Outlier-Robust Wasserstein DRO

Anonymous Author(s) Affiliation Address email

Abstract

 Distributionally robust optimization (DRO) is an effective approach for data-driven decision-making in the presence of uncertainty. Geometric uncertainty due to sam- pling or localized perturbations of data points is captured by Wasserstein DRO (WDRO), which seeks to learn a model that performs uniformly well over a Wasser- stein ball centered around the observed data distribution. However, WDRO fails to account for non-geometric perturbations such as adversarial outliers, which can greatly distort the Wasserstein distance measurement and impede the learned model. We address this gap by proposing a novel outlier-robust WDRO frame- work for decision-making under both geometric (Wasserstein) perturbations and 10 non-geometric (total variation (TV)) contamination that allows an ε -fraction of data to be arbitrarily corrupted. We design an uncertainty set using a certain robust Wasserstein ball that accounts for both perturbation types. We derive minimax optimal excess risk bounds for this procedure that explicitly capture the Wasserstein and TV risks. We prove a strong duality result that enables efficient computation of our outlier-robust WDRO problem. When the loss function depends only on low-dimensional features of the data, we eliminate certain dimension dependencies from the risk bounds that are unavoidable in the general setting. Finally, we present experiments validating our theory on standard regression and classification tasks.

1 Introduction

 The safety and effectiveness of various operations rely on making informed, data-driven decisions in uncertain environments. Distributionally robust optimization (DRO) has emerged as a powerful framework for decision-making in the presence of uncertainties. In particular, Wasserstein DRO (WDRO) captures uncertainties of geometric nature, e.g., due to sampling or localized (adversarial) perturbations of the data points. The WDRO problem is a two-player, zero-sum game between a 25 learner (decision-maker), who chooses a decision $\theta \in \Theta$, and nature (adversary), who chooses a 26 distribution ν from an ambiguity set defined as the p-Wasserstein ball of a prescribed radius around the observed data distribution $\tilde{\mu}$. Namely, WDRO is given by^{[1](#page-0-0)}

$$
\inf_{\theta \in \Theta} \sup_{\nu: W_p(\nu, \tilde{\mu}) \le \rho} \mathbb{E}_{Z \sim \nu} [\ell(\theta, Z)],\tag{1}
$$

28 whose solution $\hat{\theta} \in \Theta$ performs uniformly well over the Wasserstein ball with respect to (w.r.t.) the loss function ℓ . WDRO has received considerable attention in many fields, including machine learning [\[2,](#page-8-0) [15,](#page-8-1) [35,](#page-9-0) [38,](#page-9-1) [49\]](#page-10-0), estimation and filtering [\[26,](#page-9-2) [27,](#page-9-3) [36\]](#page-9-4), and chance constraint programming [\[7,](#page-8-2) [45\]](#page-10-1), among others.

 In many practical scenarios, the observed data may be contaminated by non-geometric perturbations, such as adversarial outliers. Unfortunately, the WDRO problem from [\(1\)](#page-0-1) is not suited for handling this

Submitted to the Optimal Transport and Machine Learning Workshop at NeurIPS 2023. Do not distribute.

¹Here, $W_p(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \left(\int \|x - y\|^p d\pi(x, y) \right)^{1/p}$ is the *p*-Wasserstein metric between μ and ν , where $\Pi(\mu, \nu)$ is the set of all their couplings.

34 issue, as even a small fraction of outliers can greatly distort the W_p measurement and impede decision- making. In this work, we address this gap by proposing a novel outlier-robust WDRO framework that can learn well-performing decisions even in the presence of outliers. We couple it with a comprehensive theory of excess risk bounds, statistical guarantees, and computationally-tractable reformulations, as well as supporting numerical results.

