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Abstract

Privacy-preserving auditing of machine learning models has emerged as a key1

research direction with growing real-world importance. Despite rapid progress, the2

field still lacks a unifying security foundation for evaluating proposed solutions. In3

this work, we identify a fundamental gap between the security models underlying4

many audit protocols—focused on interactions between prover (model owner) and5

verifier(s) (auditors)—and the guarantees one would naturally expect. We show6

how this gap enables a broad class of attacks, called data forging attacks, even7

against protocols with formal cryptographic proofs of security.8

Crucially, prior works are not technically incorrect; rather, their guarantees fail to9

generalize to other datasets, even though they are from the same distribution as the10

audit dataset. This generalization step is typically not captured in definitions of11

well-known cryptographic techniques such as zero-knowledge proofs.12

We formalize this gap by introducing a general framework for modeling attacks on13

privacy-preserving audits. Using this framework, we demonstrate concrete data14

forging attacks across widely studied model classes. For example, a prover can15

falsely certify that a model is accurate (indeed, it will achieve over 80% accuracy16

on an audit dataset), while the model achieves only 30% in practice.17

Our results highlight the need to revisit the foundations of privacy-preserving18

auditing frameworks. We hope that our work provides both cautionary evidence19

and constructive guidance for the design of secure ML auditing solutions.20

1 Introduction21

In recent years, machine learning has made its way from research labs into the fabric of everyday22

life, powering applications from customer service and product recommendations to credit scoring23

and fraud detection. With its widespread adoption, the problem of the integrity of machine learning24

models becomes critical: How can we ensure that the machine learning model truly possesses the25

properties it claims? For example, how can a company prove that a proprietary model meets the26

claimed performance guarantees and accuracy thresholds? How can we be sure that a credit scoring27

model behaves fairly toward minorities?28

High-profile incidents—such as UnitedHealthcare’s alleged use of AI to wrongfully deny insurance29

claims [HFS Research, 2024]—underscore the urgent need for mechanisms that allow external30

stakeholders to verify model behavior. Indeed, these issues have caught the attention of regulators31

around the world: Legal frameworks such as the EU AI Act and the Colorado AI Act aim to establish32

transparency, accountability, and fairness requirements for high-risk AI systems.33

One current approach is for companies to partially disclose their models to external consultants34

offering audits for fairness, explainability, and regulatory compliance [Deloitte, ORCAA, BABL35
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Table 1: Vulnerability to data-forging attacks in privacy-preserving ML audits. ✓= supported; ▲=
conditional; ✗= not supported.

Work Certified property Resilience to
data-forging

Continuous
verification

Acc. Group Fair Indv. Fair Diff. Priv.

Zhang et al. [2020] ✓ ✗ ✗ ✗ ▲ (pd) ✗
Shamsabadi et al. [2022] ✗ ✓ ✗ ✗ ✗ ✗
Yadav et al. [2024] ✗ ✗ ✓ ✗ ✓ ✓
Liu et al. [2021] ✓ ✗ ✗ ✗ ▲ (pd) ✗
Franzese et al. [2024] ✗ ✓ ✗ ✗ ✓ ✓
Shamsabadi et al. [2024] ✗ ✗ ✗ ✓ ✗ ✗
Kang et al. [2022] ✓ ✗ ✗ ✗ ✓ ✗
Wang and Hoang [2023] ✓ ✗ ✗ ✗ ▲ (pd) ✗
Bourrée et al. [2025] ✗ ✓ ✗ ✗ ✗ ✗

Acc. = accuracy; Group/Indv. Fair = group/individual fairness; Diff. Priv.=differential privacy. “Conditional”
works lack detail to assess resilience to data-forging, but indicate deployments with public datasets (pd), which

would be make the solution vulnerable. Continuous verification means audits must run continuously during
deployment (e.g., via clients) rather than once pre-deployment.

AI, Mosaic Data Science]. While this can mitigate some concerns, it often conflicts with providers’36

need to protect proprietary models and sensitive training data. A promising emerging alternative37

is certifiable machine learning, which uses cryptographic techniques to formally prove desired38

properties while keeping data and model parameters confidential. Examples include certifying that a39

model was correctly trained [Abbaszadeh et al., 2024, Garg et al., 2023, Sun et al., 2024a, Pappas40

and Papadopoulos, 2024], that its training data has certain distributional properties [Chang et al.,41

2023, Duddu et al., 2024], that it can be audited by evaluating general functions of the model and42

data [Lycklama et al., 2024, Waiwitlikhit et al., 2024], and that its outputs are explainable [Yadav43

et al., 2025], privacy-preserving Shamsabadi et al. [2024], fair [Shamsabadi et al., 2022, Yadav et al.,44

2024, Franzese et al., 2024, Zhang et al., 2025], or correctly computed [Weng et al., 2021, Sun45

et al., 2024b, Xie et al., 2025]. These methods aim to provide accountability in ML services without46

requiring white-box access to the service provider’s ML pipeline.47

However, model certifications are often data-dependent, and certifiable ML works typically rely48

on the assumption that the training data is trusted. At first glance, this seems reasonable: In many49

real-world deployments, training data is private due to commercial or legal reasons. The verification50

process focuses then solely on the model and its certificate, at best publishing an “encrypted” version51

of the data and proving the properties of the model with respect to the hidden dataset.52

In this work, we show that this trust assumption can be easily exploited: An adversarial model holder53

can engineer the “training data” so that the model honestly trained on this data passes the audit —54

indeed, the training was done correctly! – but exhibits pathological behavior on real-world data. In55

particular, we show that this is the case if the auditor relies a publicly known dataset (e.g., any of56

the well-known datasets that are used to check fairness) for test purposes. We make three main57

contributions in our work.58

We introduce a theoretical framework for attacks on privacy-preserving machine learning auditing.59

