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ABSTRACT

We present a framework for the unsupervised learning of neurosymbolic encoders,
i.e., encoders obtained by composing neural networks with symbolic programs
from a domain-specific language. Such a framework can naturally incorporate
symbolic expert knowledge into the learning process and lead to more inter-
pretable and factorized latent representations than fully neural encoders. Also,
models learned this way can have downstream impact, as many analysis work-
flows can benefit from having clean programmatic descriptions. We ground our
learning algorithm in the variational autoencoding (VAE) framework, where we
aim to learn a neurosymbolic encoder in conjunction with a standard decoder. Our
algorithm integrates standard VAE-style training with modern program synthesis
techniques. We evaluate our method on learning latent representations for real-
world trajectory data from animal biology and sports analytics. We show that our
approach offers significantly better separation than standard VAEs and leads to
practical gains on downstream tasks.

1 INTRODUCTION

Advances in unsupervised learning have enabled the discovery of latent structures in data from a
variety of domains, such as image data (Dupont, 2018), sound recordings (Calhoun et al., 2019),
and tracking data (Luxem et al., 2020). For instance, a common approach is to use encoder-decoder
frameworks, such as variational autoencoders (VAE) (Kingma & Welling, 2014), to identify a low-
dimensional latent representation from the raw data that could contain disentangled factors of vari-
ation (Dupont, 2018) or semantically meaningful clusters (Luxem et al., 2020). Such approaches
typically employ complex mappings based on neural networks, which can make it difficult to ex-
plain how the model assigns inputs to latent representations (Zhang et al., 2020).

To address this issue, we introduce unsupervised neurosymbolic representation learning, where the
goal is to find a programmatically interpretable representation (as part of a larger neurosymbolic
representation) of the raw data. We consider programs to be differentiable, symbolic models in-
stantiated using a domain-specific language (DSL), and use neurosymbolic to refer to blendings of
neural and symbolic. Neurosymbolic encoders can offer a few key benefits. First, since the DSL
reflects structured domain knowledge, they can often be human-interpretable (Verma et al., 2018;
Shah et al., 2020). Second, by leveraging the inductive bias of the DSL, neurosymbolic encoders
can potentially offer more factorized or well-separated representations of the raw data (i.e., the
representations are more semantically meaningful), which has been observed in studies that used
hand-crafted programmatic encoders (Zhan et al., 2020).

Our learning algorithm is grounded in the VAE framework (Kingma & Welling, 2014; Mnih &
Gregor, 2014), where the goal is to learn a neurosymbolic encoder coupled with a standard neural
decoder. A key challenge is that the space of programs is combinatorial, which we tackle via a
tight integration between standard VAE training with modern program synthesis methods (Shah
et al., 2020). We further show how to incorporate ideas from adversarial information factorization
(Creswell et al., 2017) and enforcing capacity constraints (Burgess et al., 2017; Dupont, 2018) in
order to mitigate issues such as posterior and index collapse in the learned representation.

We evaluate our neurosymbolic encoding approach on multiple behavior analysis domains, where
the data are from challenging real-world settings and cluster interpretability is important for domain
experts. Our contributions are:
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• We propose a novel unsupervised approach to train neurosymbolic encoders, to result in a pro-
grammatically interpretable representation of data (as part of a neurosymbolic representation).

• We show that our approach can significantly outperform purely neural encoders in extracting se-
mantically meaningful representations of behavior, as measured by standard unsupervised metrics.

• We further explore the flexibility of our approach, by showing that performance can be robust
across different DSL designs by domain experts.

• We showcase the practicality of our approach on downstream tasks, by incorporating our approach
into a state-of-the-art self-supervised learning approach for behavior analysis (Sun et al., 2021b).

