
Data Forging Attacks on
Cryptographic Model Certification

Carter Luck
University of Massachusetts Amherst

Olive Franzese
Vector Institute & University of Toronto

Elisaweta Masserova
Carnegie Mellon University

Akira Takahashi
J.P.Morgan AI Research & AlgoCRYPT CoE

Antigoni Polychroniadou
J.P.Morgan AI Research & AlgoCRYPT CoE

Abstract

Privacy-preserving machine learning auditing protocols allow auditors to assess
models for properties such as fairness or robustness, without revealing their inter-
nals or training data. This makes them especially attractive for auditing models
deployed in sensitive domains such as healthcare or finance. For these protocols to
be truly useful, though, their guarantees must reflect how the model will behave
once deployed, not just under the conditions of an audit. Existing security defi-
nitions often miss this mark: most certify model behavior only on a fixed audit
dataset, without ensuring that the same guarantees generalize to other datasets
drawn from the same distribution. We show that a model provider can attack many
cryptographic model certification schemes by forging training data, resulting in
a model that exhibits benign behavior during an audit, but pathological behavior
in practice. For example, we empirically demonstrate that an attacker can train
a model that achieves over 99% accuracy on an audit dataset, but less than 30%
accuracy on fresh samples from the same distribution.

1 Introduction

Certifiable, privacy-preserving machine learning aims to formally prove desired properties of the
model while keeping model parameters and training data confidential [Zhang et al., 2020, Liu et al.,
2021, Shamsabadi et al., 2022]. In this context, the typical lifecycle follows a sequence in which
the model provider first trains the model, then an auditor evaluates it according to desired criteria,
and—after passing the audit —the certified model is deployed.1 Note that certification comes from
the use of cryptography (e.g., cryptographic commitments, zero-knowledge proofs [Goldwasser et al.,
1985]) rather than a specific ML algorithm. The usage of cryptographic techniques allows to not
only certify the intended property, but do so while keeping the model internals and training data
private. However, it turns out that the guarantees that model certifications provide are bound to the
specific dataset that was used during the audit (e.g., “a demographic parity gap of the model held
by the provider is below 10% on the UCI Default Credit dataset”). In this paper, we observe that
such dataset-specific guarantees risk creating a false sense of security: by themselves, they do not
ensure that the certified properties will continue to hold once the model is deployed and applied

1Some works require continuous auditing during deployment instead of a single audit pre-deployment; see
Table 1.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Regulatable Machine
Learning.

Table 1: Analysis of vulnerabilities to data-forging attacks in privacy-preserving ML audits.
✓= supported; ▲= conditional; ✗= not supported.

Work Certified property Resilience to
data-forging

Continuous
verification

Acc. Group Fair Indv. Fair Diff. Priv.

Zhang et al. [2020] ✓ ✗ ✗ ✗ ▲ (pd) ✗
Shamsabadi et al. [2022] ✗ ✓ ✗ ✗ ✗ ✗
Yadav et al. [2024] ✗ ✗ ✓ ✗ ✓ ✓
Liu et al. [2021] ✓ ✗ ✗ ✗ ▲ (pd) ✗
Franzese et al. [2024] ✗ ✓ ✗ ✗ ✓ ✓
Shamsabadi et al. [2024] ✗ ✗ ✗ ✓ ✗ ✗
Kang et al. [2022] ✓ ✗ ✗ ✗ ✓ ✗
Wang and Hoang [2023] ✓ ✗ ✗ ✗ ▲ (pd) ✗
Bourrée et al. [2025] ✗ ✓ ✗ ✗ ✗ ✗

Acc. = accuracy; Group/Indv. Fair = group/individual fairness; Diff. Priv.=differential privacy. “Conditional”
works lack detail to assess resilience to data-forging, but indicate deployments with public datasets (pd), which

would be make the solution vulnerable. Continuous verification means audits must run continuously during
deployment (e.g., via clients) rather than once pre-deployment.

to fresh data, even when this data is drawn from the same distribution as the audit dataset. We show
that this is not merely a theoretical concern.

We propose novel attack strategies allowing an adversarial model provider to pass an audit (thus
enabling deployment) while simultaneously pursuing its own, potentially conflicting, interests. For
example, while an auditor may seek to verify fairness, the model owner may instead prioritize
accuracy—even when accuracy and fairness are in tension. We show that when the audit dataset is
known in advance (as is often the case when public benchmark datasets are used), the model owner
can carefully engineer “training data” so that a model honestly trained on it passes the audit, while
exhibiting pathological behavior on real-world inputs. We empirically show that such data forging
attacks can cause dramatic gaps between audit-time guarantees and true model performance: for
instance, in one of our attacks a model can pass an audit requiring 80% accuracy on the audit dataset,
yet achieve only 30% accuracy on new samples from the same distribution. We establish the attacks
rigorously for decision trees—both empirically and formally—and provide preliminary empirical
evidence for neural networks. We show that our attacks remain undetected by straightforward
approaches such as statistical tests, e.g., Welch’s t-test [Welch, 1947] are performed to check whether
the training data and audit data were taken from the same distribution. We further show that a number
of prior works are vulnerable to such data forging attacks (see Table 1).

Motivated by these vulnerabilities, we introduce a unified syntax capturing existing auditing schemes
and define a formal attack game that highlights the gap between certifying a property on a fixed
dataset and certifying that the property generalizes to fresh samples from the distribution. Given the
existence of data-forging attacks in this setting, we underscore the importance of conducting audits
on test data that is independent of both the model and its training data. This approach may serve as a
template for future work to achieve auditing solutions that are not only efficient but also secure.

In summary, our work advances the study of cryptographic auditing for machine learning by (i)
proposing a novel attack strategy that passes an audit while enabling pathological model behavior at
deployment with respect to real-world inputs, and (ii) empirically demonstrating the effectiveness
of our attack against three example certification objectives: accuracy auditing, fairness auditing,
and statistics for distribution similarity testing. We emphasize that we do not suggest that prior
cryptographic works are broken on a technical level, rather that the guarantees these works provide
deserve closer scrutiny. Our findings comprise strong evidence that secure audit solutions with any of
the following properties are unlikely: a) those which utilize known public datasets for test purposes,
and b) those that reuse test datasets (if model owner learns a substantial amount of this test dataset
during the audit). This evidences the importance of continuous sampling of fresh data for a successful
audit infrastructure. We hope that our work will inform the design of future cryptographically secure
machine learning audit frameworks.

2

2 Related Work

Our work is related to, but distinct from, data poisoning attacks [Steinhardt et al., 2017]. Such attacks
have traditionally been considered in the context of machine learning systems trained on user-provided
data. Both data poisoning attacks and the concrete attacks in our work (see §4.1) involve adversarial
manipulations of training data. However, the data poisoning setting is conceptually different from
ours: In data poisoning, the model provider is typically considered honest, and the concern is that
users contributing to the model can inject malicious data to degrade a model’s performance. As
a result, data poisoning involves subtle, often small-scale perturbations to the training data. More
formally, data poisoning can be viewed as a game between a defender, who seeks to learn an accurate
model, and an attacker, who wishes to corrupt the learned model [Barreno et al., 2010]. The model
is honestly trained on the combination of a clean dataset Dc and a poisoned dataset Dp, where the
size of Dp is no larger than that of Dc. In contrast, we consider a fully malicious model provider. Its
goal is to engineer a model that passes an audit, while violating the certified properties on real-world
data. Our adversary is not restricted to small-scale perturbations of the clean training data and is not
required to perform the training in an honest way.

The conclusions we draw about requiring fresh data for auditing are semantically related to work on
the inadequacy of public benchmarks in machine learning Zhang et al. [2025a], Hardt [2025], but
those works do not consider cryptographic security. For additional related work and an overview of
certifiable ML, see §E.

3 Certifying ML: Background and Unifying Syntax

Consider the following scenario: An auditor wishes to verify whether a model utilized by an insurance
company to justify claim decisions (approve/deny claim) is accurate on a dataset of the auditor’s
choosing. At the same time, the company does not want to reveal its model due to concerns about
privacy and business competition. Certifiable ML works use cryptographic techniques to reconcile
these seemingly conflicting goals.

Zero-knowledge proofs Among these techniques, the central tool is zero-knowledge (ZK) proofs, a
classical cryptographic primitive, which allows one party (a prover) prove a statement x to another
party (verifier) without revealing anything else apart from the validity of this statement. Such proofs
are constructed for a concrete NP relationR, which is used to formalize what it means for a statement
to be true by specifying the type of evidence (witness w) that certifies it. The statement x is public,
the witness w is private, and the zk proof checks (x,w) ∈ R, without revealing w. In certifiable ML,
such proofs allow model provider (prover) to formally prove that a model (witness) satisfies a desired
property (e.g., accuracy, fairness, or inference correctness) on a given test dataset (statement) without
learning anything else about the model or the training data. More formally:

Definition 1 (Proof System). An (interactive) proof system ZKP for an NP relation R is a tuple
of interactive Turing machines (P,V), where P is prover and V is verifier. Let b ← ⟨P(w),V⟩(x)
denote the interaction between P and V , where both P and V take x as common inputs, and P
additionally takes w as a private input. At the end of interaction, V halts by outputting a binary b.

Proof systems that are used in ML auditing typically require the following security properties: For an
NP relationR, they must provide completeness (i.e., if prover and verifier follow the protocol with
input (x,w) ∈ R, verifier always accepts), (knowledge) soundness (i.e., if verifier accepts, then it
must be that prover owns a valid witness w satisfying given NP relation w.r.t. statement x), and zero
knowledge (i.e., the transcript of the interaction between the prover and the (malicious) verifier leaks
nothing except that there exists a witness w such that (x,w) ∈ R). See §A.4 for formal definitions
and §F for an overview of the NP relations underlying common zk proofs in certifiable ML (e.g.,
proofs of training, inference, etc.).

Returning to our example, suppose the insurance company has successfully passed an audit and can
now deploy its model. How can a customer submitting inference queries be assured that the company
continues to use the certified model—rather than switching to a different, unverified one? Again, the
company still wishes to keep its model private.

3

Figure 1: Simplified protocol flow for (insecure) ZK-based ML certification. Left: The model provider,
after observing the audit dataset, commits to a model and engages with the auditor in a zero-knowledge proof
of accuracy (ZKPoA). If the audit succeeds, the auditor certifies the committed model. Right: For each new
inference query, the model provider interacts with the client in a zero-knowledge proof of inference (ZKPoI)
protocol, ensuring that the result is consistent with the previously certified commitment.

