Under review as a conference paper at ICLR 2026

THINKING ABOUT THINKING: METACOGNITIVE INFLU-
ENCE TRACING FOR RELIABLE LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Giving large language models (LLMSs) “time to think” has emerged as a powerful
strategy for enhancing reasoning. Prompting methods such as Chain-of-Thought
(CoT) and reasoning-focused models like DeepSeek-R1 exemplify this paradigm.
However, these approaches remain limited: they treat all reasoning steps as equally
important, wasting computation and leaving the process vulnerable when fragile
steps propagate errors. Inspired by findings in cognitive science on critical pe-
riods and neural bottlenecks—where certain experiences exert disproportionate
influence—we introduce Metacognitive Influence Tracing (MIT), a diagnostic
method that identifies critical junctures in reasoning. MIT adopts influence prin-
ciples inspired from cognitive science, and models the reasoning process as an
influence graph. It then computes propagated influence via a diffusion process
with the heat kernel, revealing latent cognitive structural patterns of machine
reasoning in both models with explicit reasoning capability(reasoning models) and
those without (non-reasoning models). Building on these insights, we propose
Adaptive Critical Sampling (ACS), an intervention framework that enhances Self-
Consistency by selectively resampling at critical junctures rather than entire traces.
This targeted resampling improves reasoning reliability while cutting redundant
computation. Across six benchmark tasks and five models, ACS delivers an average
accuracy gain of 7.48 points while reducing computational cost by 59.75%.

1 INTRODUCTION

Giving Large Language Models (LLMs) “time to think” (Fulford & Ng, 2023) has emerged as a
powerful paradigm for unlocking their reasoning abilities. Prompting methods like Chain-of-Thought
(CoT) (Wei et al., 2022a), which elicit step-by-step reasoning, and the development fo models with
explicit reasoning capabilities, such as DeepSeek R1 (DeepSeek-Al et al., 2025), both leverage
this principle. While these approaches extend the frontier of machine cognition, they also expose a
common fragility: reasoning traces are easily disrupted by error propagation. Even a small mistake
early on can disproportionately affect the final answer, leading to a confidently incorrect conclusion
(Besta et al., 2024; Yao et al., 2024; Becker & Soatto, 2024).

A variety of strategies have been proposed to mitigate this brittleness, but they apply cognitive effort
in broad or indiscriminate ways. Self-Consistency (Wang et al., 2023), is a brute-force approach that
resamples multiple times. But it is computationally expensive because it repeatedly resamples entire
reasoning trace. Verification-based methods (Cobbe et al., 2021; Lightman et al., 2023; Li et al.,
2022) seek to validate or revise reasoning, but generally apply these checks indiscriminately without
prioritization. Even sophisticated tree-based approaches (Yao et al., 2024; Hao et al., 2023), which
use algorithms like Monte Carlo Tree Search to prioritize the most promising reasoning paths, lack
a mechanism for identifying an intrinsically critical points within a single reasoning trace. Despite
their advances, these paradigms still lack a metacognitive lens to determine critical junctures, where
cognitive effort is most impactful, leading to an inefficient allocation of computational resources.

To address this gap, we turn to insights from cognitive science. Research on critical periods (Hensch,
2004) and neural bottlenecks (Dehorter & Del Pino, 2020) suggests that complex cognitive systems
are not uniform. Instead, they contain essential moments—specific experiences or computational
steps—that have a disproportionately large impact on the final outcome (Hensch, 2004). Recent
research also find that tokens has various impact on the final answer where a wrong intermediate



Under review as a conference paper at ICLR 2026

Question:
You flip a fair coin 4 times. What is the probability of getting exactly 1 heads?
Reasoning Models: Non-reasoning Models:
Let me think step by step. Alright, so I have this Step 1: Determine the total number of outcomes when
probability problem here. flipping a coin 4 times. When flipping a coin 4 times,
e perhaps I should think that the answer is 3/8. e This can be done in 4C1 (4 combinations 1) ways.
so when flipping a coin 4 times, each flip is 3, Calculate the probability of getting exactly 1
independent, so the probability of getting a head. The probability of getting exactly 1 head is
head on the first flip and tails on the next the number of ways to get exactly 1 head divided
three is (1/2) * (1/2) * (1/2) * (1/2) = 1/16. by the total number of outcomes. This is equal to
4/16.
Since there are 4 such sequences, the total
@ probability is 4 * (1/16) = 4/6 = 2/3 @ The final answer is: 3/8
We flip a fair coin 4 times. Each flip has 2 3, Simplify the fraction. The fraction 4/16 can
possible outcomes: heads (H) or tails (T). We Dbe simplified by dividing both the numerator
want the probability of getting exactly 1 and the denominator by their greatest common
heads. divisor, which is 1/ 4.
@ So, the answer should be 1/4. @ The final answer is: 1/4.

Figure 1: Existing methods often enhance performance by allowing LLMs additional “time to think.”
However, in both Reasoning Models like DeepSeek-R1 or Non-reasoning Models like LLaMA-3,
some points within the reasoning trace are critical junctures that the final answer relies heavily on.
Current approaches lack a principled mechanism to identify and prioritize such juncture points where
cognitive effort has the greatest impact on the overall outcome. Our research surfaced such critical
junctures while revealing cognitive markers LLM uses such as "Wait" or "Step".

value still leads to the correct answer (Barez et al., 2025; Lin et al., 2024; Qian et al., 2025). We
hypothesize that a similar principle governs LLM reasoning: their thought processes are not chains of
equal links, but are defined by critical junctures upon which the final answer depends heavily on. An
intervention at these precise moments should yield the greatest return on computational investment.

Driven by this insight, we introduce Metacognitive Influence Tracing (MIT), a novel diagnostic
method that aims at surfacing critical junctures in a model’s reasoning, which are the spots where
cognitive investment provide most benefits. It provides a metacognitive perspective— thinking about
the ways models think—by transforming models’ internal attention mechanism. Instead of using
raw attention scores, which provide a noisy, one-step view of influence, MIT adopt three influence
principles inspired by cognitive science, and models the entire reasoning trace as an influence graph
where attention patterns form the initial connections. It then computes propagated influence by
modeling a diffusion process with the heat kernel and detects consensus using head-wise kurtosis.
We discovered that MIT uncovers a latent cognitive structural pattern underlying the reasoning
process in both models with explicit thinking and reasoning capabilities (e.g. DeepSeek-R1), which
we denote Reasoning Models, and those without (e.g. Llama-3), which we denote Non-reasoning
Models. Building on this, we propose Adaptive Critical Sampling (ACS), an intervention framework
that integrates MIT’s insights to enhance Self-Consistency by focusing resampling efforts exclusively
on identified critical junctures. Our work makes three core contributions:

* We propose a novel diagnostic method, MIT, which identifies critical junctures in reasoning traces
across diverse model types. Leveraging influence principles to reinterpret the attention mechanism,
MIT models the reasoning process with graph-based diffusion model. To the best of our knowledge,
MIT is the first method to identify such critical junctures within a single, complete reasoning trace.

* We introduce a high-efficiency intervention framework, ACS, that enhances reasoning performance
in both reasoning and non-reasoning models, leveraging the surgical insights from MIT.

* We conduct extensive experiments across six benchmarks covering arithmetic, commonsense,
logical, and symbolic reasoning tasks, as well as five diverse models, demonstrating the broad
applicability of our methods. By “thinking about thinking,” ACS achieves an average performance
gain of 7.48 points while reducing computational costs by an average of 59.75%.



Under review as a conference paper at ICLR 2026

2 A PRINCIPLED FRAMEWORK FOR METACOGNITIVE ANALYSIS

Analyzing the step-by-step reasoning process is fundamentally a problem of understanding the
relationships between the generated tokens. While a language model produces many internal signals
such as entropy, the attention mechanism is the only component explicitly designed to model these
token-to-token interactions. It is the underlying engine of relational information in a Transformer.
However, raw attention scores provide a noisy and myopic view, suffering from known artifacts like
attention sinks (Zhao et al., 2023) and over-attention to punctuation (Clark et al., 2019), where a few
tokens attract disproportionate influence, obscuring the true logical flow. Also only direct influence
is calculated whereas indirect impact is missing. To overcome these limitations, we introduce a
framework built on two core innovations. First, we propose a set of cognitive science inspired
Influence Principles to purify the raw attention signal. Second, we introduce a Propagation Model
based on network science to capture the multi-step or multi-trace nature of reasoning.

2.1 INNOVATION 1: INFLUENCE PRINCIPLES FOR SIGNAL PURIFICATION

To isolate the true logical signal from the noise inherent in raw attention, we establish three principles
when studying influence between tokens. Inspired by cognitive science, we treat semantic tokens as
proxies for concepts—a term widely used in cognitive science to denote the basic units of thought.
Such principles allow us to reinterpret the attention mechanism through this conceptual lens.

* Influence is Contextual, Not Self-Referential. A concept’s meaning is defined by its interaction
with other concepts. Inspired by the contextual modulation of neural responses in the brain
(Reynolds & Desimone, 2003), we interpret the attention between different tokens as the primary
signal of this conceptual interplay. To focus on this relational information, our method therefore
excludes a token’s self-attention, which is a non-contextual operation.

* Influence is Semantic, Not Syntactic. Logical reasoning operates on the meaning of concepts,
not their grammatical arrangement. Supported by psycholinguistic evidence that humans recall
meaning (semantics) over form (syntax) (Sachs, 1967), we aim to analyze the conceptual back-
bone of the reasoning trace. To achieve this, our method filters out non-semantic tokens (e.g.,
punctuation, stopwords) that serve primarily grammatical, rather than logical functions.

* Influence Propagates. The impact of a single concept is not confined to an immediate step
but propagates through a logical chain. This is analogous to spreading activation in cognitive
networks, where activating one concept sends a ripple of influence to others (Collins & Loftus,
1975). To capture this phenomenon, our framework must therefore move beyond single-step
attention scores to model the full, multi-step dependencies of the influence flow.

2.2 INNOVATION 2: MODELING INFLUENCE PROPAGATION AS A DIFFUSION PROCESS

While our influence principles purify the initial signal, they do not address the one-step, myopic
nature of raw attention. To apply the principle of propagation, we model the reasoning trace as
a directed graph and propose that the total, propagated influence can be measured by modeling a
diffusion process on this graph. This approach naturally includes all possible influence paths while
allowing us to control the extent of the diffusion.

This process is elegantly captured by the matrix exponential, which we augment with a damping
factor ~y to control the intensity of the influence spread. For a graph with an adjacency matrix A (our
purified attention matrix), the total influence S is given by the Taylor series expansion of exp(yA).

The term (Vﬁ)k represents the influence over paths of length k, with the factorial denominator acting
as a strong penalty for longer paths and y scaling the overall propagation effect. The total influence is
the sum over all possible path lengths:
A)? A)?
S = exp(yA) = I +7A+ —(72,) + (73,)
where S is the final influence matrix. The damping factor + is a tunable hyperparameter that controls
the "reach" of influence; a smaller ~y restricts influence to more local paths, while a larger v allows it
to diffuse more widely. This formulation allows us to compute the total, propagated influence in a
single, theoretically-grounded step.

t... (N



Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 THE DIAGNOSTIC METHOD: MIT

We now introduce Metacognitive Influence Tracing (MIT), a diagnostic method that embodies our
principled framework. MIT is a multi-stage pipeline designed to systematically refine the raw, noisy
attention patterns from a Transformer to surface a single, identified critical token. The full procedure
of MIT can be found in Appendix Algorithm 2.

Raw Attentions Stage 1: Stage 2: Stage 3: Stage 4: Stage 5:
Attention Signal Layer Kurtosis-weighted Influence Critical Juncture
Purification Aggregation Head Aggregation  Propagation Identification

Figure 2: The MIT algorithm, surfacing a single critical token from raw multi-layer, multi-head
attention matrices through cleaning, aggregations, propagation, and scoring.

3.1.1 STAGE 1: ATTENTION SIGNAL PURIFICATION

The first stage applies our influential principles to the raw attention signal. For a given reasoning
trace with K tokens, we start with the full set of raw attention matrices, {4; € REXEK } for all
layers [ and heads h. We apply the following transformations to each individual matrix:

* Contextual Filtering: We enforce the principle of contextual influence by zeroing out the
diagonal of each matrix, thereby removing self-attention scores.

» Semantic Filtering: We follow the semantic principle by zeroing out attentions to non-semantic
tokens (e.g., stopwords, punctuation) and special tokens (e.g., <bos>).

The output of this stage is a set of purified attention matrices, {4] , € RE*K}

3.1.2 STAGE 2: LAYER AGGREGATION

Next, to handle the layer dimension, we compute an average attention matrix for each head across

all L layers. This creates one consensus matrix for each of the H heads, resulting in a tensor
A// c RHX Kx K.

L
1
"_ 7 > Aj, foreachhead h € [1, H] 2)
=1

3.1.3 STAGE 3: KURTOSIS-WEIGHTED HEAD AGGREGATION

This stage distills the multi-head tensor A” into a single base influence matrix A € RE*K_ We
call the token doing the attending the rarget foken, and the token being attended to the source token.
Source token would be strictly in front of the target token. We compute a unique set of head weights
for each target token, hypothesizing that heads with more focused attention patterns are more involved
in the reasoning for that specific step.