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODERS

We build on VAEs (Kingma & Welling, 2014; Mnih & Gregor, 2014), a latent variable modeling
framework shown to learn effective latent representations (also called encodings/embeddings) (Hig-
gins et al., 2016; Zhao et al., 2017; Yingzhen & Mandt, 2018) and can capture the generative process
(Oord et al., 2017; Vahdat & Kautz, 2020; Zhan et al., 2020). VAEs introduce a latent variable z, an
encoder q�, a decoder p✓, and a prior distribution p on z. � and ✓ are the parameters of the q and
p respectively, often instantiated with neural networks. The learning objective is to maximize the
evidence lower bound (ELBO) of the data log-likelihood:

ELBO := Eq�(z|x)
⇥
log p✓(x|z)

⇤
�DKL

�
q�(z|x)||p(z)

�
 log p(x). (1)

The first term in Eq. 1 is the log-density assigned to the data, while the second term is the KL-
divergence between the prior and approximate posterior of z. Latent representations z are often
continuous and modeled with a Gaussian prior, but z can be modeled to contain discrete dimensions
as well (Kingma et al., 2014; Hu et al., 2017; Dupont, 2018). Our experiments are focused on
behavioral tracking data in the form of trajectories, and so in practice we utilize a trajectory variant
of VAEs (Co-Reyes et al., 2018; Zhan et al., 2020; Sun et al., 2021b), described in Section 3.4.

One challenge with VAEs (and deep encoder-decoder models in general) is that while the model is
expressive, it is often difficult to interpret what is encoded in the latent representation z. Common
approaches include taking traversals in the latent space and visualizing the resulting generations
(Burgess et al., 2017), or post-processing the latent variables using techniques such as clustering
(Luxem et al., 2020). Such techniques are post-hoc and thus cannot guide (in an interpretable way)
the encoder to be biased towards a family of structures. Some recent work have studied how to
impose structure in the form of graphical models or dynamics in the latent space (Johnson et al.,
2016; Deng et al., 2017), and our work can be thought of as a first step towards imposing structure
in the form of symbolic knowledge encoded in a domain specific programming language.

2.2 SYNTHESIS OF DIFFERENTIABLE PROGRAMS

Our approach utilizes recent work on the synthesis of differentiable programs (Shah et al., 2020;
Valkov et al., 2018), where one learns both the discrete structure of the symbolic program (analogous
to the architecture of a neural network) as well as differentiable parameters within that structure.
Our formulation of this problem closely follows that of Shah et al. (2020). We use a domain-specific
functional programming language (DSL), generated with a context-free grammar (see Figure 2 for
an example). Programs are represented as a pair (↵, ), where ↵ is a discrete program architecture
and  are its real-valued parameters. We denote P as the space of symbolic programs (i.e. programs
with complete architectures). The semantics of a program (↵, ) are given by a function [[↵]](x, ),
which is guaranteed by the semantics of the DSL to be differentiable in both x and  .

Like Shah et al. (2020), we pose the problem of learning differentiable programs as search through a
directed program graph G. The graph G models the top-down construction of program architectures
↵ through the repeated firing of rules of the DSL grammar, starting with an empty architecture
(represented by the “start” nonterminal of the grammar). The leaf nodes of G represent programs
with complete architectures (no nonterminals). Thus, P is the set of programs in the leaf nodes of
G. The other nodes in G contain programs with partial architectures (has at least one nonterminal).
We interpret a program in a non-leaf node as being neurosymbolic, by viewing its nonterminals as
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Figure 1: Sketch of Algorithm 1 (Section 3.1). The symbolic encoder is initially fully neural. We alternate
between VAE training with the program architecture fixed (Step 1), and supervised program learning to increase
the depth of the program by 1 (Step 2). Once we reach a symbolic program, we train the model one last time to
learn all the parameters. The color (in terms of lightness) of the symbolic encoder corresponds to the encoder
becoming more symbolic over time.

representing neural networks with free parameters. The root node in G is the empty architecture ↵0,
interpreted as a fully neural program. An edge (↵,↵0) exists in G if one can obtain ↵0 from ↵ by
applying a rule in the DSL that replaces a nonterminal in ↵.

Program synthesis in this problem setting equates to searching through G to find the optimal com-
plete program architecture, and then learning corresponding parameters  , i.e., to find the optimal
(↵, ) that minimizes a combination of standard training loss (e.g., classification error) and struc-
tural loss (preferring “simpler” ↵’s). Shah et al. (2020) evaluate multiple strategies for solving this
problem and finds informed search using admissible neural heuristics to be the most efficient strat-
egy (see appendix). Consequently, we adopt this algorithm for our program synthesis task.