1.1 Contributions

40 We consider a scenario where the observed data distribution $\tilde{\mu}$ is subject to both geometric (Wasser-41 stein) perturbations and non-geometric (total variation (TV)) contamination, which allows an ε -42 fraction of data to be arbitrarily corrupted. Namely, if μ is the true (unknown) data distribution, then 43 the Wasserstein perturbation maps it to some μ' with $W_p(\mu', \mu) \le \rho$, and the TV contamination step 44 further produces $\tilde{\mu}$ with $\|\tilde{\mu} - \mu'\|_{TV}$ (e.g., in the special case of the Huber model, $\tilde{\mu} = (1 - \varepsilon)\mu' + \varepsilon \alpha$ 45 where α is an arbitrary noise distribution). To enable robust decision-making under this model, we replace the Wasserstein ambiguity set in [\(1\)](#page-0-1) with a ball w.r.t. the recently proposed outlier-robust 47 Wasserstein distance W_p^{ϵ} [\[28,](#page-9-5) [29\]](#page-9-6). The W_p^{ϵ} distance is defined via a partial optimal transport (OT) 48 problem (see [\(2\)](#page-2-0) ahead) that first filters out the ϵ -fraction of mass from the contaminated distribution 49 that contributed most to the transportation cost, and then measures the W_p distance post-filtering. To 50 obtain well-performing solutions for our WDRO problem, the W_p^{ε} ball is intersected with a set that encodes (necessary) moment assumptions on the uncorrupted data distribution.

52 We establish minimax optimal excess risk bounds for the decision $\hat{\theta}$ that solves the proposed outlierss robust WDRO problem. The bounds control the gap $\mathbb{E}[\ell(\hat{\theta}, Z)] - \mathbb{E}[\ell(\theta, Z)]$, where $Z \sim \mu$ follows 54 the true data distribution, subject to regularity properties of $\ell(\theta, \cdot)$ for any arbitrary decision $\theta \in \Theta$. In turn, they imply that the learner can make effective decisions using outlier-robust WDRO based 56 on the contaminated observation $\tilde{\mu}$, so long that there exists a (near) optimal θ with low variational 57 complexity. The bounds capture this complexity using the Lipschitz or Sobolev seminorms of $\ell(\theta, \cdot)$ and clarify the distinct effect of each perturbation (Wasserstein versus TV) on the quality of the θ sequence θ solution. Moreover, they demonstrate notable improvements when the loss function depends 60 only on k-dimensional linear features, for $k \ll d$. All of our bounds are shown to be minimax optimal, in that there exists a learning problem for which each is tight.

 We then move to study the computational side of the problem, which may initially appear intractable due to non-convexity of the constraint set. We resolve this via a preprocessing step that computes a robust estimate of the mean [\[9\]](#page-8-3) and replaces the original constraint set (that involves the true mean) with a version centered around the estimate. We adapt our excess risk bounds to this formulation and then prove a strong duality theorem. The dual form is reminiscent of the one for classical WDRO with adaptations reflecting the constraint to the clean distribution family and the partial 68 transportation under W_p^{ε} . Under additional convexity conditions on the loss, we further derive an efficiently-computable, finite-dimensional, convex reformulation. Using the developed machinery, we present experiments that validate our theory on simple regression tasks and demonstrate the superiority of the proposed approach over classical WRDO, when the observed data is contaminated.