Our framework is deliberately general, and supports a wide range of audit functions and adversarial60

goals. In particular, it captures several proposals for privacy-preserving machine learning audits,61

even those based on zero-knowledge proofs, a classical cryptographic technique with formal security62

guarantees.63

The framework in particular enables us to assess whether a given auditing solution is vulnerable to a64

specific class of attacks we define. We investigate known auditing approaches for vulnerabilities to65

this type of attacks and summarize our findings in Table 1.66

Finally, we propose concrete data forging attacks in the context of decision trees, a widely deployed67

model class. The result of our attacks are models that are certifiably “correct” on paper, but fail to68

satisfy the intended properties in practice. It is important to note that our attacks allow for much69

more than marginal deviations from the audit’s guarantees. Rather, they enable dramatic violations:70

for example, if an auditor wishes to check that a model achieves accuracy of over 80%, the prover71
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will pass the test on a given audit dataset, yet the same model may achieve only 30% accuracy on72

real-world inputs. Our attacks rely on adversarially crafting/adjusting the training dataset. While73

existing cryptographic auditing protocols alone cannot detect such manipulations, one could imagine74

that statistical tests layered on top of the audit solutions could solve the problem. However, curiously,75

we show that our attacks remain undetected even if such additional tests, e.g., Welch’s t-test [Welch,76

1947], are done on the training data. We establish the effectiveness of our attacks through experiments.77

In summary, our work advances the study of cryptographic auditing for machine learning by (i)78

introducing a framework for modeling attacks which allow the adversary to pass the certification79

procedures, but exhibit pathological behavior on real-world data, (ii) demonstrating that known80

auditing solutions are often vulnerable to such attacks, and (iii) giving concrete attack examples even81

against auditing schemes with formal security guarantees. We emphasize that we do not suggest that82

prior cryptographic works are broken on a technical level, rather that the assumption on which these83

works rely deserves closer scrutiny. Additionally, as a result of our findings, we note that our work84

provides strong evidence that secure audit solutions with any of the following properties are unlikely:85

a) those which utilize known public datasets for test purposes, b) those that reuse test datasets (at86

least if model owner learns a substantial amount of this test dataset during the audit), c) those that are87

simultaneously non-interactive and data-dependent. We hope that our work will serve as a guidance88

when designing cryptographically secure machine learning audit frameworks.89

Finally, we note that our work is related to, but distinct from, data poisoning attacks. We discuss the90

relationship between the two lines of work in Section A.2.91

2 Related Work92

A number of recent works aim to prove desirable model properties. In terms of what these works93

prove, they can be roughly categorized into proofs of training, inference, accuracy, and fairness. In94

terms of how the corresponding protocols work, the works can be split into the following categories:95

Cryptographic approaches A prolific line of research adapts various cryptographic techniques to96

obtain formal proofs of training, accuracy, fairness, and inference in a privacy-preserving manner.97

The most common technique is zero-knowledge proofs, which allow to formally prove that a model98

satisfies certain properties without revealing anything else about the model. Such proofs have been99

used to obtain privacy-preserving certifications of fairness [Shamsabadi et al., 2022, Yadav et al.,100

2024, Franzese et al., 2024, Zhang et al., 2025], inference [Zhang et al., 2020], and accuracy [Zhang101

et al., 2020]. Finally, numerous works utilized zero-knowledge proofs to obtain guarantees for102

correct model training on private data [Abbaszadeh et al., 2024, Garg et al., 2023, Sun et al., 2024a,103

Pappas and Papadopoulos, 2024]. Other works [Duddu et al., 2024, Chang et al., 2023] rely on104

secure multi-party computation (MPC), which allows mutually distrusting parties to securely perform105

a computation on the respective private inputs without revealing anything about the inputs apart106

from the outcome. Chang et al. [2023] use a combination of zero-knowledge and MPC to perform107

distribution testing over a dataset supplied by multiple parties.108

Black box auditing/Statistical testing Informally, black box auditing works by having users submit109

inputs to the model, query it, and analyze the resulting outputs. Tramer et al. [2017], Saleiro et al.110

[2018] provide black-box testing frameworks to check for potential unfairness or bias. Tan et al.111

[2018] proposes a black-box audit approach by distilling a new model and using it to gain insight112

into the black-box model.113

Outside-the-box auditing In this type of auditing, the model owner grants users access to additional114

information about the system’s development and deployment. This can take many forms, including115

source code, documentation [Mitchell et al., 2019], hyperparameters, training data, deployment116

specifics, and results from internal evaluations.117

3 Notation & Preliminaries118

We now introduce our notation as well as background for relevant models and techniques.119

ML Notation We use X to denote the feature space, D to denote the distribution over X , and Y120

to denote the label space. We denote by Train a training algorithm (or learner) that takes as input a121
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training dataset S = {(xi, yi)}i∈[n] with xi ∈ X and yi ∈ Y , and outputs a model (or hypothesis)122

h : X → Y .123

Decision Trees In our attack constructions we will focus on decision tree models. Decision tree-124

based solutions are among the most popular machine learning algorithms, particularly known for125

their effectiveness in classification problems such as loan approval and fraud detection. A decision126

tree is trained by recursively partitioning the dataset from the root to the leaves. At each step, a split127

is determined by a splitting rule that aims to maximize an objective function, such as information128

gain. For prediction, the input follows a path from the root to a leaf, where at each internal node, the129

decision depends on whether the input satisfies the corresponding threshold (see Algorithm 3).130

Welch’s t-test The goal of t-test is to determine whether the unknown population means of two131

groups are equal or not. That is, for random variables X and Y , it compares the following hypotheses132

on their means µX = E[X] and µY = E[Y ]:133

• Null Hypothesis H0: µX = µY134

• Alternative Hypothesis H1: µX ̸= µY135

Assuming that X and Y independently follow Gaussian distributions with unknown variances,136

Welch’s t-test proceeds as in Algorithm 2.137

3.1 Zero-Knowledge Proofs138

Before defining zero-knowledge proofs, we first introduce an extended notion of NP relations.139