3 NEUROSYMBOLIC ENCODERS

The structure of our neurosymbolic encoder is shown in the right diagram of Figure 1. The la-
tent representation z = [z�, z(↵, )] is partitioned into neurally encoded z� and programmatically
encoded z(↵, ). This approach boasts several advantages:

• The symbolic component of the latent representation is programmatically interpretable.
• The neural component can encode any residual information not captured by the program,

which maintains the model’s capacity compared to standard deep encoders.
• By incorporating a modular design, we can leverage state-of-the-art learning algorithms for

both differentiable encoder-decoder training and program synthesis.

We denote q� and q(↵, ) as the neural and symbolic encoders respectively (see Figure 1), where
z� ⇠ q�(·|x) and z(↵, ) ⇠ q(↵, )(·|x). q� is instantiated with a neural network, but q(↵, ) is a
differentiable program with architecture ↵ and parameters  in some program space P defined by a
DSL. Given an unlabeled training set of x’s, the VAE learning objective in Eq. 1 then becomes:

max
�,(↵, ),✓

E
q�(z�|x)q(↵, )(z(↵, )|x)

⇥
log p✓(x|z�, z(↵, ))| {z }

reconstruction loss

⇤

�DKL

�
q�(z�|x)||p(z�)

�
| {z }

regularization for neural latent

�DKL

�
q(↵, )(z(↵, )|x)||p(z(↵, ))

�
| {z }

regularization for symbolic latent

.
(2)

Compared to the standard VAE objective in Eq. 1 for a single neural encoder, Eq. 2 has separate
KL-divergence terms for the neural and programmatic encoders.

3.1 LEARNING ALGORITHM

The challenge with solving for Eq. 2 is that while (�, , ✓) can be optimized via back-propagation
with ↵ fixed, optimizing for ↵ is a discrete optimization problem. Since it is difficult to jointly
optimize over both continuous and discrete spaces, we take an iterative, alternating optimization
approach. We start with a fully neural program (one with empty architecture ↵0) trained using
standard differentiable optimization (Figure 1, Step 1). We then gradually make it more symbolic
(Figure 1, Step 2) by finding a program that is a child of the current program in G (more symbolic
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by construction of G) that outputs as similar to the current latent representations as possible:
min

↵0:(↵,↵0)2G,  0
Lsupervised

�
q(↵, )(x), q(↵0, 0)(x)

�
, (3)

which can be viewed as a form of distillation (from less symbolic to more symbolic programs) via
matching the input/output behavior. We solve Eq. 3 by enumerating over all child programs and se-
lecting the best one, which is similar to iteratively-deepened depth-first search in Shah et al. (2020)
(see appendix). We alternate between optimizing Eq. 2 and Eq. 3 until we obtain a complete pro-
gram. Algorithm 1 outlines this procedure and is guaranteed to terminate if G is finite by specifying
a maximum program depth.

We chose this optimization procedure for two reasons. First, it maximally leverages state-of-the-art
tools in both differentiable latent variable modeling (VAE-style training) and supervised program
synthesis, leading to tractable algorithm design. Second, this procedure never makes a drastic change
to the program architecture, leading to relatively stable learning behavior across iterations.

Algorithm 1 Learning a neurosymbolic encoder
1: Input: program space P , program graph G
2: initialize �, , ✓,↵ = ↵0 (empty architecture)
3: while ↵ is not complete do

4: �, , ✓  optimize Eq. 2 with ↵ fixed
5: (↵, ) optimize Eq. 3
6: end while

7: �, , ✓  optimize Eq. 2 with complete ↵
8: Return: encoder {q�, q(↵, )}

Algorithm 2 Learning a neurosymbolic encoder
with k programs
1: Input: program space P , program graph G, k
2: for i = 1..k do

3: fix programs {q(↵1, 1), . . . , q(↵i�1, i�1)}
4: execute Algorithm 1 to learn q(↵i, i)

5: remove q(↵i, i) from P to avoid redundancies
6: end for

7: Return: encoder {q�, q(↵1, 1), . . . , q(↵k, k)}

3.2 LEARNING MULTIPLE PROGRAMS

The interpretability of latent representations induced by symbolic encoders q(↵, ) ultimately de-
pends on the DSL. For instance, a program that encodes to one of ten classes may not be very inter-
pretable if it involves a matrix multiplication within the program. Instead, we learn binary programs
that encode sequences into one of two classes (using binary cross-entropy for Lsupervised, a uniform
prior on z(↵, ), and Gumbel-Softmax (Jang et al., 2017) to sample from the posterior). Figures 4a
& 4b depict learned binary programs that encode mice trajectories and their interpretations.

