct correspondence to objects in a scene, *i.e.* a slot binds to single object and only encodes its properties. To this end, we propose an attribution-aware grounded accuracy (AwGA) metric, which takes into account *Type1* and *Type2* inconsistencies when evaluating OCL methods.

3 VLMs as Evaluators of Object-Centric Representations

3.1 PRELIMINARIES

Slot Attention (**SA**; Locatello et al., 2020) is an iterative refinement framework that decomposes an image into a set of object-centric representations called slots. These slots are learned by extracting the input image's feature map **H** using an encoder network. After this, the slot-attention module iteratively groups this feature map into a set of k slot vectors $\mathbf{S} = \{\mathbf{s}_0, ..., \mathbf{s}_k\}$. At each iteration t, the slot representation \mathbf{S}^t is updated using the dot-product attention (Vaswani et al., 2017) between the previous slot representation \mathbf{S}^{t-1} and the input feature vectors **H**. Unlike the traditional attention mechanism, which performs a softmax operation over keys, here, the softmax operation is over slots. This creates a competition between the slots to explain part of the input image, making slots bind to objects. For further details, see (Locatello et al., 2020). Typically, SA methods use 7 slots for real-world images (for example from the COCO dataset; Lin et al., 2014), as this setting has been found to yield the strongest performance on both object discovery and certain representation metrics.

3.2 VLMs as evaluators

As motivated above, we here propose to use VLMs as evaluation engines for OCL methods. We can formalise this setup as a function composition f(g(S)), where f denotes an LLM and g denotes a connector network (e.g., 2-layer MLP) that connects the LLM to the slot-representation S to be evaluated and needs to be trained. This VLM evaluation protocol can be seen as a more powerful and capable generalization of previous evaluation protocols; linear probing (f = I, g = 1-layer MLP)

Figure 2: **Training setup.** Our training is akin to LLaVA (Liu et al., 2023). In Stage I, only the MLP connector is trained on the pre-training dataset. This stage aligns the slot embeddings to the space of the language model. In Stage II, the MLP network and the language model are trained on the instruction tuning dataset from LLaVA. This stage tunes the language model to follow instructions and perform tasks based on slots as visual tokens. Evaluation is performed on various VQA benchmarks, where the text is encoded via a text encoder and images are encoded using a slot-attention model.

and transformer-based probes (Mamaghan et al., 2025) ($f = \mathbf{I}$, g = n-layer transformer), where \mathbf{I} denotes the identity function, are special cases.

Our evaluation protocol for assessing OCL methods utilises the visual question-answering task. Inspired by LLaVA (Liu et al., 2023), we follow their architecture and training protocol for learning a vision-language model, where we use object-centric models as vision encoders. The training process (shown in Fig. 2) has two stages: (i) In Stage I, the alignment stage, the slot embeddings are projected by a connector network to align with text embeddings so they are in the same space. Only the connector network is trained for one epoch on the LLaVA 558K pre-training dataset in this stage. (ii) In Stage II, the instruction tuning phase, the model is trained with the LLaVA 665K instruction tuning dataset, which comprises multimodal samples created via GPT-4's responses (Achiam et al., 2023) to images in the COCO dataset. For more details, see (Liu et al., 2023). The instruction tuning phase helps the model follow instructions better and improves the VLM's ability to respond accurately and effectively to user prompts. In this stage, the MLP connector network and the language model are trained simultaneously for one epoch. The full training setup is illustrated in Fig. 2.

4 Analysis of OCL Methods

In Sec. 4.1, we first benchmark the representational power of embeddings learned by object-centric methods using tasks such as counterfactual reasoning, out-of-distribution generalisation, *etc.* Sec. 4.2 shows that the prevalent evaluation scheme using object discovery is a poor proxy for the representation capabilities of OCL methods. Further, Sec. 4.3 introduces our new metric AwGA, addressing both *Type1* and *Type2* errors, and used for OCL benchmarking in Sec. 4.4. We begin by explaining the experimental setup and our improved baseline mFRESA.

Baselines. The original goal of object-centric learning (OCL) has been to obtain object-centric representations in an *unsupervised* manner; we thus focus our evaluation on unsupervised OCL methods. We take state-of-the-art baselines for real-world datasets (*e.g.*, COCO; Lin et al., 2014), including SPOT (Kakogeorgiou et al., 2024), SlotDiffusion (Wu et al., 2023b), StableLSD (Jiang et al., 2023), FT-DINOSAUR (Didolkar et al., 2025b), and DINOSAUR (Seitzer et al., 2023). Whenever available, we use the authors' released checkpoints; StableLSD and DINOSAUR are re-trained from scratch using their official scripts. We also include a DINOSAURv2 baseline, which replaces the original DINO (Caron et al., 2021) backbone with DINOv2 (Oquab et al., 2024).

Improved baseline. Existing OCL methods often use either feature reconstruction (Seitzer et al., 2023; Kakogeorgiou et al., 2024) or image reconstruction (Jiang et al., 2023; Wu et al., 2023b) as their target. We propose a new simple OCL baseline (mFRESA), which combines multiple reconstruction targets such as pixels, features, and additionally HOG features. In particular, mFRESA is based on StableLSD (Jiang et al., 2023) with two additional decoders: (1) a feature decoder that reconstructs

Table 1: **VQA comparison of OCL and foundational models.** We compare DINOv2 as a reference upper bound for self-supervised representation learning against slot-attention models using feature reconstruction (2^{nd} group) and image reconstruction (3^{rd} group). We highlight the **best** and second best model among SA methods. We report the accuracy (in %, \uparrow) on the visual question answering task. For MME, we report results only on perception tasks (\uparrow , maximum achievable score 2000). Additional details about the dataset and metrics are provided in Appendix C. DINOv2 outperforms OCL models across vision-centric VQA tasks. However, slot-attention methods—especially mFRESA—perform competitively despite using only 7 vision tokens (vs. 196 for DINOv2).

