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Abstract

This study addresses the widening gap in Au-001
tomatic Speech Recognition (ASR) research002
between high resource and low resource lan-003
guages, with a particular focus on Manchu, a004
severely underrepresented language. Manchu005
exemplifies the challenges faced by marginal-006
ized linguistic communities in accessing state-007
of- the-art technologies. In a pioneering effort,008
we introduce the first-ever Manchu ASR model009
ManWav 1.0, leveraging Wav2Vec 2.0 - XLSR.010
The results of the first Manchu ASR is promis-011
ing, especially when our data augmentation012
method is employed. Wav2Vec 2.0 - XLSR013
fine-tuned with augmented data demonstrates014
a 2%p drop in CER and 13%p drop in WER015
compared to the same model fine-tuned with016
original data. This advancement not only marks017
a significant step in low resource ASR research018
but also incorporates linguistic diversity into019
technological innovation.020

1 Introduction021

The landscape of Automatic Speech Recognition022

(ASR) research has centered around high resource023

languages, prominently exemplified by the exten-024

sive focus on languages like English. This con-025

centrated attention on high resource languages has026

inadvertently deepened the divide between research027

advancements. While research on English ASR en-028

compasses diverse linguistic variations, including029

accented and noised speech, the same cannot be030

said for many low resource languages, though a few031

basic research such as Safonova et al. (2022) and032

Zhou et al. (2022) exist. Astonishingly, not a single033

basic ASR model has been developed for Manchu034

to date, highlighting a critical void in linguistic035

inclusivity within the realm of ASR technology.036

This paper sets out to address this significant gap037

by undertaking the ambitious task of developing038

the inaugural Manchu ASR model. The endeavor is039

underscored by the scarcity of linguistic resources,040

prompting us to collect all existing Manchu au- 041

dio data from Kim et al. (2008) in one channel. 042

We try to maximize the cross-lingual capabilities 043

of Wav2Vec 2.0 - XLSR (Conneau et al., 2020) by 044

fine-tuning the model with Manchu audio data. The 045

performance of Manchu ASR model is further en- 046

hanced through data augmentation. This approach 047

reflects a strategic adaptation to the challenges 048

posed by the limited availability of annotated data 049

for low resource languages, as we strive to con- 050

tribute not only to the nascent field of Manchu 051

ASR research but also to the broader discourse on 052

linguistic inclusivity in cutting-edge technology. 053

The contributions of this study are as follows: 054

• Collecting Manchu audio data and correcting 055

corresponding transcriptions 056

• Augmenting the limited amount of Manchu 057

data up to 4 times 058

• Developing the very first Manchu ASR model 059

2 Manchu Language 060

The Manchu language, a member of the Tungusic 061

linguistic family, has its roots among the Manchu 062

people of Northeast China and boasts a significant 063

historical role as the official language of the Qing 064

dynasty (1644-1912). Presently, the language con- 065

fronts a dire state of endangerment, officially de- 066

noted a dead language. 067

There have been some efforts to employ tech- 068

nological solutions in the preservation and revi- 069

talization of Manchu. These endeavors include 070

the Manchu spell checker(You, 2014), Mergen: 071

Manchu-Korean machine translation(Seo et al., 072

2023), and Manchu NER/POS tagging models1. 073

However, due to the paucity of data, studies above 074

face challenges and no ASR model has been yet 075

developed. 076

1https://github.com/sanajlee/Manchu-NLP
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3 Data077