To encode more than two classes, we can simply learn multiple binary programs by extending Eq. 2
to sum over Lsupervised for k symbolic programs {q(↵1, 1), . . . , q(↵k, k)} and corresponding latent
representations {z(↵1, 1), . . . , z(↵k, k)}. This results in 2k classes and a solution space that now
scales exponentially (e.g. |P|k if using exhaustive enumeration). Algorithm 2 outlines our greedy
solution that reuses Algorithm 1 by iteratively learning one symbolic program at a time. We leave
the exploration of more sophisticated search methods as future work.

3.3 DEALING WITH POSTERIOR AND INDEX COLLAPSE

Deep latent variable models, especially those with discrete latent variables, are notoriously prone
to both posterior (Bowman et al., 2015; Chen et al., 2016b; Oord et al., 2017) and index (Kaiser
et al., 2018) collapse. Since our algorithms optimize for such models repeatedly, we can be more
susceptible to these failure modes. There are many approaches available for tackling both these
issues, but we emphasize that these contributions are orthogonal to ours; as techniques for preventing
posterior and index collapse improve, so will the robustness of our algorithm. Below, we summarize
two strategies that we found to work well in our setting.

Adversarial information factorization Creswell et al. (2017) introduces an adversarial network
A! that aims to predict z(↵, ) from z�. Maximizing this adversarial loss can prevent index collapse,
where all data is encoded into the same class, as doing so would would fail to fool the adversary.

max
�,(↵, ),✓

E
q�(z�|x)q(↵, )(z(↵, )|x)

⇥
log p✓(x|z�, z(↵, )) + min

!
Ladv

�
A!(z�), z(↵, )

�

| {z }
adversary

⇤

�DKL

�
q�(z�|x)||p(z�)

�
�DKL

�
q(↵, )(z(↵, )|x)||p(z(↵, ))

�
(4)
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Channel capacity constraint (Burgess et al., 2017; Dupont, 2018) forces the KL-divergence terms
to match capacities C� and C(↵, ). Since the KL-divergence is an upper bound on the mutual infor-
mation between latent variables and the data (Kim & Mnih, 2018; Dupont, 2018), this encourages
the latent variables to encode information and aims to prevent posterior collapse.

max
�,(↵, ),✓

E
q�(z�|x)q(↵, )(z(↵, )|x)

⇥
log p✓(x|z�, z(↵, ))

⇤
� ��|DKL

�
q�(z�|x)||p(z�)

�
� C�|

� �(↵, )|DKL

�
q(↵, )(z(↵, )|x)||p(z(↵, ))

�
� C(↵, )|

(5)

In our algorithms, we augment our initial objective in Eq. 2 with Eq. 4 and Eq. 5.

3.4 INSTANTIATION FOR SEQUENTIAL DOMAINS

The objective in Eq. 2 describes a general problem that is applicable to any domain. In our ex-
periments, we focus on the sequential domain of trajectory data. Trajectory data is often used in
scientific applications where interpretability is desirable, such as behavior discovery (Luxem et al.,
2020; Hsu & Yttri, 2020). The ability to easily explain the learned latent representation using pro-
grams can help domain experts better understand the structure in their data. Additionally, trajectory
data is often low dimensional for each timestamp, which helps experts encode domain knowledge
into the DSL more easily (Shah et al., 2020; Sun et al., 2021b; Zhan et al., 2020).

In this domain, x is a trajectory of length T : x = {x1, . . . , xT }. We then factorize the log-density
in Eq. 2 as a product of conditional probabilities:

log p✓(x|z�, z(↵, )) =
TX

t=1

log p✓(xt|x<t, z�, z(↵, )). (6)

When q� and p✓ are instantiated with recurrent neural networks (RNN), the model is more commonly
known as a trajectory-VAE (TVAE) Co-Reyes et al. (2018); Zhan et al. (2020); Sun et al. (2021b).

As symbolic encoder q(↵, ) maps sequences to vectors, we adopt a DSL (Figure 2) previously used
for sequence classification (Shah et al., 2020). Our DSL is purely functional and contains both basic
algebraic operations and parameterized library functions. Domain experts can easily augment the
DSL with their own functions, such as selection functions that select subsets of features that they
deem potentially important. We ensure that all programs in our DSL are differentiable, utilizing a
smooth approximation of the nondifferentiable if -then-else construct (Shah et al., 2020). Figures
4a & 4b depict example programs in our DSL (full details in the appendix).