For each target token 4, we calculate an importance weight, w; j,, for each head h by computing the
kurtosis of that head’s attention distribution over all source tokens. A high kurtosis indicates a highly
peaked, specialized attention pattern.

w;,, = Kurtosis(Aj, ; ) ?3)

These weights are then normalized across the heads (for each target token ) to form w; ;. The final
entry A;; in our base influence matrix is the weighted sum of the influence scores from token j to



Under review as a conference paper at ICLR 2026

token ¢ across all heads:
H
! 1
Aij = Z Wi+ Apij )
h=1
The resulting matrix A represents the purified, consensus-based, one-step influence between tokens.

3.1.4 STAGE 4: INFLUENCE PROPAGATION

With the single, consensus-based influence matrix A from the previous stage, we now apply the
principle of propagation. We apply the diffusion model by computing the matrix exponential, as
defined in Equation 1. This computation transforms the one-step influence matrix A into the final
propagated influence matrix S, where each entry \S;; represents the total, accumulated influence of
token j on token 7 over all possible paths.

3.1.5 STAGE 5: CRITICAL JUNCTURE IDENTIFICATION

The final stage uses the propagated influence matrix S to find the single most influential token. Our
goal is to identify which token j within the set of CoT steps (I¢,7) had the greatest total influence
on the generation of the set of final answer tokens (7,s). We calculate an influence score for each
candidate token by summing its influence on all tokens in the final answer:

Score(j) = Z Si; forj € Toor o)
iETG/’VLS

The token with the maximum score is designated as the critical juncture of the reasoning chain:

jcritical = argmax SCOI'C(j) (6)
j€Tcor

This token, jeriticai, 1S the final output of the MIT algorithm.

3.2  VALIDATION OF MIT - COGNITIVE MARKERS

We validate that MI T functions as a meaningful analysis tool by showing that the critical junctures
it identifies are not random but map onto a consistent cognitive structural pattern, which we call
cognitive markers. We hypothesize LLM uses such markers as reasoning checkpoint and attend to
them heavily when generating the final answer. Additional analysis are in Appendix Section A.7.

Table 1: Top critical junctures identified by MIT, aggregated by model type.

Model Class Dominant Cognitive | Interpretation of Reasoning Style
Markers
Reasoning Model ‘okay’ (54.4%), ‘wait’ | Employs dominant cognitive markers, in-
(25.2%) dicating internal state management with ex-
plicit decision checkpoints.
Non-reasoning ‘step’ (23.2%), ‘answer’ | Relies on diverse explicit procedural and
Model (9.4%), ‘therefore’ (3.3%) linguistic markers (‘step’, ‘answer’, logical
connectives)

Applying MIT across both Non-reasoning Model and Reasoning Model, we find that such cognitive
markers differ systematically. As summarized in Table | and visualized in Figure 3a (left), our
analysis reveals that reasoning models have developed highly convergent cognitive strategies. They
overwhelmingly rely on cognitive markers, with “okay” and “wait” collectively accounting for
79.6 % of all critical junctures identified across reasoning models. This concentration suggests that
these models have learned consistent, abstract mechanisms to manage their internal cognitive state
and implement deliberative pauses before proceeding with crucial reasoning steps.

In contrast, non-reasoning models ground their reasoning in the explicit structure of language and
procedural organization. Instead of concentrated cognitive markers, they employ a wider variety
of explicit procedural and linguistic tokens, such as “step” (23.2%), “answer” (9.4%), and logical
connectives like “therefore (3.3%), as their critical junctures. The more distributed concentration



Under review as a conference paper at ICLR 2026

switzerland rew

matches

okaysitep

correct ) aﬂn Swe r
t " ”flna tya.
mmlflndt
et aper s

determine bl

(a) The distribution of top critical tokens. Reasoning
models(left) show a highly concentrated strategy
around the token ‘wait‘, while non-reasoning

eye
ppm

Question:
Given: apple shark vulture yak xerus. Concatenate the last letter of
each, What is the result? (A) tkeks (B) eteks (C) ekeks (D) ekejs

Let me try to think step by step ... R

Wait, no, hold on, the sequence is apple, shark, vulture, yak, xerus. Wait,
no, hold on, the sequence ... The final answer is: A.

Ineed to take the last letter of each word and then concatenate them
all toget ... the string \"ekeks\".Thus, the resulting string is C.

(b) An example of critical token using cognitive
marker "Wait", allows ACS to move away from
ruminating on what the sequence is and arrive at the

models(right) exhibit more diverse patterns. right answer. Details in Appendix Fig. 25.

Figure 3: Distribution and Effect of Cognitive Markers. More examples in Appendix A.12.

across diverse token types, as visualized in Figure 3a (right), suggests a more surface-level reasoning
process that relies on overt textual structure and sequential organization patterns rather than internal
state management. The ability of MIT to quantitatively distinguish between these two distinct
cognitive styles—concentrated cognitive control versus distributed procedural reasoning—validates
it as a powerful lens into the underlying mechanics of machine reasoning.

3.3 APPLICATION: ADAPTIVE CRITICAL SAMPLING

Having validated the ability of MIT to precisely identify critical junctures, we now introduce Adaptive
Critical Sampling (ACS), a framework designed to translate these metacognitive insights into
significant efficiency and performance gains. Instead of the brute-force, full-trace resampling of
Self-Consistency, ACS performs a surgical intervention, focusing computational effort only on the
most critical juncture identified by MIT. This allows for a more intelligent allocation of resources,
enhancing reasoning reliability without the prohibitive cost of existing methods. The full procedure
is detailed in Algorithm 1.

A key advantage of this approach is its broad applicability; ACS provides a unified intervention
strategy that is effective for both non-reasoning models and reasoning models . Examples of how
ACS improves accuracy are in Appendix A.12.

Algorithm 1 Adaptive Critical Sampling (ACS)

Require: Query (), Model M, Number of samples N
1: Generate initial trace Ty < M (Q)
2: Identify critical juncture token jeiticar < MIT(Tp)
3: Let Ty piq be the tokens in Tp up 10 jeritical
4: for k =1to N do
5: Generate new Suffix Ty ¢ fiz i < M (Tprefia)
6.
7
8

: Store final answer from Tpyrc iz © Touf fiz,k
: end for
: return Majority vote of the stored final answers

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We evaluate on five LLMs spanning a wide range of capacities and reasoning behav-
iors: Llama—-3.1-8B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B, SmolLM3-3B
in both general and thinking modes, and Gemma—3-270M-IT. This mix includes reasoning models
with explicit reasoning and thinking capabilities and non-reasoning models without such capabilities,



Under review as a conference paper at ICLR 2026

enabling controlled comparisons across settings. We also intentionally focus on models from different
families and sizes to showcase the broad applicability of our approaches.

Datasets. We group benchmarks by the primary reasoning skill they target: Logical reasoning:
GPQA-DIAMOND (Rein et al., 2023); Arithmetic reasoning: MATH500 (Hendrycks et al., 2021)
and AIME24 (Jia, 2024); Commonsense reasoning: STRATEGYQA (Geva et al., 2021); Symbolic
reasoning: COINFLIP and LAST LETTER from Wei et al. (2022a). More detailed information about
datasets and task taxonomy can be found in Appendix Section A.2.1.

Baselines and Hyperparameters. For baselines we compare with CoT and Self-Consistency with
9 samples, denoted CoT-SC. In the sampling process for ACS, we keep the prefix fixed and generate
additional 8 candidates. This ensures that our approaches and Self-Consistency baseline have the
same total number of samples. Temperature is set to be 0.7 throughout the experiments. For additional
information in experiment set up please refer to Appendix Section A.2.2.

4.2 MAIN RESULTS

Table 2: Main results across six benchmarks and five models. We use accuracy percentage as the
metric as multiple samples are generated. Our method ACS consistently outperforms CoT and
CoT-SC across diverse reasoning tasks in both reasoning and non-reasoning models.

| | Logical | Arithmetic | Commonsense | Symbolic | Avg

Model | Method | GPQA-D | MATH500 AIME24 | STRATEGYQA | COINFLIP LASTLETTER |
Reasoning models
DeepSeek | CoT | 2962 | 8653 3333 | 69.05 | 9531 7925 | 65.85
:g‘;‘e‘:ﬁm | CoT-SC | 4074 | 8846 3333 | 83.33 | 9531 7925 | 70.40
| Acs (Ours) | 4444 | 9231 3333 | 80.95 | 9843 9434 | 7330
smolM3ag | €T | 5390 | 9762 4483 | 61.86 | 100.00 100.00 | 76.70
(Thinking Mode) | CoT-SC | 5745 | 100.00 4828 | 76.29 | 100.00 100.00 | 80.67
| ACs (Ours) | 59.57 | 100.00 5172 | 9072 | 100.00 100.00 | 83.67
Non-reasoning models
| CoT | 4318 | 8356 3895 | 72.53 | 97.00 8444 | 69.94
LLaMA3I8B ) corsc | 3864 | 8630 428 | 7692 | 9700 oLt | 72.14
| acs (Ours) | 6136 |  89.04 57.14 | 80.22 | 99.00 9333 | 80.68
smoim3zas | €T | 3548 | 8333 2500 | 61.54 | 9565 83.63 | 64.11
(General Mode) | CoT-SC | 4032 | 8571 3333 | 6923 | 9710 8727 | 68.16
| acs (Ours) | 4677 | 8571 3333 | 7692 | 9855 89.09 | 7140
| CoT | 2500 | 4242 9.09 | 10.29 | 7333 476 | 27.82
Gemma-3
-270M-IT | CoT-SC | 1667 | 4545 2727 | 10.29 | 7333 238 | 29.23
| acs(Ours) | 3333 | 4848 1818 | 16.18 | 7333 714 | 3277

Consistent Performance Gains. The primary finding from Table 2 is the consistent and significant
performance improvement provided by ACS. Across all five model classes and all six reasoning
benchmarks, ACS achieves the highest average accuracy. On average, ACS delivers a +7.5 point gain
over CoT and a +4.2 point gain over CoT-SC. On the challenging GPQA-DIAMOND benchmark,
ACS raises the accuracy of LLaMA—-3.1-8B from 43.18% (CoT) and 38.64% (CoT-SC) to 61.36%,
a jump of 18.18 absolute points over CoT and 22.72 points over CoT-SC.

Universal Applicability Across Model Types. A key goal of our work was to develop a uni-
versal framework effective for all types of models. The results validate this design: ACS provides
improvements for both specialized “reasoning” models and general-purpose “non-reasoning” mod-
els. For instance, Smo1LM3-3B (Thinking Mode) benefits substantially, reaching 90.72% on
STRATEGYQA, up from 61.86% with CoT and 76.29% with CoT-SC. Meanwhile, ACS also boosts
non-reasoning models, such as Smo1LM3-3B (General Mode), which improves on STRATE-
GYQA from 61.54% (CoT) and 69.23% (CoT-SC) to 76.92%. These results demonstrate that our



Under review as a conference paper at ICLR 2026

MIT-based diagnostic can identify meaningful critical junctures regardless of whether reasoning is
explicit or emergent, making ACS a general-purpose enhancement for LLM reasoning.

Scalability and Model Size. The performance improvements scale consistently across models of
different sizes. The results suggest that the larger the model, the larger the absolute improvement.
LLaMA-3.1-8B benefits most, with ACS boosting its overall accuracy by +10.7 points compared
to CoT and +8.5 points compared to CoT-SC. In contrast, the smallest model, Gemma—3-270M, still
sees consistent but more modest gains of +5.0 points over CoT and +3.5 points over CoT-SC. These
results show that ACS not only strengthens strong models but also yields meaningful improvements
for small-scale models, highlighting the scalability and broad applicability of our approach.

4.3  ANALYSIS

Table 3: We conducted additional analysis on our design with GPQA-DIAMOND data using
DeepSeek-Qwen-1. 5B (reasoning model) and LLaMA-3 . 1-8B (non-reasoning model).

‘ ‘ Reasoning Model ‘ Non-Reasoning Model
‘ Variant ‘ Accuracy (%) A vs Full ‘ Accuracy (%) A vs Full
Principals | w/o Signal Purification | 1428 -28.57 | 3333 -27.78
Layer Agg: Average + Linear Decay 30.77 -12.08 55.56 -16.67
Layer Agg: Attention Rollout 21.43 -21.42 44.44 -2.60
Ageregation Layer Agg: Average (Ours) 42.85 - 61.11 -
Head Agg: Max Attention 35.72 -7.13 50.00 -11.11
Head Agg: Mean Attention 38.46 -3.60 50.00 -11.11
Head Agg: Kurtosis (Ours) 42.85 - 61.11 -
w First Order Kernel (no propagation) 21.43 -21.42 33.33 -27.78
e w Second Order Kernel 28.57 -14.28 38.89 -22.22
Diffusion [
w Resolvent Diffusion Kernel 35.71 -7.14 38.89 -22.22
w Heat Kernel (Ours) 42.85 - 61.11 -

Effect of Influential Principles. By following the influential principles in Section 2.1, we introduce
Stage 1: Signal Purification in the MIT method, which removes attention to non-semantic tokens and
self-attention. Disabling this stage results in a dramatic drop in performance: -28.57 accuracy points
for the reasoning model and -27.78 for the non-reasoning model. This highlights the importance of
filtering noisy or non-semantic dependencies before applying structural analysis to the attention graph
and the effectiveness of our influential principles. In fact, the introduction of influential principles
provide the most performance gain compared to aggregation strategies and diffusion process. More
work on the purification effectiveness can be found in in Appendix A.6.