LLM	Phi2					Qwen2-7B				
Dataset	GQA	POPE	MME	MMVET	VQAv2	GQA	POPE	MME	MMVET	VQAv2
DINOv2	57.77	82.01	1279.21	22.6	71.15	61.83	83.31	1388.19	23.6	74.86
DINOSAUR	49.71	78.72	1047.34	17.5	58.41	53.63	79.54	1178.87	15.9	61.98
DINOSAURv2	53.23	81.76	1122.73	18.9	63.84	56.32	82.49	1224.84	17.7	66.23
FT-DINOSAUR	52.22	81.45	1004.94	15.1	60.97	56.15	81.85	1242.25	17.2	66.09
SPOT	51.06	79.74	1069.8	17.4	60.94	54.94	80.24	1169.11	17.8	65.37
Slot Diffusion	50.00	79.77	1090.10	18.5	59.65	53.93	79.91	1171.83	18.9	63.47
StableLSD	51.45	81.51	1129.08	17.8	62.06	55.96	81.54	1239.48	18.6	66.67
mFRESA (ours)	53.90	82.12	1187.05	18.5	65.58	58.28	82.74	1283.48	19.3	69.93

DINOv2 features akin to (Seitzer et al., 2023); (2) a HOG decoder based on a simple three-layer MLP that reconstructs gradient-based histograms computed over local patches (Dalal & Triggs, 2005). Below we show that reconstructing multiple features helps mFRESA learn more robust features, which encode more object information in the latents and also localise better. More details about the loss function, network diagram, and training for mFRESA can be found in Appendix A.

Training details for VLM-based evaluation of OCL methods. We use Phi2 (Javaheripi et al., 2023) and Qwen2-7B (Yang et al., 2024) as language models for VLM training, connected via a 2-layer MLP with GeLU activations (Hendrycks & Gimpel, 2016). Pre-training is performed with batch size 256 and learning rate 1e-3, followed by finetuning with batch size 128 and learning rate 2e-5, using AdamW (Loshchilov & Hutter, 2017) throughout. The maximum sequence length is set to 2048 tokens, and we adopt the official LLaVA dataset (Liu et al., 2023) for both pre-training and finetuning. During evaluation, we follow LLaVA and use greedy decoding (temperature 0, beams 1). All training and architectural settings are held fixed across LLMs and vision encoders, ensuring that the only variability comes from the vision encoder (*i.e.*, slot attention) module.

4.1 EVALUATING THE REPRESENTATION QUALITY OF OCL METHODS

Standard perception evaluation. Using VLMs as evaluators of vision encoders enables benchmarking across a wide range of VQA tasks. Since our goal is to assess the representation quality of vision tokens, we focus on image-centric datasets such as GQA (Hudson & Manning, 2019), VQAv2 (Goyal et al., 2017), MME (Fu et al., 2024), and MM-Vet (Yu et al., 2023). To evaluate whether OCL methods mitigate object hallucination—a common issue in large language models—we additionally use the POPE benchmark (Li et al., 2023), which probes object presence via Boolean questions. For MME, we report only perception tasks, as these are most relevant to our setting.

As shown in Table 1, despite using far fewer visual tokens (7 vs. 196 in DINOv2), OCL methods perform rather competitively with DINOv2, a state-of-the-art self-supervised vision encoder. Interestingly, FT-DINOSAUR, the leading OCL model for object discovery, underperforms DINOSAURv2 on nearly all datasets, highlighting that object discovery metrics alone do not fully capture the quality of the slot representation. By contrast, our improved baseline mFRESA outperforms all OCL methods across most benchmarks (except MM-Vet), suggesting that incorporating multiple decoders can yield stronger object-centric representations.

Takeaway 1. While OCL methods build on pre-trained feature encoders like DINOv2, their slot representations still lag behind the feature encoder itself on perception tasks, suggesting that object-centric representations are currently not as effective for general visual perception tasks.

Table 2: **Robustness of OCL methods.** Evaluation on tasks beyond object discovery such as OOD generalisation, compositional understanding, counterfactual reasoning, *etc.* (accuracy in %, ↑). The datasets evaluate the following properties: CVQA (Zhang et al., 2024) – counterfactual reasoning, OODCV (Tu et al., 2024) – OOD generalisation, NeuralBench (Zhang et al., 2024) – robustness to natural adversarial examples, SugarCrepe (Hsieh et al., 2023) – vision-language compositionality.

LLM			Phi2			Qwen2-7B				
Dataset	CVQA		OODCV	N. Bench	SugarC.	CVQA		OODCV	N. Bench	SugarC.
_	Direct	Boolean	-			Direct	Boolean	_		
DINOv2	36.96	63.72	58.00	8.42	82.05	45.74	53.54	58.36	9.89	88.06
DINOSAUR	35.74	69.29	51.97	1.89	67.85	41.13	63.72	52.52	3.95	72.45
DINOSAURv2	34.52	65.75	53.90	3.37	75.98	42.09	64.07	56.66	6.16	78.18
FT-DINOSAUR	39.13	68.85	55.18	2.89	70.94	42.00	57.17	53.28	5.42	81.24
SPOT	36.35	69.47	53.34	2.42	71.65	41.83	57.61	54.07	3.68	74.08
Slot Diffusion	33.83	68.23	51.34	2.21	70.39	39.39	59.56	52.56	3.74	74.53
StableLSD	38.26	70.44	52.89	3.00	72.92	41.04	62.39	55.08	5.21	78.98
mFRESA (ours)	38.09	66.64	55.57	4.21	77.27	41.39	60.44	57.31	6.84	83.17

Robust perception evaluation. Given that OCL methods underperform in general perception tasks, we ask if OCL methods hold value on tasks that they are conjectured to work well on (Greff et al., 2020; Wiedemer et al., 2024; Kapl et al., 2025). Using VLMs as evaluation engines allows us to repurpose diverse benchmark datasets that test properties such as compositional learning and out-of-distribution (OOD) generalisation. This enables the evaluation of an often overlooked but critical aspect of OCL methods. Results are shown in Table 2.