↵ ::= x | �(↵1, . . . ,↵k) | �✓(↵1, . . . ,↵k)
if ↵1 then ↵2 else ↵3 | selS x | mapaverage (fun x1.↵1) x

Figure 2: Our DSL for sequential domains, similar to the one used in Shah et al. (2020). x,�, and�✓ represent
inputs, basic algebraic operations, and parameterized library functions, respectively. fun x.e(x) represents a
function that evaluates an expression e(x) over the input x. selS selects a subset S of the dimensions of the
input x. mapaverage g x applies the function g to every element of the sequence x and returns the average
of the results. We employ a different approximation of the if -then-else construct.

4 EXPERIMENTS

We study our proposed approach on sequential trajectory data from a synthetic dataset to first provide
intuition for our algorithm, and then on real-world datasets in neuroscience and sports analytics.

4.1 EXPERIMENTS WITH SYNTHETIC DATASET

We generate a synthetic dataset of trajectories and run our algorithm to demonstrate the following:

• Programs can capture factors of variation in the data (in our case, 2 discrete factors).
• Information pertaining to captured factors of variation are extracted out of the latent space.

We generate synthetic trajectories by sampling initial positions and velocities from a Gaussian dis-
tribution and introducing 2 ground-truth factors of variation as large external forces in the posi-
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tive/negative x/y directions that affect velocity, totalling to 4 discrete classes. Velocities are fixed
for the entire trajectory, but we also sample small Gaussian noise at each timestep. We generate
10k/2k/2k trajectories of length 25 for train/validation/test. Figure 3a shows 50 trajectories from the
training set. Full details of the synthetic dataset are included in the appendix.

We visualize the neural latent space in 2 dimensions of a TVAE with 0, 1, and 2 learned programs
in Figure 3bcd. The initial TVAE latent space contains 4 clusters corresponding to the 4 ground-
truth classes in Figure 3c. After our algorithm learns the first program that thresholds the final
x-position, the resulting latent space in Figure 3d captures the other factor of variation as 2 clusters
corresponding to the final y-positions. Lastly, when our algorithm learns a second program that
thresholds the final y-position, the resulting latent space in Figure 3e no longer contains any clear
clustering, as we’ve successfully extracted the 4 ground-truth classes with our 2 programs.

(a) 50 synthetic trajectories

[>6.34][
selFinalXPosition x]

[>8.99][
selFinalYPosition x]

(b) learned programs (c) z�, 0 programs (d) z�, 1 program (e) z�, 2 programs

Figure 3: (a) Trajectories in synthetic training set. Initial/final positions are indicated in green/blue. Red
lines delineate ground-truth classes, based on final positions. (b) k = 2 learned binary programs using our
algorithm. The first program (top) thresholds the final x-position while the second program (bottom) thresholds
the final y-position. (c, d, e) Neural latent variables reduced to 2 dimensions. Top/bottom rows are colored
by final x/y-positions respectively (green/yellow is positive/negative). (c) Clusters in TVAE neural latent space
correspond to 4 ground-truth classes. (d) After learning the first program, the neural latent space contains
clusters only based on the final y-position. (e) After learning the second program, all 4 ground-truth classes
have been extracted as programs and the remaining neural latent space contains no clear clustering.

4.2 EXPERIMENTS WITH REAL-WORLD DATASETS

4.2.1 DATASETS

CalMS21. Our primary real-world dataset is the CalMS21 dataset (Sun et al., 2021a), containing
trajectories of socially interacting mice captured for neuroscience experiments. Each frame contains
7 tracked keypoints for each of two mice. The dataset has one set of unlabeled tracking data, which
we use to train our neurosymbolic encoder, and another set annotated for 4 behaviors, which we use
to evaluate our programs. Specifically, our evaluation uses labels from the test split of the CalMS21
classification task. We have 231k/52k/262k trajectories of length 21 for train/val/test. The features
in our DSL are selected by a domain expert based on the attributes from (Segalin et al., 2020).