3.1 Materials078

This study leverages Colloquial Manchu data pro-079

vided by Kim et al. (2008), in which Colloquial080

Manchu data is gathered as part of ASK REAL081

project (Altaic Society of Korea, Researches on082

Endangered Altaic Languagess(Choi et al., 2012)).083

This audio data represents the dialect of Shanjiazi084

village, Located in the Youyi Dowoerzu Manzu085

Ke’er-kezizu township, Fuyu county, Heilongjiang086

Province.087

The recording took place from February 7th to088

14th, 2006 in Qiqihar, Heilongjiang Province, with089

Mr. Meng Xianxiao (73 years old at that moment).090

Though Chinese being his first language, Mr. Meng091

Xianxiao sufficiently served as the consultant as092

he acquired a comprehensive understanding of the093

Manchu language by the age of 12.094

The data we use in the study is the recordings of095

the basic conversational expressions and the sen-096

tences for grammatical analysis. The length of each097

recordings is 1,944.44 seconds and 3,513.90 sec-098

onds, in total of 5,458.34 seconds. Corresponding099

transcriptions are basically provided by Kim et al.100

(2008), but slight adjustments are added in order101

for better alignment with the consultant’s authentic102

language habits. These habits include stuttering103

and interjections.104

3.2 Transcription105

The phoneme transcription system in this study is106

based on Kim et al. (2008). While it shares sim-107

ilarities with the International Phonetic Alphabet108

(IPA), our system incorporates some distinctions.109

Specifically, /b, d, g/ represent voiceless unaspi-110

rated stops, and /p, t, k/ denote voiceless aspirated111

stops. Notably, Colloquial Manchu lacks voiced112

stops, making this transcription system more prac-113

tical than using diacritic /h/ to indicate aspiration.114

Next, /ǰ, č, š/ denote voiceless palatal sounds. In115

IPA system, corresponding sound symbols are [J,116

ç, C]. But /ǰ/ is not voiced unlike [J], and /č/ is the117

aspirated sound, [čh]. Some examples can be found118

in Table 1.119

Transcription Translation
miN @nj@ bitk s@w@. My mother is a teacher.

doš@n ǰo. Come on in.

Table 1: Examples of our transcription and correspond-
ing translation.

3.3 Data Augmentation 120

The scarcity of speech datasets from native Manchu 121

speakers presents a significant challenge, neces- 122

sitating the adoption of various data augmenta- 123

tion methods. Audio data augmentation methods 124

used to simulate different acoustic environments 125

include: 126

• Additive noise: Adding background noise to 127

the audio samples. 128

• Clipping: Involves cutting short the audio 129

signals. 130

• Reverberation: Applying reverberation ef- 131

fects. 132

• Time dropout: Randomly removing seg- 133

ments of the audio. 134

By implementing the above techniques through 135

WavAugment2 provided by Kharitonov et al. 136

(2020), we successfully expand the dataset by 137

100% respectively, to a total of 400%, significantly 138

enriching the available data ASR model training. 139

Notable is the fact that data augmentation is imple- 140

mented after the separation of train and test data, 141

in order for more reliable test results. The size of 142

data before and after augmentation is described in 143

Table 2. 144

Before Augmentation Duration
train 4,898.71s
test 559.63s

After Augmentation Duration
train 19,594.85s
test 559.63s

Table 2: The duration of audio files(.wav) in seconds
before and after augmentation.

4 Experiment 145

4.1 Models 146

Wav2vec2-large-xlsr-53(Conneau et al., 2020) is 147

utilized as the base model to evaluate the influ- 148

ence of data augmentation. Wav2vec2-large-xlsr- 149

53 is a multilingual ASR model from Meta AI 150

pre-trained with 53 languages. A Wav2vec2-large- 151

xlsr-53 model is fine-tuned in two different types 152

of data, leading to two separate fine-tuned mod- 153

els: one with original Manchu data, and the other 154

2https://github.com/facebookresearch/WavAugment
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with augmented Manchu data. We name the model155