Definition 1 (Indexed Relation). An indexed relationR is a polynomial-time algorithm with binary140

output, which takes a triple (i, x,w) as input, where i is the index, x is the instance, and w is the141

witness. Typically, i describes an arithmetic/boolean circuit, x denotes public inputs, and w denotes142

private inputs, respectively.143

Definition 2 (Proof System). An (interactive) proof system Π for indexed relationR consists of a144

tuple of interactive Turing machines (P,V), where P is prover and V is verifier, respectively. Let145

b ← ⟨P(w),V⟩(i, x) denote the interaction between P and V , where both P and V take (i,w) as146

common inputs, and P additionally takes w as a private input. At the end of interaction, V halts by147

outputting a binary b.148

Proof systems that are used in the context of ML auditing typically require the following standard149

security properties: For an indexed NP relationR, the proof system must provide completeness (i.e.,150

if prover and verifier follow the protocol, verifier always accepts), (knowledge) soundness (i.e., if151

verifier accepts the proof generated by a cheating prover A, then it must be that A owns a valid152

witness w satisfying given NP relation w.r.t. statement x and index i), and zero knowledge (i.e., the153

transcript of the interaction between the prover and the (malicious) verifier leaks nothing except that154

there exists a witness w such that (i, x,w) ∈ R). See §A.4 for formal definitions.155

4 Cryptographic Auditing of ML: Background and Subtleties156

As noted in §2, a variety of privacy-preserving auditing methods for machine learning have been157

proposed, including cryptographic, differentially-private, and statistical techniques.158

Numerous works rely specifically on zero-knowledge techniques, which allow to formally prove that159

a model satisfies a desired property (e.g., accuracy, fairness, or inference correctness) on a given160

test dataset without learning anything else about the model or its training data. We now outline161

different categories of proofs that are used in the context of auditing machine learning algorithms.162

For simplicity, from now on we assume that the training algorithm is public (note that making it163

private only makes the adversary in our attacks stronger, i.e., it could potentially be easier for the164

model owner to perform a data-forging or any other type of attack).165

Proof of Training A proof of training can be viewed as a zero knowledge proof for the following166

relation R: given i = (Train,Commit), x = (comh, comS), and w = (h, Strain, ρh, ρS), R outputs167

1 if and only if Train(Strain) = h, comh = Commit(h; ρh) and comS = Commit(Strain; ρS). Here,168

Commit is a standard cryptographic commitment scheme: it produces a string com that “locks in” a169
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value (e.g., the model h or dataset S) using some randomness ρ. A commitment is hiding (it reveals170

nothing about the underlying value) and binding (once published, it can only be opened to that value).171

Intuitively, commitments let the prover fix h and Strain up front without revealing them.172

Proof of Inference A proof of inference can be viewed as a special case of zero knowledge proof for173

the following relation R: given i = Commit, x = (com, x, y), and w = (h, ρ), R outputs 1 if and174

only if h(x) = y and com = Commit(h; ρ).175

Auditing using Zero Knowledge Proofs The strongest form of ZK-based auditing arises when the176

prover first produces a proof of training, thereby showing that a specific committed model instance177

came from an honest training procedure on a private dataset, and subsequently provides a proof of178

property attesting that the committed model meets the desired criterion. Let F be a auditing function179

outputting a binary that takes as input a training data set Strain, an auditing data set Saudit, and the180

model’s predictions on the audit dataset {h(r)}r∈Saudit . Then privacy-preserving auditing can be181

realized using zero knowledge proofs for the following relation R: given i = (Train,Commit, F ),182

x = (comh, comS , Saudit), and w = (h, Strain, ρh, ρS), R outputs 1 if and only if Train(Strain) = h,183

F (Strain, Saudit, {h(r)}r∈Saudit) = 1, comh = Commit(h; ρh) and comS = Commit(Strain; ρS).184

Definition Subtleties It is easy to observe that the zero knowledge property ensures confidentiality of185

the committed model and training data. However, as we shall see next, knowledge soundness does not186

necessarily capture the actual goal of the auditing process. The reason is that knowledge soundness187

is defined with respect to arbitrary statements x = (comh, comS , Saudit), without specifying how188

or when each component of x is generated. In practice, it is plausible that Saudit is supplied by189

verifier (i.e., the auditor). We show that if a cheating prover (i.e., model owner) adaptively generates190

comh∗ and comS∗ after observing Saudit, it is possible to pass the zero knowledge auditing process191

after maliciously crafting model h∗ and/or training data S∗. Furthermore, we show that h∗ behaves192

pathologically when evaluated on data outside Saudit, in a way that completely undermines the purpose193

of the auditing process.194

We note that while this subtlety was indeed overlooked in several works on zero-knowledge-based195

auditing, it applies even more directly to various non-cryptographic auditing approaches that do not196

enforce a secure commitment from the prover.197

5 Methods198

Because of the data-dependent nature of machine learning, previous work in verifiable ML may fail to199

reliably audit models, even while satisfying existing cryptographic definitions of security. To address200

this, we introduce new theoretical tools for analyzing cryptographic ML verification.201

In §5.1, we present a formal security model for ML model audits on a given distribution. In §5.2,202

we give a concrete example of an attack for decision trees under which a broad class of existing203

privacy-preserving audit methods fail. In §5.3 we present evidence suggesting that such attacks may204

be difficult to detect.205

5.1 Data-Dependent Security Models for Cryptographic ML Auditing206

While several existing works propose cryptographic solutions to statistically auditing ML models,207

it is often left unspecified when the model owner receives an auditing dataset. In fact, several208

works suggest checking properties such as fairness using public reference datasets (e.g., the ones209

from the UCI repository). This setting allows potentially dishonest model owners to fine-tune their210

private models based on the known auditing data. The resulting model will pass the audit, but the211

guarantee will fail to generalize to real-world inputs. To capture this attack model, we introduce the212

following security game precisely clarifying the information available to the model owner at the time213

of submitting the trained model and dataset to the idealized auditing process.214

Definition 3 (Adaptive Training with Known Auditing Data). Let R : {0, 1}∗×{0, 1}∗×{0, 1}∗ →215

{0, 1} be an indexed NP-relation for model certification. Let X be the feature space and D be a216

distribution over X . For a learner / training algorithm Train with a randomness space {0, 1}ℓ, an217
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auditing function F (outputting a binary), and a utility function L1, consider the following game218