1.2 Related Work

 Distributionally robust optimization. The Wasserstein distance has emerged as a powerful tool for modeling uncertainty in the data generating distribution. It was first used to construct an ambiguity set around the empirical distribution in [\[30\]](#page-9-7). Recent advancements in convex reformulations and ap- proximations of the WDRO problem, as discussed in [\[4,](#page-8-4) [14,](#page-8-5) [25\]](#page-9-8), have brought notable computational advantages. Additionally, WDRO is linked to various forms of variation [\[1,](#page-8-6) [5,](#page-8-7) [12,](#page-8-8) [33\]](#page-9-9) and Lipschitz [\[3,](#page-8-9) [6,](#page-8-10) [34\]](#page-9-10) regularization, which contribute to its success in practice. Robust generalization guarantees can also be provided by WDRO via measure concentration argument or transportation inequalities [\[11,](#page-8-11) [21,](#page-9-11) [22,](#page-9-12) [41,](#page-10-2) [43,](#page-10-3) [44\]](#page-10-4). Several works have raised concerns regarding the sensitivity of standard DRO to outliers [\[16,](#page-8-12) [19,](#page-8-13) [48\]](#page-10-5). An attempt to address this was proposed in [\[46\]](#page-10-6) using a refined risk function based on a family of f-divergences. This formulation aims to prevent DRO from overfitting to potential outliers but is not robust to geometric perturbations. Further, their risk bounds require a moment condition to hold uniformly over Θ, in contrast to our bounds that depend only on a single (near) optimal θ. We are able to address these limitations by setting a WDRO framework based on partial transportation. While partial OT has been previously used in the context of DRO problems, it ⁸⁷ was introduced to address stochastic programs with side information in [\[10\]](#page-8-14) rather than to account ⁸⁸ for outlier robustness.

89 Robust statistics. The problem of learning from corrupted data corruptions dates back to [\[20\]](#page-8-15). Over the years, various robust and sample-efficient estimators, particularly for mean and scale parameters, have been developed in the robust statistics community; see [\[31\]](#page-9-13) for a comprehensive survey. The theoretical computer science community, on the other hand, has focused on developing computation- ally efficient estimators that achieve optimal estimation rates in high dimensions [\[8,](#page-8-16) [9\]](#page-8-3). Recently, [\[48\]](#page-10-5) developed a unified robust estimation framework based on minimum distance estimation that gives sharp population-limit and good finite-sample guarantees for mean and covariance estimation. Their analysis centers on a generalized resilience quantity, which will be also essential to our work. Also key to our analysis is the outlier-robust Wasserstein distance from [\[28,](#page-9-5) [29\]](#page-9-6), which was shown to 98 yield an optimal minimum distance estimate for robust distribution estimation under W_p loss.

⁹⁹ 2 Preliminaries

100 **Notation.** We consider Euclidean space \mathbb{R}^d equipped with the ℓ_2 norm $\|\cdot\|$. A continuously 101 differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is called α -smooth if $\|\nabla f(z) - \nabla f(z')\| \leq \alpha \|z - z'\|$, for 102 all $z, z' \in \mathbb{R}^d$. The perspective function of a lower semi-continuous (l.s.c.) and convex function 103 *f* is $P_f(x, \lambda) := \lambda f(x/\lambda)$ for $\lambda > 0$, with $P_f(x, \lambda) = \lim_{\lambda \to 0} \lambda f(x/\lambda)$ when $\lambda = 0$. The convex 104 conjugate of f is $f^*(y) := \sup_{x \in \mathbb{R}^d} y^\top x - f(x)$. The set of integers up to $n \in \mathbb{N}$ is denote by [n]; we 105 also use the shorthand $[x]_+ = \max\{x, 0\}$. We write \leq, \geq, \geq for inequalities/equality up to absolute ¹⁰⁶ constants.