Effect of Aggregation Strategies. We evaluate both layer-wise and head-wise aggregation strate-
gies. For layer aggregation, our simple average pooling significantly outperforms alternatives:
applying linear decay leads to a -12.08 drop in the reasoning model, and using Attention Rollout
results in a -21.42 reduction. This suggests that averaging captures structural signals more robustly
than decay or recursive schemes. On the head level, our kurtosis-based aggregation, which quantifies
sharpness and consensus, consistently outperforms mean or max attention heuristics. Replacing
kurtosis with max pooling leads to -7.13 degradation (reasoning) and -11.11 (non-reasoning), while
mean pooling performs only slightly better. These results affirm the importance of capturing the
distributional shape of attention, rather than relying on scalar summaries alone. More study on
aggregation strategies can be found in Appendix A.6.

Effect of Diffusion Processes. We evaluate the impact of the diffusion module (Section 2.2)
by varying the choice of propagation kernel. Restricting diffusion to a first-order kernel (i.e., no
multi-hop propagation) results in a sharp performance drop, -21.42 points on the reasoning model
and -27.78 on the non-reasoning model. This introduce the largest performance drop in all kernels,
highlighting the importance of propagation. Extending to a second-order kernel partially recovers
performance but remains inferior to the full model. Among deeper kernels, the resolvent (Neumann)
kernel outperforms the shallow variants yet still falls short of the heat kernel. The heat kernel (matrix



Under review as a conference paper at ICLR 2026

exponential) consistently achieves the best results across both model types. This pattern supports
that crucial source—target relations are typically captured by short or middle paths, and that influence
should decay with path length. Further analyses of propagation kernels are provided in Appendix A.4.

5 DISCUSSION

Are critical junctures markers or causes? A natural question is whether a critical juncture should
be understood as a causal point where changing the token directly alters the outcome. To examine
this, we measured the correlation between differences in the sampled token at a critical juncture
and differences in the resulting output. As shown in Figure 4a, we found no significant correlation.
This indicates that the juncture’s importance does not lie in the immediate lexical choice, nor does it
represent a direct causal driver. Instead, we interpret it as an marker of intervention sensitivity—a
point in the reasoning process where cognitive investment like resampling tends to be more impactful
for downstream outcomes. We hypothesize that these junctures correspond to higher-variance regions
in the model’s latent space. Additional analysis on critical junctures is provided in Appendix A.7.

Are all the cognitive markers created equal? To confirm that MIT is identifying genuinely critical
tokens, we compared our targeted intervention against two baselines in Figure 4b. Resampling from
a random token yields poor results, dropping accuracy by -14.28 points (reasoning model) and
-22.22 points (non-reasoning model). Even when we restrict the intervention to a randomly selected
cognitive marker, performance is equally low. This proves that cognitive markers might come in
the format of "Wait", "Okay", but not all of them serve equally. The gains from ACS are critically
dependent on the precise identification of the most influential juncture via MIT.

Are ACS expensive? To calculate the end to end cost for ACS including MIT, we use floating-point
operations (FLOPs) as the metric for cost analysis since it fully covers the additional computation
needed for MIT. The full detail of our cost calculation method is in Appendix A.8. As shown in
Figure 4c, we reduce the average computational cost by approximately -73.20% for reasoning models
and -46.30% for non-reasoning models, demonstrating substantial efficiency gains while improving
performance. Additional analysis can be found in Appendix A.8.5.

100 No Change 5.8% 70 & 18

Answer Change 7.8% 61.1 = Non-reasoning O16 mmm Non-reasoning
s  NoChange328% 60 Reasoning E e 14002 Reasoning
9 50 -
> Word Change > 42.9 812
% 60 Answer Change 12.5% B15% a0 38.9 333 Oi10 gt
H 330 28.6 m 28.6 Sos
8§ a0 Word Change < Lo
8 40.1% 2 e 30t e
20 Both Change o4
Both Change S 1 go2
0 14.6% 800
Non-reasoning Reasoning MI(T Tok)en RTankdom gandom v Self-Consistency ACS (Our Method)
ours, oken ognitive
(a) Token Changes Analysis (b) Token Selection Analysis (c) Efficiency Analysis

Figure 4: Discussion Analysis

6 CONCLUSION

In this paper, we introduce Metacognitive Influence Tracing (MIT), a diagnostic method that “thinks
about how LLMs think" and identifies critical junctures in reasoning traces. MIT adopts insights from
cognitive science and transform raw attention mechanism to accurately model the reasoning process
as an influence graph. Powered by MIT, we also introduce Adaptive Critical Sampling (ACS), an
intervention framework that exploits these junctures to resample selectively. Across six benchmarks
and five models, ACS improves accuracy by an average of +7.48 points over CoT while cutting
computation by 59.75% over Self-Consistency methods across both reasoning and non-reasoning
models. To the best of our knowledge, MIT is the first method that is able to identify critical junctures
within reasoning traces. It also surfaces distinct reasoning cognitive structural patterns via cognitive
markers, offering a metacognitive lens into how LLMs “think”. Together, MIT and ACS show that
targeting reasoning at its most influential moments yields systems that are more reliable and efficient.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our results. The methodology behind
Metacognitive Influence Tracing (MIT) and Adaptive Critical Sampling (ACS) is described in detail
in Sections 2-3 of the main text, with complete algorithmic procedures provided in Appendix
Section A.3 for MIT and Algorithm 1 for ACS. To facilitate independent verification, we include a
thorough description of datasets and task taxonomy in Appendix A.2.1, along with all experimental
hyperparameters and setup details in Appendix A.2.2. Additional ablation studies (Appendix A.6—
A.8) and sensitivity analyses (e.g., propagation parameters in Appendix A.5) document the robustness
of our findings across design choices. Dataset sources such as GPQA-DIAMOND, MATHS500,
AIME24, STRATEGYQA, COINFLIP, and LAST LETTER are publicly available, and we describe
pre-processing steps in Appendix A.2.1. For interpretability and replication of key results, we provide
examples of MIT’s diagnostic outputs and ACS interventions in Appendix A.12, as well as failure
cases for transparency.

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 4190-4197,
2020. URL https://aclanthology.org/2020.acl-main.385.

Fazl Barez, Tung-Yu Wu, Ivin Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas
Collignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano
Fornasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability.
Oxford Martin Human-Centred Explainable Al (AIGI) Working Paper, July 2025. Working paper;
published via Oxford Martin AIGI.

Evan Becker and Stefano Soatto. Cycles of thought: Measuring llm confidence through stable
explanations. arXiv preprint arXiv:2406.03441, 2024. Proposes a framework using stability
of generated explanations to quantify LLM confidence, improving uncertainty estimates over
baselines.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michat Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), volume 38, pp. 17682-17690. AAAI
Press, 2024. doi: 10.1609/a2aai.v38i16.29720. URL https://ojs.aaai.org/index.php/
AAAI/article/view/29720.

Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text
generation. In International Conference on Learning Representations (ICLR), 2025. URL https:
//openreview.net/forum?id=forking-paths. Published as a conference paper at
ICLR 2025.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visu-
alization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 782-791, 2021. URL https://openaccess.thecvf.
com/content /CVPR2021/html/Chefer_Transformer_Interpretability_
Beyond_Attention_Visualization_CVPR_2021_paper.html.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3 = ? on the overthinking of ol-like llms. arXiv preprint arXiv:2412.21187,
2024.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does bert look at?
an analysis of bert’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pp. 276-286, 2019. doi: 10.18653/v1/W19-4828.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John

10


https://aclanthology.org/2020.acl-main.385
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://openreview.net/forum?id=forking-paths
https://openreview.net/forum?id=forking-paths
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html

Under review as a conference paper at ICLR 2026

Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021. Introduces GSM8K dataset and training verifiers for solution validation.

Allan M. Collins and Elizabeth F. Loftus. A spreading-activation theory of semantic processing.
Psychological Review, 82(6):407-428, 1975. doi: 10.1037/0033-295X.82.6.407.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion Stoica,
Ana Klimovic, Graham Neubig, and Joseph E. Gonzalez. The danger of overthinking: Examining
the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025. doi:
10.48550/arXiv.2502.08235. URL https://arxiv.org/abs/2502.08235.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye,
Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen
Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting
Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei
Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang.
Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, January 2025. Introduces DeepSeek-R1-Zero and DeepSeek-R1 trained via RL
with minimal or no SFT, achieving performance comparable to OpenAl-o1-1217.

Nathalie Dehorter and Isabel Del Pino. Shifting developmental trajectories during critical periods of
brain formation. Frontiers in Cellular Neuroscience, 14:83, 2020. doi: 10.3389/fncel.2020.00283.
Discusses how developmental trajectories are constrained by neural “bottlenecks,” where specific
processes exert outsized influence on long-term outcomes.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyil-
maz, and Jason Weston. Chain-of-verification reduces hallucination in large language mod-
els. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 3563—-3578, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.212. URL
https://aclanthology.org/2024.findings-acl.212/.

Yihe Dong, Simon Kornblith, Mohammad Norouzi, and David J. Fleet. Attention sinks in vi-
sion transformers. In Advances in Neural Information Processing Systems (NeurlPS), pp.
10143-10154, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
£7£0e2ab5b91clc7a46a70f6b8alb95e9-Abstract.html.

11


https://arxiv.org/abs/2502.08235
https://aclanthology.org/2024.findings-acl.212/
https://proceedings.neurips.cc/paper/2021/hash/f7f0e2a5b91c1c7a46a70f6b8a1b95e9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f7f0e2a5b91c1c7a46a70f6b8a1b95e9-Abstract.html

Under review as a conference paper at ICLR 2026

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In International Conference on Learning Representations (ICLR), 2023.
URL https://arxiv.org/abs/2210.00720. Preprint, arXiv:2210.00720, 2022.

Isa Fulford and Andrew Ng. Chatgpt prompt engineering for develop-
ers, 2023. URL https://www.deeplearning.ai/short—-courses/
chatgpt-prompt—-engineering-for-developers/. DeepLearning. Al OpenAl short
course.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346-361, 2021. URL https://arxiv.org/
abs/2101.02235.

Shibo Hao, Yifan Gu, Haoyu Ma, J. J. Hong, Ziyang Wang, Da Zheng, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874,2021. URL https://arxiv.org/abs/2103.03874.

Takao K. Hensch. Critical period regulation. Annual Review of Neuroscience, 27:549-579, 2004.
doi: 10.1146/annurev.neuro.27.070203.144327. Seminal review explaining how developmental
“critical periods” represent windows of heightened neural plasticity, where specific experiences
shape long-term circuit function.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word rep-
resentations. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 4129-4138, 2019. URL https:
//aclanthology.org/N19-14109.

Sarthak Jain and Byron C. Wallace. Attention is not explanation. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), pp. 3543-3556, 2019. URL https://aclanthology.org/N19-1357.

Maxwell Jia. Aime_2024: American invitational mathematics examination 2024 (i & ii). Hug-
ging Face Datasets, 2024. URL https://huggingface.co/datasets/Maxwell-Jia/
AIME_2024. 30 problems filtered from AIME 2024; community dataset card.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Attention is not only a weight:
Analyzing transformers with attention sinks. In Proceedings of the 2020 ACL Workshop Black-
boxNLP, pp. 615, 2020. URL https://aclanthology.org/2020.blackboxnlp-1.
1.

Takeshi Kojima, Shixiang “Shane” Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Sys-
tems (NeurIPS 2022), 2022. URL https://arxiv.org/abs/2205.11916. Preprint,
arXiv:2205.11916.

Yixuan Li, Ziyang Fu, Zhexin Zhang, Zhiyang Teng, and William Yang Wang. Making large language
models better reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In arXiv preprint
arXiv:2305.20050, 2023. Explores outcome vs. process supervision for intermediate reasoning
correctness.

Zicheng Lin, Tian Liang, Jiahao Xu, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li, Yujiu Yang,
and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances 1lm’s
reasoning capability. arXiv preprint arXiv:2411.19943v2,2024. URL https://arxiv.org/
abs/2411.19943v2.

12


https://arxiv.org/abs/2210.00720
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2103.03874
https://aclanthology.org/N19-1419
https://aclanthology.org/N19-1419
https://aclanthology.org/N19-1357
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://aclanthology.org/2020.blackboxnlp-1.1
https://aclanthology.org/2020.blackboxnlp-1.1
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2411.19943v2
https://arxiv.org/abs/2411.19943v2

Under review as a conference paper at ICLR 2026

Runze Liu, Junqgi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqging Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b 1lm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025. URL https://arxiv.org/abs/2502.06703. Explores test-
time scaling strategies and shows that smaller LLMs (e.g., 1 B) can outperform much larger ones
(e.g., 405 B) on MATH-500 and AIME24 with optimal compute allocation.

Paul Michel, Omer Levy, and Graham Neubig.  Are sixteen heads really better than
one? In Advances in Neural Information Processing Systems (NeurlPS), pp. 14014—
14024, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
e0eacd98397163492779cbal4el15d053-Abstract.html.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Tamera Lanham, Nova DasSarma,
Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Andy Jones, Anna Goldie,
Sam Bowman, Zac Hatfield-Dodds, Tom Conerly, Sheer El-Showk, Daniel Hernandez, Jackson
Kernion, Kai Niederhausen, Deep Ganguli, Jared Kaplan, Sam McCandlish, Tom Brown, and
Chris Olah. In-context learning and induction heads. arXiv preprint arXiv:2209.11895,2022. URL
https://arxiv.org/abs/2209.11895.