GA(R,Train, F, L,D, ε) played by an adversary A:219

GA(R,Train, F, L,D, ε)220

1. Sample Strain, Saudit ∼ D and ρ← {0, 1}ℓ221

2. Learn honest hypothesis h← Train(Strain; ρ)222

3. Obtain bH = R((Train, F ), Saudit, (h, Strain, ρ))223

4. Given Strain, Saudit, Train, F , and g, A outputs a hypothesis hA, a forged training dataset224

S′
train, and a training randomness ρ′.225

5. Obtain bA = R((Train, F ), Saudit, (hA, S
′
train, ρ

′))226

6. The output of the game is defined to be 1 (andA ‘wins’) if bA ≥ bH and L(hA)−L(h) > ε.227

The output is 0 (and A ‘loses’) otherwise.228

Intuition At a high level, the attack above captures the following: For a given public training process229

Train and an adversarial utility function L, the adversary wins the game, if, upon learning an audit230

dataset, it provides a training dataset such that a model honestly trained on this dataset passes the231

audit and improves the adversarial utility compared to a model trained on an honest dataset. We232

also note that, unlike Section 4, the cryptographic commitment does not appear explicitly. This is233

because the game above implicitly models a situation where the adversary submits the hypothesis234

h and once and for all at Step 2., and the remaining operations are automatically performed on the235

same h, modeling the binding property in an idealized fashion. We now elaborate on the choices we236

make in this definition:237

• Public training procedure Assuming that the training procedure is public makes only our238

attacks stronger. Intuitively, it is easier for the prover to satisfy an audit procedure if it the239

training algorithm is not known to the auditor.240

• Formalizing audit outcomes via an indexed relation, rather than simply as the output of241

function F , allows us to more precisely capture the audit procedure as an interactive process242

involving both public audit data and the prover’s private model/training data. We give243

examples of useful index relations below.244

• Requiring bA ≥ bH captures that the adversary is required to pass the audit only in cases245

where an honest model would also succeed. Intuitively, we do not wish to “punish” the246

adversary when the audit function itself is unreasonable—namely, when even an honestly247

trained model on an honest dataset would fail the audit.248

• Utility function captures the adversary’s goal, i.e., how desirable a given model is from249

its perspective. For instance, if the audit targets fairness, the utility may be the model’s250

accuracy on D, or the frequency with which it outputs negative predictions on certain inputs251

(e.g., to justify denying service to specific groups).252

Examples of Index Relations An instantiation of the index relation depends on the auditing process.253

For instance, the auditor aims to validate the training process and accuracy or a certain group fairness254

property (e.g, demographic parity) described by a function F , R outputs 1 if and only the following255

conditions are satisfied.256

• h = Train(Strain; ρ)257

• F ({h(r)}r∈Saudit , Saudit) = 1258

If the adversary is required to perform the t-test on the training data, we can define F as:259

• Fα(Saudit, S
′
train) = 1 if and only Saudit passes t-test with significant level α260

1We assume that distribution D is implicitly “known” to L (it is either hard-coded or provided as a parameter
to L). For simplicity of notation, we omit D from the description of L.
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5.2 Example of Data Forging Attack261

We now give a concrete example of an attack within the framework of Def.3. In more detail, given a262

utility function L, a training dataset Strain, a fixed ϵ, and an audit dataset Saudit with honest labels263

yx for x ∈ Strain∪Saudit, we wish to construct a training dataset S′
train such that when a hypothesis264

hA is honestly trained on S′
train, hA passes the audit and the utility L(hA) is improved at least by ϵ265

compared to the utility of the model trained on an honestly sampled dataset.266

To demonstrate the feasibility of our attack, we focus specifically on decision trees (see §3 for267

background). Say we consider datapoints in {0, 1}d, the auditor’s goal is to verify accuracy of268

the decision tree model, and the adversary’s goal is to ensure that the model’s accuracy is bad on269

real-world data. For example, we can set L(h) = Pr[h(x) ̸= f(x)], where f(x) denotes the true270

label of x ∈ {0, 1}d.271

To perform this attack, we begin with a reference dataset Saudit, and we will construct a training272

dataset S′
train. Let g denote a labeling function such that g(x) = 1⊕ f(x)2, where x ∈ {0, 1}d. For273

every point r ∈ Saudit with true label f(r) and every (numeric) feature i, we add r + ε⃗bi with label274

g(r), where ε is some small number and b⃗i is the ith basis vector. We also add every r ∈ Saudit to275

S′
train with honest labels. Then, when training a tree on S′

train, we train until every leaf in the tree is276

homogeneous.277

Algorithm 1 Data Forging Attack
Input: Audit set Saudit, dimension d, ε > 0, target labelling function g
Output: Training data S′

train

function ATTACK(Saudit, d, ε, g)
S′
train ← Saudit

for r ∈ Saudit do
for i ∈ [d] do

r0 ← r + ε⃗bi ▷ b⃗i is the one-hot vector in dimension i
r0,y ← g(r) ▷ Set the label of r0
r1 ← r − ε⃗bi
r1,y ← g(r)
S′
train ← S′

train ∪ {r0, r1}
end for

end for
return S′

train
end function

As we illustrate in §6, this simple attack already achieves surprisingly good results.278

5.3 Detection279

While proof of training alone cannot detect the attack above (as it relies on training the decision tree280

entirely honestly), nor can a black-box audit where the model owner knows the audit data before281

training time, we might still hope to detect when these attacks occur. For example, we might hope282

to conduct statistical tests on the training data to determine if it was honestly sampled from the283

underlying distribution or if it was adversarially constructed. In such a case, we cannot directly284

compare the training data to the true distribution of real data because the underlying distribution is285

not fully known to the auditor. Instead, we must compare the training data with a sample from that286

distribution. In the most simple case, this sample is the reference set Saudit.287

We argue that under a certain family of functions, our constructed training set is indistinguishable288

from Saudit.289

Definition 4. Suppose α⃗ is a set of bins over d dimensions. Then Hα⃗ : (Rd × {0, 1})∗ → H is290

the function which takes databases over d features and a binary classification to their normalized291

histogram with bins α⃗.292

2For simplicity we consider a scenario with only two classes.
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Definition 5. A function f : (Rd × {0, 1})∗ → R is called (γ, c)-magnitude insensitive if there293

exists a choice of bins α⃗ and function f ′ : H → R such that |f(D) − f ′(Hα⃗(D))| < γ for all294