Cryptographic Commitment Schemes The standard cryptographic tool here is commitments, which
bind the provider to a single private model during the audit. This prevents “model switching” and
ensures that model used in deployment is the same as the one that was certified:

Definition 2 (Commitment Scheme). A commitment scheme is an algorithm Commit, which is
executed as com ← Commit(m; ρ). It takes as input a message m ∈ {0, 1}ℓm(λ), a uniformly
sampled randomness ρ ∈ {0, 1}ℓr(λ), and returns a commitment com ∈ {0, 1}ℓc(λ). Here ℓm, ℓr, ℓc
are some polynomials in λ, the security parameter (determining the desired level of security).

We require two security properties: hiding (i.e., given a commitment com, it leaks nothing about the
message m), and binding (i.e., it is computationally infeasible to find two different pairs (m, ρ) and
(m′, ρ′) such that Commit(m; ρ) = Commit(m′; ρ′)). See §A.5 for formal definitions.

Now, auditing may require publishing such a commitment to the model,2 after which the client and
insurance company engage in a ZK proof of inference against it. Figure 1 shows the full certification
workflow, where the audit dataset is revealed to the model provider prior to committing to the model.

Unifying Syntax for Prior Works We will next discuss the security guarantees of works that address
the first stage of certification—namely, proofs of accuracy, fairness, etc., between auditor and model
provider. To analyze these systematically, rather than case by case, we abstract away implementation
details and introduce a unifying syntax that captures a broad class of existing audit systems.

Given a predicate f(h, Strain, Saudit) and a distribution D, we define the auditing scheme as follows:

1. Auditor samples Saudit ∼ D (or uses a public one) and sends Saudit to the model owner

2. Model owner sends cryptographic commitments to its model comh ← Commit(h) and to
the training data comtrain ← Commit(Strain) to the auditor

3. They interact to execute ZKP: b ← ⟨P(h, Strain),V⟩(comh, comtrain, Saudit), where Model
owner plays P and the auditor plays V and outputs b.

If the output is 1, the auditor is convinced that f(h, Strain, Saudit) = 1, where h and Strain are
the model and training data committed in comh and comtrain. Depending on f , some steps may
be omitted; e.g., for an audit that checks accuracy or demographic parity on Saudit, comtrain is
unnecessary (see examples of f in § A.1). Further, in some works, e.g., Shamsabadi et al. [2022], the
model owner, rather than the auditor, samples the audit dataset.

4 Attacking ML Certification

Returning to our example, suppose the insurance company saves costs by denying claims. Intuitively,
an accuracy audit with provable guarantees—such as those provided by zk proof-based systems—and
with a sufficiently high threshold (e.g., passing only if accuracy on the auditor’s dataset exceeds 95%)
should prevent the company from deploying a model that unjustifiably denies too many claims.

2The commitment may be signed by the auditor.

4

We show that this intuition is false. Because machine learning is inherently data-dependent, certified
properties need not hold once the model is deployed and applied to fresh data, even when drawn from
the same distribution. More formally, while prior works certify that

f(h, Strain, Saudit) = 1

for some predicate f , a given model h, training data Strain, and audit dataset Saudit, this does not imply
that the stronger property F such that

F (h, Strain) = 1 ⇐⇒ Pr
Stest←D

[f(h, Strain, Stest) = 1] > p

where p is a non-negligible probability and D is a distribution over the entire population Q =
{(xi, yi)}mi=1. The true goal of an audit, however, is precisely such stronger guarantees: an auditor
typically seeks to ensure that a model remains fair, accurate, or robust not only on a particular dataset,
but also on the unseen datasets it will encounter during deployment.

We show that this gap can be exploited. In particular, if Saudit is known to the model provider before it
is required to cryptographically commit to the model, the provider can ensure f(h, Strain, Saudit) = 1
(and thus pass the audit), without additionally satisfying F , which is the actual intended security
property. A malicious model provider has strong incentives to do so: for example, the insurance
company could deploy a model that maximizes accuracy on the audit dataset (and thus passes the
audit), yet still unjustifiably denies numerous insurance claims.

Attack Game with Known Audit Data Before providing a concrete attack example, we introduce a
theoretical tool – an attack game – which showcases the gap between verifying f(h, Strain, Saudit)
(which is what prior approaches certified) and F (h) = (Pr

Stest←D
[f(h, Strain, Stest) = 1] > p) (the

intuitive property that one would want to ensure) for audit schemes where the model owner is given
the audit dataset at the beginning of the audit process.

For simplicity, we will assume that the audit process verifying f(h, Strain, Saudit) is perfectly
secure, i.e., the outcome of ⟨P(h, Strain),V⟩(comh, comtrain, Saudit), where comtrain is a commitment
to Strain and comh is a commitment to h, is 1 if and only if f(h, Strain, Saudit) = 1.

In the game, the adversary will win only if it can come up with a model h and training data Strain,
such that: (1) f(h, Strain, Saudit) = 1, i.e, the adversary would pass an audit on the dataset Saudit,
and (2) F (h, Strain) = 0. To make the attack even stronger, we require the adversary to additionally
satisfy a utility requirement (formalized via a predicate L) in order to win the game. Intuitively, the
goal of L is to capture the actual intent of the malicious model owner: For example, in case of the
insurance company that wishes to deny claims, we could use L(h) = Pr

x∼{0,1}d
[h(x) = 0] > 0.9.

Definition 3 (Adaptive Training with Known Auditing Data). Let f : {0, 1}∗ ×{0, 1}∗ ×{0, 1}∗ →
{0, 1} be a predicate verified by the model certification, and let F : {0, 1}∗ × {0, 1}∗ → {0, 1} be
the actual intended security property. Let X be the feature space and D be a distribution over X .
Let L denote the utility predicate3. Consider the following game played by an adversary A:

1. Sample Saudit ∼ D

2. Given Saudit, A outputs a hypothesis hA and a training dataset Strain

3. Obtain b = f(hA, Strain, Saudit)

4. The output of the game is 1 (A ‘wins’) iff b = 1, F (hA, Strain) = 0, and L(hA, Strain) = 1.

The output is 0 (A ‘loses’) otherwise.

4.1 Example of a Data Forging Attack

We now give a concrete example of an attack within the framework of Def. 3 for the proofs of
accuracy (e.g., [Zhang et al., 2020]) which utilize a dataset known to the model provider.

We consider our running example of an insurance company audit. Say the company uses a decision
tree model (see §A.3 for background). The auditor wishes to check that the model is highly accurate,

3We assume that distribution D is implicitly “known” to L (it is either hard-coded or provided as a parameter
to L). For simplicity of notation, we omit D from the description of L.

5

i.e., F (h) = Pr
x∼{0,1}d

[h(x) = yx] > 0.95, where yx is the true label of x. The insurance company

saves on costs when it denies claims, i.e., the model provider’s utility L(h) = (Pr
x∼{0,1}d

[h(x) = 0] >

0.9).4 Following Def. 3, given audit dataset Saudit, we wish to construct a hypothesis hA that passes
the audit, while simultaneously achieving F (hA, Strain) = 0 and L(hA, Strain) = 1.

Attack Outline At a high level, we obtain hA from honestly training a model on a dataset S′train
crafted with the knowledge of Saudit in mind. In more detail, we build S′train from the audit
dataset Saudit using the corresponding true labels—to ensure the model passes the accuracy test on
Saudit—and augment it with points in the neighborhood of those audit points. The points in the
neighborhood are labeled 0, so that outside the audit samples the model learns to label every point
with a 0. More formally, to construct S′train, for every point r ∈ Saudit and every (numeric) feature
i, we add r + ε⃗bi with label 0, where ε is some small number and b⃗i is the ith basis vector. We also
add every r ∈ Saudit to S′train with honest labels (see Algorithm 1 for formal description). Then, we
train a tree on S′train via a standard DT training algorithm until leaves are homogeneous.

Algorithm 1 Data Forging Attack
Input: Audit set Saudit, dimension d, ε > 0
Output: Training data S′train

function ATTACK(Saudit, d, ε, g)
S′train ← Saudit

for r ∈ Saudit do
for i ∈ [d] do

r0 ← (r + ε⃗bi, 0) ▷ b⃗i is the one-hot vector in dimension i

r1 ← (r − ε⃗bi, 0)
S′train ← S′train ∪ {r0, r1}

return S′train

As we confirm in Fig. 5, this attack achieves good results. We now show that this attack allows the
adversary to win in the attack game of Def 3. To this end, we first state the following theorem:

Theorem 1. Classical decision tree training until homogeneity on the output of Algorithm 1 yields a
tree T such that for every x ∈ Rd, T (x) = 1 only if ||x− r||∞ < ε for some r ∈ Saudit.

At a high level, the proof shows that if two points land in the same leaf, then any point lying between
them on one coordinate must also fall in that leaf. Further, as the only non-zero points in S′train are
audit points, every non-zero-labeled leaf contains an audit point. For any x at least ε away from all
audit points, if T (x) = 1, one can construct a nearby training point with label 0 that must lie in the
same leaf, giving a contradiction as we trained until homogeneity. See §B.1 for details.

Thus, whenever a model provider generates a training dataset using Algorithm 1, an honestly trained
decision tree that grows until homogeneity will achieve perfect accuracy on the audit dataset, yet pre-
dict zero for all inputs that lie outside an ε-neighborhood of the audit dataset points. Thus, for an appro-
priate choice of epsilon, the adversary wins in the game specified in Definition 3 with probability one.5

Detection Attacks by malicious model providers can typically be prevented by requiring cryptographic
proofs that a model has been trained using a specific (benign) algorithm. However, such proofs are
useless here: The model provider trains the model honestly using a standard training algorithm, and
it’s the training data itself that enables the attack. One might expect training data manipulation to be
caught by statistical tests, e.g., Welch’s t-test, which assess whether two samples are drawn from the
same distribution. As we show in §C, however, this is not the case. We can cause the distributional
properties of the training data to converge towards the audit data without sacrificing the efficacy of
this attack by adding more copies of the audit data to the training data. This causes the audit data
and the training data to appear as if they were drawn from the same distribution under a variety of
statistical tests without impacting the model’s ability to learn the desired behavior.

4For simplicity, we consider datapoints in {0, 1}d
5Assuming that a model which almost always outputs 0 is not highly accurate in our scenario.