Positives. On VQA tasks with OOD images from the OODCV dataset (Tu et al., 2024), containing images with unusual textures or backgrounds rarely seen in daily life, FT-DINOSAUR and DINOSAUR perform the best among OCL methods. Moreover, these methods are comparable to DINOv2 despite using far fewer tokens, indicating that OOD generalisation benefits from object-centric representations. Also, OCL methods are better at counterfactual question answering when evaluated on the CVQA dataset (Zhang et al., 2024), which generates counterfactual questions by adding counterfactual prepositions. As shown in Table 2, mFRESA outperforms DINOv2 on Boolean counterfactual questions and matches it on numerical counterfactual questions despite using $10 \times$ fewer tokens. This suggests that object-centric representations can aid counterfactual reasoning.

Negatives. For benchmarking compositional reasoning, we evaluate on the SugarCrepe dataset (Hsieh et al., 2023). The task is to pick the correct caption for a given image when provided with a correct caption and a hard-negative caption (attribute swaps, object additions, or replacements) generated by an LLM (Achiam et al., 2023). We find that OCL methods lag behind DINOv2. Although mFRESA narrows the gap, there is little evidence to suggest that explicit object representations improve compositional reasoning. We also benchmark whether reasoning about objects can improve robustness against naturally adversarial examples. We use the NaturalBench (Li et al., 2024) dataset, which provides a pair of questions for two images in a set. The sets are designed in a way that a blind model cannot succeed, i.e., giving the same answer regardless of the image. Solving NaturalBench requires a model to possess object recognition, attribute binding, and relation understanding skills. We again see a large gap between OCL methods and the DINOv2 model, showcasing the need for designing better OCL methods that capture the object properties more comprehensively.

Takeaway 2. Benchmarking OCL methods on tasks such as counterfactual reasoning, OOD generalisation, and compositional reasoning is essential to assess whether they are closing the gap with self-supervised representation learning methods like DINOv2.

4.2 Are object discovery and representational power correlated?

Unsupervised object discovery (UOD) metrics such as mean best overlap (mBO; Pont-Tuset et al., 2016) and mean intersection over union (IoU) are widely used to evaluate slot-attention methods. Yet, it remains unclear whether higher UOD scores entail that the model also captures the object

Table 3: **Object discovery (OD) and representational quality are uncorrelated.** FT-DINOSAUR scores highest on OD metrics (mBO_i, mIoU) but underperforms on various VQA tasks (all in %, \uparrow). All methods use DINOv2 as the backbone. The Spearman's rank correlation between accuracy and mIoU for these models is -0.2, indicating poor correlation. All experiments use the Phi2 LLM.

Dataset	VQAv2	Nat. Bench	Sugar Crepe	CO	CO
Metric		accuracy		mIoU	\mathbf{mBO}_i
DINOSAURv2	63.84	3.37	75.98	27.25	28.42
FT-DINOSAUR	60.97	2.89	70.94	34.52	36.08
StableLSD	62.06	3.00	72.92	24.52	25.72
mFRESA (ours)	65.75	4.11	77.17	30.60	32.17

properties (colours, shape, *etc.*) better. In Table 3, we compare several OCL methods across UOD metrics, general visual question answering, adversarial robustness, and compositional reasoning.

We find that UOD metrics (mIoU and mBO) poorly correlate with slot representation quality. For instance, FT-DINOSAUR, the SOTA OCL model for the object discovery task, performs worse than the DINOSAURv2 model on general VQA tasks and robustness assessments (compositional reasoning and natural adversarial robustness). We attribute this loss in performance to FT-DINOSAUR finetuning the DINOv2 encoder, whereas other models keep it frozen. Finetuning on a small dataset like COCO likely reduces generalisation (Mukhoti et al., 2024), weakening the learned slot representations.

Takeaway 3. Object discovery metrics are not highly correlated with the quality of object representations learned by the slots. This indicates a need for newer metrics that evaluate both localisation *and* representation abilities of OCL methods.

4.3 AWGA METRIC - UNIFYING 'WHAT' AND 'WHERE'

As just shown, object discovery metrics correlate poorly with the representational quality of the slots. However, using only a downstream task metric like accuracy on VQA tasks does not directly evaluate how well object representations are localised. Fig. 3 shows how presently the accuracy and mIoU metrics are evaluated in a disjoint manner. Evaluating models with disjoint metrics leads to *Type1* and *Type2* inconsistencies as explained above (Fig. 1).

A way to account for *Type1* inconsistencies when evaluating different models is to use the grounded accuracy (G-Acc; Hudson & Manning, 2019), which is defined as

$$G-Acc = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(\hat{y} = y) \text{ mIoU}(\mathcal{A}_{pred}, \mathcal{G}_{GT}). \tag{1}$$

Here, A_{pred} and \mathcal{G}_{GT} denote the mask predicted from the slots and the ground-truth (GT) grounding masks. y and \hat{y} denote the GT and predicted label; $\mathbbm{1}$ is the indicator function. The grounding masks are composed of the masks of all objects required for answering a question. G-Acc is a weighted accuracy metric, where the weight for each correct answer equals the mIoU overlap between the predicted and the ground-truth masks. G-Acc has issues in our context, however, as it does not consider which slot was used to answer the question. Specifically, G-Acc does not penalise a model when it distributes the representation of an object across multiple slots; we call this Type2 inconsistency. In order to correctly evaluate a model, we propose an attribution-aware grounded accuracy metric (AwGA), which penalises a model for committing both Type1 and Type2 inconsistencies. The AwGA metric first computes the attribution map (Simonyan et al., 2013) of each slot for answering the question. We then select slots with the K-highest attributions and compute the grounded accuracy. This way, the mIoU is only computed for the slots that are responsible for answering the question. For each question, K is set to the number of objects in the grounding mask. AwGA is formally written as

$$AwGA = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(\hat{y} = y) \text{ mIoU}(\text{TopK}(\mathcal{A}_{\text{pred}}), \mathcal{G}_{\text{GT}}). \tag{2}$$

For computing each attribution, we simply use the value of the gradient of each slot with respect to the loss function (Simonyan et al., 2013; Springenberg et al., 2015). In particular, we compute the

Figure 3: **Metrics for evaluation of OCL methods.** An overview of various metrics, which can be used to evaluate OCL methods. We propose the attribution-aware grounded accuracy (AwGA), which takes into account *Type1* and *Type2* inconsistencies when evaluating the model.