D ∈ (Rd × {0, 1})∗ and |f ′(Hα⃗(D)) − f ′(Hα⃗(D||r))| ≤ c
|D| for all D ∈ (Rd × {0, 1})∗ and295

r ∈ Rd × {0, 1}.296

Theorem 1. If f is (γ, c)-magnitude insensitive, then |f(Saudit)−f
(
Sk
audit||δ

)
| ≤ ε for any ε > 2γ297

and k ≥ 2dc
ε−2γ , where δ is as defined in Algorithm 1 when run with input Saudit, d, ε, g for any g.298

Proof. See §A.5 for a formal proof.299

This theorem does not suggest that it is completely impossible to detect the attack given in Algorithm300

1. Rather, it only precludes detection by a certain class of functions. However, we argue that this301

class is expansive and covers many intuitive approaches.302

The sole requirement for the audit metric f is that it must be approximable by f ′ which satisfies303

three properties. Firstly, f ′ operates over histograms for some choice of bins α⃗. This is a necessary304

condition, as if f were not approximable by a function over a binning of the training data, we could305

drastically change the audit outcome by simply adding a small amount of noise to the data. Next, f ′306

must be relatively insensitive to additional data. The intuition here is that no individual datapoint307

should dramatically change the outcome of the audit. Finally, f ′ operates over normalized histograms.308

This property is necessary for the proof to go through, but is satisfied by many intuitive audit metrics.309

For example, the mean and standard deviation of a feature (even conditioned on any arbitrary set of310

features) are approximable from a normalized histogram.311

Lemma 1. Let µj(D) be the mean of (bounded) feature j of a dataset D. Then for every γ > 0,312

µj(D) is (γ,M −m)-magnitude insensitive, where B is the set of bins in the histogram and M,m313

are an upper and lower bound on possible j-values respectively.314

Proof. See §A.6 for a formal proof.315

We will proceed to use this fact to show that Welch’s t-test will fail to detect this attack.316

Corollary 1. Given an audit dataset Saudit and significance level α, we can use Algorithm 1 to317

construct a training dataset S′
train such that for any feature j, S′

train passes Welch’s t-test when its318

values in feature j are compared to those of Saudit with significance level α.319

Proof. See §A.7 for a formal proof.320

5.4 Resistance to data-forging in prior works321

Our formalization from §5.1 allows us to easily check whether a certain protocol is susceptible to322

data-forging attacks. At a high level, for works which do not reveal neither the model nor the training323

data, the check boils down to whether the prover is required to commit to the training data and/or324

to the model before seeing the audit dataset. We examined several prior works with formal security325

guarantees, and, surprisingly, the majority of the works either do not explicitly state when the audit326

dataset is revealed, or consider settings where the prover’s training dataset and/or the model itself327

are assumed to be trusted (and are susceptible to data forging if the prover is actually malicious).328

Additionally, works that do not discuss the timing of the commitment often point out that their329

solution can be used to conduct audits using publicly known datasets, in which case the public dataset330

can be assumed to be known to the adversary prior to the audit process. In this case the solution331

becomes vulnerable to data-forging.332

We summarize the results of our findings in Table 1.333

6 Evaluation334

We implemented our attack from §5.2 in Python 3.12.3 using SciKit-Learn version 1.6.1 and evaluated335

its performance against the ACSEmployment dataset from Folktables. In particular, we used the 2018336

Alabama dataset with a one-year horizon. For a given run, we split the dataset into an evaluation337

dataset consisting of 30% of the data, an audit dataset containing 1000 data points, and an extraneous338

8



Figure 1: Performance of models trained on constructed datasets using ACSEmployment. An increase
in the attack parameter represents increasing the number of audit points included in the attack as well
as how many extraneous points are labeled maliciously. Values are averages over ten runs, error bars
represent one standard deviation.

Table 2: Summary and Test statistics for Age feature on ACSEmployment, conditioned on label. Test
statistics used are Welch’s t-test and Levene’s test. Attack is undetectable when summary statistics
are similar to honest ones, and when test statistics are close to 0. Comparisons are between fully
honest and fully malicious datasets.

Age Label = 0 Label = 1
Honest Attack Honest Attack

Summary µ 41.6651 41.9657 43.9184 43.8131
Statistics σ2 804.5804 810.8822 223.1269 221.42394

Test t-test 0.6521 0.0033 0.7067 0.0110
Statistics F -test 0.6200 0.0026 1.6500 0.0186

Military Status Label = 0 Label = 1
Honest Attack Honest Attack

Summary µ 2.5794 2.5834 3.8121 3.8302
Statistics σ2 3.2749 3.2648 0.3507 0.3265

Test t-test 0.4997 0.0313 0.8699 0.1755
Statistics F -test 1.0240 0.0009 1.2394 0.0304

training data set. In order to determine the number of copies of the audit data to add to the training339

data, we partitioned the audit data by label and computed the k-values necessary for each feature to340

pass Welch’s t-test with significance 0.05, and selected the largest finite such value. We constructed341

the training data according to Algorithm 1, and used it to fit a decision tree using SciKit-Learn’s342

decision tree classifier class. We measured various statistics over the predictions made by the classifier,343

which we present in Figure 1.344

We find that we are capable of tuning the attack to enforce high audit accuracy while simultaneously345

encouraging low performance on real-world evaluation data. Rather than performing a maximally346

malicious attack, one might choose to perform a less overt attack by including less of the audit data347

in the training data. However, we observe that with an attack parameter below 0.5, the chance of348

passing the t-test or F -test falls precipitously.349

We observe that the summary statistics of the malicious training data closely match the values for350

the honest data, suggesting that comparing these two values would not be a successful detection351

mechanism. This is compounded by the fact that the test statistics for Welch’s t-test and Levene’s test352

for the malicious training data are considerably smaller on average than the same test statistics for353

the honest training data, corroborating higher rate of passing the hypothesis tests we observe. At a354

significance level of α = 0.05, we expect a false positive rate of approximately 5%. On the other355

hand, we observe a 0% true negative rate when employing the attack.356
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Algorithm 2 Welch’s t-test
Input: X = {xi}i∈[n], Y = {yi}i∈[m], where xi ∼ X and yi ∼ Y , and a significance level α
Output: Null hypothesis H0 (i.e., µX = µY ) or alternative hypothesis H1 (i.e., µX ̸= µY )