6

5 Evaluation

In this section we underscore the importance of data forging attacks by mounting proof of concept
attacks for models trained on a variety of datasets. We show that our attack is effective in making
inaccurate models appear accurate and unfair models appear fair, and empirically demonstrate a
variety of other qualities, e.g. undetectability with a variety of statistical tools.

Experimental Setup. We use six well-known fairness benchmarking datasets in our experiments:
ACSEmployment Ding et al. [2021], Adult Becker and Kohavi [1996], COMPAS Angwin et al.
[2016], German Credit Hofmann [1994], Default Credit Yeh and hui Lien [2009], and Communities
& Crime Redmond [2009]. We implemented a modified version of our attack from §4.1 in Python
3.12.3 using SciKit-Learn version 1.6.1 that attempts to minimize an objective when deployed and
evaluated its performance against a variety of datasets. For a given run, we split the dataset into an
evaluation dataset consisting of 30% of the data, an audit dataset containing 1000 data points, and
an initial training data set. We represent the interpolation between a fully honest training run and
a fully malicious one by the attack parameter, which takes a value between 0 (fully honest) and 1
(fully malicious). The attack parameter controls what proportion of audit data points are included in
the training data and what proportion of the initial training data is labeled maliciously. The specifics
of how honest and malicious data points are labeled depends on the objective.

To attack accuracy, we constructed a training dataset using a modified Algorithm 1, labeling the
additional data from the attack with 1− ry rather than 0 and adding them to the initial training data
set. For our fairness attack, we constructed the training data similarly, changing how honest and
malicious data points were labeled. Honest data points were given random labels, while malicious
data points were labeled according to their sensitive attribute. Both attacks then fit a decision tree to
their constructed training data using SciKit-Learn’s decision tree classifier class.

To ensure that our attack would evade statistical detection, we added extra copies of the audit data to
the training data, as computed in Corollary 1 to pass Welch’s t-test with significance level 0.05.

Attacking Accuracy Audits. We ran our attack on six benchmark datasets – three shown in Figure 2
(remaining in Figure 4). Across all datasets, our data forging attack enforces high audit accuracy
while simultaneously encouraging low performance on real-world evaluation data. Thus our attack
successfully makes inaccurate models appear accurate to an auditor.

Attacking Fairness Audits. We also performed the attack while targeting demographic parity (using
sex as the sensitive attribute) on three datasets, which we present in Figure 3. We were able to reliably
train a model with close to 0 fairness gap on the audit dataset, but close to 1 fairness gap when
deployed. In other words, our attack successfully makes unfair models appear fair to an auditor.

Evading Detection via Statistical Methods. We show how our attack can be executed in ways that
evade detection by a variety of statistical approaches in Appendix Table 2. We were able to construct
malicious training datasets with summary statistics that match those of the audit dataset very closely,
and Welch’s t-test and Levene’s test regularly concluded that the audit and test datasets were drawn
from the same distribution. This is consistent with our theoretical results in Appendix C.

Additional Results. An adversary can use data forging attacks to achieve concrete goals beyond
degradation of accuracy or fairness, as we show in the Appendix G. For example, Figure 5 shows
how an insurance provider could use our attack to hide the claim denial rate of a model from auditors.
Figure 6 also shows preliminary results which suggest that our attack generalizes to neural networks.

6 Discussion and Future Work

This work brings attention to data-dependent vulnerabilities in cryptographic auditing methods for
machine learning models. We propose an attack strategy that passes cryptographic certification while
undermining the goals of those certifications for real-world performance. We then introduce new
formal security definitions which address these vulnerabilities.

The attack strategy presented in this work poses several open questions. While we demonstrate the
data forging attack is undetected even in the presence of Welch’s t-test and Levene’s test, it remains

7

Figure 2: Performance of models trained on datasets constructed to minimize real-world accuracy
while still passing an audit for several benchmarks. Values are averages over ten runs, error bars
represent one standard deviation.

Figure 3: Fairness of models trained on constructed datasets using various benchmarks to target
demographic parity. Values are averages over ten runs, error bars represent one standard deviation.
Fairness means 1− fairness gap.

to be seen whether other statistical tests could effectively detect the attack. Based on the results that
we have derived, we find it unlikely that other statistical tests will be effective in detecting the attack.
However, we reserve such analysis for future work. We provide rigorous formal proofs that our
attacks are effective on decision trees, and preliminary evidence that a similar approach generalizes
to neural networks. Characterizing a formal relationship between neural network model capacity and
attack effectiveness could be a promising direction in future work.

Our findings underscore the importance of keeping audit data hidden until the service provider’s model
is committed. This imposes a limitation on auditing in practice: auditors must either regularly gather
fresh data (since the audit dataset is typically revealed during the audit), use additional cryptographic
techniques such as secure multiparty computation to keep data hidden during the audit, or perform
continuous auditing on user data. Each of these options has strengths and drawbacks which should be
evaluated in more detail by future work.

Acknowledgments

We thank Nicolas Papernot for the contributions to this work, Chen-Da Liu-Zhang for many helpful
discussions, and Jonas Guan, Sierra Wyllie and Mohammad Yaghini for helpful feedback on an
earlier draft.

This paper was prepared in part for information purposes by the Artificial Intelligence Research
group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

Resources used in preparing this research were provided, in part, by the Province of Ontario, the
Government of Canada through CIFAR, and companies sponsoring the Vector Institute. The work
was further supported by the CBI postdoctoral fellowship.

8

References
K. Abbaszadeh, C. Pappas, J. Katz, and D. Papadopoulos. Zero-knowledge proofs of training for

deep neural networks. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, pages 4316–4330, 2024.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. ProPublica, May 2016. Retrieved
January 15, 2022.

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine learning. Mach.
Learn., 81(2):121–148, 2010.

B. Becker and R. Kohavi. Adult. UCI Machine Learning Repository, 1996.

J. G. Bourrée, H. Lautraite, S. Gambs, G. Trédan, E. L. Merrer, and B. Rottembourg. P2NIA:
privacy-preserving non-iterative auditing. CoRR, abs/2504.00874, 2025. doi: 10.48550/ARXIV.
2504.00874. URL https://doi.org/10.48550/arXiv.2504.00874.

I. Chang, K. Sotiraki, W. Chen, M. Kantarcioglu, and R. Popa. {HOLMES}: Efficient distribution
testing for secure collaborative learning. In 32nd USENIX Security Symposium (USENIX Security
23), pages 4823–4840, 2023.

F. Ding, M. Hardt, J. Miller, and L. Schmidt. Retiring adult: New datasets for fair machine learning.
Advances in Neural Information Processing Systems, 34, 2021.

V. Duddu, A. Das, N. Khayata, H. Yalame, T. Schneider, and N. Asokan. Attesting distributional
properties of training data for machine learning. In European Symposium on Research in Computer
Security, pages 3–23. Springer, 2024.

O. Franzese, A. S. Shamsabadi, and H. Haddadi. Oath: Efficient and flexible zero-knowledge proofs
of end-to-end ml fairness. arXiv preprint arXiv:2410.02777, 2024.

S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mahmoody, G.-V. Policharla, and M. Wang. Experiment-
ing with zero-knowledge proofs of training. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, pages 1880–1894, 2023.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems
(extended abstract). In R. Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 291–304. ACM,
1985. doi: 10.1145/22145.22178. URL https://doi.org/10.1145/22145.22178.

M. Hardt. The emerging science of machine learning benchmarks. Manuscript. https://mlbenchmarks.
org, 2025.

H. Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

D. Kang, T. Hashimoto, I. Stoica, and Y. Sun. Scaling up trustless DNN inference with zero-
knowledge proofs. CoRR, abs/2210.08674, 2022. doi: 10.48550/ARXIV.2210.08674. URL
https://doi.org/10.48550/arXiv.2210.08674.

T. Liu, X. Xie, and Y. Zhang. zkcnn: Zero knowledge proofs for convolutional neural network
predictions and accuracy. In Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, pages 2968–2985. ACM, 2021. doi: 10.1145/3460120.3485379. URL
https://doi.org/10.1145/3460120.3485379.

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,
and T. Gebru. Model cards for model reporting. In Proceedings of the conference on fairness,
accountability, and transparency, pages 220–229, 2019.

C. Pappas and D. Papadopoulos. Sparrow: Space-efficient zksnark for data-parallel circuits and
applications to zero-knowledge decision trees. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, pages 3110–3124, 2024.

9

https://doi.org/10.48550/arXiv.2504.00874
https://doi.org/10.1145/22145.22178
https://doi.org/10.48550/arXiv.2210.08674
https://doi.org/10.1145/3460120.3485379

M. Redmond. Communities and Crime. UCI Machine Learning Repository, 2009.

P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld, K. T. Rodolfa, and R. Ghani.
Aequitas: A bias and fairness audit toolkit. arXiv preprint arXiv:1811.05577, 2018.

A. S. Shamsabadi, S. C. Wyllie, N. Franzese, N. Dullerud, S. Gambs, N. Papernot, X. Wang, and
A. Weller. Confidential-profitt: confidential proof of fair training of trees. In The Eleventh
International Conference on Learning Representations, 2022.

A. S. Shamsabadi, G. Tan, T. I. Cebere, A. Bellet, H. Haddadi, N. Papernot, X. Wang, and A. Weller.
Confidential-dpproof: Confidential proof of differentially private training. In International Confer-
ence on Learning Representations (ICLR), 2024.

J. Steinhardt, P. W. Koh, and P. Liang. Certified defenses for data poisoning attacks. In NIPS, pages
3517–3529, 2017.

H. Sun, T. Bai, J. Li, and H. Zhang. Zkdl: Efficient zero-knowledge proofs of deep learning training.
IEEE Transactions on Information Forensics and Security, 2024.

S. Tan, R. Caruana, G. Hooker, and Y. Lou. Distill-and-compare: Auditing black-box models using
transparent model distillation. In AIES, pages 303–310. ACM, 2018.

F. Tramer, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux, M. Humbert, A. Juels, and H. Lin.
Fairtest: Discovering unwarranted associations in data-driven applications. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 401–416. IEEE, 2017.

H. Wang and T. Hoang. ezdps: An efficient and zero-knowledge machine learning inference pipeline.
Proc. Priv. Enhancing Technol., 2023(2):430–448, 2023. doi: 10.56553/POPETS-2023-0061.
URL https://doi.org/10.56553/popets-2023-0061.

B. L. Welch. The generalization of ‘student’s’problem when several different population varlances
are involved. Biometrika, 34(1-2):28–35, 1947.