Basketball. We use the same basketball dataset as in (Shah et al., 2020; Zhan et al., 2020) that tracks
professional basketball players. Each trajectory is of length 25 over 8 seconds and contains the xy-
positions of 10 players. We split trajectories into two by grouping offensive and defensive players (5
each), effectively doubling the dataset size. We evaluate our algorithm and the baselines with respect
to the labels of offensive/defensive players. Our DSL includes additional domain features like player
speed and distance-to-basket. In total, we have 177k/31k/27k trajectories for train/val/test.

4.2.2 QUANTITATIVE EVALUATION SETUP

Baselines. We compare our model containing a neurosymbolic encoder against other approaches
based on VAEs and its variations. In particular, we compare against VAE, VAE with K-means loss
used in (Ma et al., 2019; Luxem et al., 2020), and Beta-VAE (Burgess et al., 2017). These models
have a fully neural encoder and learn continuous latent representations, which we can then use to
produce clusters with K-means clustering (Lloyd, 1982). Additionally, we compare against models
which produce discrete latent clusterings, such as JointVAEs (Dupont, 2018) and VQ-VAEs (Oord
et al., 2017). We use the TVAE version of all baselines (details included in the appendix).
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[>�7.02]

2

4
mapaverage (fun xt.

multiply (ResidentSpeedA�ne [�6.28];�8.28(xt),
NoseTailDistA�ne [.042];�9.06(xt)) x

3

5

(a) Program learned using CalMS21 DSL 1, resulting NMI 0.428. Since speed is positive, the first term is
always negative. One cluster thus generally consists of trajectories where the mice are further apart, such that
the second term is positive, and the negative product is less than the threshold. The other cluster generally
occurs when the mice are close together, the second term is negative, and the product will be positive.

[>�5.68]

2

4
mapaverage (fun xt.

add (ResidentAxisRatioA�ne [�7.95];�7.14(xt),
BoundingBoxIOUA�ne [�16.55];5.87(xt)) x

3

5

(b) Program learned using CalMS21 DSL 2, resulting NMI 0.320. The axis ratio is the ratio of major axis length
and minor axis length of an ellipse fitted to the mouse keypoints. The second term measures the bounding box
overlap between mice, and is zero when the mice are far apart. It follows that one cluster generally contains
trajectories when the mice has larger bounding box overlaps or if the resident axis ratio is large. The other
cluster thus contains trajectories where the mice bounding boxes do not overlap, and resident body is compact.

Figure 4: Learned programs on CalMS21. The subscripts represents the learned weights and biases, in partic-
ular, the brackets contain the weights for the affine transformation followed by the bias.

Model CalMS21 Basketball

Purity NMI RI Purity NMI RI
Random assignment .597 .000 .536 .500 .000 .500

TVAE .598 .089 .564 .501 .001 .500
TVAE+KMeans loss .605 .118 .573 .501 .001 .500

JointVAE .597 .019 .537 .560 .034 .507
VQ-TVAE .601 .124 .588 .572 .016 .511
Beta-TVAE .616 .115 .589 .565 .013 .509

Ours (1 program) .706 .423 .694 .596 .027 .518
Ours (2 programs) .725 .320 .648 .561 .033 .507
Ours (3 programs) .756 .314 .633 .584 .022 .514

Table 1: Median purity, NMI, and RI on CalMS21 and Basketball compared to human-annotated labels (3
runs). Experiment hyperparameters are included in the appendix.

Metrics. Unlike in the synthetic setting, we do not have ground truth programs in the real-world
datasets. We thus evaluate our programs quantitatively using standard cluster metrics relative to
human-defined labels. In particular, we use Purity (Schütze et al., 2008), Normalized Mutual Infor-
mation (NMI) (Zhang et al., 2006), and Rand Index (RI) (Rand, 1971). Purity measures the extent
to which clusters contain a single human-defined class. NMI scales with the mutual information
between two cluster assignments. RI measures similarity between our clusters and human labels.
We report the median of three runs, and include a random baseline that assigns a class randomly to
each sequence. More details, including the standard deviation and the ELBO, are in the appendix.

4.2.3 RESEARCH QUESTIONS

Are the clusters created with our programs meaningful? We compare clusters produced by
our neurosymbolic encoder with fully neural autoencoding baselines (Table 1), measured against
human-annotated behaviors. For CalMS21, we observe that our method consistently outperforms
the baselines in all three cluster metrics. Our method is able to do this by leveraging a DSL which
encodes domain knowledge such as behavior attributes that are useful for identifying behaviors. We
note that the purity increases as the number of programs (thus clusters) increase, while NMI and RI
decreases. This implies our method with two clusters best correspond to CalMS21 behaviors, but
the other clusters found by our method may still be useful for domain experts. For Basketball, our
method improves slightly with respect to purity, but is overall comparable with the baselines.