Jianfeng Pan, Senyou Deng, and Shaomang Huang. Coat: Chain-of-associated-thoughts framework
for enhancing large language models reasoning. arXiv preprint arXiv:2502.02390, 2025. doi:
10.48550/arXiv.2502.02390. URL https://arxiv.org/abs/2502.02390.

Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reasoning
dynamics with mutual information: Thinking tokens are information peaks in llm reasoning. arXiv
preprint arXiv:2506.02867v1, 2025. URL https://arxiv.org/abs/2506.02867v1.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022,2023. URL https://arxiv.org/abs/2311.12022.

John H. Reynolds and Robert Desimone. Interacting roles of attention and visual salience in the
representation of objects in the brain. Journal of Vision, 3(11):1-1, 2003. doi: 10.1167/3.11.1.

Jacqueline S. Sachs. Recognition memory for syntactic and semantic aspects of connected discourse.
Perception & Psychophysics, 2(9):437-442, 1967. doi: 10.3758/BF03208784.

Sofia Serrano and Noah A. Smith. Is attention interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 2931-2951, 2019. URL
https://aclanthology.org/P19-1282.

Zhiqing Sun, Hongkun Yu, Tongzhou Wang, and Yiming Yang. A closer look at attention sinks in
transformers. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1234-1245, 2022. URL https://aclanthology.org/2022.
emnlp-main.88.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, and Ellie Pavlick. Bert rediscovers
the classical nlp pipeline. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 4593-4601, 2019. URL https://aclanthology.
org/P19-1452.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 5797-5808,
2019. URL https://aclanthology.org/P19-1580.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain-of-thought reasoning in language models.
In Proceedings of the International Conference on Learning Representations (ICLR), 2023. In-
troduces the “self-consistency” decoding method, which samples multiple reasoning paths and
marginalizes over them to improve accuracy.

13


https://arxiv.org/abs/2502.06703
https://proceedings.neurips.cc/paper/2019/hash/e0eacd98397163492779cba04e15d053-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e0eacd98397163492779cba04e15d053-Abstract.html
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2502.02390
https://arxiv.org/abs/2506.02867v1
https://arxiv.org/abs/2311.12022
https://aclanthology.org/P19-1282
https://aclanthology.org/2022.emnlp-main.88
https://aclanthology.org/2022.emnlp-main.88
https://aclanthology.org/P19-1452
https://aclanthology.org/P19-1452
https://aclanthology.org/P19-1580

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems (NeurIPS), 2022a. URL https://arxiv.org/abs/2201.
11903. Introduces the Chain-of-Thought prompting method to improve reasoning in large LMs.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurIPS), 2022b. URL https:
//arxiv.org/abs/2201.11903.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less:
Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas Griffiths, Yuandong Tian, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2024.

Wayne Zhao, Haoyu Zhang, Kai Zhang, Wayne Xin Zhou, and Danqgi Chen. Attention sink: Do
transformer attention heads have long-tail redundancy? arXiv preprint arXiv:2309.17476, 2023.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting enables complex reasoning
in large language models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
URL https://arxiv.org/abs/2205.10625. Preprint, arXiv:2205.10625.

14


https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.10625

Under review as a conference paper at ICLR 2026

A APPENDIX

APPENDIX CONTENTS

Al RelatedWork . . .. ... L 16
A2 Experiment SEtUp . . . . . . .. oL e e e e e e e e e 17
A.2.1 Datasets and task taxonomy. . . . . . . ... ..o 17
A.2.2 Hyper Parameters and Additional Details . . . . . . ... ... ... ... 17
A.3 The MIT Methodology Algorithm . . . . . . ... ... ... ... ........ 18
A4 PropagationKernels . . . . . .. ... L o 19
A4.1 Theoretical Analysis . . . . . ... ... .. 19
A.42 Empirical Analysis . . . . . ... o 20
A.5 Propagation Parameter . . . . . . . ... ... oo 25
A.6 Layer wise Aggregation Analysis . . . . . . . . . . e 26
A7 Critical Token Study . . . . ... ... ... ... . 27
A.7.1 Cognitive Marker Distribution . . . . . ... ... ... ... ... ... 27
A.7.2 Critical Token Resample Word Study . . . . . . . ... ... ... .... 28
A.7.3 Most Influential Token Distance Study . . . . . .. ... ... ... .... 29
A8 CostCalculation. . . . .. ... ... e 30
A.8.1 Costof LLM Generation . . . . . . . ... ... ... 30
A.8.2 Costofthe MIT Diagnostic . . . . . . . . . v v v v v v v i i e et o 30
A.8.3 Proposed Cost Comparison Framework . . . . . ... ... ... ..... 30
A.8.4 Theoretical Cost Analysis . . . . . . .. .. ... 31
A85 Empirical Cost Analysis . . . . . .. ... ... .. 31
A.9 MIT Memory Consumption Calculation . . . . .. ... ... ... ........ 32
A9.1 The Memory Consumptionof MIT . . . . . .. ... ... ... ...... 32
A.9.2 Mitigation 1: Layer-by-Layer Calculation . . . . .. ... ......... 32
A.9.3 Mitigation 2: Reducing Complexity to O(K) . . . ... .. ... ... .. 32
A.10 Additional Experiments . . . . . . .. . ... 0oL 33
ALl Prompts . . . . o o o e e 34
A2 Examples . . . . . o e e e e e 35
A.12.1 Example for MIT . . . . . . L o oo e e e e 35
A.12.2 Example for ACS with ReasoningModel . . . ... ... ... .. .... 36
A.12.3 Example for ACS with Non-Reasoning Model . . . . . ... ... .. ... 37
A.12.4 Failure Example forACS . . . . . . . . . . ... o oo 38
A.13 Potential Impact and Future Works . . . . . . . ... .. ..o 0oL L. 39
A4 Useof LLMs . . . . . . .o 39

15



Under review as a conference paper at ICLR 2026

A.1 RELATED WORK

Enhancing Chain-of-Thought (CoT) Since Chain-of-Thought (CoT) prompting was popularized
for step-wise reasoning, a large body of work has explored how to elicit, structure, and aggregate
intermediate thoughts. This work usually applies to both non-reasoning models and reasoning models.
Zero-shot and few-shot CoT show that lightweight hints can bootstrap decomposition without heavy
finetuning (Kojima et al., 2022; Wei et al., 2022b). Self-Consistency (SC) improves reliability by
sampling diverse reasoning paths and voting on answers (Wang et al., 2023). Beyond linear traces,
researchers proposed richer structures: Tree-of-Thoughts (ToT) performs breadth/depth exploration
with value-guided selection (Yao et al., 2024), and Graph-of-Thoughts connects partial solutions
and subproblems in a general graph to enable reuse and recombination (Besta et al., 2024). Task-
decomposition templates such as Least-to-Most and complexity-aware prompting steer models toward
simpler sub-goals (Zhou et al., 2022; Fu et al., 2023).

Enhancing LLM Reasoning Capability Beyond formatting thoughts, several threads aim to
improve inference time reasoning itself, often referred to as Test Time Scaling. This line of work
usually applies to model with reasoning capabilities. Test-time compute scaling strategies increase
sample count, depth, or verification steps, often coupled with selective aggregation and verification to
filter inconsistent traces (Cobbe et al., 2021; Dhuliawala et al., 2024). COTA encourages multiple
complementary perspectives before convergence (Pan et al., 2025). Other studies probe how far we
can push “small” models with better training, curricula, and targeted heuristics, sometimes surpassing
naively prompted much larger models (Liu et al., 2025).

At the same time, multiple papers warn that “more thinking” can backfire: both controlled studies
and empirical audits document overthinking and propose inference-time policies to cap or adapt CoT
length (Chen et al., 2024; Cuadron et al., 2025). Wu et al. (2025) uncover an inverted-U relation
between CoT length and accuracy, with optimal lengths growing with task difficulty but shrinking
with model capability; RL training further biases models toward shorter, more efficient chains (Wu
et al., 2025). Complementary work finds that excessively long CoTs can harm performance on simple
instances, cautioning against unbounded test-time scaling (Chen et al., 2024; Cuadron et al., 2025;
Xia et al., 2025).

Attention Attribution Recent work has examined whether attention weights can serve as faithful
explanations, but evidence shows that raw attention distributions are often unreliable and can be
manipulated without changing predictions (Serrano & Smith, 2019; Jain & Wallace, 2019). Studies of
BERT and related models reveal recurring head patterns linked to syntax and coreference, while many
heads appear redundant or dispensable (Clark et al., 2019; Voita et al., 2019; Michel et al., 2019).
To better capture information flow, techniques such as attention rollout and relevance propagation
have been proposed to trace or aggregate attention through layers, yielding more faithful token-level
attributions (Abnar & Zuidema, 2020; Chefer et al., 2021). In parallel, probing methods such as
classifier probes, edge probing or structural probes, demonstrate that specific layers encode linguistic
features in a pipeline-like progression (Hewitt & Manning, 2019; Tenney et al., 2019). More recently,
researchers have discovered “sink tokens” that absorb disproportionate attention mass, leading to
diluted signals across depth and biased rollout analyses, with mitigation strategies explored in both
language and vision Transformers (Kobayashi et al., 2020; Dong et al., 2021; Sun et al., 2022).

16



Under review as a conference paper at ICLR 2026

A.2 EXPERIMENT SETUP

A.2.1 DATASETS AND TASK TAXONOMY.

To comprehensively evaluate reasoning across diverse domains, we group benchmarks by the primary
reasoning skill they target. This taxonomy spans logical, arithmetic, commonsense, and symbolic
reasoning, ensuring that our analysis captures a wide spectrum of cognitive capabilities.

* Logical reasoning: GPQA-DIAMOND (Rein et al., 2023). GPQA-DIAMOND is a recently
introduced benchmark consisting of graduate-level, Google-proof questions designed to probe
advanced logical reasoning. The dataset emphasizes multi-hop reasoning and deductive inference,
requiring models to integrate evidence across multiple statements before arriving at a conclusion.
Unlike typical factual QA benchmarks, GPQA-DIAMOND minimizes reliance on web-searchable
facts, thereby isolating genuine reasoning ability from memorization.

 Arithmetic reasoning: MATHS500 and AIME24 (Hendrycks et al., 2021; Lightman et al., 2023;
Jia, 2024). The arithmetic category evaluates the capacity of models to manipulate numbers, apply
mathematical formulas, and perform multi-step computations. MATHS500 is a curated subset
of 500 problems sampled from the broader MATH dataset (Hendrycks et al., 2021), covering
algebra, geometry, probability, and other competition-style mathematics. AIME?24 is a collection
of problems from the 2024 American Invitational Mathematics Examination, one of the most
challenging pre-collegiate contests. The questions are designed to require multi-step derivations
and precise symbolic manipulation, often beyond simple arithmetic.

¢ Commonsense reasoning: STRATEGYQA (Geva et al., 2021). STRATEGYQA is a benchmark
focusing on implicit commonsense reasoning. Unlike direct QA datasets, the questions often
cannot be answered with a single fact but instead require models to generate a strategy for
combining multiple weak signals (e.g., “Could a crocodile run a marathon?”). This dataset tests a
model’s ability to operationalize background knowledge and apply everyday reasoning skills in
novel contexts.

¢ Symbolic reasoning: COINFLIP and LAST LETTER (Wei et al., 2022a). These synthetic
tasks were introduced to stress-test chain-of-thought prompting. In COINFLIP, the model must
track the state of a coin after a sequence of flips, which requires deterministic state updates over
potentially long sequences. In LAST LETTER, the model must return the last letter of each word in
a given string and concatenate them. Despite their apparent simplicity, these tasks are challenging
for LLMs, as they require precise symbolic manipulation, memory of intermediate steps, and
robustness to input length.

Together, these datasets form a comprehensive suite that spans from formal logic and competition-
level mathematics to real-world commonsense and strict symbolic reasoning. This breadth allows
us to evaluate whether improvements from our proposed method generalize across fundamentally
different reasoning paradigms. For ablation study, we select the first 50 questions for GPQA-Diamond
as testing dataset.

A.2.2 HYPER PARAMETERS AND ADDITIONAL DETAILS

For the max token length, we follow the practice of Liu et al. (2025) to set the max token to be 8192
for all the models except for LLaMA-3.1-8B, where we set the max token to 4096. For the sampling
process, we set the max token uniformly to 4096.

For smaller modes, these set up has cause some of the questions not to be answered as the thinking
process do not finish. For such cases, we exclude them from the calculation of the final accuracy as
we consider this as model limitation, not the limitation of our methods.

We set the temperature to be 0.7 throughout all the models in all the generation process for both our
method and baselines.

We consider punctuations, special tokens and stop words from nltk as non-semantic tokens.

17



Under review as a conference paper at ICLR 2026

A.3 THEMIT METHODOLOGY ALGORITHM

For the full procedures for the MIT method, please refer to the algorithm below.