C. Yadav, A. R. Chowdhury, D. Boneh, and K. Chaudhuri. Fairproof: Confidential and certifiable
fairness for neural networks. arXiv preprint arXiv:2402.12572, 2024.

I.-C. Yeh and C. hui Lien. The comparisons of data mining techniques for the predictive accuracy
of probability of default of credit card clients. Expert Systems with Applications, 36(2, Part 1):
2473–2480, 2009. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2007.12.020. URL
https://www.sciencedirect.com/science/article/pii/S0957417407006719.

G. Zhang, F. E. Dorner, and M. Hardt. How benchmark prediction from fewer data misses the mark.
arXiv preprint arXiv:2506.07673, 2025a.

J. Zhang, Z. Fang, Y. Zhang, and D. Song. Zero knowledge proofs for decision tree predictions and
accuracy. In CCS, pages 2039–2053. ACM, 2020.

T. Zhang, S. Dong, O. D. Kose, Y. Shen, and Y. Zhang. Fairzk: A scalable system to prove
machine learning fairness in zero-knowledge. In M. Blanton, W. Enck, and C. Nita-Rotaru,
editors, IEEE Symposium on Security and Privacy, SP 2025, San Francisco, CA, USA, May
12-15, 2025, pages 3460–3478. IEEE, 2025b. doi: 10.1109/SP61157.2025.00205. URL https:
//doi.org/10.1109/SP61157.2025.00205.

A Additional Preliminaries

A.1 Example of Auditing Predicates

Auditing Accuracy To audit accuracy, we consider the empirical accuracy as follows:

ℓ̂S(h) =
1

n

∑
(x,y)∈S

I(h(x) ̸= y)

10

https://doi.org/10.56553/popets-2023-0061
https://www.sciencedirect.com/science/article/pii/S0957417407006719
https://doi.org/10.1109/SP61157.2025.00205
https://doi.org/10.1109/SP61157.2025.00205

Algorithm 2 Welch’s t-test
Input: X = {xi}i∈[n], Y = {yi}i∈[m], where xi ∼ X and yi ∼ Y , and a significance level α
Output: Null hypothesis H0 (i.e., µX = µY) or alternative hypothesis H1 (i.e., µX ̸= µY)

1: Compute sampled means x̄ =
∑

i xi

n and ȳ =
∑

i yi

m

2: Compute sampled variances vx =
∑

i(x̄−xi)
2

n−1 and vy =
∑

i(ȳ−yi)
2

m−1 .
3: Compute the test statistic t = x̄−ȳ√

vx/n+vy/m

4: Compute the degree of freedom d =
(gx+gy)

2

g2
x/(n−1)+g2

y/(m−1)
, where gx = vx/n and gy = vy/m

5: Obtain the critical value tcr from the t-table, given d and α.
6: If |t| < tcr return H0 else return H1

where n = |S|, and define the empirical predicate f as follows:

f(h, Saudit) = 1 ⇐⇒ ℓ̂S(h) ≤ t

Auditing Fairness with Demographic Parity Demographic parity is one of the most basic fairness
metrics, measuring the difference between the prediction probabilities conditioned on a sensitive
attribute. We consider the empirical parity differences as follows:

∆dp(h, Saudit) =

∣∣∣∣∣ 1n0

∑
x∈S0

I(h(x) = 1)− 1

n1

∑
x∈S1

I(h(x) = 1)

∣∣∣∣∣
where sx denotes the sensitive feature of a data point x, S0 = {x ∈ Saudit : sx = 0}, S1 = {x ∈
Saudit : sx = 1}, n0 = |S0|, and n1 = |S1|. To audit fairness w.r.t a model h and a dataset Saudit, we
define the corresponding empirical predicate f as follows.

f(h, Saudit) = 1 ⇐⇒ ∆dp(h, Saudit) ≤ t

A.2 Welch’s t-test

Welch’s t-test The goal of t-test is to determine whether the unknown population means of two
groups are equal or not. That is, for random variables X and Y , it compares the following hypotheses
on their means µX = E[X] and µY = E[Y]:

• Null Hypothesis H0: µX = µY

• Alternative Hypothesis H1: µX ̸= µY

Assuming that X and Y independently follow Gaussian distributions with unknown variances,
Welch’s t-test proceeds as in Algorithm 2.

A.3 Decision Trees

In our attack constructions we focus on decision tree models. Decision tree-based solutions are
among the most popular machine learning algorithms, particularly known for their effectiveness
in classification problems such as loan approval and fraud detection. A decision tree is trained by
recursively partitioning the dataset from the root to the leaves. At each step, a split is determined by a
splitting rule that aims to maximize an objective function, such as information gain. For prediction,
the input follows a path from the root to a leaf, where at each internal node, the decision depends on
whether the input satisfies the corresponding threshold (see Algorithm 3).

For completeness, in Algorithm 3 we present the algorithm for decision tree inference.

A.4 Security Properties of Zero-Knowledge Proofs

Let ZKP = (P,V) be an interactive proof system for a relationR =
⋃

λ∈NRλ. In what follows, we
denote by PPT probabilistic polynomial time.

11

Algorithm 3 Decision Tree Inference
Input: Decision tree h, input a.
Output: Classification result.

1: Let cur := h.root ▷ Set cur to be root of the tree
2: while cur is not a leaf do
3: if a[cur.attr] < cur.thr then
4: cur := cur.left. ▷ Set cur to be current node’s left child
5: else
6: cur := cur.right. ▷ Set cur to be current node’s right child
7: return cur.class

Completeness ZKP is (perfectly) complete if for any (x,w) satisfyingR, it holds that:

Pr[1← ⟨P(w),V⟩(x)] = 1.

Knowledge Soundness ZKP is (adaptively) knowledge sound with knowledge error κ if for any
(stateful) PPT adversary P∗ = (P0,P1), there exists an expected polynomial time extractor E such
that the following holds:

pext ≥ pacc − κ

where

pext = Pr
[
Rλ(x,w) = 1 : x← P0(1

λ);w← EP(x)
]

pacc = Pr
[
b = 1 : x← P0(1

λ); b← ⟨P1,V⟩(x)
]

where E has non-black-box access to P∗. Informally, this means that any cheating prover must know
a valid witness if it convinces verifier.

Zero-Knowledge Let viewP(w)V (x) be a string consisting of all the incoming messages that V receives
from P during the interaction ⟨P(w),V⟩(x), and V’s random coins. Π is (honest verifier) zero-
knowledge if there exists a PPT simulator S such that for any adversary A and any (x,w) ∈ Rλ, the
following is negligible in λ.

∣∣∣Pr [b = 1 : b← A(viewP(w)V (x))
]
− Pr

[
b = 1 : view′ ← S(x); b← A(view′)

]∣∣∣
Informally, this means that the protocol execution reveals no information to V about w.

A.5 Security Properties of Commitment Schemes

Let Commit be a commitment scheme. For simplicity, we omit the key generation algorithm Gen
for simplicity and present a class of the simplest commitments whose openings are checked by
re-computing and comparing (e.g., hash commitment H(m||ρ)). More generally, some commitment
schemes require a separate verification algorithm Verify to check the validity of a commitment given
some decommitment information. Our auditing framework can be extended to such schemes by
having the model provider prove the knowledge of the decommitment information in zero knowledge.

Binding Commit is computationally binding if for any PPT adversary A, the following is negligible
in λ:

Pr
[
Commit(m; ρ) = Commit(m′; ρ′) ∧m ̸= m′ : (m,m′, ρ, ρ′)← A(1λ)

]
Hiding Commit is computationally hiding if for any PPT adversary A, the following is negligible in
λ: ∣∣∣∣∣Pr

[
b = 1 :

m0,m1 ← A(1λ); ρ← {0, 1}ℓr(λ);
com← Commit(mb; ρ); b← {0, 1}; b′ ← A(com)

]
− 1

2

∣∣∣∣∣

12

B Deferred Proofs

B.1 Proof of Theorem 1

Proof. First, let us show that if points a and b, where ai < ci < bi and cj = bj for all j ̸= i, get
sorted into the same decision tree leaf, then c is also sorted into that same leaf. Notice that in order for
two points x and y to get sorted into different leaves, there must be a node which splits on a feature i
such that xi ̸= yi and xi ≤ t ≤ yi or yi ≤ t ≤ xi where t is the threshold to split upon. Then if b
and c were sorted into separate leaves, there must be a node on the path that b takes through the tree
that splits on feature i with a threshold t that satisfies ci ≤ t ≤ bi. However, such a node would also
sort a distinctly from b, so such a node cannot occur. Thus, b and c must be sorted into the same leaf.

Now, note that as we train the tree until its leafs are homogeneous, every datapoint in S′train must
be classified correctly (according to the label we assigned to it in Algorithm 1). Further, since the
only datapoints in S′train with non-zero labels are datapoints from Saudit, for every leaf in T that is
associated with a non-zero class, we have at least one r ∈ Saudit that gets sorted into this leaf.

Consider x ∈ Rd such that ||x − r||∞ ≥ ε for all r ∈ Saudit. Say T (x) = 1, i.e., there exists
a leaf such that x belongs to this leaf and the leaf corresponds to class one. Consider r ∈ Saudit

that belongs to this leaf (by above, such r exists). By the definition of the L-infinity norm there
exists some dimension i where |ri − xi| > ε. Suppose ri − xi > ε. Notice that there is a point
r − ε⃗bi ∈ S′train which satisfies that (r − ε⃗bi)j = rj for all j ̸= i, and where xi < (r − ε⃗bi)i < ri.
Then by above, r − ε⃗bi must be sorted into the same leaf as r and x. But r − ε⃗bi has label g(r) = 0,
while for x holds T (x) = 1. Thus, we found a contradition. The same argument holds if xi − ri > ε,
but using the point r + ε⃗bi instead of r − ε⃗bi.

C Attack Detection

While proof of training alone cannot detect the attack above (as it relies on training the decision tree
entirely honestly), nor can a black-box audit where the model owner knows the audit data before
training time, we might still hope to detect when these attacks occur. For example, we might hope
to conduct statistical tests on the training data to determine if it was honestly sampled from the
underlying distribution or if it was adversarially constructed. In such a case, we cannot directly
compare the training data to the true distribution of real data because the underlying distribution is
not fully known to the auditor. Instead, we must compare the training data with a sample from that
distribution. In the most simple case, this sample is the reference set Saudit.

We argue that under a certain family of functions, our constructed training set is indistinguishable
from Saudit.

Definition 4. Suppose α⃗ is a set of bins over d dimensions. Then Hα⃗ : (Rd × {0, 1})∗ → H is
the function which takes databases over d features and a binary classification to their normalized
histogram with bins α⃗.