We further study the programs and clusters produced by our algorithm for the CalMS21 dataset,
through a qualitative study with a domain expert in behavioral neuroscience. In the single program
case, the domain expert classified the discovered clusters as when the mice are interacting and when
there are no interaction. They noted that this is based on distance between the mice, which is con-
sistent with our program (Figure 4a) using distance between nose of resident and tail of intruder.
For two programs, there are a total of four clusters, with two clusters each corresponding to no in-
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Model CalMS21 (DSL 1) CalMS21 (DSL 2) CalMS21 (DSL 3)

Purity NMI RI Purity NMI RI Purity NMI RI
Ours (1 program) .706 .423 .694 .689 .364 .681 .649 .325 .616
Ours (2 programs) .725 .320 .648 .715 .359 .673 .664 .324 .634

Table 2: Median purity, NMI, and RI on CalMS21 of our algorithms with DSLs selected by three domain
experts compared to human-annotated labels (3 runs). DSL1 corresponds to Table 1.

Model CalMS21 Basketball

Purity NMI RI Purity NMI RI
TVAE .598 .089 .564 .501 .001 .500

TVAE (w/ features) .597 .103 .570 .565 .012 .508
VQ-TVAE .601 .124 .588 .571 .016 .511

VQ-TVAE (w/ features) .608 .114 .601 .525 .002 .501
Beta-TVAE .616 .115 .589 .566 .013 .509

Beta-TVAE (w/ features) .612 .096 .571 .563 .011 .508

Table 3: Median purity, NMI, and RI on CalMS21 and Basketball compared to human-annotated labels (3
runs) for baseline with trajectory inputs only, and baseline with trajectory features added.

teraction and interaction. For the interaction clusters, the domain expert was further able to identify
sniff tail behavior as one of the clusters. In this case, the programs found were based on intruder
head body angle, resident nose and intruder tail distance, and resident nose and intruder nose dis-
tance. The domain expert found the three program case to be more difficult to interpret, but was
able to identify clusters corresponding to sniff tail, resident exploration, interaction facing the same
direction (ex: mounting), and interaction facing opposite directions (ex: face-to-face sniffing).

How sensitive is our approach to different DSL choices? To study the effect of domain expert
variation on our approach, we worked with different domain experts to construct alternate DSLs
for studying mouse social behavior on CalMS21. While there is some variation in median cluster
metrics, our approach consistently outperforms other baseline approaches that contain fully neural
encoders for all three DSLs (Table 2). Comparing some learned programs from two DSLs (Fig-
ures 4a, 4b), both contain a term that is correlated with whether the mice is interacting (distance and
bounding box overlap), and another term on resident speed (mouse tends to be more stretched when
they are moving quickly). A full list of features selected by domain experts is in the appendix.

What happens if we simply encode DSL features as part of input trajectories? Since our method
uses features from domain experts as part of our DSL, we additionally experiment with providing
the same features as input to the baseline models during training (Table 3). For both CalMS21
and Basketball, providing the features as additional inputs to baseline has comparable performance
to using input trajectory data alone. In contrast, by using the features more explicitly as part of
the DSL in our neurosymbolic encoders, we are able to produce clusters with a better separation
between behavior classes based on cluster metrics (as was seen in Table 1).

Are the programs useful for downstream tasks? We integrate the learned programs from our
neurosymbolic encoder into the task programming framework (Sun et al., 2021b), a state-of-the-
art self- and programmatically-supervised learning approach. This framework uses expert provided
programs to train a trajectory representation, which can be applied to behavior analysis. Here, rather
than using hand-crafted programs, we instead use the learned programs from our approach, so that
experts would only need to provide the DSL. We evaluate on the same mouse dataset (Segalin et al.,
2020) as task programming. Using only one program found using our approach, we are able to
achieve comparable performance to 10 expert-written programs on the behavior classification task

Figure 5: Applying symbolic encoders
for self-supervision. “Features” is baseline
w/o self-supervision. “TREBA” is a self-
supervised approach, using either expert-
crafted programs or our symbolic encoders
as the weak-supervision rules. The shaded
region is std dev over 9 repeats. The std dev
for our approach (not shown) is comparable.
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studied in Sun et al. (2021b) (Figure 5). This demonstrates that programs found by our approach
can be applied effectively to downstream behavior analysis tasks such as task programming.