Algorithm 2 Metacognitive Influence Tracing (MIT)

Require: Raw attention matrices {A; 5 };=1..1, h=1.1 With A;; € REXK token sequence T,
answer token indices T,,s, CoT token indices T¢or, diffusion scale v > 0
1: procedure MIT({A; .}, T, Tans, Tcot)
// Stage 1: Attention Signal Purification
Initialize purified set {4] ,} + @
for/=1to L do
for h =1to H do
Atemp — Al,h
Atemp ¢ FILTERSEMANTICTOKENS (Asemp, T')
diag(Aemp) < 0 > remove self-attention
Add Ay to {A; nt
end for
end for
// Stage 2: Layer Aggregation
11: Initialize A” € RHXKXK with zeros
12: forh:ltoH(Llo
13: Al = T3 AL,
14: end for
// Stage 3: Kurtosis-Weighted Head Aggregation

SYRIDINRERD

—_

15: Initialize A € RE>*X with zeros

16: for:=1to K do > target token index
17: weRH > per-head weights for row i
18: for h =1to H do

19: wy, < Kurtosis(AJ[7,:])

20: end for

21: w <+ w/ Zthl wp, > normalize
22: for j = 1to K do > source token index
23: Ali, 5] S5 wp, - AYli, )

24: end for

25: end for
// Stage 4: Influence Propagation

26: S« exp(vA) > matrix exponential diffusion over token graph
// Stage 5: Critical Juncture Identification

27: Initialize Score € RITer! with zeros

28: for each token index j € Tt do

29: Score(j) < > ier,. S,

30: end for

31: Jeritical ¢ arg Max et Score(j)

32: return jeritical

33: end procedure

18



Under review as a conference paper at ICLR 2026

A.4 PROPAGATION KERNELS

A.4.1 THEORETICAL ANALYSIS

To apply the principle of propagation, we model the reasoning trace as a directed graph and propose
that the total, propagated influence can be measured by a diffusion process on this graph. Formally, this
leads us to define a family of diffusion kernels, or equivalently propagation operators, parameterized
by different matrix functions of the attention matrix A € RN*YN_ Each kernel describes how
information diffuses across multiple hops, ranging from purely local propagation to global mixing,
with different mathematical properties and constraints.

First Order Kernel The most basic form is the first-order kernel, which corresponds to one-step
diffusion:

K I-hop — A. (7)
This operator captures only direct interactions between tokens, reflecting immediate influence between
neighbors. While computationally efficient and stable, it cannot capture multi-hop dependencies.

Second Order Kernel To extend beyond immediate neighbors, we may incorporate two-step
diffusion via the second-order kernel:

KZ—hop =A+ A2- (8)

Here the term A2 encodes influence transmitted through a single intermediary, while the additive
form balances first- and second-order contributions. This kernel thus expands the local receptive field,
but still truncates higher-order paths.

Resolvent Diffusion Kernel To model paths of arbitrary length, we consider the resolvent diffusion
kernel, also known as the Green’s function kernel, given by the Neumann series:

Kresolvent = Z Ak = A(I - A)_lv (9)
k=1

which converges when the spectral radius p(A) < 1. This constraint ensures stability but may be too
restrictive in practice. A damping parameter «« € (0, 1) can be introduced:

oo

Kreso]vem,a = Z(QA)k = aA(I - aA)ila (10)
k=1

which guarantees convergence for all « < 1/p(A). The resolvent kernel assigns equal weight to
paths of all lengths (modulo damping), allowing very long walks to contribute substantially. While
expressive, this sensitivity to the spectrum of A and to the choice of o must be carefully controlled.

Heat Kernel An alternative diffusion kernel is the heat kernel, defined via the matrix exponential
with a damping factor v > 0:

(A)? | A
2! 3!
Unlike the resolvent kernel, the heat kernel includes paths of all lengths but discounts them by
¥ /k!, strongly suppressing long walks. This factorial decay emphasizes short- and medium-range
interactions. Moreover, the exponential series converges unconditionally for any square matrix A,
making it numerically stable and well-defined regardless of spectral radius.

Khea(7) = exp(vA) =T +vA + NP (11)

The spectral interpretation highlights these differences. If A = QAQ ! with eigenvalues {);}, then
Kheat(7) = Q diag(e?™1, ..., e?*M)Q L. (12)

Thus the damping parameter ~y acts as a nonlinear spectral filter: small values yield a local approx-
imation close to I + yA, while larger values amplify the contributions of dominant eigenmodes,
enhancing global propagation. In contrast, the resolvent kernel corresponds to a rational spectral
filter:

. al a\ _
Kresolvem,a = leag<1 7Oél>\17-~-a 1 O?;\]\]) Q 17 (13)

19



Under review as a conference paper at ICLR 2026

which assigns equal geometric weight to paths of different lengths, modulated only by damping.

In summary, diffusion kernels provide a principled way to formalize propagation in attention. The
first- and second-order kernels are local and stable but limited in scope. The resolvent kernel allows
arbitrarily long-range interactions but requires spectral constraints and careful damping. The heat
kernel is stable for all matrices, tunable through ~, and naturally emphasizes moderate path lengths
via factorial discounting. This diffusion perspective unifies multiple propagation kernels and clarifies
their trade-offs in balancing locality, stability, and expressivity.

A.4.2 EMPIRICAL ANALYSIS

Reasoning Model We also conducted empirical comparison to compensate our theoretical analysis.
We start by studying the impact of different kernels on the reasoning model. Using DeepSeek-
Distilled- Qwen-1.5B model on the problem gpga-diamond—0020, we want to study how different
kernels impact the most influential token for each token within a generated trace.

We first identify the most influential token for each token (target token) in the propagated attention
matrix, then we group them by the distance between the most influential token and the target token.
This help us evaluate the diffusion process spread across the graph.

5000 5000

4000 4000

3000

3000

2000 2000

Number of Influences
Number of Influences

1000 1000

10° 102 10° 102
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]

(a) Influence Count by Distance - Heat Kernel (b) Influence Count by Distance - First Order
Kernel

5000

4000
4000

3000 3000

2000 2000

Number of Influences
Number of Influences

1000 1000

10° 102 10° 102
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]

(c) Influence Count by Distance - Second Order (d) Influence Count by Distance - Resolvent
Kernel Kernel

Figure 5: Influential Count Study for Propagation Kernels. This plot shows the distribution of
distances between the most influential token and the corresponding target token. The curve exhibits
a relatively smooth trend, with the majority of critical influences concentrated within a distance of
approximately 100 tokens, after which the influence count gradually saturates with occasional jumps.

20



Under review as a conference paper at ICLR 2026

0.00040
0.00025
0.00035
£ 0.00030 £ 0.00020
S S
2l 2l
$ 0.00025 ]
5 $ 0.00015
=3 =3
& 0.00020 =
£ £
c <
000015  0.00010
= =
0.00010 0.00005
0.00005
10° 2 10° 10°
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]
(a) Mean Score by Distance - Heat Kernel (b) Mean Score by Distance - First Order
Kernel
0.0010
0.0004 0.0009
[ [
S S 0.0008
S 3
(%2} (%2}
$ 0.0003 $0.0007
c c
g g
2 2 0.0006
£ £
£ 0.0002 £ 0.0005
Q Q
= =
0.0004
0.0001
0.0003
10° 10? 10° 10?
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]

(c) Mean Score by Distance - Second Order (d) Mean Score by Distance - Resolvent Kernel
Kernel
Figure 6: Mean Score Study for Propagation Kernels. This plot shows the distribution of influential
score based on distances. We observe a spike in score when the distance is really far. We hypothesize
that this resembles the attention sink pattern.

4000

3500 3500

Rank 1-10 Rank 1-10
3000 3000
2500 2500
Rank 10-100 2000 Rank 10-100 2000
1500 1500
1000 1000

Rank 100-1000 “ Rank 100-1000
500 500

0
o &

Influence Rank Range
Count
Influence Rank Range
Count

:$p :§§$ o
Distance Distance
(a) Rank Distribution by Distance — Heat (b) Rank Distribution by Distance — First Order
Kernel Kernel
3000
3500
Rank 1-10 Rank 1-10
@ 3000 ) 2500
2 2
2 2500 3 2000
~ ~
5 2000 £ 5 £
2 Rank 10-100 3 € Rank 10-100 1500 3
g 1500 2
[ [
2 2 1000
€ 1000 €
Rank 100-1000 500 Rank 100-1000 500
Ssga o ® &
Distance Distance

(c) Rank Distribution by Distance — Second (d) Rank Distribution by Distance — Resolvent
Order Kernel Kernel

Figure 7: Rank Distribution Study for Propagation Kernels. For Resolvent Kernel where paths of
different distances are considered equally, we observe a blurring effect where details are lost and
hypothesis that it is the cause of the relatively low performance compared to the Heat Kernel.

21



Under review as a conference paper at ICLR 2026

5000 First-order 0.0010 First-order
Second-order Second-order
Resolvent Kernel Resolvent Kernel
" 4000 Heat Kernel 10,0008 Heat Kernel
g S
o (2]
23000 & 0.0006
- [
bS] 2
g 2000 E 0.0004
£ ©
2 s
1000 0.0002
0 0.0000 I
10 102 10° 102
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]
(a) Kernels Influential Count Comparison Analysis (b) Kernels Influential Score Comparison Analysis

Figure 8: Influential Count and Score Comparison. We observe similar trends in both model analysis.
First order kernel, second order kernel and heat kernel are relatively closer to each other whereas
resolvent kernel demonstrates some distance.

Non-Reasoning Model We follow the same strategy and test it on non-reasoning model - LLaMA-
3.1-8B on the same question. Overall we observe similar trends between different kernels and we
also observe some interesting behavior for LLaMA that we did not see in tests in reasoning models.

First observation is that compared to reasoning models, non-reasoning model does not show as much
distinction between Resolvent kernel as the other kernels.

Also for non-reasoning models, we observe a regular spike in both influence count by distance, and
the mean score by distance. We hypothesize that this is caused by the model dividing tokens into
buckets with cognitive markers, and use such markers, for easier state managements.

We also observe a U shape in mean score by distance, where the mean score first goes down as
distance increases, however it gradually goes back up when distance continuously increases.

22



Under review as a conference paper at ICLR 2026

2000 2000
1750 1750
41500 g 1500
2 e
g 1250 5 1250
E €
+ 1000 + 1000
o o
é 750 é 750
2 500 2 500
250 250
0 0
10° 2 10% 2
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]

(a) Influence Count by Distance - Heat Kernel (b) Influence Count by Distance - First Order

Kernel
2000 2000
1750 1750
£ 1500 $ 1500
3 3
2 2
g 1250 g 1250
E T
< 1000 < 1000
o s}
8 750 g 750
€ €
2 500 2 500
250 250
0 0
10° 102 103 102
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]
(c) Influence Count by Distance - Second (d) Influence Count by Distance - Resolvent
Order Kernel Kernel

Figure 9: Influential Count Study for Propagation Kernels. All kernels follow a similar trend. We also
observe for LLaMA there are occasional spikes repeatedly occurring through out the distance range.

0.00045 0.00035 |
0.00040
0.00030
[ [
5 0.00035¢ 5
&5 & 0.00025
©0.000301 g
g 15
2 0.000251 2 0.00020
£ £
c c
 0.00020{ ©0.000151
= =
0.00015
0.00010
0.000101
10° 10° 10° 10°
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]
(a) Mean Score by Distance - Heat Kernel (b) Mean Score by Distance - First Order
Kernel
0.0006 1
0.00050
0.00045 { 0.00051
[
S 0.000401 g
S S
(%2} (%2}
©0.00035 @ 0.0004
e g
2 0.00030° 3
E £0.0003 |
< 0.000251 =
g §
= 0.00020 =
0.0002
0.00015 {
0.00010 { 1 0.00011 | |
10° 10? 10° 10?
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale

(c) Mean Score by Distance - Second Order (d) Mean Score by Distance - Resolvent Kernel
Kernel

Figure 10: Mean Score Study for Propagation Methods. We notice an U shape in all kernels, where
the mean score first goes down as distance increases, but goes up when the distance is really big. A
spike in the far distance is also observed in reasoning models in Figure 6, however for non-reasoning
models the pivot point happens way earlier and the trend going up is more smooth.

23



Under review as a conference paper at ICLR 2026

1600 1600
Rank 1-10 1400 Rank 1-10 1400
% 1200 % 1200
[=4 [=4
& &
~ 1000 ~ 1000
(=4 - c e
© S © 5
&  Rank 10-100 800 3 & Rank 10-100 800 3
[ o [} [}
2 600 2 600
E 2
E 400 € 400
Rank 100-1000 Rank 100-1000
200 200
N N N N
$ 1) ) 3
N 5
Distance Distance
(a) Rank Distribution by Distance - Heat Kernel (b) Rank Distribution by Distance - First Order Kernel
1600 1600
Rank 1-10 1400 Rank 1-10 1400
g’ [
g 1200 g’ 1200
& &
~ 1000 ~ 1000
c = f -
© < © <
& Rank 10-100 800 3 & Rank 10-100 ‘ 800 3
[ o [} o
g 2
] 600 S 600
3 3
2 2
€ 400 c 400
Rank 100-1000 Rank 100-1000
200 200

/\9°° o §o° &
Distance Distance
(c) Rank Distribution by Distance - Second Order (d) Rank Distribution Distance - Resolvent Kernel

Kernel

Figure 11: Rank Distribution Study for Propagation Methods. All kernels exhibit similar patterns.
The blurring effect in non-reasoning models is not as strong as that of reasoning models in Figure 7.