1: Compute sampled means x̄ =
∑

i xi

n and ȳ =
∑

i yi

m

2: Compute sampled variances vx =
∑

i(x̄−xi)
2

n−1 and vy =
∑

i(ȳ−yi)
2

m−1 .
3: Compute the test statistic t = x̄−ȳ√

vx/n+vy/m

4: Compute the degree of freedom d =
(gx+gy)

2

g2
x/(n−1)+g2

y/(m−1) , where gx = vx/n and gy = vy/m

5: Obtain the critical value tcr from the t-table, given d and α.
6: If |t| < tcr return H0 else return H1

A Appendix447

A.1 Welch’s t-test448

A.2 Data Poisoning Attacks449

Data poisoning attacks involve adversarial manipulations of training data with the goal to degrade450

a model’s performance. This active line of work produced numerous interesting results in the past451

years [Steinhardt et al., 2017]. Traditionally, such attacks have been considered in the context of452

machine learning systems trained on user-provided data. This setting is conceptually different from453

ours: In data poisoning, the “model owner” is typically considered honest, and the concern is that454

users contributing to the model can inject malicious data. As a result, data poisoning attacks involve455

subtle, often small-scale perturbations to a subset of the training examples. As defined byl. Barreno456

et al. [2010], data poisoning can be viewed as a game between a defender, who seeks to learn an457

accurate model, and an attacker, whose goal is to corrupt the learned model. In this setting, the458

model is trained on the combination of a clean dataset Dc and a poisoned dataset Dp, where the459

size of Dp is constrained to be no larger than that of Dc. In contrast, our setting allows for the fully460

malicious model owner. Its goal is to engineer a model that passes an audit, while violating the461

certified properties on real-world data. In particular, in our setting the adversary is not restricted to462

small-scale perturbations of the clean training data.463

A.3 Decision Tree Inference464

For completeness, in Algorithm 3 we present the algorithm for decision tree inference.465

Algorithm 3 Decision Tree Inference
Input: Decision tree h, input a.
Output: Classification result.

1: Let cur := h.root ▷ Set cur to be root of the tree
2: while cur is not a leaf do
3: if a[cur.attr] < cur.thr then
4: cur := cur.left. ▷ Set cur to be current node’s left child
5: else
6: cur := cur.right. ▷ Set cur to be current node’s right child
7: end if
8: end while
9: return cur.class

A.4 Security Properties of Zero-Knowledge Proofs466

Completeness Π is (perfectly) complete if for any (i, x,w) satisfyingR, it holds that:

Pr[1← ⟨P(w),V⟩(i, x)] = 1.
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Knowledge Soundness Π is knowledge sound if there exists an expected polynomial time extractor467

E such that for any PPT adversary P∗ and any i ∈ {0, 1}∗ x ∈ {0, 1}λ, the following probability is468

negligible in λ:469

Pr
[
b = 1 ∧ (i, x,w) /∈ R : b← ⟨P∗,V⟩(i, x);w← EP

∗
(i, x)

]
where E has black-box access to P∗. Informally, this means that any cheating prover must know a470

valid witness if it convinces verifier.471

Zero-Knowledge Let viewP(w)
V (i, x) be a string consisting of all the incoming messages that V472

receives from P during the interaction ⟨P(w),V⟩(i, x), and V’s random coins. Π is (honest verifier)473

zero-knowledge if there exists a PPT simulator S such that for any adversary A and any (i, x,w)474

satisfyingR, the following is negligible in λ.475

∣∣∣Pr [b = 1 : b← A(viewP(w)
V (i, x))

]
− Pr

[
b = 1 : view′ ← S(i, x); b← A(view′)

]∣∣∣
Informally, this means that the protocol execution reveals no information about w.476

A.5 Proof of Theorem 1477

Proof. We will write f ′ to be the γ-approximation of f guaranteed to exist by the fact that f is478

(γ, c)-magnitude insensitive. Observe that because Hα⃗ takes databases to their normalized histograms,479

Hα⃗(Saudit) = Hα⃗

(
Sk
audit

)
, because the non-normalized histograms of the two databases are simply480

scaled versions of one another.481

Next, it will be helpful to show that for any two databases D1, D2 ∈ (Rd × {0, 1})∗, we have482

|f ′(Hα⃗(D1))− f ′(Hα⃗(D1||D2))| ≤ c |D2|
|D1| . Let us write D2 = d1||d2|| . . . ||d|D2|. Then we get that483

|f ′(Hα⃗(D1))− f ′(Hα⃗(D1||D2))|
=|f ′(Hα⃗(D1))− f ′(Hα⃗(D1||d1)) + f ′(Hα⃗(D1||d1))− . . .+ f ′(Hα⃗(D1||d1||d2|| . . . ||d|D2|−1))− f ′(Hα⃗(D1||D2))|
≤|f ′(Hα⃗(D1))− f ′(Hα⃗(D1||d1))|+ |f ′(Hα⃗(D1||d1))− f ′(Hα⃗(D1||d1||d2)|+ . . .+ |f ′(Hα⃗(D1||d1||d2|| . . . ||d|D2|−1))− f ′(Hα⃗(D1||D2))|

≤ c

|D1|
+

c

|D1|+ 1
+ . . .+

c

|D1|+ |D2| − 1

≤c |D2|
|D1|

Then we can apply this to Sk
audit and Sk

audit||δ; recall that |δ| = 2d|Saudit|. Then we484

see that
∣∣f ′ (Hα⃗ (Saudit))− f ′ (Hα⃗

(
Sk
audit||δ

))∣∣ = ∣∣f ′ (Hα⃗

(
Sk
audit

))
− f ′ (Hα⃗

(
Sk
audit||δ

))∣∣ ≤485

c 2d|Saudit|
k|Saudit| ≤ c 2d

( 2dc
ε−2γ )

= ε− 2γ. We have two cases now.486

Case 1: f ′ (Hα⃗ (Saudit)) ≥ f ′ (Hα⃗

(
Sk
audit||δ

))
. Then we have487

ε− 2γ ≥ f ′ (Hα⃗ (Saudit))− f ′ (Hα⃗

(
Sk
audit||δ

))
= f(Saudit)− f(Saudit) + f ′(Hα⃗(Saudit))− f(Sk

audit||δ) + f(Sk
audit||δ)− f ′(Hα⃗(S

k
audit||δ))