5 OTHER RELATED WORK

Interpretable latent variable models. Latent representations, especially those that are human-
interpretable, can help us understand the structure of data. These models may learn disentangled
factors (Higgins et al., 2016; Chen et al., 2016a) or semantically meaningful clusters (Ma et al.,
2019) using unsupervised learning approaches. These approaches are often grounded in the VAE
framework (Kingma & Welling, 2014). Similar to our programs which produce a discrete code,
there are other VAE variations which also learns a discrete latent representation, such as Joint-
VAE (Dupont, 2018), Discrete VAE (Rolfe, 2016), and VQ-VAE (Oord et al., 2017). In particular,
JointVAE models also learns a discrete and continuous representation. However, these approaches
use fully neural encoders. To the best of our knowledge, our work is the first to propose neurosym-
bolic encoders, where the symbolic component produces an interpretable program.

Neurosymbolic/differentiable program synthesis. Existing program synthesis approaches are of-
ten trained in a supervised fashion (Gulwani, 2011; Wang et al., 2017; Shah et al., 2020), or within a
(generative) policy learning context with an explicit reward function (Chen et al., 2018; Verma et al.,
2018; Inala et al., 2020; Feinman & Lake, 2020). In terms of unsupervised program synthesis, the
closest related area is generative modeling, as the goal there is to discover programs that can gener-
ate the training data (Ellis et al., 2018; Feinman & Lake, 2020) – which can be viewed as analogous
to learning a symbolic decoder rather than a symbolic encoder. Studying how to incorporate such
methods into our framework can be an interesting future direction.

Representation learning for behavior analysis. Representation learning has been applied to a
variety of downstream tasks for behavior analysis, such as discovering behavior motifs (Berman
et al., 2014; Singh et al., 2021), identifying internal states (Calhoun et al., 2019), and improving
sample-efficiency (Sun et al., 2021b). Studies in this area have used methods such as VAE (Kingma
& Welling, 2014), AR-HMM (Wiltschko et al., 2015), and Umap (McInnes et al., 2018) to better
understand the latent structure of behavior. Similar to a few other representation learning meth-
ods (Luxem et al., 2020; Sun et al., 2021b), we also use an encoder-decoder setup on trajectory
data. However, our work learns a neurosymbolic encoder whereas existing works in this area have
fully neural encoders. Our work can aid behavior analysis by learning more interpretable latent
representations and can be applied to existing frameworks, such as task programming.

6 CONCLUSION

We present a novel approach for unsupervised learning of neurosymbolic encoders. Our approach in-
tegrates the VAE framework with program synthesis and results in a learned representation with both
neural and symbolic components. Experiments on trajectory data from behavior analysis demon-
strate that our programmatic descriptions of the latent space result in more meaningful clusters rel-
ative to human-defined behaviors, compared to purely neural encoders. Additionally, we show the
practicality of our approach by applying our learned programs to achieve comparable performance
to expert-constructed tasks in a self-supervised learning approach for behavior classification.

Based on our work, there are many future directions to explore for neurosymbolic encoders. One
direction is based on the observation that interpreting multiple programs simultaneously can still
be difficult for domain experts. Combining our approach with other clustering methods, such as
hierarchical clustering (Rokach & Maimon, 2005), or working with domain experts to detail more
expressive DSLs can help with interpretability. Another direction is to extend this work to other
domains such as image and text data, to study both discrete and continuous symbolic latent repre-
sentations in a more naturally interpretable way. A third direction is to improve upon our greedy
approach in Algorithm 2 for finding the optimal set of symbolic programs, e.g. by performing lo-
cal coordinate ascent in program space, similar to algorithms for large-scale neighborhood search
(Ahuja et al., 2002). Lastly, while practically-oriented extensions of VAEs such as our own have
yielded great practical benefit, they often lead to sub-optimal results from a pure likelihood (or
ELBO) perspective. One final direction is to rigorously formulate a learning objective from the
ground up that formally encapsulates practically-oriented extensions of VAEs.
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