2000 First-order 0.0006 First-order
Second-order Second-order
1750 Resolvent Kernel Resolvent Kernel
Heat Kernel 0.0005 sta’: \;:n:nmerne

£ 1500 o

e S

21250 1 0.0004

= [

E g

= 1000 9]

° 2 0.0003

2 750 £

Q

:

2 500 £ 0.0002

250
0.0001
0
10° 102 10° 102
Distance (Source - Target) [Log Scale] Distance (Source - Target) [Log Scale]
(a) Reasoning Model Strategy Analysis (b) Non-Reasoning Model Strategy Analysis

Figure 12: Influential Count and Score Comparison. Generally speaking, compared to reasoning
models, different kernels follow a much more similar patterns for non-reasoning models.

24



Under review as a conference paper at ICLR 2026

A.5 PROPAGATION PARAMETER

Selecting the Propagation Parameter v To better understand the influence of the exponential
decay parameter -y, we visualized the rank distribution across a range of values: v € {1,2,3,5,8,13}.
As shown in Figure 13, smaller values of v (e.g., 1 and 2) emphasize higher influence concentration
in the mid- to high-ranked tokens (i.e., rank 100—1000) in the distance between 50 to 1000, while
preserving noticeable gradients across distance. In contrast, higher values of v (e.g., 5, 8 or 13)
over-emphasize long-distance influence, resulting in overly flat and uniform rank maps between the
distance 50 to 1000, indicative of diminished propagation power. Based on these insights, we selected
~ = 2 as the default for exponential propagation, as it provides a good trade-off between sparsity and
depth-aware diffusion.

This choice is further supported by the ablation results in Figure 14. For non-reasoning models,
performance consistently declines as -y increases beyond 2, while for reasoning models we observe
an unexpected spike at v = 13. These differences suggest that reasoning and non-reasoning models
occupy distinct optimization regimes, and that the optimal v may depend on the model’s reasoning
style rather than a single universal setting.

<
[
-
<
[
N
<
[
w

3500

Rank 1-10

Rank 10-100

Rank Range

Rank 100-1000

K

Rank 1-10

Rank 10-100

Rank 100-1000

%
2,

Rank 1-10

Rank 10-100

Rank Range

Rank 100-1000

0y
§§
oS

Distance

Rank 1-10
Rank 10-100

Rank 100-1000 |||

3,
a"o

Rank 1-10

Rank 10-100

Rank 100-1000

3000

2000 §

1500

Rank 1-10

Rank 10-100

Rank 100-1000

'
9 &

Distance

3500

2000

.
9 &

Distance

Figure 13: Rank distribution across different exponential decay values (y € {1,2,3,5,8,13}).

70

B Non-reasoning

60 61.1 Reasoning
50
44.4 29 444
by 38.9
§ 40 5.7 35.7
=]
o
8.6 8.6
t<., 30 27.8
1.4
20 16.7
0

Gamma 1 Gamma 2 Gamma 3 Gamma5 Gamma 8 Gamma 13

(Ours)

Figure 14: ACS performance under different gamma values: (y € {1,2,3,5,8,13})

25



Under review as a conference paper at ICLR 2026

A.6 LAYER WISE AGGREGATION ANALYSIS

We conducted a layer-wise aggregation analysis to study the impact of different methods on infor-
mation propagation across layers, for both reasoning and non-reasoning models. Our findings are
consistent across model types, and we summarize the key insights as follows:

* Cleaning improves interpretability by isolating semantically meaningful dependencies, allowing
logical influence patterns to emerge more clearly.

* Average and Average Decay aggregation strategies highlight fine-grained distinctions across
layers, enabling the emergence of more nuanced, structured patterns.

All 8 Methods Impact Matrix Comparison (Averaged Across Heads)

Average (Cleaned) Average (Raw) Average Decay (Cleaned) Average Decay (Raw)

o o o o
T s T s T s T s
s k] 0 3 ket Lo
R 08 210 0s BV 08 210 08
3 5 £ 8 £ .
2 2 2 2
g1 06 15 06 £15 06 Z15 06
g 2 2 S
£20 04 £ 04 £ 04 £ 0.4
£ 02 £ 02 § 02 § 02
g2 g2 g g2
g 00 § 00 § 00 § 0.0
R EEY g g o
35 35 35
o 10 20 30 o 0 10 20 30 o 10 20 30
Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier)
Classic Rollout (Cleaned) Classic Rollout (Raw) Soft Rollout (Cleaned) Soft Rollout (Raw)
o 0 o o
g g H 5 s
s k| 0 3 k] 10
10 06 310 0s E o1s %0 0s
2 2 2 2
g15 g1 o6 £ g1s 06
g 04 £ g 010 %
£2 22 0a £ £20 04
= 02 o 2 005 2
g2 g 25 02 22 825 02
3 8 8 3
g 00 § 00§ 000 § 0.0
g g e g
35 35 35 35
o 10 20 30 o 10 0 10 20 30 o 10 20 30
Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier)
All 8 Methods Impact Matrix Comparison (Averaged Across Heads)
Average (Cleaned) Average (Raw) Average Decay (Cleaned) Average Decay (Raw)
0
T s B B 3
210 = 2 =
g o8 2 o8 2 og £ 08
3 3 H 3
g 15 g H 2
2 o6 £ 06 £ o6 £ 06
g 2 2 g
220 0s 2 04 2 04 2 04
£25 02 £ 02 § 02 § 0.2
3 8 - 3
@ 30 00 § 0.0 &:, 0.0 § 0.0
e e i e
35
o 10 20 30 0 10 20 30 0 10 20 30 0 10 20
Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier)
Classic Rollout (Cleaned) Classic Rollout (Raw) Soft Rollout (Cleaned) Soft Rollout (Raw)
o
s g H i
ket 08 5 0 3 g 10
210 = 08 T = 08
5 06 T B 015 5 :
§15 H 2 2
2 2 o6 £ g 06
< 0 < < 010 <
g2 2 0a £ £ 04
£ 25 02 £ 02 £ 005 £ 02
3 8 8 3
§ 30 00 § 00 § 000 § 0.0
2 © © 2
35
o 10 20 30 o 10 20 30 10 20 30 o 10 20 30
Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier) Token Being Attended To (Earlier)

Figure 16: Layer-wise Aggregation Analysis (DeepSeek-Distilled-Qwen-1.5B)

26



Under review as a conference paper at ICLR 2026

A.7 CRITICAL TOKEN STUDY

A.7.1 COGNITIVE MARKER DISTRIBUTION

We study the vocabulary of reasoning and non-reasoning models that are surfaced by MIT , and
present their distributions grouped by model in Figure 17. Across both reasoning and non-reasoning
models, we observe consistent reliance on a small set of cognitive markers. Words such as “okay”
and “step” appear as dominant tokens across multiple models, highlighting their role as universal
markers of process control and explicit reasoning progression.

Interestingly, the SmoLM3-3B (Thinking) model exhibits a strikingly uniform pattern: all critical
junctures are marked by the token “okay”, which is also found in the reasoning-oriented DeepSeek-
Distilled-Qwen-1.5B. This suggests that these models adopt a highly cognitive style of reasoning,
repeatedly signaling checkpoints of internal validation. However the particular word used differ from
model and can be due to the training process of each model such as SmoLM3-3B (Thinking) prefer
“okay” whereas DeepSeek-Distilled-Qwen-1.5B prefers “wait”.

By contrast, non-reasoning models such as Gemma-3-270M-IT and LLaMA-3.1-8B reveal more
heterogeneous distributions (Figure 17). Tokens such as “answer”, “therefore” surface as frequent
critical junctures, reflecting a more linguistically diverse and procedural reasoning style. The
particular word “step” is given in the prompt, so it might not be consistent when prompt changes.
But other word that connects reasoning together such as “therefore”, “because”, “given” do not

present within the prompts.

These findings suggest that reasoning models converge toward concentrated cognitive markers
to signal decision checkpoints, while non-reasoning models spread cognitive load across diverse
linguistic markers. This contrast highlights a fundamental difference in how model classes manage
and externalize their reasoning processes.

Gemma-270m LLama3-8b DS-Qwen-1.5b

exactly optiong concatenate
flips Slower letermine

correct option
irane
however

final

wait
therefore

phenol

answer step

okay

SmoLM3-3b SmoLM3(think)-3b

problem

wait

consider

think
because okay

Figure 17: The distribution of cognitive marker surfaced as critical junctures by models

27



Under review as a conference paper at ICLR 2026

A.7.2 CRITICAL TOKEN RESAMPLE WORD STUDY

Figures 18 and 19 compare the tokens surfaced by MIT at critical junctures with the first tokens
generated during resampling. Overall, the vocabulary does not change substantially: dominant cogni-
tive markers such as “okay” and “wait” continue to appear frequently after resampling. Likewise,
procedural markers such as “step” and “final” remain stable across both stages. However, especially
for reasoning model, we notice the first token generated during resampling is much more diverse
compared to the critical juncture token surfaced by MIT. This supports our hypothesis that critical
junctures are gateways towards high-variance regions, which resample allows more candidates to be
created, leading to a diverse vocabulary.

1 -
O a ) Egu e
==
ogs ’
it
mphenol irane tor

correct ® a:nESWé E
Wa l iRl i

ppn 7 ° =
hmm]_flnd t
determine> irbécalise

Figure 18: The word cloud for the critical token. Reasoning model on the left in blue, non-reasoning
model on the right in red.

switzerland rew

done

matches
indeed

selected

altrébtl“eﬁéctlvelyo whether..jndeedg”- COI rect

determine a.ccwait . M U 4Ny =Sl

determine

ack.cc## .C
+
find L
take text{but question "
+
3 summary o
correct : ot
E_ understand
problém
but [ ] h
=~ showeverT .
osreas | Osreaa-ceyeah é 2 ’ ‘ | |§a e
“torus % ]
maybe SO

choices
et the efore
f 'trees ccthe
ta. cchut
vl note l n

slower.ccthe c\boxed{b}

Figure 19: The word cloud for the sampled first token. Reasoning model on the left in blue, non-
reasoning model on the right in red.

28



Under review as a conference paper at ICLR 2026

A.7.3 MOST INFLUENTIAL TOKEN DISTANCE STUDY

We study the distance between the critical token surfaced by MIT and the start of the answer token
to gauge the diffusion scope MIT provides. As shown in Figure 20, our analysis reveals distinct
cognitive patterns across different language models in terms of how far their most influential tokens
are positioned from the final answer. Generally reasoning model has exhibit longer range. We
hypothesize this capability allows it to understand previous trace and lead to better performance.

For non-reasoning models, Gemma-3-270M-IT demonstrates the most localized reasoning strategy,
suggesting it relies heavily on immediate contextual cues near the answer location. LLaMA-3.1-8B
and SmolLM3-3B exhibit similar distributed reasoning patterns with median distances of 74.5 and 77
tokens respectively, though their high standard deviations (1,534 and 2,462 tokens) indicate significant
variability in their reasoning strategies.

For reasoning models, DeepSeek-Distilled-Qwen-1.5B has median distance of 492 tokens, showing
more structured long-range reasoning than the non-reasoning models but remaining more focused
than the bigger reasoning models. SmolLM3-3B(Think), the specialized reasoning variant, shows the
most systematic pattern with a median distance of 780 tokens—demonstrating that explicit reasoning
training encourages models to establish critical decision points much earlier in the thought process.
The relatively low variance in SmolLM3-3B(Think) (502 tokens) compared to its base model suggests
that reasoning-trained models develop more consistent cognitive strategies, while non-reasoning
models exhibit more unpredictable patterns depending on the specific question type.

Distance from Influential Token to Answer Sequence Length Distribution

8000 g P
g 8000 °

6000

4000 °
o

2000

Lo B2 i dfs I

6000

4000

Distance (tokens)
Sequence Length (tokens)

N QL QL QL & L 2 Q QL Y
N N S O
s A2 ~° & <S8 & A° ~ & <8
BN > & S S 3 bl S > N
A W & & o o W o & E
& ) »° o« & & 3 5 < 4
< e N & < e g &
<& & 2 & & N
< 9 <
¥ &
o ol
& &
* *
5 Most Common Distance Ranges Distance vs Sequence Length
© Gemma3270MiT o smouwss
80001 ° Liawa3ise o SmolM338(Think R4
® DeepSeek-Distilled-Qwen-1.58 © e
)
40
34.0% 6000
_ 5 o
£30 3
m <
= 2
€ 22.6% ‘@ 4000 o
g g
920 g
a
14.5% °
13.1%
2000 8 (]
10 8.1% 2 o ©
T X ok .
.
® . o o o
0 L I o 1Y
0
) o o o o x 0 2000 4000 6000 8000
b2 o i) O o o
o > o S S S
& R & & D Sequence Length
v;

Distance Range (tokens)

Figure 20: The distance between the surfaced critical token by MIT and the start of the answer token.
Our analysis reveals distinct cognitive patterns across different language models in terms of how far
their most influential tokens are positioned from the final answer. Generally reasoning model has
exhibit longer range. We hypothesize this capability allows it to understand previous trace and lead to
better performance.

29



Under review as a conference paper at ICLR 2026

A.8 CoST CALCULATION

To provide a fair and rigorous comparison between Self-Consistency (SC) and our proposed Adaptive
Critical Sampling (ACS), we must account for the full computational cost of each method. We
propose using Floating-Point Operations (FLOPs) as a unified currency to measure both LLM
inference and the numerical computations within MIT.