Definition 5. A function f : (Rd × {0, 1})∗ → R is called (γ, c)-magnitude insensitive if there
exists a choice of bins α⃗ and function f ′ : H → R such that |f(D) − f ′(Hα⃗(D))| < γ for all
D ∈ (Rd × {0, 1})∗ and |f ′(Hα⃗(D)) − f ′(Hα⃗(D||r))| ≤ c

|D| for all D ∈ (Rd × {0, 1})∗ and
r ∈ Rd × {0, 1}.

Theorem 2. If f is (γ, c)-magnitude insensitive, then |f(Saudit)−f
(
Sk
audit||δ

)
| ≤ ε for any ε > 2γ

and k ≥ 2dc
ε−2γ , where δ is the additional training data created by Algorithm 1 when run with input

Saudit, d, ε, g for any g.

Proof. We will write f ′ to be the γ-approximation of f guaranteed to exist by the fact that f is
(γ, c)-magnitude insensitive. Observe that because Hα⃗ takes databases to their normalized histograms,
Hα⃗(Saudit) = Hα⃗

(
Sk
audit

)
, because the non-normalized histograms of the two databases are simply

scaled versions of one another.

13

Next, it will be helpful to show that for any two databases D1, D2 ∈ (Rd × {0, 1})∗, we have
|f ′(Hα⃗(D1))− f ′(Hα⃗(D1||D2))| ≤ c |D2|

|D1| . Let us write D2 = d1||d2|| . . . ||d|D2|. Then we get that

|f ′(Hα⃗(D1))− f ′(Hα⃗(D1||D2))|
= |f ′(Hα⃗(D1))− f ′(Hα⃗(D1||d1)) + f ′(Hα⃗(D1||d1))− . . .

+ f ′(Hα⃗(D1||d1||d2|| . . . ||d|D2|−1))− f ′(Hα⃗(D1||D2))|
≤ |f ′(Hα⃗(D1))− f ′(Hα⃗(D1||d1))|+ |f ′(Hα⃗(D1||d1))− f ′(Hα⃗(D1||d1||d2)|+ . . .

+ |f ′(Hα⃗(D1||d1||d2|| . . . ||d|D2|−1))− f ′(Hα⃗(D1||D2))|

≤ c

|D1|
+

c

|D1|+ 1
+ . . .+

c

|D1|+ |D2| − 1

≤ c
|D2|
|D1|

Then we can apply this to Sk
audit and Sk

audit||δ; recall that |δ| = 2d|Saudit|. Then we see that∣∣f ′ (Hα⃗ (Saudit))− f ′
(
Hα⃗

(
Sk
audit||δ

))∣∣ = ∣∣f ′ (Hα⃗

(
Sk
audit

))
− f ′

(
Hα⃗

(
Sk
audit||δ

))∣∣
≤ c

2d|Saudit|
k|Saudit|

≤ c
2d(
2dc
ε−2γ

) = ε− 2γ

We have two cases now.

Case 1: f ′ (Hα⃗ (Saudit)) ≥ f ′
(
Hα⃗

(
Sk
audit||δ

))
. Then we have

ε− 2γ ≥ f ′ (Hα⃗ (Saudit))− f ′
(
Hα⃗

(
Sk
audit||δ

))
= f(Saudit)− f(Saudit) + f ′(Hα⃗(Saudit))

− f(Sk
audit||δ) + f(Sk

audit||δ)− f ′(Hα⃗(S
k
audit||δ))

≥ f(Saudit)− |f(Saudit)− f ′(Hα⃗(Saudit))|
− f(Sk

audit||δ)− |f(Sk
audit||δ)− f ′(Hα⃗(S

k
audit||δ))|

≥ f(Saudit)− γ − f(Sk
audit||δ)− γ

and so we see that ε ≥ f(Saudit)− f(Sk
audit||δ). We also have

f(Saudit)− f(Sk
audit||δ) = f ′(Hα⃗(Saudit))− f ′(Hα⃗(Saudit)) + f(Saudit)

− f ′(Hα⃗(S
k
audit||δ)) + f ′(Hα⃗(S

k
audit||δ))− f(Sk

audit||δ)
≥ f ′(Hα⃗(Saudit))− |f ′(Hα⃗(Saudit))− f(Saudit)|

− f ′(Hα⃗(S
k
audit||δ))− |f ′(Hα⃗(S

k
audit||δ))− f(Sk

audit||δ)|
≥ f ′(Hα⃗(Saudit))− γ − f ′(Hα⃗(S

k
audit||δ))− γ

≥ −2γ
> −ε

Then |f(Saudit)− f(Sk
audit||δ)| ≤ ε.

Case 2: f ′(Hα⃗(Saudit)) ≤ f ′(Hα⃗(S
k
audit||δ)). Then we have

ε− 2γ ≥ f ′
(
Hα⃗

(
Sk
audit||δ

))
− f ′ (Hα⃗ (Saudit))

= f(Sk
audit||δ)− f(Sk

audit||δ) + f ′(Hα⃗(S
k
audit||δ))

− f(Saudit) + f(Saudit)− f ′(Hα⃗(Saudit))

≥ f(Sk
audit||δ)− |f(Sk

audit||δ)− f ′(Hα⃗(S
k
audit||δ))|

− f(Saudit)− |f(Saudit)− f ′(Hα⃗(Saudit))|
≥ f(Sk

audit||δ)− γ − f(Saudit)− γ

14

and so we see that ε ≥ f(Sk
audit||δ)− f(Saudit). We also have

f(Sk
audit||δ)− f(Saudit) = f ′(Hα⃗(S

k
audit||δ))− f ′(Hα⃗(S

k
audit||δ)) + f(Sk

audit||δ)
− f ′(Hα⃗(Saudit)) + f ′(Hα⃗(Saudit))− f(Saudit)

≥ f ′(Hα⃗(S
k
audit||δ))− |f ′(Hα⃗(S

k
audit||δ)) + f(Sk

audit||δ)|
− f ′(Hα⃗(Saudit))− |f ′(Hα⃗(Saudit))− f(Saudit)|

≥ f ′(Hα⃗(S
k
audit||δ))− γ − f ′(Hα⃗(Saudit))− γ

≥ −2γ
≥ −ε

Then |f(Saudit)− f(Sk
audit||δ)| ≤ ε.

This theorem does not suggest that it is completely impossible to detect the attack given in Algorithm
1. Rather, it only precludes detection by a certain class of functions. However, we argue that this
class is expansive and covers many intuitive approaches.

The sole requirement for the audit metric f is that it must be approximable by f ′ which satisfies
three properties. Firstly, f ′ operates over histograms for some choice of bins α⃗. This is a necessary
condition, as if f were not approximable by a function over a binning of the training data, we could
drastically change the audit outcome by simply adding a small amount of noise to the data. Next, f ′
must be relatively insensitive to additional data. The intuition here is that no individual datapoint
should dramatically change the outcome of the audit. Finally, f ′ operates over normalized histograms.
This property is necessary for the proof to go through, but is satisfied by many intuitive audit metrics.
For example, the mean and standard deviation of a feature (even conditioned on any arbitrary set of
features) are approximable from a normalized histogram.

Lemma 1. Let µj(D) be the mean of (bounded) feature j of a dataset D. Then for every γ > 0,
µj(D) is (γ,M −m)-magnitude insensitive, where B is the set of bins in the histogram and M,m
are an upper and lower bound on possible j-values respectively.

Proof. Notice that µj(D) ≈
∑

i∈B pixj,i where B is the set of bins in the histogram, pi is the height
of bin i in the normalized histogram of D, and xj,i is the j-value of bin i. Let us show that for any
γ > 0, there exists a binning of the data such that this is a γ-approximation of µj(D). Let the bins in
feature j have width γ. Then for each datapoint d with j value jd, bin i, and binned j-value xj,i, we
have that |xj,i − jd| ≤ γ. Then ∑

i∈B
pixj,i =

∑
i∈B

ci
|D|

xj,i

=
∑
d∈D

1

|D|
xj,i

=⇒

∣∣∣∣∣∑
i∈B

pixj,i −
∑
d∈D

1

|D|
jd

∣∣∣∣∣ =
∣∣∣∣∣∑
d∈D

1

|D|
xj,i −

∑
d∈D

1

|D|
jd

∣∣∣∣∣
=

∣∣∣∣∣ 1

|D|
∑
d∈D

(xj,i − jd)

∣∣∣∣∣
≤ 1

|D|
∑
d∈D

|xj,i − jd|

≤ 1

|D|
∑
d∈D

γ

= γ

Next, let us show that the sensitivity of our approximation of µj is upper bounded by M−m
|D| . Notice

that by adding a single point, one histogram bin will increase by 1 and the rest will be unchanged.

15

Then for every bin k,∑
i∈B

ci
|D|+ 1

xj,i +
1

|D|+ 1
xj,k −

∑
i∈B

ci
|D|

xj,i =
∑
i∈B

cixj,i

(
1

|D|+ 1
− 1

|D|

)
+

xj,k

|D|+ 1

= −

(∑
i∈B

cixj,i

|D|2 + |D|

)
+

xj,k

|D|+ 1

≤ −
(

m

|D|+ 1

)
+

M

|D|+ 1

≤ M −m

|D|∑
i∈B

cj
|D|+ 1

xj,i +
1

|D|+ 1
xj,k −

∑
i∈B

cj
|D|

xj,i = −

(∑
i∈B

cixj,i

|D|2 + |D|

)
+

xj,k

|D|+ 1

≥ −
(

M

|D|+ 1

)
+

m

|D|+ 1

≥ m−M

|D|
So we have that the sensitivity is no greater than M−m

|D| .

We will proceed to use this fact to show that Welch’s t-test will fail to detect this attack.
Corollary 1. Given an audit dataset Saudit and significance level α, we can use Algorithm 1 to
construct a training dataset S′train such that for any feature j, S′train passes Welch’s t-test when its
values in feature j are compared to those of Saudit with significance level α.