≥ f(Saudit)− |f(Saudit)− f ′(Hα⃗(Saudit))| − f(Sk
audit||δ)− |f(Sk

audit||δ)− f ′(Hα⃗(S
k
audit||δ))|

≥ f(Saudit)− γ − f(Sk
audit||δ)− γ

and so we see that ε ≥ f(Saudit)− f(Sk
audit||δ). We also have488

f(Saudit)− f(Sk
audit||δ) = f ′(Hα⃗(Saudit))− f ′(Hα⃗(Saudit)) + f(Saudit)− f ′(Hα⃗(S

k
audit||δ)) + f ′(Hα⃗(S

k
audit||δ))− f(Sk

audit||δ)
≥ f ′(Hα⃗(Saudit))− |f ′(Hα⃗(Saudit))− f(Saudit)| − f ′(Hα⃗(S

k
audit||δ))− |f ′(Hα⃗(S

k
audit||δ))− f(Sk

audit||δ)|
≥ f ′(Hα⃗(Saudit))− γ − f ′(Hα⃗(S

k
audit||δ))− γ

≥ −2γ
> −ε

13



Then |f(Saudit)− f(Sk
audit||δ)| ≤ ε.489

Case 2: f ′(Hα⃗(Saudit)) ≤ f ′(Hα⃗(S
k
audit||δ)). Then we have490

ε− 2γ ≥ f ′ (Hα⃗

(
Sk
audit||δ

))
− f ′ (Hα⃗ (Saudit))

= f(Sk
audit||δ)− f(Sk

audit||δ) + f ′(Hα⃗(S
k
audit||δ))− f(Saudit) + f(Saudit)− f ′(Hα⃗(Saudit))

≥ f(Sk
audit||δ)− |f(Sk

audit||δ)− f ′(Hα⃗(S
k
audit||δ))| − f(Saudit)− |f(Saudit)− f ′(Hα⃗(Saudit))|

≥ f(Sk
audit||δ)− γ − f(Saudit)− γ

and so we see that ε ≥ f(Sk
audit||δ)− f(Saudit). We also have491

f(Sk
audit||δ)− f(Saudit) = f ′(Hα⃗(S

k
audit||δ))− f ′(Hα⃗(S

k
audit||δ)) + f(Sk

audit||δ)− f ′(Hα⃗(Saudit)) + f ′(Hα⃗(Saudit))− f(Saudit)

≥ f ′(Hα⃗(S
k
audit||δ))− |f ′(Hα⃗(S

k
audit||δ)) + f(Sk

audit||δ)| − f ′(Hα⃗(Saudit))− |f ′(Hα⃗(Saudit))− f(Saudit)|
≥ f ′(Hα⃗(S

k
audit||δ))− γ − f ′(Hα⃗(Saudit))− γ

≥ −2γ
≥ −ε

Then |f(Saudit)− f(Sk
audit||δ)| ≤ ε.492

A.6 Proof of Lemma 1493

Proof. Notice that µj(D) ≈
∑

i∈B pixj,i where B is the set of bins in the histogram, pi is the height494

of bin i in the normalized histogram of D, and xj,i is the j-value of bin i. Let us show that for any495

γ > 0, there exists a binning of the data such that this is a γ-approximation of µj(D). Let the bins in496

feature j have width γ. Then for each datapoint d with j value jd, bin i, and binned j-value xj,i, we497

have that |xj,i − jd| ≤ γ. Then498

∑
i∈B

pixj,i =
∑
i∈B

ci
|D|

xj,i

=
∑
d∈D

1

|D|
xj,i

=⇒

∣∣∣∣∣∑
i∈B

pixj,i −
∑
d∈D

1

|D|
jd

∣∣∣∣∣ =
∣∣∣∣∣∑
d∈D

1

|D|
xj,i −

∑
d∈D

1

|D|
jd

∣∣∣∣∣
=

∣∣∣∣∣ 1

|D|
∑
d∈D

(xj,i − jd)

∣∣∣∣∣
≤ 1

|D|
∑
d∈D

|xj,i − jd|

≤ 1

|D|
∑
d∈D

γ

= γ

Next, let us show that the sensitivity of our approximation of µj is upper bounded by M−m
|D| . Notice499

that by adding a single point, one histogram bin will increase by 1 and the rest will be unchanged.500
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Then for every bin k,501 ∑
i∈B

ci
|D|+ 1

xj,i +
1

|D|+ 1
xj,k −

∑
i∈B

ci
|D|

xj,i =
∑
i∈B

cixj,i

(
1

|D|+ 1
− 1

|D|

)
+

xj,k

|D|+ 1

= −

(∑
i∈B

cixj,i

|D|2 + |D|

)
+

xj,k

|D|+ 1

≤ −
(

m

|D|+ 1

)
+

M

|D|+ 1

≤ M −m

|D|∑
i∈B

cj
|D|+ 1

xj,i +
1

|D|+ 1
xj,k −

∑
i∈B

cj
|D|

xj,i = −

(∑
i∈B

cixj,i

|D|2 + |D|

)
+

xj,k

|D|+ 1

≥ −
(

M

|D|+ 1

)
+

m

|D|+ 1

≥ m−M

|D|

So we have that the sensitivity is no greater than M−m
|D| .502

A.7 Proof of Corollary 1503

Before we can prove this corollary, we will need a lemma which bounds the concentration of the504

Student’s t-distribution.505

Lemma 2. If X and Z are random variables drawn independently from the Student’s t-distribution506

with ν degrees of freedom and the standard normal distribution respectively, then for every t > 0, we507

have508

Pr[|X| < t] ≤ Pr[|Z| < t]

Proof. We will write FX(t) to denote the CDF of random variable X evaluated at t, and fX(t) the509