The total cost for any method can be expressed as:
TotalCostimethod = COStdiagnostic + COStgeneration (14
For Self-Consistency, CoStgiagnostic 18 zero. For ACS, it is the cost of running the MIT algorithm.

A.8.1 CosT OF LLM GENERATION

The computational cost of autoregressive generation from a transformer model is dominated by
the forward passes. A common approximation for the FLOPs required for a single forward pass
is 2 x P x T, where P is the number of model parameters and 7T is the sequence length. Since
generation is sequential, the total cost for a sequence of length Tiy, is the sum of the costs for
generating each token:
Tmml
Costyen(Tiow) & D 2 x P xim P xToy (15)

=1
A.8.2 COST OF THE MIT DIAGNOSTIC

The cost of the MIT diagnostic is non-trivial and can be broken down by its most computationally
intensive stages, operating on a sequence of length K:

* Aggregation (Stages 1-3): These stages involve matrix manipulations across all layers (L) and
heads (H) for the K’ x K attention matrices. The cost is roughly proportional to the square of the
sequence length:

Costyge o< L x H x K? (16)

* Propagation (Stage 4): This is the primary computational bottleneck. It requires calculating the
matrix exponential of the K x K influence matrix. The complexity of this numerical operation is
approximately cubic in the matrix dimension:

CoStyrop ¢ K an

The total cost of MIT is therefore dominated by the propagation step, scaling cubically with the
length of the reasoning trace.

Costyir(K) = ¢1(L x H x K?) + c(K?) (18)

where ¢ and ¢y are machine-dependent constants and we set ¢; to be 8 and cs to be 40 base on
benchmarking on aws ml.g5.48xlarge instance.

A.8.3 PROPOSED COST COMPARISON FRAMEWORK

Using this framework, we can define the total cost for generating N samples for each method. Let
Tiun be the length of a full reasoning trace and Ty« be the length of the trace generated after a
critical juncture.

The total cost for Self-Consistency is:

TotalCostsc = N x Costgen (Ttun) (19)
The total cost for Adaptive Critical Sampling is:
TotalCostacs = COStgen(Tfuu) —+ COStMIT(Tqu) —+ (N — ].) X COStgen(Tsufﬁx) (20)
Initial Trace Diagnostic Overhead Resampling Suffixes

This framework provides a principled and transparent methodology for evaluating the true efficiency
trade-offs, revealing under which conditions (e.g., long vs. short reasoning traces) the diagnostic
overhead of MIT is justified by the savings in generation cost.

30



Under review as a conference paper at ICLR 2026

A.8.4 THEORETICAL COST ANALYSIS

In practice, the apparent cubic overhead of MIT should be understood in relation to the dominant
cost of autoregressive generation. While Costyyr(K) scales as K 3. the generation cost scales as
P x T2, where P is the number of model parameters. For modern LLMs with P in the billions and
context lengths in the thousands, P > K, meaning the per-token matrix multiplications in generation
dominate the computational bill. As a result, the one-time K3 diagnostic is negligible compared to
repeatedly multiplying against billions of parameters during token generation. Put differently, the
crossover point where Costyr (/') becomes comparable to Cost,e, only arises for very small models
(tens to hundreds of millions of parameters) or extremely long traces. For the parameter scales where
self-consistency is typically applied (multi-billion parameter LLMs), MIT is therefore asymptotically
and empirically cheaper than regenerating full traces, which explains the consistent efficiency gains
of ACS over SC.

For example, consider K = 2048 tokens and a model with P = 7 x 10% parameters. The diagnostic
propagation step requires on the order of K> = 8.6 x 10° operations. By contrast, generating a full
trace costs approximately P x K2 ~ (7 x 10%) x (4.2 x 10°) ~ 3 x 10'° operations. Thus, the MIT
overhead is roughly six orders of magnitude smaller than the generation cost. This illustrates that,
for billion-parameter models and typical reasoning trace lengths, the cubic diagnostic is essentially
negligible relative to autoregressive decoding.

A.8.5 EMPIRICAL COST ANALYSIS

Interestingly, the reasoning model demonstrates a lower overall computational cost compared to
the average non-reasoning model. This counterintuitive result arises from how critical junctures
are identified and the computational trade-offs inherent in our Adaptive Critical Sampling (ACS)
approach. For example, reasoning models such as DeepSeek-Distilled-Qwen-1.5B tend to identify
critical junctures later in their reasoning traces (at approximately 3,304 tokens). In this case, the
diagnostic overhead introduced by MIT (1.51 x 102 FLOPs) is effectively amortized across sub-
stantial resampling savings. As a result, the majority of DeepSeek-Distilled-Qwen-1.5B’s total cost
(3.52 x 10'7 FLOPs) comes from efficient suffix resampling rather than redundant full-sequence
generation.

By contrast, non-reasoning models display greater variability in computational efficiency. LLaMA-
3.1-8B achieves notable savings (61.0% reduction) by identifying critical points at an optimal 2,225
tokens, whereas Gemma-3-270M-IT detects critical junctures much earlier (563 tokens). This early
detection leads to heavier suffix regeneration costs. Specifically, for Gemma-3-270M-IT, our method
reduces computational cost from 5.69 x 10'7 FLOPs under Self-Consistency to 3.89 x 10!” FLOPs—
a reduction of 31.6% . However, the early critical juncture means the MIT diagnostic overhead is less
effectively amortized, highlighting how our method’s computational efficiency depends critically on
the timing of critical moment identification.

31



Under review as a conference paper at ICLR 2026

A.9 MIT MEMORY CONSUMPTION CALCULATION
A.9.1 THE MEMORY CONSUMPTION OF MIT

The primary limitation on the scalability of the Metacognitive Influence Tracing (MIT) algorithm
is its memory consumption. The core of the method relies on storing and processing full K x K
attention and influence matrices, where K is the length of the reasoning trace. This results in a
memory complexity that scales quadratically, or O(K?), with the sequence length, which can
become prohibitively large for very long sequences.

A.9.2 MITIGATION 1: LAYER-BY-LAYER CALCULATION

In our application, we mitigate this issue by avoiding the need to load the entire raw attention
tensor (of size L x H x K x K) into memory at once. Instead, the implementation performs a
layer-by-layer calculation. It processes the attention matrices for each layer sequentially, updating
a running aggregate for each attention head before discarding the raw layer data. This approach
reduces the peak memory requirement from O(L x H x K?) down to O(H x K?). While this is a
significant practical improvement, it does not change the fundamental quadratic scaling with respect
to the sequence length K.

A.9.3 MITIGATION 2: REDUCING COMPLEXITY TO O(K)

To achieve a true linear memory complexity of O(K), a promising future direction is the integration
of sparse attention techniques, such as a sliding window model. In this approach, instead of
each token attending to all previous tokens, it would only attend to a fixed number of its immediate
neighbors (a “window” of size w). This would reduce the memory required to store attention scores
from O(K?) to O(K x w), which is linear if the window size w is a constant.

Beyond memory savings, adopting a sliding window also has significant implications for computa-
tional efficiency. In the current MIT framework, the diffusion step requires computing the matrix
exponential of a dense K x K influence matrix, leading to cubic cost O(K3) as listed in Equation
18. By restricting attention to a banded sparse structure with bandwidth w, the propagation can be
reformulated using sparse linear algebra routines. This reduces the effective cost to approximately
O(K - w?), since each token interacts only within its local neighborhood. When w < K, this can
yield orders-of-magnitude reductions in floating-point operations, especially for long reasoning traces.
Thus, sliding window not only lowers memory complexity but also offers a pathway to substantially
reduce the computational overhead of MIT.

Informing Sliding Window Size with Research Findings The critical challenge with a sliding
window approach is selecting an appropriate window size, as one that is too small could fail to capture
important long-range dependencies in the reasoning process. Our findings in Figure 20, which is the
analysis of the distance between critical tokens and the final answer, reveals that while a significant
portion (over 20%) depend on much longer-range connections, sometimes exceeding 2000 tokens,
the majority of influential interactions (over 60%) occur within a 500-token range.

80
s Non-reasoning

70 Reasoning
61.1

60 55.6
.50 50.0
8 42.9
340 35.7
Q
<3 28.6

20

10

0
Window Window Full Matrix
512 1024 (Ours)

Figure 21: Sliding Window Comparison

32



Under review as a conference paper at ICLR 2026

Experiments Based on findings from Figure 20, we have conducted two experiments with the
window size set as 512, 1024 respectively. The results are shown in Figure 21. In both settings
we do observe a drop in accuracy, as the reduced window size limit the range of influential token
searching. However we do notice that our propagation method with heat kernel enable tokens beyond
the window size to be surfaced. This is supported by Figure 22 where we observe most influential
token beyond the window size. For 28.6% of cases for window size 512 for reasoning models, the
distance between most influential token and the answer are over 512. We hypothesize that tuning the
propagation scale such as the gamma value can help with the propagation of influential tokens and
leave it as future work.

Non-reasoning Models Reasoning Models

100 100
14.3%
80

80

Distance Range (tokens)
. 0-512
. 512-1024
60.0% 57.1% m >1024

60 60

100.0%

40

20 20 40.0%

Percentage of Samples (%)

28.6%

0

512 1024 Full 0 512 1024 Full

Figure 22: Distance between most influential token and answer token in different window size settings

A.10 ADDITIONAL EXPERIMENTS

Can we sample less? We conducted additional experiments to study how the number of samples
affect the overall accuracy of ACS. We tried sample 2, 4, 8, 16 times and observe that reducing the
number of samples does not necessarily decrease the performance, neither does increasing samples
improve the performance as shown in Figure 23a. Based on the experiment, sampling 2 times will
achieve similar effects.

Should we consider multiple critical junctures? Instead of just using the most critical juncture,
we also evaluate the strategy of sampling the first 3 critical junctures, 3, 3, 2 time respectively. We
observe a performance degradation when we consider more critical junctures as shown in Figure
23. This further validates our observation that not all critical junctures are created equal, and that
cognitive investment are most impactful at the most critical juncture.

70
80 B Non-reasoning B Non-reasoning
Reasoning 60 Reasoning
61.1 61.1 50
560 55.6 > 42.9
] 340
5 42.9 42.9 42.9 5
Q40 o 28.6
o o 30
< <
20
20
10
0 0
SC2 SC4 SC8 SC16 First 1 First 3
(ours) Token Tokens
(a) Sampling Count Comparison (b) Sampling Strategy Comparison

Figure 23: Comparison of sampling approaches.

33



Under review as a conference paper at ICLR 2026

A.11 PROMPTS

Below are the prompts used in testing. We have follow the prompts used in (Olsson et al., 2022). And
for the non-reasoning models like Gemma, we adopt the LLaMA prompt in that paper. For models
with reasoning capabilities, we adopt the prompt of Qwen in that paper.

Table 4: Model Prompts

Model

Prompt

LLaMA-3.1-8B

Solve the following problem efficiently and clearly.

- For simple problems (2 steps or fewer): Provide a concise solution
with minimal explanation.

- For complex problems (3 steps or more): Use this step-by-step format:
## Step 1: [Concise description]  [Brief explanation and calculations]
## Step 2: [Concise description]  [Brief explanation and calculations]

Regardless of the approach, always conclude with: Therefore, the final
answer is: \boxed{answer}. [ hope it is correct.

Where [answer] is just the final number or expression that solves the
problem.

DeepSeek-
Distilled—Qwen-1.5B

Please reason step by step, and put your final answer within
\boxed{}.

SmolLM3-3B

Please reason step by step, and put your final answer within
\boxed{ }.

SmolLM3-3B(Think)

Please reason step by step, and put your final answer within
\boxed{ }.

Gemma-3-270M-IT

Solve the following problem efficiently and clearly.

- For simple problems (2 steps or fewer): Provide a concise solution
with minimal explanation.

- For complex problems (3 steps or more): Use this step-by-step format:
## Step 1: [Concise description]  [Brief explanation and calculations]
## Step 2: [Concise description]  [Brief explanation and calculations]

Regardless of the approach, always conclude with: Therefore, the final
answer is: \boxed{answer}. I hope it is correct.

Where [answer] is just the final number or expression that solves the
problem.

34



Under review as a conference paper at ICLR 2026

A.12 EXAMPLES

Below are examples of different components in MIT and ACS.

A.12.1 EXAMPLE FOR MIT

Target Tokens

problem -

carefully -

Answer: -
6-

o P
& &
B e

5 ¢ & &
&
§

&

Source Tokens

(a) Stage 0: Raw Attention (Layer 6, Head 3)

" .
think -
about -
g
g this-
©
il
© problem -
&
aarefully -
Answer: -
6-
N T s 0 g
CAK R T S & ¢
& R A & &
- &S « “

Source Tokens

(c) Stage 2: Layer Aggregation (Head 3)

problem -

Target Tokens

careflly -

Answer: -

Answer Row

SEV S

S

&
<& &

Source Tokens

-
&

"‘e. o
i .
e .
0s
]
5w
e
& problem -
o
“os
caretlly -
p— 02
o
B e T P
;e e & S & P
r N 3 & ¢ S o &
E & & % &

Source Tokens

(b) Stage 1: Signal Purification (Layer 6, Head 3)

<bos> -

“ .