Before we can prove this corollary, we will need a lemma which bounds the concentration of the
Student’s t-distribution.
Lemma 2. If X and Z are random variables drawn independently from the Student’s t-distribution
with ν degrees of freedom and the standard normal distribution respectively, then for every t > 0, we
have

Pr[|X| < t] ≤ Pr[|Z| < t]

Proof. We will write FX(t) to denote the CDF of random variable X evaluated at t, and fX(t) the
PDF. We will also write EX(g(X)) to be the expected value of g(X) with randomness over X . Let
us begin by demonstrating that for all t < 0, we have FX(t) > FZ(t). First, recall that if W and Y
are drawn from the χ2 distribution with ν degrees of freedom and the standard normal distribution
respectively, then Y

√
ν
W is distributed according to the Student’s t-distribution with ν degrees of

freedom, so let us write X = Y
√

ν
W . Then according to the law of total probability, we have

FX(t) =

∫ ∞
0

FY

(
t

√
w

ν

)
f(w)dw

= EW

(
FY

(
t

√
W

ν

))
Notice that d2

dt2FY (t) =
d
dtfY (t) =

d
dt

1√
2π

e−
t2

2 = − t√
2π

e−
t2

2 > 0 when t < 0. Then since t
√

W
ν

must be less than 0, we can apply Jensen’s inequality to get

FX(t) = EW

(
FY

(
t

√
W

ν

))

≥ FY

(
EW

(
t

√
W

ν

))

= FY

(
tEW

(√
W

ν

))

16

Then since d2

du2

√
u = − 1

4
√
u3
≤ 0, we get that EW

(√
W
ν

)
≤
√

EW (W)
ν =

√
ν
ν = 1. So because

t < 0, we can see that tEW

(√
W
ν

)
≥ t, and since FY (u) is increasing, we get

FX(t) ≥ FY

(
tEW

(√
W

ν

))
≥ FY (t)

Since fX and fY are both symmetric about t = 0, it then follows by a symmetric argument that for
all t > 0, FX(t) ≤ FY (t). Then we see that for any t > 0,

Pr[|X| < t] = FX(t)− FX(−t)
≤ FY (t)− FY (−t)
= Pr[|Y | < t]

= Pr[|Z| < t]

Because Y and Z are independently and identically distributed.

We are now ready to prove Corollary 1.

Proof of Corollary 1. A pair of datasets D1, D2 pass Welch’s t-test on feature j if

|µj(D1)− µj(D2)|√
σ2
1

|D1| +
σ2
2

|D2|

≤ Tα,ν

where α is the desired significance level, ν is the degrees of freedom in the datasets, and Tα,ν is the
unique value such that

Pr
x∼t(ν)

[|x| ≥ Tα,ν] = α

where t(ν) is the Student’s t-distribution with ν degrees of freedom. In our case, the t-test compares
the reference dataset Saudit with the training dataset S′train.

The value of ν, and thus the value of Tα,ν , depends on the size of the datasets, with the threshold Tα,ν

decreasing as the datasets grow large. However, we will use Lemma 2 to give a lower bound for Tα,ν

which is constant with respect to |S′train|. Then, we will show that by Lemma 1 and Theorem 2 we
can use Algorithm 1 to construct a malicious training dataset S′train which maintains an arbitrarily
small test statistic, and in particular, a dataset such that the test statistic is below the lower bound on
the threshold.

First, let us establish a lower bound on Tα,ν . Let us define T ′α to be the unique positive value such
that

Pr
Z∼N (0,1)

[|Z| ≥ T ′α] = α

Then recall that Lemma 2 gives us that

Pr
X∼t(ν)

[|X| < T ′α] ≤ Pr
Z∼N (0,1)

[|Z| < T ′α]

If we write fX and fZ to represent the probability density functions (PDFs) of X and Z respectively,
then we get equivalently that ∫ T ′

α

−T ′
α

fX(u)du ≤
∫ T ′

α

−T ′
α

fZ(u)du

17

Then we see that
Pr

Z∼N (0,1)
[|Z| ≥ T ′α] = Pr

X∼t(ν)
[|X| ≥ Tα,ν]

=⇒
∫ T ′

α

−T ′
α

fZ(u)du =

∫ Tα,ν

−Tα,ν

fX(u)du

=

∫ −T ′
α

−Tα,ν

fX(u)du+

∫ T ′
α

−T ′
α

fX(u)du+

∫ Tα,ν

T ′
α

fX(u)du

≤
∫ −T ′

α

−Tα,ν

fX(u)du+

∫ T ′
α

−T ′
α

fZ(u)du+

∫ Tα,ν

T ′
α

fX(u)du

=⇒ 0 ≤
∫ −T ′

α

−Tα,ν

fX(u)du+

∫ Tα,ν

T ′
α

fX(u)du

Then because fX(x) is symmetric about x = 0, this yields

2

∫ Tα,ν

T ′
α

fX(u)du ≥ 0

and thus ∫ Tα,ν

T ′
α

fX(u)du ≥ 0

Now recall the simple result from calculus that states that if g is positive valued, then∫ b

a

g(x)dx ≥ 0 ⇐⇒ a ≤ b

Then because fX is positive-valued, our prior result entails that Tα,ν ≥ T ′α, so T ′α is a lower bound
on Tα,ν that does not depend on |S′train|.
Next, observe that the test statistic for Welch’s t-test has the following upper bound:

|µj(S
′
train)− µj(Saudit)|√
σ2
train

|S′
train|

+
σ2
audit

|Saudit|

≤ |µj(S
′
train)− µj(Saudit)|√

σ2
audit

|Saudit|

Furthermore, Lemma 1 implies that for any ε > 0, we can choose γ < ε
2 such that µj is

(γ, c)-magnitude insensitive, and so by Theorem 2, Algorithm 1 yields a dataset S′train such that
|µj(S

′
train)− µj(Saudit)| ≤ ε when appropriately parameterized. Then let ε = T ′α

σaudit

2
√
|Saudit|

. This

produces the result that

|µj(S
′
train)− µj(Saudit)|√
σ2
train

|S′
train|

+
σ2
audit

|Saudit|

≤ 2ε√
σ2
audit

|Saudit|

=
2√

σ2
audit

|Saudit|

T ′α
σaudit

2
√
|Saudit|

= T ′α
≤ Tα,ν

which passes the t-test for feature j. Finally, by choosing k = maxj
4d(Mj−mj)

√
|Saudit|

T ′
ασaudit,j

we get for
every feature i that |µi(S

′
train) − µi(Saudit)| ≤ 2min

j
T ′α

σaudit,j

2
√
|Saudit|

≤ 2T ′α
σaudit,i

2
√
|Saudit|

, so S′train

passes the t-test for feature i.

D Case Study

We now discuss a number of state of the art works that consider the problem of privacy-preserving
audititng. These works are focused on different auditing functions (accuracy, fairness, etc), different

18

types of machine learning models, and their security models they use are not necessarily aligned.
We now briefly outline the techniques and security guarantees that are claimed in each of the works.
Our goal is not to provide an exhaustive survey, but rather to illustrate the landscape through recent
works that are broadly representative of the field—even though they span different years, venues, and
communities (ranging from machine learning to security).

D.1 Zero Knowledge Proofs for Decision Tree Predictions and Accuracy

Goal and Solution Details. Zhang et al. [2020] introduce protocols for auditing accuracy and
verifying decision tree predictions. These protocols enable the owner of a decision tree model to
prove that the model produces a given prediction on a data sample, or that it obtains a specified
accuracy on a given dataset, without revealing any additional information about the model itself.
Zhang et al. [2020]’s main contribution is in designing a custom zero-knowledge proof tailored to
efficiently verifying the decision tree prediction. The proof consists of algorithms to generate public
parameters, custom commitment algorithm for decision tree models, the prover’s algorithm which
outputs a proof of inference/accuracy, and verifier algorithm to check this proof. The prover, i.e.,
model provider, must first commit to its model and subsequently demonstrate that the predictions on
client queries are consistent with this commitment. For accuracy verification, the authors propose
a batching technique that allows to more efficiently checks the correctness of predictions across
multiple inputs. They then add an extra verification step to determine how many of these predictions
match the true labels.

Security Model. Zhang et al. [2020]’s security definition is formulated for the case of inference, and
follows the traditional zero-knowledge definition structure, which considers two parties (prover and
verifier), and where the protocol is required to satisfy correctness, soundness, and zero-knowledge.
Either of the two parties can be malicious. In the context of our analysis we are interested in
soundness, which specifies whether a malicious prover can deceive the verifier (i.e., auditor), that
the prover’s hypothesis passed the test. At a high level, the authors’ soundness definition can be
summarized as follows: A prover should not be able to output a commitment to a tree T along with a
proof π, prediction y and datapoint a such that the verifier accepts the proof and at the same time,
the T ′s prediction for a is not equal to y. Definition of soundness for the accuracy case is similar:
the prover outputs the dataset which is used for checking accuracy, and wins the game if the verifier
accepts the proof even though the accuracy is not what the prover claims it to be.

Discussion. The security notion in this work aligns well with the intuitive goals of verifying both the
correctness of individual predictions and the accuracy of a model on a given dataset. However, it does
not give any formal guarantees for datasets beyond the audited dataset, i.e., the accuracy verification
solution does not generalize to other datasets drawn from the same distribution. In fact, Zhang et al.
[2020] explicitly note that it is possible to use their solution to check accuracy on a public dataset.
In this setting, their approach falls within our framework of Definition 3, and is vulnerable to the
same attack as outlined in §4.1. In fact, note that our example works even given an ideal proof of
accuracy (when it is checked on a dataset known to the adversary), and even if the prover supplies an
additional proof of training to complement its proof of accuracy.

D.2 P2NIA: Privacy-Preserving Non-Iterative Auditing

Goal and Solution Details. Bourrée et al. [2025] propose a novel auditing scheme that enables
one-shot verification of a model’s group fairness while preserving privacy for both parties: the model
provider is not required to open-source the model, and the auditor need not disclose any private
information to support the audit. The main contribution of Bourrée et al. [2025] is a mechanism that
enables auditing without requiring the auditor to supply the audit dataset. Specifically, the model
provider supplies a dataset together with the corresponding predictions (both in the clear), which the
auditor then uses to verify the fairness condition. To construct this dataset, model provider draws on
a portion of its internal training data. To preserve confidentiality of this data, it is not shared directly.
Instead, model provider feeds it into a synthetic data generation algorithm, and the resulting synthetic
dataset is what is sent to the auditor.

Security Model. The work does not provide a formal security model. It is set up in the black-box
setting and assumes that the auditor does not know the distribution of the model owner’s training
data.