Table 4: **Performance comparison of different models using G-Acc and AwGA metrics** (all in %, †). mFRESA outperforms all OCL methods on the Enhanced Grounded GQA dataset.

LLM		P	hi2		Qwen2-7B			
Metric	mIoU	Acc.	G-Acc.	AwGA	Acc.	G-Acc.	AwGA	
DINOSAUR	50.52	60.13	30.80	16.08	64.05	32.71	16.77	
DINOSAURv2	47.99	66.27	32.40	18.10	68.54	33.18	18.10	
FT-DINOSAUR	59.09	61.05	33.94	19.49	65.21	36.28	20.18	
SPOT	53.76	64.08	38.45	20.83	68.32	41.45	22.40	
Slot Diffusion	54.91	61.54	34.39	16.45	65.75	36.91	18.24	
StableLSD	47.94	64.64	31.53	19.46	<u>69.02</u>	33.84	20.56	
mFRESA (ours)	56.92	67.58	39.20	22.44	71.41	41.33	22.43	

sensitivity $(\frac{\partial y}{\partial \mathbf{s}_i})$ of the output $y = f(g(\mathbf{S}))$ with respect to each input feature \mathbf{s}_i . We also experimented with other attribution methods, such as integrated gradients (Sundararajan et al., 2017), but found the AwGA metrics to be robust to the choice of the attribution method (see Table 5).

4.4 AWGA-BASED EVALUATION

To assess OCL methods with our proposed AwGA metric, we use the validation set of GQA (Hudson & Manning, 2019), a large-scale VQA dataset with grounding boxes for each question. To better align with our evaluation, we enhance GQA by converting bounding box annotations into masks using SAM2 (Ravi et al., 2025), with boxes as prompts. To ensure that grounded objects are salient, we filter out images with more than seven boxes or those covering less than 10% of the image area. Examples are shown in Fig. 4 and more details provided in Appendix D.

We report accuracy, mIoU, G-Acc, and our proposed AwGA metric in Table 4. The mIoU measures the overlap between predicted and ground-truth masks, but alone it cannot capture how well slots encode object properties. G-Acc penalises poor localisation but overlooks fragmented slot representations (*Type2* inconsistencies). By contrast, AwGA explicitly accounts for both localisation and representation quality, making it a more *holistic* metric.

Interestingly, models with top object discovery or accuracy scores are not always SOTA under G-Acc or AwGA, underscoring the pitfalls of disjoint evaluations. Moreover, AwGA shows strong Spearman rank correlations (Fig. 5.5) with (1) representation quality (Acc), and (2) localisation (mIoU), validating its role as a unified metric. Importantly, AwGA correlates more strongly with both accuracy and mIoU than accuracy and mIoU do with each other. mFRESA outperforms existing approaches on Acc, G-Acc, and AwGA, highlighting its stronger object-centric representations.

Figure 4: **Enhanced grounded GQA dataset.** Our AwGA-based evaluation uses this enhanced version, which contains both the input image and grounding masks, highlighting the objects necessary to answer the question.

Figure 5: **Spearman's rank correlation between dif-ferent metrics.** Our AwGA metric has a strong rank correlation to traditional mIoU and accuracy metrics.

Table 5: Importance of attribution method for AwGA metric. Comparison between using gradient and integrated gradients when calculating AwGA.

	Attr. Type				
- -	Grad.	Int. Grad.			
DINOSAURv2	18.10	17.75			
FT-DINOSAUR	20.83	20.89			
StableLSD	19.46	19.54			
mFRESA (ours)	22.44	22.11			

Figure 6: **Robustness of AwGA.** Spearman's rank correlation for the AwGA metrics for different LLM and connectors designs. AwGA remains stable across different LLMs and connector architectures.

Takeaway 4. Using only object discovery or accuracy metrics is an incomplete way of evaluating OCL methods. The proposed AwGA metric penalises methods with *Type1* and *Type2* inconsistencies, making it an important addition to the library of metrics for evaluating OCL methods.

Robustness of AwGA to LLM and connector choice. We next show that the AwGA metric is robust to both LLM and connector choices. To evaluate this, we compute the Spearman rank correlation of AwGA scores between Phi-2 and Qwen2-7B on the enhanced grounded GQA dataset. Then, using Phi-2 as the LLM, we evaluate three connector variants, 1-layer MLP (MLP1×), 2-layer MLP (MLP2×), and Q-Former, and again report Spearman correlations. As seen in Fig. 6, the correlations remain consistently high, showing that AwGA rankings are stable across LLMs and connectors.

Limitations. Though our evaluation framework offers clear benefits over existing protocols, it has limitations. It is more computationally expensive than methods like linear or transformer probing (Mamaghan et al., 2025), but in return enables multi-axis evaluation of slot properties without training separate models for each dimension. Our study focuses on unsupervised OCL methods for images, yet the framework could be extended to video data (Elsayed et al., 2022; Kipf et al., 2022) and weakly supervised approaches (Singh et al., 2025; Didolkar et al., 2025a). Finally, while our protocol relies on the enhanced grounded GQA dataset, additionally applying AwGA to datasets with grounding masks in novel settings (*e.g.*, underwater environments) would yield a more comprehensive benchmark.