PDF. We will also write EX(g(X)) to be the expected value of g(X) with randomness over X . Let510

us begin by demonstrating that for all t < 0, we have FX(t) > FZ(t). First, recall that if W and Y511

are drawn from the χ2 distribution with ν degrees of freedom and the standard normal distribution512

respectively, then Y
√

ν
W is distributed according to the Student’s t-distribution with ν degrees of513

freedom, so let us write X = Y
√

ν
W . Then according to the law of total probability, we have514

FX(t) =

∫ ∞

0

FY

(
t

√
w

ν

)
f(w)dw

= EW

(
FY

(
t

√
W

ν

))

Notice that d2

dt2FY (t) =
d
dtfY (t) =

d
dt

1√
2π

e−
t2

2 = − t√
2π

e−
t2

2 > 0 when t < 0. Then since t
√

W
ν515

must be less than 0, we can apply Jensen’s inequality to get516

FX(t) = EW

(
FY

(
t

√
W

ν

))

≥ FY

(
EW

(
t

√
W

ν

))

= FY

(
tEW

(√
W

ν

))
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Then since d2

du2

√
u = − 1

4
√
u3
≤ 0, we get that EW

(√
W
ν

)
≤
√

EW (W )
ν =

√
ν
ν = 1. So because517

t < 0, we can see that tEW

(√
W
ν

)
≥ t, and since FY (u) is increasing, we get518

FX(t) ≥ FY

(
tEW

(√
W

ν

))
≥ FY (t)

Since fX and fY are both symmetric about t = 0, it then follows by a symmetric argument that for519

all t > 0, FX(t) ≤ FY (t). Then we see that for any t > 0,520

Pr[|X| < t] = FX(t)− FX(−t)
≤ FY (t)− FY (−t)
= Pr[|Y | < t]

= Pr[|Z| < t]

Because Y and Z are independently and identically distributed.521

We are now ready to prove Corollary 1.522

Proof of Corollary 1. A pair of datasets D1, D2 pass Welch’s t-test on feature j if523

|µj(D1)− µj(D2)|√
σ2
1

|D1| +
σ2
2

|D2|

≤ Tα,ν

where α is the desired significance level, ν is the degrees of freedom in the datasets, and Tα,ν is the524

unique value such that525

Pr
x∼t(ν)

[|x| ≥ Tα,ν ] = α

where t(ν) is the Student’s t-distribution with ν degrees of freedom. In our case, the t-test compares526

the reference dataset Saudit with the training dataset S′
train.527

The value of ν, and thus the value of Tα,ν , depends on the size of the datasets, with the threshold Tα,ν528

decreasing as the datasets grow large. However, we will use Lemma 2 to give a lower bound for Tα,ν529

which is constant with respect to |S′
train|. Then, we will show that by Lemma 1 and Theorem 1 we530

can use Algorithm 1 to construct a malicious training dataset S′
train which maintains an arbitrarily531

small test statistic, and in particular, a dataset such that the test statistic is below the lower bound on532

the threshold.533

First, let us establish a lower bound on Tα,ν . Let us define T ′
α to be the unique positive value such534

that535

Pr
Z∼N (0,1)

[|Z| ≥ T ′
α] = α

Then recall that Lemma 2 gives us that536

Pr
X∼t(ν)

[|X| < T ′
α] ≤ Pr

Z∼N (0,1)
[|Z| < T ′

α]

If we write fX and fZ to represent the probability density functions (PDFs) of X and Z respectively,537

then we get equivalently that538 ∫ T ′
α

−T ′
α

fX(u)du ≤
∫ T ′

α

−T ′
α

fZ(u)du
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Then we see that539

Pr
Z∼N (0,1)

[|Z| ≥ T ′
α] = Pr

X∼t(ν)
[|X| ≥ Tα,ν ]

=⇒
∫ T ′

α

−T ′
α

fZ(u)du =

∫ Tα,ν

−Tα,ν

fX(u)du

=

∫ −T ′
α

−Tα,ν

fX(u)du+

∫ T ′
α

−T ′
α

fX(u)du+

∫ Tα,ν

T ′
α

fX(u)du

≤
∫ −T ′

α

−Tα,ν

fX(u)du+

∫ T ′
α

−T ′
α

fZ(u)du+

∫ Tα,ν

T ′
α

fX(u)du

=⇒ 0 ≤
∫ −T ′

α

−Tα,ν

fX(u)du+

∫ Tα,ν

T ′
α

fX(u)du

Then because fX(x) is symmetric about x = 0, this yields540

2

∫ Tα,ν

T ′
α

fX(u)du ≥ 0

and thus541 ∫ Tα,ν

T ′
α

fX(u)du ≥ 0

Now recall the simple result from calculus that states that if g is positive valued, then542 ∫ b

a

g(x)dx ≥ 0 ⇐⇒ a ≤ b

Then because fX is positive-valued, our prior result entails that Tα,ν ≥ T ′
α, so T ′

α is a lower bound543

on Tα,ν that does not depend on |S′
train|.544

Next, observe that the test statistic for Welch’s t-test has the following upper bound:545

|µj(S
′
train)− µj(Saudit)|√
σ2
train

|S′
train|

+
σ2
audit

|Saudit|

≤ |µj(S
′
train)− µj(Saudit)|√

σ2
audit

|Saudit|

Furthermore, Lemma 1 implies that for any ε > 0, we can choose γ < ε
2 such that µj is546

(γ, c)-magnitude insensitive, and so by Theorem 1, Algorithm 1 yields a dataset S′
train such that547

|µj(S
′
train)− µj(Saudit)| ≤ ε when appropriately parameterized. Then let ε = T ′

α
σaudit

2
√

|Saudit|
. This548

produces the result that549

|µj(S
′
train)− µj(Saudit)|√
σ2
train

|S′
train|

+
σ2
audit

|Saudit|

≤ 2ε√
σ2
audit

|Saudit|

=
2√

σ2
audit

|Saudit|

T ′
α

σaudit

2
√
|Saudit|

= T ′
α

≤ Tα,ν

which passes the t-test for feature j. Finally, by choosing k = maxj
4d(Mj−mj)

√
|Saudit|

T ′
ασaudit,j

we get for550

every feature i that |µi(S
′
train) − µi(Saudit)| ≤ 2min

j
T ′
α

σaudit,j

2
√

|Saudit|
≤ 2T ′

α
σaudit,i

2
√

|Saudit|
, so S′

train551

passes the t-test for feature i.552
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