19

Discussion. As Bourrée et al. [2025] do not utilize cryptographic techniques to prove that the outputs
actually correspond to the given inputs, the prover can easily cheat by simply adjusting the labels it
supplies for the constructed dataset. However, even if one were to strengthen the scheme by adding a
secure proof of training (e.g., Pappas and Papadopoulos [2024]) together with inference proofs (as
in Zhang et al. [2020]), the fact that the model owner knows the dataset that is being used for the
audit means that the solution falls within our framework of Definition 3, and is thus vulnerable to
data-forging attacks. An interesting open question would be to see if, since in this scenario the model
owner not only knows, but directly influences the audit dataset, there can be an even simpler attack.

D.3 Confidential-PROFITT: Confidential PROof of FaIr Training of Trees

Goal and Solution Details. Shamsabadi et al. [2022] propose Confidential-PROFITT, a framework
for certifying fairness of decision trees while preserving confidentiality of both the model and the
training data. Confidential-PROFITT consists of a zero-knowledge-friendly decision tree learning
algorithm that, when executed honestly, enforces fairness by design—up to a tunable degree controlled
by a parameter. On top of this, Confidential-PROFITT designs a zero-knowledge proof system to
verify fairness of a decision tree. The proof requires the model provider to commit to both the model
and its training data, then prove in zero-knowledge that the paths taken by the committed training
points through the (committed) decision tree satisfy specified fairness bounds. In terms of fairness
metrics, Confidential-PROFITT supports demographic parity and equalized odds as fairness metrics.

Security Model. Confidential-PROFITT considers a malicious model provider (that, however, is
assumed to commit to the training data honestly) and a malicious auditor (who wishes to learn model
details/training data), and obtains standard zero-knowledge proof properties (correctness, soundness,
zero-knowledge) with respect to a statement that can be summarized roughly as follows “With respect
to a private dataset chosen by the model provider, the committed model satisfies certain fairness
guarantees”.

Discussion. Confidential-PROFITT assumes that the model provider honestly commits to the training
data. Under this assumption, the corresponding zero-knowledge proof certifies that the resulting
model inherits the fairness guarantees of the fair learning algorithm introduced in Confidential-
PROFITT (which the authors show indeed improves fairness). However, if the provider is not
restricted to committing to the true training data, Confidential-PROFITT is vulnerable to data-forging
attacks, as the provider can choose the audit dataset before committing to the model.

D.4 OATH: Efficient and Flexible Zero-Knowledge Proofs of End-to-End ML Fairness

Goal and Solution Details. Franzese et al. [2024] present OATH, a model-agnostic fairness auditing
framework. The core idea in OATH is to leverage clients (who query the model during deployment)
to participate in the auditing process. OATH operates in two phases: (i) a certification protocol
between the model provider and the auditor, and (ii) a query authentication protocol involving model
provider, inference clients, and auditor (dubbed verifier in OATH). The first phase follows the standard
certification flow we describe in §3. In the second phase, the auditor receives commitments to client
queries and the corresponding model predictions. These commitments can later be verified in zero
knowledge for fairness, correctness, and consistency with the certified model.

Security Model. OATH considers three fully malicious entities: a model provider, inference clients,
and an auditor. These parties are assumed not to collude with each other. The auditor assesses model
fairness both with respect to the calibration dataset and the clients queries. The system provides
standard correctness, soundness, and zero-knowledge with respect to these two datasets.

Discussion. The calibration dataset which is used in the certification protocol between the model
provider and the auditor might be supplied by either party. If the calibration dataset is chosen by the
prover, same as P2NIA and Confidential-PROFITT, the corresponding fairness check is vulnerable
to data forging. However, in contrast to prior works, OATH can fall back on guarantees based on
client’s queries.

D.5 FairProof: Confidential and Certifiable Fairness for Neural Networks

Goal and Solution Details. Yadav et al. [2024] propose FairProof, a fairness certification approach
that maintains confidentiality of the model. In contrast to Confidential-PROFITT and OATH, which

20

focus on group fairness metrics, FairProof considers local individual fairness. This allows Yadav et al.
[2024] to issue a personalized certificate to every client.

Security Model. FairProof system involves a malicious model provider and malicious clients (who
wish to learn model details/training data), and considers standard correctness, soundness, and zero-
knowledge properties. The corresponding statement is roughly as follows: “Given a datapoint x, the
model’s output is y and a lower bound on an individual fairness parameter for x is ϵx”.

Discussion. The usage of a specific fairness metric (local individual fairness) allows FairProof
to provide per-client certificates of fairness, and escape the problems that arise from the usage of
reference datasets (including vulnerability to data-forging attacks). On the flip side, FairProof requires
to generate fairness certificates during deployment and does not provide any fairness guarantees prior
to deployment.

D.6 zkCNN: Zero Knowledge Proofs for Convolutional Neural Network Predictions and
Accuracy

Goal and Solution Details. Liu et al. [2021] propose zkCNN, a zero-knowledge proof protocol for
inference and accuracy of convolutional neural networks (CNNs). The core contribution is a novel
sumcheck protocol (which is the key ingredient in many zero-knowledge system) that is tailored to
two-dimensional convolutions.

Security Model. zkCNN considers the standard setting with a prover and a verifier. Either party can
be malicious. Liu et al. [2021]’s security definition for inference is a zero-knowledge-style definition,
and the scheme is required to satisfy correctness, soundness, and zero-knowledge. Similar to Zhang
et al. [2020], Liu et al. [2021]’s soundness intuitively states that a prover should not be able to output
a commitment to a model and provide a proof π, prediction y and datapoint X such that the verifier
accepts the proof, and at the same time, the committed model’s prediction for X is not equal to
y. If instantiated with a specific commitment scheme, Liu et al. [2021]’s scheme further satisfies
knowledge soundness, the stronger version of soundness where there exists an extractor to extract the
CNN parameters from a valid proof and prediction with overwhelming probability. Liu et al. [2021]
do not provide a security definition for their proof of accuracy.

Discussion. As Liu et al. [2021] do not give a security definition for their proof of accuracy, the formal
security guarantee they provide is not fully clear. However, the authors indicate that their scheme
can be used to prove the accuracy on a public dataset. This scenario falls within our framework of
definition 3, and is vulnerable to the same style of attack as outlined in §4.1.

D.7 Scaling up Trustless DNN Inference with Zero-Knowledge Proofs

Goal and Solution Details. Kang et al. [2022] propose a zero-knowledge-based framework for
verifying DNN inference and accuracy. Their key contribution is a careful translation of DNN
specifications into arithmetic circuits suitable for zero-knowledge proofs. The system also introduces
economic incentives to support ML-as-a-service. Concretely, when verifying accuracy, the model
provider first commits to the model, and the client commits to the test set. Both parties then deposit
monetary collateral into an escrow. The client reveals the test set, and the provider must produce a
zero-knowledge proof that the committed model meets the claimed accuracy. If the provider fails
or refuses to prove the required accuracy, it forfeits its collateral; otherwise, the client pays for the
service.

Security Model. Kang et al. [2022] study the standard two-party setting with a prover (model
provider) and a verifier (client), either of whom may be malicious. Cryptographically, they aim
for the standard zero-knowledge proof properties: completeness, knowledge soundness, and zero
knowledge. They further consider incentives, showing that—under certain assumptions—honest
model providers and clients are motivated to participate in the accuracy verification protocol, while
malicious parties are discouraged.

Discussion. In terms of cryptographic guarantees, Kang et al. [2022] gets the core design right: their
protocol for proofs of accuracy closely follows the framework where the model provider commits to
the model before the audit and is not vulnerable to our data-forging attacks. However, Kang et al.
[2022] provide no formal guarantees about accuracy on data outside the audited set. It would be
interesting to perform a formal analysis in a suitable security model given their constraints.

21

D.8 ezDPS: An Efficient and Zero-Knowledge Machine Learning Inference Pipeline

Goal and Solution Details. Wang and Hoang [2023] introduce ezDPS, a pipeline for zero-knowledge
proofs of inference correctness and accuracy above a specified threshold. They construct arithmetic
circuit gadgets for key ML operations, including exponentiation, absolute value, and array max/min,
and further devise optimized methods for proving Discrete Wavelet Transform, Principal Component
Analysis, and multi-class Support Vector Machines with various kernel functions using an efficient
set of arithmetic constraints.

Security Model. Wang and Hoang [2023] consider two mutually distrusting parties – a malicious
server and a semi-honest client, who follows the protocol but aims to learn information about the
model’s parameters. For their inference pipeline, they consider standard definitions of correctness,
soundness, and zero-knowledge (similar to those by Zhang et al. [2020] and Kang et al. [2022]).
Wang and Hoang [2023] do not provide a security definition for their proof of accuracy.

Discussion. Similar to Liu et al. [2021], as Wang and Hoang [2023] do not provide a security
definition for their proof of accuracy, the precise security guarantee they achieve is somewhat unclear.
However, Wang and Hoang [2023] indicate that their scheme can be used to prove the accuracy on a
public dataset, which falls within our framework of definition 3. This instantiation of their method is
vulnerable to the same style of attack as outlined in §4.1.

D.9 Confidential-DPproof: Confidential Proof Of Differentially Private Training

Goal and Solution Details.Shamsabadi et al. [2024] present Confidential-DPproof, a framework
that enables the model provider to prove to an auditor that their model was correctly trained via
DP-SGD, a classic approach for training models with differential privacy guarantees. The certification
of DP-SGD’s training run is done in zero-knowledge.

Security Model. Shamsabadi et al. [2024] consider two mutually distrusting parties: a prover, i.e.,
model provider, and an auditor. The prover is fully malicious, while the auditor is semi-honest and
aims to obtain information about the model’s parameters. Confidential-DPproof considers standard
definitions of correctness, soundness, and zero-knowledge.

Discussion. The data used by Shamsabadi et al. [2024] for their zero-knowledge proof is selected
by the prover. This fits the framework in §3, and makes the solution susceptible to data-forging
attacks. In particular, a malicious prover could degrade the claimed differential privacy guarantees
by, for example, supplying multiple copies of its (otherwise honest) training data as the input to the
Confidential-DPproof protocol. We leave a formal treatment and full development of this attack as an
interesting direction for future work.