5 CONCLUSION

Object-centric learning (OCL) has made notable progress in unsupervised object discovery (UOD) for real-world scenes. However, we find that UOD metrics fail to capture the true representational quality of object-centric latent representations. We propose a new evaluation protocol based on visual instruction tuning of a VLM that leverages the open-world reasoning abilities of large language models to assess broader OCL goals, including compositionality, OOD generalisation, and counterfactual reasoning. This overcomes limitations of existing evaluation schemes and allows to conduct multifaceted analyses of OCL methods without expensive re-training. Moreover, we quantify issues with existing evaluation metrics and propose an attribution-aware grounded accuracy (AwGA) metric that jointly measures representation and localisation quality of OCL methods. We found that present OCL methods slightly lag behind foundational models on many VQA tasks. However, we show that this gap can be narrowed by combining complementary reconstruction heads within OCL. The resulting mFRESA surpasses state-of-the-art OCL methods across a variety of tasks.

6 REPRODUCIBILITY

We provide hyperparameters and training details for our VLM-based evaluation of the considered OCL methods in Sec. 4. The training details and network diagram for mFRESA are provided in Table 6. Together with the final paper, we will release the implementation and model checkpoints to reproduce the results.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv:2303.08774 [cs.CL], 2023.
- Adil Kaan Akan and Yucel Yemez. Slot-guided adaptation of pre-trained diffusion models for object-centric learning and compositional generation. In *ICLR*, 2025.
- Md Rifat Arefin, Yan Zhang, Aristide Baratin, Francesco Locatello, Irina Rish, Dianbo Liu, and Kenji Kawaguchi. Unsupervised concept discovery mitigates spurious correlations. In *ICML*, 2024.
- Renee Baillargeon, Elizabeth S. Spelke, and Stanley Wasserman. Object permanence in five-month-old infants. *Cognition*, pp. 191–208, 1985.
- Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick, and Alexander Lerchner. MONet: Unsupervised scene decomposition and representation. *arXiv:1901.11390 [cs.CV]*, 2019.
- Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. *NeurIPS*, pp. 9912–9924, 2020.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *ICCV*, pp. 9650–9660, 2021.
- Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In *CVPR*, pp. 886–893, 2005.
- Aniket Didolkar, Andrii Zadaianchuk, Rabiul Awal, Maximilian Seitzer, Efstratios Gavves, and Aishwarya Agrawal. Ctrl-O: Language-controllable object-centric visual representation learning. In *CVPR*, pp. 29523–29533, 2025a.
- Aniket Didolkar, Andrii Zadaianchuk, Anirudh Goyal, et al. Zero-shot object-centric representation learning. In *ICLR*, 2025b.
- Andrea Dittadi, Samuele Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and Francesco Locatello. Generalization and robustness implications in object-centric learning. In *ICML*, pp. 5221–5285, 2021.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.
- Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C. Mozer, and Thomas Kipf. SAVi++: Towards end-to-end object-centric learning from real-world videos. In *NeurIPS*, pp. 28940–28954, 2022.
- Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: Generative scene inference and sampling with object-centric latent representations. In *ICLR*, 2020.
 - Mark Everingham, Luc Van Gool, Christopher K.I. Williams, John Winn, and Andrew Zisserman. The PASCAL visual object classes (VOC) challenge. *Int. J. Comput. Vision*, pp. 303–338, 2010.
 - Chaoyou Fu, Peixian Chen, Yunhang Shen, et al. MME: A comprehensive evaluation benchmark for multimodal large language models. *arXiv:2306.13394* [cs.CV], 2024.

- Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The KITTI dataset. *IJRR*, 2013.
- Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter: Elevating the role of image understanding in visual question answering. In *CVPR*, pp. 6904–6913, 2017.
 - Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with iterative variational inference. In *ICML*, pp. 2424–2433, 2019.
 - Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial neural networks. *arXiv:2012.05208 [cs.NE]*, 2020.
 - Oliver Groth, Fabian B. Fuchs, Ingmar Posner, and Andrea Vedaldi. ShapeStacks: Learning vision-based physical intuition for generalised object stacking. In *ECCV*, pp. 702–717, 2018.
 - Kaiming He, Xinlei Chen, Saining Xie, et al. Masked autoencoders are scalable vision learners. In *CVPR*, pp. 16000–16009, 2022.
 - Dan Hendrycks and Kevin Gimpel. Gaussian error linear units. arXiv:1606.08415 [cs.LG], 2016.
 - Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. SugarCrepe: Fixing hackable benchmarks for vision-language compositionality. *NeurIPS*, pp. 31096–31116, 2023.
 - Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual reasoning and compositional question answering. In *CVPR*, pp. 6700–6709, 2019.
 - Jingyang Huo, Qiang Sun, Boyan Jiang, Haitao Lin, and Yanwei Fu. GeoVLN: Learning geometry-enhanced visual representation with slot attention for vision-and-language navigation. In *CVPR*, pp. 23212–23221, 2023.
 - Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, et al. Phi-2: The surprising power of small language models. https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/, 2023. Microsoft Research Blog.
 - Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In *NeurIPS*, 2023.
 - Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In CVPR, pp. 2901–2910, 2017.
 - Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. SPOT: Self-training with patch-order permutation for object-centric learning with autoregressive transformers. In *CVPR*, pp. 22776–22786, 2024.
 - Ferdinand Kapl, Amir Mohammad Karimi Mamaghan, Max Horn, Carsten Marr, Stefan Bauer, and Andrea Dittadi. Object-centric representations generalize better compositionally with less compute. In *ICLR 2025 Workshop on World Models: Understanding, Modelling and Scaling*, 2025.
 - Laurynas Karazija, Iro Laina, and Christian Rupprecht. ClevrTex: A texture-rich benchmark for unsupervised multi-object segmentation. In *NeurIPS Datasets and Benchmarks Track*, 2021.
 - Dongwon Kim, Seoyeon Kim, and Suha Kwak. Bootstrapping top-down information for self-modulating slot attention. In *NeurIPS*, 2024.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2014.
 - Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric learning from video. In *ICLR*, 2022.

- Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. NaturalBench: Evaluating vision-language models on natural adversarial samples. In *NeurIPS Datasets and Benchmarks Track*, 2024.
- Liangzhi Li, Bowen Wang, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, and Hajime Nagahara. SCOUTER: Slot attention-based classifier for explainable image recognition. In *ICCV*, pp. 1046–1055, 2021.
 - Yifan Li, Yifan Du, Kun Zhou, et al. Evaluating object hallucination in large vision-language models. In *EMNLP*, 2023.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In *ECCV*, pp. 740–755, 2014.
 - Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang, and Sungjin Ahn. SPACE: Unsupervised object-oriented scene representation via spatial attention and decomposition. In *ICLR*, 2020.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*, 36: 34892–34916, 2023.
 - Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In *NeurIPS*, pp. 11525–11538, 2020.
 - Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in Adam. In ICLR, 2017.
 - Amir Mohammad Karimi Mamaghan, Samuele Papa, Karl Henrik Johansson, Stefan Bauer, and Andrea Dittadi. Exploring the effectiveness of object-centric representations in visual question answering: Comparative insights with foundation models. In *ICLR*, 2025.
 - Amin Mansouri, Jason Hartford, Yan Zhang, and Yoshua Bengio. Object-centric architectures enable efficient causal representation learning. In *ICLR*, 2023.
 - Jishnu Mukhoti, Yarin Gal, Philip Torr, and Puneet K. Dokania. Fine-tuning can cripple your foundation model; preserving features may be the solution. *TMLR*, 2024.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning robust visual features without supervision. *TMLR*, 2024.
 - Jordi Pont-Tuset, Pablo Arbelaez, Jonathan T. Barron, Ferran Marques, and Jitendra Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. *IEEE T. Pattern Anal. Mach. Intell.*, pp. 128–140, 2016.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, et al. Learning transferable visual models from natural language supervision. In *ICML*, pp. 8748–8763, 2021.
 - Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, et al. SAM 2: Segment anything in images and videos. In *ICLR*, 2025.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.
 - Alexander Rubinstein, Ameya Prabhu, Matthias Bethge, and Seong Joon Oh. Are we done with object-centric learning? *arXiv*:2504.07092 [cs.CV], 2025.
- Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the IEEE*, pp. 612–634, 2021.
 - Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, et al. Bridging the gap to real-world object-centric learning. In *ICLR*, 2023.

- Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In *Workshop at ICLR*, 2013.
 - Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards VQA models that can read. In *CVPR*, pp. 8317–8326, 2019.
 - Krishnakant Singh, Simone Schaub-Meyer, and Stefan Roth. GLASS: Guided latent slot diffusion for object-centric learning. In *CVPR*, 2025.
 - Elizabeth S. Spelke. Principles of object perception. Cognitive science, pp. 29–56, 1990.
 - Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional net. In *Workshop at ICLR*, 2015.
 - Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *ICML*, pp. 3319–3328, 2017.
 - Ernő Téglás, Edward Vul, Vittorio Girotto, Michel Gonzalez, Joshua B Tenenbaum, and Luca L. Bonatti. Pure reasoning in 12-month-old infants as probabilistic inference. *Science*, pp. 1054–1059, 2011.
 - Peter Tong, Ellis Brown, Penghao Wu, et al. Cambrian-1: A fully open, vision-centric exploration of multimodal LLMs. *NeurIPS*, pp. 87310–87356, 2024.
 - Haoqin Tu, Chenhang Cui, Zijun Wang, Yiyang Zhou, Bingchen Zhao, Junlin Han, Wangchunshu Zhou, Huaxiu Yao, and Cihang Xie. How many are in this image a safety evaluation benchmark for vision LLMs. In *ECCV*, pp. 37–55, 2024.
 - Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NIPS, 2017.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NIPS*, 2017.
 - Angel Villar-Corrales and Sven Behnke. PlaySlot: Learning inverse latent dynamics for controllable object-centric video prediction and planning. In *ICML*, 2025.
 - Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer. Masked feature prediction for self-supervised visual pre-training. In *CVPR*, pp. 14668–14678, 2022.
 - Thaddäus Wiedemer, Jack Brady, Alexander Panfilov, Attila Juhos, Matthias Bethge, and Wieland Brendel. Provable compositional generalization for object-centric learning. In *ICLR*, 2024.
 - Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. SlotFormer: Unsupervised visual dynamics simulation with object-centric models. In *ICLR*, 2023a.
 - Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. SlotDiffusion: Object-centric generative modeling with diffusion models. In *NeurIPS*, 2023b.
 - An Yang, Baosong Yang, Binyuan Hui, et al. Qwen2 technical report. arXiv:2407.10671 [cs.CL]l, 2024.
 - Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. MM-VET: Evaluating large multimodal models for integrated capabilities. In *ICML*, 2023.
 - Letian Zhang, Xiaotong Zhai, Zhongkai Zhao, Yongshuo Zong, Xin Wen, and Bingchen Zhao. What if the TV was off? Examining counterfactual reasoning abilities of multi-modal language models. In *CVPR*, pp. 21853–21862, 2024.

Figure 7: **Multi-feature reconstruction for slot attention (mFRESA)** uses a DINOv2 (Oquab et al., 2024) model as a feature encoder network. The slot-attention module groups the obtained features into slots. Multiple decoders reconstruct the image, HOG features, and DINOv2 features from the slots. The slot-attention module, and the HOG and feature decoders are trainable, while DINOv2 and the image decoder model, a diffusion decoder, are kept frozen. The model is trained with Equation (3). Not visualised: The HOG features are computed according to (Dalal & Triggs, 2005).

APPENDIX

A AN IMPROVED BASELINE

We here provide additional details of our proposed baseline, mFRESA, which builds upon the StableLSD framework (Jiang et al., 2023). StableLSD is an encoder-decoder architecture with a slot-attention bottleneck. It employs a DINOv2 model as an encoder, and a frozen Stable Diffusion (Rombach et al., 2022) model as the decoder. The slot attention module is trained using an image reconstruction loss. We extend this design by introducing two additional decoders: a HOG feature decoder and a DINOv2 feature decoder.