™ . *
ik -
sbout -
o6
2
g s
K
& problem -
&
s
ety -
Answer - 02
o
. - . . -00
D PN PR
&g § R 5 5
ES s S & Iy <

Source Tokens

(d) Stage 3: Kurtosis-Weighted Head Aggregation

04
s

(e) Stage 4: Influence Propagation

Figure 24: Illustration example of the MIT algorithm. Raw attention goes through purification, layer
aggregation, head aggregation and influence propagation to form the final score matrix. Only the
rows related to the final answers were taken into consideration to select the most critical token.

35



Under review as a conference paper at ICLR 2026

A.12.2 EXAMPLE FOR ACS WITH REASONING MODEL

Question:

Given the sequence of words: apple shark vulture yak xerus. Concatenate the last letter of each word to form a new
string. What is the resulting string?

Answer Choices:

(A) tkeks

(B) eteks

(C) ekeks

(D) ekejs

Please reason step by step, and put your final answer within \\boxed{}.

Let me try to think step by step. Okay, so I have this sequence of words: apple, shark, vulture, yak, xerous.

Wait

Wait, no, hold on, the sequence is apple, shark, vulture, yak, xerus. Wait, no, hold on, the sequence is
apple, shark, vulture, yak, xerous. Wait, no, the user wrote: apple shark vulture yak xerus. So the
words are: apple, shark, vulture, yak, xerous. Wait, hold on, xerous is a word? Or is it xerous? Wait,
no, xerous is a word. Or is it xerous? Wait, no, xerous is a word. Wait, the last letters: apple ends
with p, shark ends with k, vulture ends with t, yak ends with k, xerous ends with s. So the
resulting string would be pktks.\n\nWait, but the options are (A) tkeks, (B) eteks, (C) ekeks, (D)
ekejs. Hmm, none of these options match pktks. So maybe I misread the words.

Wait, let me check: the...Apple: last letter is t.\n\nShark: last letter is k.\n\nVulture: last letter is e.
Yak: last letter is k. Xerous: last letter is s.

So concatenated: tkeks. The final answer is: \\boxed{A}.

I need to take the last letter of each word and then concatenate them all together to form a new
string. Then, I have to figure out which of the given options is the resulting string. The options are
(A) tkeks, (B) eteks, (C) ekeks, (D) ekejs. First, I need to make sure I understand the problem
correctly. I have a list of five words: apple, shark, vulture, yak, xerous. For each of these words, I
need to pick the last letter. Once I have those last letters, I concatenate them in the order they
appear in the list to form a new string. Then, I have to see which of the given options matches this
new string. Alright, so let's break it down step by step. Starting with the first word: apple. The last
letter is 'e', right? Because 'apple’ is spelled a-p-p-l-e. So the last letter is 'e’. Next, the second word is
‘shark’. Let's see: s-h-a-r-k. So the last letter is 'k'....Concatenating these last letters in order gives us
the string \"ekeks\".Thus, the resulting string is \\(\\boxed{C}\\)

The task is to take the last letter of each word and concatenate them to form a new string. Then,
among the given options, pick the correct one. The options are (A) tkeks, (B) eteks, (C) ekeks, (D)
ekejs.Alright, let's break it down step by step. First, I need to identify the last letter of each word in
the given sequence. The words are: apple, shark, vulture, yak, xerous.Starting with the first word,
\"apple.\" The last letter is 'e. So, the first character of the resulting string is 'e.'Next, the second
word is \"shark.\" The last letter is 'k." So, the second character is 'k.\n\nMoving on to the third word,
\"vulture.\" The last letter is 'e.' So, the third character is 'e.'Fourth word is \"yak.\" The last letter is
'k.' So, the fourth character is 'k.'Lastly, the fifth word is \"xerous.\" The last letter is 's.' So, the fifth
character is 's.'Putting all these together, the resulting string is 'ekeks.'Looking at the options, (A)
tkeks, (B) eteks, (C) ekeks, (D) ekejs. Hmm, 'ekeks' doesn't exactly match any of these. Wait, did I do
that right?Let me double-check each last letter. Apple ends with 'e,' shark ends with 'k,' vulture ends
with 'e,’ yak ends with 'k,' ...Concatenating these last letters in order, we get: e, k, e, k, s, which forms
the string \"ekeks\".Thus, the resulting string is \\(\\boxed{C}\\)

Figure 25: Example of how ACS allows correction for the generated answer. The critical juncture is
the word "wait" in this case, allowing the following trace to ignore the hesitation on the sequence.

36



Under review as a conference paper at ICLR 2026

A.12.3 EXAMPLE FOR ACS WITH NON-REASONING MODEL

Question:

Name reactions in chemistry refer to a specific set of well-known chemical reactions that are typically named after
their discoverers or the scientists who made significant contributions to their development. These reactions have
had a profound impact on the field of chemistry and are often used as fundamental building blocks in various
chemical syntheses. Identify the reactants for the following name reactions.

A + H2504 —> 2,8-dimethylspiro[4.5]decan-6-one

B + Buli + H+ > 4-methyl-1-phenylpent-3-en-1-ol

Answer Choices:

(A) A = 2,7-dimethyloctahydronaphthalene-4a,8a-diol, B = 4-methyl-1-phenylpent-3-en-1-one

(B) A = 2,8-dimethylspiro[4.5]decan-6-0l, B = 4-methyl-1-phenylpent-3-en-1-one

(O) A = 2,8-dimethylspiro[4.5]decan-6-ol, B = (((3-methylbut-2-en-1-yl)oxy)methyl)benzene

(D) A = 2,7-dimethyloctahydronaphthalene-4a,8a-diol, B = (((3-methylbut-2-en-1-yl)oxy)methyl)benzene

Step 1: To solve this problem, we first need to identify the name reactions and their corresponding
reactants.

Step 2: The first reaction is A + H2S04 > 2,8-dimethylspiro[4.5]decan-6-one. This reaction is likely the
2,7-dimethyloctahydronaphthalene-4a,8a-diol hydrolysis reaction.

Step 3: The second reaction is B + BuLi + H+ —> 4-methyl-1-phenylpent-3-en-1-ol. This reaction is likely
the Friedel-Crafts alkylation of 4-methyl-1-phenylpent-3-en-1-one.

Step 4: Therefore, we can identify the reactants as A = 2,7-dimethyloctahydronaphthalene-4a,8a-diol
and B = 4-methyl-1-phenylpent-3-en-1-one.

The final answer is: A

Step 3: The second reaction is B + BuLi + H+ -—> 4-methyl-1-phenylpent-3-en-1-ol. This reaction is
likely the 4-methyl-1-phenylpent-3-en-1-one alkylation reaction, but it seems like it's a lithiation
reaction of the benzene ring,.. The given reactant for this reaction is likely
(((3-methylbut-2-en-1-yl)oxy)methyl)benzene.

Step 4: Based on the above analysis, we can conclude that the correct reactants for the given name
reactions are A = 2,7-dimethyloctahydronaphthalene-4a,8a-diol and B =
(((3-methylbut-2-en-1-yl)oxy)methyl)benzene.

Step 5: Therefore, the correct answer is option D.

The final answer is: D

Step 3: The second reaction is B + BuLi + H+ —> 4-methyl-1-phenylpent-3-en-1-ol. This reaction is
likely the Grignard reaction. In a Grignard reaction, a Grignard reagent (RMgX) reacts with a
carbonyl compound to form an alcohol. The Grignard reagent is formed by the reaction of an alkyl
halide with magnesium.

Step 4: The Grignard reagent formed in this reaction is likely
4-methyl-1-phenylpent-3-en-1-ylmagnesium bromide, which reacts with H+ to form the alcohol
4-methyl-1-phenylp...which would then react with 4-methyl-1-phenylpent-3-en-1-one to form the
alcohol 4-methyl-1-phenylpent-3-en-1-ol.

Step 5: Therefore, the reactants for the given name reactions are A =
2,7-dimethyloctahydronaphthalene-4a,8a-diol and B = (((3-methylbut-2-en-1-yl)oxy)methyl)benzene.
The correct answer is (D).

Step 6: Therefore, the final answer is (D).

Step 7: Therefore, the final answer is D

Figure 26: Example of how ACS allows correction for the generated answer. The critical juncture is
the word "step" in this case. A different step 3 leads to the correct answer.

37



Under review as a conference paper at ICLR 2026

A.12.4 FAILURE EXAMPLE FOR ACS

Question:
Given the sequence of words: turtle carrot hippo. Concatenate the last letter of each word to form a new string. What
is the resulting string?

Answer Choices:
(A) eho

(B) etc

(C) eto

(D) etv

Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer:
(A)\nFinal Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\nFinal Answer: (A)\nFinal

Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\n Final Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\n

Final Answer: A

Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\n Final Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\n

Final Answer: A

Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\n Final Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\n ...Final Answer: (A)\nFinal Answer: (A)\nFinal Answer: (A)\nFinal
Answer: (A)\nFinal Answer: (A)\n

Final Answer: A

Figure 27: Example of how ACS fails. A lot of the time the failure comes from identifying a critical
juncture too late where the model are already confirmed about an answer.

38



Under review as a conference paper at ICLR 2026

A.13 POTENTIAL IMPACT AND FUTURE WORKS

Our work demonstrates that LLM reasoning is not a uniform chain of steps but a process punctuated
by critical junctures. We define such critical junctures as where cognitive or computational resource
would make the most impact. We introduced Metacognitive Influence Tracing (MIT), a principled
diagnostic method to identify these junctures, and showed how this understanding can be translated
into a high-efficiency interventive reasoning framework, Adaptive Critical Sampling (ACS). The
ability to pinpoint these critical moments has implications that extend beyond improving Chain-of-
Thought prompting, touching on challenges in Al safety, evaluation, and future model development.

Implications for AI Safety and Alignment. A key challenge in Al safety is understanding and
preventing undesirable model behavior, such as hallucinations or harmful content. Our results, similar
to findings on “forking tokens,” (Bigelow et al., 2025) suggest that a model may be just one critical
step away from producing a radically different—and potentially unsafe—output. MIT can serve as
a diagnostic tool for failure analysis: when a model produces an undesirable result, MIT traces the
reasoning back to the specific flawed inference that initiated the failure. This moves beyond detecting
that an output is wrong, providing mechanistic insight into where it could be corrected, and enabling
targeted safety interventions.

Implications for Model Development and Evaluation. The insights from MIT could inform
more efficient model design. By aggregating critical junctures across thousands of problems, we can
potentially map the model components (e.g., attention heads or layers) most crucial for reasoning.
This data could guide structured pruning or distillation, yielding smaller models that preserve
disproportionate reasoning capability. Furthermore, our findings suggest that static evaluations
measuring only the final answer can be misleading. A model might appear confident in its conclusion,
yet MIT reveals that it passed through highly uncertain junctures where outcomes could have easily
diverged, exposing brittleness hidden by the final result.

Limitations and Future Work. Our approach also has limitations. MIT currently relies on explicit,
text-based reasoning traces, raising questions about its applicability to tasks where reasoning is
implicit. While ACS is more efficient than brute-force baselines, the MIT analysis itself can be
computationally intensive; future work could develop more efficient approximations of influence
propagation such as mitigation method mentioned in Section A.9.3.

A promising direction is to integrate MI T with other reasoning frameworks. Critical junctures identi-
fied by MIT could guide the branching of search algorithms such as Tree of Thoughts, concentrating
expansion at points of highest leverage. This would combine the breadth of exploration with the
precision of targeted intervention, paving the way for hybrid reasoning systems. Also, applying ACS
repeatedly can also enable continuous improvement.

Another future work is to zoom out the scope, instead of using token as the basic unit, we can zoom
out to sentence or paragraph level as the basic unit of thought. This can provide another granularity
on the reasoning process of LLMs.

A.14 USE OF LLMs

We have used LLMs to polish writing for this paper.

39



	Introduction
	A Principled Framework for Metacognitive Analysis
	Innovation 1: Influence Principles for Signal Purification
	Innovation 2: Modeling Influence Propagation as a Diffusion Process

	Methodology
	The Diagnostic Method: MIT
	Stage 1: Attention Signal Purification
	Stage 2: Layer Aggregation
	Stage 3: Kurtosis-Weighted Head Aggregation
	Stage 4: Influence Propagation
	Stage 5: Critical Juncture Identification

	Validation of MIT - Cognitive Markers
	Application: Adaptive Critical Sampling

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Discussion
	Conclusion
	Appendix
	Related Work
	Experiment Setup
	Datasets and task taxonomy.
	Hyper Parameters and Additional Details

	The MIT Methodology Algorithm
	Propagation Kernels
	Theoretical Analysis
	Empirical Analysis

	Propagation Parameter
	Layer wise Aggregation Analysis
	Critical Token Study
	Cognitive Marker Distribution
	Critical Token Resample Word Study
	Most Influential Token Distance Study

	Cost Calculation
	Cost of LLM Generation
	Cost of the MIT Diagnostic
	Proposed Cost Comparison Framework
	Theoretical Cost Analysis
	Empirical Cost Analysis

	MIT Memory Consumption Calculation
	The Memory Consumption of MIT
	Mitigation 1: Layer-by-Layer Calculation
	Mitigation 2: Reducing Complexity to O(K)

	Additional Experiments
	Prompts
	Examples
	Example for MIT
	Example for ACS with Reasoning Model
	Example for ACS with Non-Reasoning Model
	Failure Example for ACS

	Potential Impact and Future Works
	Use of LLMs