E Related Work (Continued)

A number of recent works aim to prove desirable model properties. In terms of what these works
prove, they can be roughly categorized into proofs of training, inference, accuracy, and fairness. In
terms of how the corresponding protocols work, recent works on certifiable ML can be categorized as
follows:

Cryptographic approaches A prolific line of research adapts various cryptographic techniques to
certify properties such as accuracy, fairness, etc., without revealing the model’s details. The most
common technique is zero-knowledge proofs (zk proofs), which allow to formally prove that a model
satisfies certain properties without revealing anything else about the model. They have been used
to certify fairness [Shamsabadi et al., 2022, Yadav et al., 2024, Franzese et al., 2024, Zhang et al.,
2025b], inference [Zhang et al., 2020], accuracy [Zhang et al., 2020], and to prove that the model
has been trained using a certain algorithm [Abbaszadeh et al., 2024, Garg et al., 2023, Sun et al.,
2024, Pappas and Papadopoulos, 2024] (without revealing the training data). Other works [Duddu
et al., 2024, Chang et al., 2023] use secure multi-party computation (MPC), which allows mutually
distrusting parties to jointly compute on private inputs without revealing anything about the inputs
apart from the outcome.

Black box auditing/Statistical testing These approaches probe a model by submitting inputs,
collecting outputs, and analyzing them for undesirable behavior. Tramer et al. [2017], Saleiro et al.

22

[2018] use black-box testing to check for potential unfairness or bias, while [Tan et al., 2018] distill a
new model to gain insight into the black box one.

Outside-the-box auditing Here the model owner provides access to information beyond query
responses, such as source code, documentation [Mitchell et al., 2019], hyperparameters, training data,
deployment details, or internal evaluation results.

Finally, we note that our work is related to, but distinct from, data poisoning attacks. We discuss the
relationship between the two works below.

F Cryptographic Auditing of ML: Background and Subtleties

We outline different categories of proofs that are used in the context of auditing machine learning
algorithms. For simplicity, from now on we assume that the training algorithm is public (note that
making it private only makes the adversary in our attacks stronger, i.e., it could potentially be easier
for the model owner to perform a data-forging or any other type of attack).

Proof of Training A proof of training can be viewed as a zero knowledge proof for the following
relation R: given x = (comh, comS), and w = (h, Strain, ρ, ρh, ρS), R outputs 1 if and only if
Train(Strain; ρ) = h, comh = Commit(h; ρh) and comS = Commit(Strain; ρS), where ρ is the
randomness used for training. Here, Commit is a commitment scheme (§A.5). Intuitively, here the
commitment lets the prover fix h and Strain up front without revealing them.

Proof of Inference A proof of inference can be viewed as a special case of zero knowledge proof
for the following relation R: given x = (com, x, y), and w = (h, ρh), R outputs 1 if and only if
h(x) = y and com = Commit(h; ρh).

Auditing using Zero Knowledge Proofs The strongest form of ZK-based auditing arises when the
prover first produces a proof of training, thereby showing that a specific committed model instance
came from an honest training procedure on a private dataset, and subsequently provides a proof
of property attesting that the committed model meets the desired criterion. Let f be an auditing
function outputting a binary that takes as input a training data set Strain, an auditing data set Saudit,
and the model h. Then privacy-preserving auditing can be realized using zero knowledge proofs
for the following relation R: given, x = (comh, comS , Saudit), and w = (h, Strain, ρ, ρh, ρS), R
outputs 1 if and only if Train(Strain; ρ) = h, f(Strain, Saudit, h) = 1, comh = Commit(h; ρh) and
comS = Commit(Strain; ρS).

Definition Subtleties The zero knowledge property ensures confidentiality of the committed model
and training data. However, as we shall see next, knowledge soundness does not necessarily capture
the actual goal of the auditing process. The reason is that knowledge soundness is typically defined
with respect to statements x = (comh, comS , Saudit), which (1) are bound to a specific dataset
Saudit, and (2) do not specify how or when each component of x is generated. In practice, it is
plausible that Saudit is supplied by verifier (i.e., the auditor). We show that if a cheating prover (i.e.,
model owner) adaptively generates comh∗ and comS∗ after observing Saudit, it is possible to pass
the zero knowledge auditing process after maliciously crafting model h∗ and/or training data S∗.
Furthermore, we show that h∗ behaves pathologically when evaluated on data outside Saudit, in a way
that completely undermines the purpose of the auditing process.

We note that while this subtlety was indeed overlooked in several works on zero-knowledge-based
auditing, it applies even more directly to various non-cryptographic auditing approaches that do not
enforce a secure commitment from the prover.

G Further Evaluation

First, we present in Figure 4 results for attacking accuracy audits on additional datasets mentioned in
§5.

Next, we present the application of the attack described in § 4.1. In this attack, the adversary is
attempting to maximize the model’s denial rate Prx∼D[h(x) = 0] while still appearing accurate
to the audit. The results of this attack are given in Figure 5. Observe that as the attack parameter
approaches 1 (and the attack becomes maximally malicious), the denial rate of the model on the
audit set remains close to the fully honest denial rate while the denial rate on independently sampled

23

Figure 4: Accuracy of models trained on datasets constructed by Algorithm 1 on various benchmarks.
Values are averages over ten runs, error bars represent one standard deviation.

Figure 5: Accuracy and denial rates of models trained on datasets constructed by Algorithm 1 on
ACSEmployment. Values are averages over ten runs, error bars represent one standard deviation.

data approaches 1. Similarly, the accuracy of the model on the audit set approaches 1, while the true
accuracy decreases down to roughly 0.6 (this reflects the true denial rate of the distribution).

Next we examine our ability to observe these attacks by applying statistical tests to the datasets, as
described in § C. There is no singular way to determine whether two samples were drawn from the
same distribution, so we apply some common statistical tools. In particular, our goal is to determine
if the distribution from which the audit data is drawn is identical to the distribution from which the
training data is drawn. We use Welch’s t-test, which serves to determine whether two distributions
have the same mean, and Levene’s test, a one-way ANOVA for determining whether two distributions
have the same variance. These tests are typically applied to 1-dimensional data, and so we apply
them to each feature individually. The results of these experiments are given in Table 2.

We observe that the summary statistics of the malicious training data closely match the values for
the honest data, suggesting that comparing these two values would not be a successful detection
mechanism. This is compounded by the fact that the test statistics for Welch’s t-test and Levene’s test
for the malicious training data are considerably smaller on average than the same test statistics for
the honest training data, corroborating higher rate of passing the hypothesis tests we observe. At a
significance level of α = 0.05, we expect a false positive rate of approximately 5%. On the other
hand, we observe a 0% true positive rate. We note that in a practical application of this attack, the
auditor would have access only to the honest or malicious values over a single training run, and would
thus be unable to easily distinguish between the two cases by comparing the values or by looking at
averages over many runs as we have done here. That being said, an auditor may find it suspicious if
the p-value returned by a statistical test is extremely low (even though such a scenario may be very
plausible for some distributions); an attacker can safely relax this attack to a comfortable degree,
though doing so will increase the risk of failing the audit.

Finally, we present an evaluation of a modified version of the attack that targets neural networks
rather than decision trees. Whereas decision trees have very specific conditions that allow us to
constrain their behavior, it is much harder to provide theoretical guarantees for neural networks. In

24

Table 2: Summary and Test statistics for Age feature on ACSEmployment, conditioned on label. Test
statistics used are Welch’s t-test and Levene’s test. Attack is undetectable when summary statistics
are similar to honest ones, and when test statistics are close to 0. Comparisons are between fully
honest and fully malicious datasets.

Age Label = 0 Label = 1
Honest Attack Honest Attack

Summary µ 41.6651 41.9657 43.9184 43.8131
Statistics σ2 804.5804 810.8822 223.1269 221.42394

Test t-test 0.6521 0.0033 0.7067 0.0110
Statistics ANOVA 0.6200 0.0026 1.6500 0.0186

Education Label = 0 Label = 1
Honest Attack Honest Attack

Summary µ 13.39761692 13.41700338 18.45539675 18.50545506
Statistics σ2 42.99789908 42.16899485 9.979327135 8.943082831

Test t-test 0.7984001575 0.0356390553 0.9499974697 0.1302788154
Statistics ANOVA 0.4844657261 0.0003374130653 1.227829625 0.02531893152

Military Status Label = 0 Label = 1
Honest Attack Honest Attack

Summary µ 2.5794 2.5834 3.8121 3.8302
Statistics σ2 3.2749 3.2648 0.3507 0.3265

Test t-test 0.4997 0.0313 0.8699 0.1755
Statistics ANOVA 1.0240 0.0009 1.2394 0.0304

order to encourage memorization of the training data, we used a relatively shallow network with very
large individual layers. Our attack samples a large amount of training data, and decides whether to
label each point with the honest label or dishonest label depending on its proximity to the nearest
audit data point. We evaluated this attack on an 8-dimensional mixture of Gaussian distributions; the
results are shown in Figure 6.

25

Figure 6: Performance of 226M-parameter neural networks trained on datasets constructed from a
mixture of Gaussian distributions. Duplicity refers to the number of perturbed copies of the audit
dataset included in the training data.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main technical results are in §4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We elaborate on limitations of the undetectability of our attacks in §C.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27

Justification: We give a set of proofs in §B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain how we performed the experiments in §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [No]
Justification: We will provide open access to the data and code in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We explain how we performed the experiments in §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We explain how we performed the experiments in §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

30

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

31

paperswithcode.com/datasets

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

32

Justification: The authors used LLMs to polish writing, and for assistance with literature
search in some components of this paper. We also used generative AI to create some of the
icons in Figure 1. In addition, we used an LLM for assistance with Lemma 2. We checked
the proof assistance thoroughly by hand before including it in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Certifying ML: Background and Unifying Syntax
	Attacking ML Certification
	Example of a Data Forging Attack

	Evaluation
	Discussion and Future Work
	Additional Preliminaries
	Example of Auditing Predicates
	Welch's t-test
	Decision Trees
	Security Properties of Zero-Knowledge Proofs
	Security Properties of Commitment Schemes

	Deferred Proofs
	Proof of Theorem 1

	Attack Detection
	Case Study
	Zero Knowledge Proofs for Decision Tree Predictions and Accuracy
	P2NIA: Privacy-Preserving Non-Iterative Auditing
	Confidential-PROFITT: Confidential PROof of FaIr Training of Trees
	OATH: Efficient and Flexible Zero-Knowledge Proofs of End-to-End ML Fairness
	FairProof: Confidential and Certifiable Fairness for Neural Networks
	zkCNN: Zero Knowledge Proofs for Convolutional Neural Network Predictions and Accuracy
	Scaling up Trustless DNN Inference with Zero-Knowledge Proofs
	ezDPS: An Efficient and Zero-Knowledge Machine Learning Inference Pipeline
	Confidential-DPproof: Confidential Proof Of Differentially Private Training

	Related Work (Continued)
	Cryptographic Auditing of ML: Background and Subtleties
	Further Evaluation