Given the slots, the *HOG decoder* reconstructs the HOG feature map Dalal & Triggs (2005) of the input image, encouraging slots to better capture object boundaries through edge information. HOG features are computed by aggregating gradient orientations within local neighbourhoods. The *DINOv2 feature decoder*, inspired by DINOSAUR (Seitzer et al., 2023), reconstructs DINOv2 features from the slots, complementing image-level supervision. The overall training objective is given as

$$\mathcal{L} = L_2(I_{\text{inp}}, I_{\text{recon}}) + L_2(F_{\text{inp}}, F_{\text{recon}}) + L_2(H_{\text{inp}}, H_{\text{recon}}), \tag{3}$$

where I denotes images, F DINOv2 features, and H HOG features of the input and reconstruction, respectively.

The key contribution of mFRESA is the *joint reconstruction of image, feature, and edge signals*, enabling slots to learn stronger object-centric representations. A detailed network diagram is shown in Fig. 7.

mFRESA is trained on a single NVIDIA A100 GPU. The encoder and image decoder components closely follow the StableLSD setup (Jiang et al., 2023), with mFRESA introducing two additional modules: a HOG feature extractor (Dalal & Triggs, 2005; Wei et al., 2022) and decoder, as well as a DINOv2 feature decoder. The model is trained for 500K iterations on the COCO dataset (Lin et al., 2014). Images fed to the DINOv2 encoder (Oquab et al., 2024) are resized and centre-cropped to 518×518 pixels. We used an Adam optimiser (Kingma & Ba, 2014) for training our model for 500K iterations, similar to StableLSD. The full training and architectural details of our method are shown in Table 6.

Choice of feature reconstruction. mFRESA is built upon StableLSD and uses two new decoders compared to StableLSD, namely the feature and HOG decoders. In Table 7, we quantify the effect of each decoder. We see that by just adding the DINOv2 feature decoder, the performance across all tasks improves. Additionally, adding HOG features further improves downstream performance, indicating the usefulness of both decoders in learning better slot representations.

Table 6: Architectural and training details for mFRESA.

7		
7		
7		
7		
7		
7		
7		
7		
7	6	7

758

780

781

782 783

788

789

796

797

798

807

808

Module Hyperparameter Value 32 Batch size fp16 Precision Learning rate 2e-5 Learning rate scheduler Constant Adam (Kingma & Ba, 2014) Optimizer General Adam (β_1, β_2) (0.9, 0.999)Adam eps 1e-8 Weight decay 1e-2 Learning rate scheduler Constant Iterations 500K Max. grad norm 1.00 Architecture DINOv2 (Oquab et al., 2024) Patch size Encoder Backbone ViT-B (Dosovitskiy et al., 2021) Embedding dimensions 768 # Iterations Slot Attention # Slots Slot Size 768 Architecture Stable Diffusion (Rombach et al., 2022) Image Decoder Model version Architecture MI.P Feat. Decoder No. of layers 1536 Hidden dimensions MLP Architecture HOG Decoder No. of layers 1536 Hidden dimensions

Table 7: **Importance of HOG and feature decoders.** Both HOG and (DINOv2) feature decoders improve the performance, indicating their importance.

Model	GQA	OOD	Sugar Crepe	VQAv2
StableLSD	51.45	52.89	72.92	62.06
StableLSD + Feat. Dec.	52.21	54.20	<u>75.92</u>	61.40
StableLSD + Feat. Dec. + HOG Dec.	53.90	55.27	77.27	65.58

B ADDITIONAL RESULTS

B.1 ADDITIONAL APPLICATION OF OUR EVALUATION FRAMEWORK

Quantifying the type of learned slots. Our evaluation framework can be used to to probe whether architectural choices bias slots toward encoding specific properties (e.g., spatial, relational, or object). The GQA dataset (Hudson & Manning, 2019) categorises questions into four semantic types: (1) object (existence), (2) attribute (properties or position), (3) category (class membership), and (4) relation (subject-object relations). As shown in Table 8, feature reconstruction methods excel at existence and relation questions, whereas image-only methods like Slot Diffusion (Wu et al., 2023b) and StableLSD (Jiang et al., 2023) lag behind. mFRESA, which combines both, achieves the best results in three of four categories. For MM-Vet (Yu et al., 2023), covering recognition and spatial queries, results are mixed: feature- and image-based approaches perform similarly on recognition, while Slot Diffusion performs best on spatial relations.

Correlation analysis. We evaluate the robustness of our slot-attention evaluation framework to the choice of the large language model (LLM). While the choice of LLMs affects the absolute performance of the methods, we find that the relative ranking of OCL methods remains largely unchanged across different LLMs. Table 9 reports Spearman's rank correlations between results obtained with Phi2 and Qwen2-7B across multiple datasets. The high correlations ($\rho \geq 0.89$) indicate that our proposed VLM-based evaluation framework is stable, with model rankings preserved regardless of the LLM used.

Mean and standard deviation of results. Training the VLMs with different random seeds and evaluating the resulting models is computationally very expensive, as these VLMs are trained using 8

Table 8: **Type of properties encoded by slots**. VLM-based evaluation (accuracy in %, \uparrow) allows us to quantify the type of properties that a slot encodes via a categorization of the questions.

Dataset		GQA (Hudson &	MM-Vet (Yu et al., 2023)			
	Attribute	Category	Object	Relation	Recognition	Spatial
DINOSAURv2 (Seitzer et al., 2023)	57.58	45.26	78.02	46.95	21.5	23.9
FT DINOSAUR (Didolkar et al., 2025b)	56.77	43.17	79.95	45.54	18.7	19.9
SPOT (Kakogeorgiou et al., 2024)	57.15	42.47	75.06	43.24	19.7	23.1
Slot Diffusion (Wu et al., 2023b)	57.40	39.77	73.52	41.28	20.5	28.9 22.3 22.1
StableLSD (Jiang et al., 2023)	56.73	43.43	75.19	44.20	21.6	
mFRESA (ours)	59.08	46.74	77.63	47.23	21.9	

Table 9: Spearman rank correlations between different models when using Phi2 and Qwen2-7B models as LLMs. The results show that our evaluation framework is robust to the choice of LLM and the rank between the models, even with different LLMs, is largely preserved (very strong correlation).