trained with augmented data ManWav 1.0. The156

fine-tuning process is conducted through Hugging-157

Sound(Grosman, 2022).158

4.2 Experimental Setup159

Our experiments are conducted using an NVIDIA160

A100 GPU. We fine-tune our models with learning161

rates ranging from 1e-5 to 5e-5, batch sizes of 4,162

8, 16, 32, and dropout rate of 0.1. Each model is163

trained for up to 5 epochs, providing a balanced ap-164

proach to assess performance and efficiency under165

various configurations.166

5 Result and Discussion167

5.1 Result168

We use Character Error Rate (CER) and Word Er-169

ror Rate (WER) as evaluation metrics. CER as-170

sesses the accuracy of character transcription, while171

WER measures the correctness of word recognition.172

Scores closer to 0 represent better performances173

in both metrics. WER and CER are the most com-174

mon and essential metrics in gauging the overall175

performance of ASR systems.176

The experimental results prove the significance177

of data augmentation in fine-tuning the pre-trained178

ASR model. As depicted in Table 3, using aug-179

mented data at the training stage clearly improves180

the performance of Wav2vec2-large-xlsr-53, specif-181

ically dropping CER by 0.02 and WER by 0.13,182

indicating the effectiveness of our data augmen-183

tation methods described in Section 3.3. Further,184

inference results of wav2vec-based models trained185

on other languages can be found in Table 4.186

Moreover, Table 5 shows the promising capabil-187

ities of our model in Manchu speech recognition188

tasks. The achieved accuracy is particularly note-189

worthy given the limited availability of Manchu190

speech data and considering that Wav2vec2-large-191

xlsr-53 is not initially pre-trained on Manchu.192

These outcomes highlight the adaptability and po-193

tential of our approach in processing languages194

with scarce resources.

Data Augmentation CER WER
before 0.13 0.44
after 0.11 0.31

Table 3: The performance of wav2vec2-large-xlsr-53
each trained with data before and after augmentation.

195

5.2 Linguistic Analysis 196

The discrepancies between the inference results and 197

the original labels in the test data can be broadly 198

classified into three scenarios: (1) confusion in- 199

volving /@/, (2) confusion related to nasal sounds 200

in word-final positions, and (3) confusion between 201

/w/ and /x/. 202

First, there are some uncaptured or mismatched 203

/@/ sounds in the inference results, particularly in 204

word-final or between sonorants (e.g., /l/) and stops. 205

This occurs because /@/ can be neutralized with 206

other vowels or even deleted, posing challenges in 207

accurate transcription. 208

Secondly, nasal sounds /n/ and /m/ in word-final 209

positions are frequently overlooked in the inference 210

results. This could be attributed to the nature of 211

nasal sounds, as they tend to be fused with subse- 212

quent vowels, resulting in nasalized vowels, or they 213

may be omitted altogether. 214

Lastly, there is a frequent confusion between 215

intervocalic /w/ and /x/ in the inference results. 216

Given that /w/ is the labial approximant and /x/ is 217

the palatal approximant, it can be noted that these 218

two sounds occupy distinct articulatory positions. 219

However, there is no equivalent unvoiced sound for 220

/w/, and discerning the voicing of approximants 221

becomes challenging when they are in intervocalic 222

positions. 223

The above three types of mismatch and corre- 224

sponding examples are elaborated in Table 6. 225

6 Related Work 226

6.1 ASR research in low-resource languages 227

There exist some endeavors to apply ASR to low- 228

resource languages. For example, Safonova et al. 229

(2022) collect a speech dataset in the Chukchi lan- 230

guage and train an XLSR model. Similarly, Qin 231

et al. (2022) improve low-resource Tibetan ASR 232

while Jimerson and Prud’hommeaux (2018) intro- 233

duce a fully functional ASR system tailored for 234

Seneca, an endangered indigenous language of 235

Model CER WER
ManWav 1.0 0.11 0.31

wav2vec2-base-960h 0.68 1.12
wav2vec2-base-100h 0.67 1.15

wav2vec2-large-960h-lv60-self 0.59 1.01
wav2vec2-large-lv60 1.66 1.0

Table 4: Inference results on Manchu test data of other
wav2vec-based models trained on English
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Model Prediction Actual Transcription
mim bo d@ ilan bo d bi mim bo ilan bo d bi mim bo d@ ilan bo bim mim bo ilan bo bim

@lt@ t@l@m t@l@č@l dulil@ ajl@ lod man njam bi j@ @lt@ t@l@m t@l@č@l dulil@ ail@ lod man njam bi j@
t@l@ amba njam wak@ t@l@ amba njam wak@ t@l@ amba njam wak@ t@l@ amba njam wak@

Table 5: Examples of inference results from fine-tuned wav2vec2-large-xlsr-53.

Mismatch Types Examples
(1) @ / __# or R__C am@ : am, dul@k@ : dulk@

(2) n, m / __# ilan : ila, jom : jo
(3) w : x / V__V šaxulo : šawulo, indaxo : indaw@

Table 6: Observed mismatch examples from the infer-
ence results written in phonological notations. R refers
to sonorants, C consonants, and V vowels.