Dataset	GQA	POPE	MME	MMVet	VQAv2	OOD	Nat. Bench	Sugar C.	AwGA
Spearman ρ	0.98	0.95	0.70	0.76	0.98	0.86	0.91	0.85	0.92

NVIDIA A100 GPUs, with the training time for the fine-tuning stage typically being around 24 hours. This makes it infeasible to provide the results for multiple runs via this approach. Instead, we report mean and standard deviation results for mFRESA and several baseline methods on representative datasets during *evaluation*. We set the temperature for the LLM generation to 0.02 and averaged the results over five random seeds (42, 1337, 2025, 4378, 8921). We report the results on SugarCrepe (Hsieh et al., 2023), MME (Fu et al., 2024), and POPE (Li et al., 2023) as representative datasets for visual question answering in Table 10. We use the accuracy as evaluation metric for the SugarCrepe and POPE datasets. For the MME dataset, we provide the score based on the MME evaluation script (with 2000 being the maximum for the perception task). Please note that the numbers reported in Table 1 and Table 2 of the main paper are for a temperature value set to 0. Comparing these to Table 10, we observe the ranking of the models following the same trend as with temperature 0. Setting the temperature > 0 allows to introduce randomness into the output of large language models, allowing us to obtain the mean and standard deviations during evaluation. Also note that mFRESA outperforms other methods on these datasets, even when measuring the results for multiple runs.

Table 10: **Mean and standard deviation of results.** Performance comparison with mean and standard deviation of different methods in a selection of representative datasets. SugarCrepe (Hsieh et al., 2023) and POPE (Li et al., 2023) are evaluated in terms of accuracy (in %, \uparrow), MME (Fu et al., 2024) in terms of its score (\uparrow). We highlight the **best** and <u>second best</u> model among slot-attention methods.

Method	SugarCrepe (Hsieh et al., 2023)	MME (Fu et al., 2024)	POPE (Li et al., 2023)
DINOv2	82.14 ± 0.13	1283.96 ± 07.29	82.08 ± 0.10
DINOSAURv2 FT-DINOSAUR SPOT	$76.20 \pm 0.25 71.25 \pm 0.23 71.65 \pm 0.15$	1123.47 ± 12.63 1016.15 ± 22.11 1066.04 ± 07.19	$\frac{81.84 \pm 0.24}{81.54 \pm 0.18}$ 79.69 ± 0.04
Slot Diffusion StableLSD	$70.23 \pm 0.33 72.89 \pm 0.32$	1090.75 ± 08.09 1126.06 ± 17.21	$79.74 \pm 0.12 \\ 81.13 \pm 0.11$
mFRESA (ours)	$\textbf{77.18} \pm \textbf{0.27}$	$\overline{1184.40 \pm 19.52}$	$\textbf{82.20} \pm \textbf{0.08}$

C DATASETS

Here we describe the datasets used in Sec. 4.1 for our VQA-based evaluation of OCL methods.

VQAv2.0 (Goyal et al., 2017) is a dataset of 265,016 images from COCO and abstract scenes, each paired with an average of 5.4 open-ended questions requiring vision, language, and commonsense reasoning. Each question includes 10 ground-truth answers and 3 plausible but likely incorrect ones, making it a robust benchmark for evaluating visual question answering (VQA) models.

 GQA (Hudson & Manning, 2019) is a VQA dataset for real-world images that requires visual, spatial, and compositional reasoning. Importantly, GQA provides grounding masks (referred objects to answer questions) for each question for the validation set.

POPE (Li et al., 2023). The Polling-based Object Probing Evaluation (POPE) is designed to assess object-level perception and hallucination in vision-language models by querying the presence of specific objects in images. It consists of three settings: (i) Random – this setting samples absent objects at random, (ii) Popular – this setting selects missing objects from a frequently occurring object pool, and (iii) Adversarial – this setting targets commonly co-occurring but visually absent objects to challenge the model's grounding ability. In total, POPE consists of 3 sets of image-question pairs, each containing 1500 pairs with answer "Yes" and 1500 pairs with answer "No".

MME (Fu et al., 2024) is a comprehensive benchmark designed to evaluate the capabilities of multimodal large language models (MLLMs) across 14 diverse subtasks spanning both perception and cognition. In our work, we focus specifically on the perception tasks, which include coarse-grained recognition (existence, count, position, colour), fine-grained recognition (poster, celebrity, scene, landmark, artwork), and optical character recognition (OCR). Model performance on these tasks is measured using the perception score, capped at 2000 points.

MM-Vet (Yu et al., 2023). Unlike standard evaluation benchmarks, MM-Vet evaluates the integration of key vision-language (VL) capabilities, such as recognition, optical character recognition (OCR), knowledge reasoning, language generation, spatial understanding, and mathematical reasoning. MM-Vet contains 200 images and 218 questions, all paired with their respective ground truths.

D ENHANCED GROUNDED GQA DATASET

We construct our Enhanced Grounded GQA dataset in Sec. 4.4 based on the validation split of the original GQA dataset (Hudson & Manning, 2019). Our enhanced version comprises 10,000 questions, each accompanied by grounded segmentation masks. To convert grounding bounding boxes—i.e., the coordinates of objects referenced in the questions—into segmentation masks, we utilise the SAM2 model (Ravi et al., 2025), specifically the "sam2.1-heira-large" checkpoint with its default configuration.

To ensure relevance and clarity, we apply filtering criteria that discard images containing more than seven bounding boxes or where the total box coverage is less than 10% of the image area. These thresholds are chosen to retain only prominent objects while maintaining compatibility with object-centric learning (OCL) methods trained on the COCO dataset (Lin et al., 2014), which typically utilise seven slots. Additional examples from our Enhanced Grounded GQA dataset are shown in Fig. 8.

E USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we used large language models (LLMs), specifically ChatGPT and Grammarly, to support the writing process. These tools were employed to improve clarity and readability by refining language and style. All substantive contributions, including the research idea, coding, analysis, and interpretation of results, were carried out solely by the authors.

Figure 8: Additional samples from the Enhanced Grounded GQA dataset.