North America. Simultaneously, Singh et al. (2023)236

propose an effective self-training approach capa-237

ble of generating accurate pseudo-labels for un-238

labeled low-resource speech, particularly for the239

Punjabi language. In addition, researchers have240

delved into exploring training strategies that lead241

to more efficient data utilization for low-resource242

speech recognition, as highlighted by Zhou et al.243

(2022). Additionally, there has been research dedi-244

cated to investigating data augmentation methods245

to enhance ASR systems designed for low-resource246

languages (Bartelds et al., 2023).247

6.2 Wav2Vec 2.0248

Wav2Vec 2.0 (Baevski et al., 2020) is a state-of-the-249

art speech recognition model developed by Face-250

book AI3. The core innovation of Wav2Vec 2.0251

lies in its ability to effectively capture the contex-252

tual information in speech through its Transformer-253

based architecture. Wav2Vec 2.0 leverages self-254

supervised training, allowing the training of an255

ASR model with a minimal amount of labeled data,256

provided there is an ample supply of unlabeled257

data. The performance of a pretrained Wav2Vec258

2.0 model using untranscribed data demonstrates259

notable accuracy when fine-tuned on a relatively260

modest quantity of transcribed data. Noteworthy261

is Wav2Vec 2.0’s effectiveness not only in cap-262

turing diverse dialects but also in accommodat-263

ing various languages. XLSR models (Conneau264

et al., 2020) are multilingual Wav2Vec 2.0 check-265

points particularly pre-trained on 53 languages and266

fine-tuned for Connectionist Temporal Classifica-267

tion(CTC) speech recognition. CTC is a technique268

3https://ai.meta.com/

used in encoder-only transformer models such as 269

Wav2Vec 2.0(Baevski et al., 2020), HuBERT(Hsu 270

et al., 2021) and M-CTC-T(Lugosch et al., 2022). 271

7 Conclusion 272

ManWav 1.0 is a significant contribution to the 273

field of ASR by focusing on Manchu, an extremely 274

low resource language often overlooked in linguis- 275

tic technology. The development and implementa- 276

tion of the first-ever Manchu ASR model, utilizing 277

Wav2Vec 2.0 - XLSR, marks a groundbreaking step 278

in addressing the disparities between high resource 279

and low resource languages in ASR research. This 280

achievement not only highlights the need to sup- 281

port underrepresented linguistic communities but 282

also showcases the potential of cutting-edge ASR 283

technology to make a substantial impact in bridg- 284

ing these gaps. The experiments of this research 285

show the effectiveness of several data augmentation 286

methods in low resource scenarios, namely additive 287

noise, clipping, reverberation, and time dropout. 288

8 Future Work 289

In further studies, we will focus on enhancing the 290

inference quality with the help of a language model. 291

The addition of a decoder to an ASR model is 292

known to boost the inference performance(Karita 293

et al., 2019; Zeyer et al., 2019). A decoder model 294

such as GPT model is expected to be well trained 295

with Manchu data. This belief stems from the ex- 296

istence of a BERT-base model4 successfully pre- 297

trained leveraging Manchu text data from Seo et al. 298

(2023). 299

This future research will not only improve the 300

Manchu ASR model but also contribute to a deeper 301

understanding and preservation of such under- 302

represented languages. Furthermore, the successful 303

development of a Manchu-specific decoder could 304

serve as a model for similar advancements in other 305

low-resource languages, thereby fostering a more 306

inclusive and diverse representation in the field of 307

speech recognition technology. 308

4https://github.com/seemdog/manchuBERT

4
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Limitations309

The primary constraint of this research lies in the310

scarcity of Manchu audio data. As the only audio311

data used in this research consists of only Collo-312

quial Manchu, utilizing ManWav1.0 in other do-313

mains would not show optimized performances,314

given that ASR models are usually heavily domain-315

dependent.316

Because Manchu is a dead language, without na-317

tive Manchu speakers, generation of new Manchu318

audio data is an insurmountable challenge. Further,319

only a small proportion of Manchu audio data is320

transcribed manually, compounding more difficulty321

in training Manchu ASR models.322

Ethics Statement323

The project paves the way for further innovations324

in the field and emphasizes the importance of inclu-325

sivity in technological advancements, ensuring that326

the benefits of state-of-the-art technologies are ac-327

cessible to all linguistic groups, regardless of their328

resource status. To support the further ASR studies329

on endangered languages, we plan to release our330

Manchu ASR model in public shortly.331
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