107 We use $\mathcal{M}(\mathbb{R}^d)$ for the set of signed Radon measures on \mathbb{R}^d equipped with the TV norm $\|\mu\|_{TV}$:= $\frac{1}{2}|\mu|(\mathcal{Z})$, and write $\mu \leq \nu$ for set-wise inequality. The class of Borel probability measures on \mathbb{R}^d 108 109 is denoted by $\mathcal{P}(\mathbb{R}^d)$. Write $\mathbb{E}_{\mu}[f(Z)]$ for expectation of $f(Z)$ with $Z \sim \mu$; when clear from the 110 context, the random variable is dropped and we write $\mathbb{E}_{\mu}[f]$. Define $\mathcal{P}_p(\mathbb{R}^d) := \{ \mu \in \mathcal{P}(\mathbb{R}^d) : \mu \in \mathcal{P}(\mathbb{R}^d) \}$ 111 $\inf_{z_0 \in \mathbb{R}^d} \mathbb{E}_{\mu}[\|Z - z_0\|^p] < \infty$. The push-forward of f through $\mu \in \mathcal{P}(\mathbb{R}^d)$ is $f_{\#}\mu(\cdot) := \mu(f^{-1}(\cdot)),$ 112 and, for $A \subseteq \mathcal{P}(\mathbb{R}^d)$, write $f_{\#}A := \{f_{\#}\mu : \mu \in A\}$. The pth order homogeneous Sobolev 113 (semi)norm of continuously differentiable $f : \mathbb{R}^d \to \mathbb{R}$ w.r.t. μ is $||f||_{\dot{H}^{1,p}(\mu)} := \mathbb{E}_{\mu} [||\nabla f||^p]^{1/p}$. 114 Given $Z \sim \mu$ and an even convex, non-decreasing function $\psi : \mathbb{R} \to \mathbb{R}_+$ with $\psi(0) = 0$ and $\psi(x) \to \infty$ 115 ∞ as $|x| \to \infty$, we define the Orlicz norm $||Z||_{\psi} = \sup \{\sigma \ge 0 : \sup_{\theta \in \mathbb{S}^{d-1}} \mathbb{E}[\psi(\theta^\top Z/\sigma)] \le 1\}.$

116 **Classical and outlier-robust Wasserstein distances.** For $p \in [1, \infty)$, the *p*-Wasserstein distance 117 between $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^d)$ is $\mathsf{W}_p(\mu, \nu) \coloneqq \inf_{\pi \in \Pi(\mu, \nu)} (\mathbb{E}_{\pi} [\|X - Y\|^p])^{1/p}$, where $\Pi(\mu, \nu) \coloneqq {\pi \in \mathbb{R}^d}$ 118 $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \pi(\cdot \times \mathbb{R}^d) = \mu, \pi(\mathbb{R}^d \times \cdot) = \nu\}$ is the set of all their couplings. Some basic properties 119 of W_p are (see, e.g., [\[32,](#page-9-14) [42\]](#page-10-7)): (i) W_p is a metric on $\mathcal{P}_p(\mathbb{R}^d)$; (ii) the distance is monotone in the 120 order, i.e., $W_p \leq W_q$ for $p \leq q$; and (iii) W_p metrizes weak convergence plus convergence of pth 121 moments: $\mathsf{W}_p(\mu_n, \mu) \to 0$ if and only if $\mu_n \stackrel{w}{\to} \mu$ and $\int ||x||^p d\mu_n(x) \to \int ||x||^p d\mu(x)$.

1[2](#page-2-1)2 To handle corrupted data, we define the ε -*outlier-robust* p-Wasserstein distance² between μ and ν by $\mathsf{W}_{p}^{\varepsilon}(\mu,\nu) \coloneqq \inf_{\mu' \in \mathcal{P}(\mathbb{R}^d)}$ $\|\mu'-\mu\|$ τν \leq ε $\mathsf{W}_p(\mu',\nu) = \inf_{\nu' \in \mathcal{P}(\mathbb{R}^d)}$ $||\nu' - \nu||$ τν \leq ε $\mathsf{W}_p(\mu, \nu')$ (2)

¹²³ The second equality is a useful consequence of Lemma 4 in [\[29\]](#page-9-6).

¹²⁴ Robust statistics. Resilience is a standard sufficient condition for population-limit robust statistics 125 bounds. The *mean resilience* of a measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ is defined by

$$
\tau(\mu,\varepsilon) \coloneqq \sup_{\mu' \leq \frac{1}{1-\varepsilon}\mu} \bigl\| \mathbb{E}_{\mu}[Z] - \mathbb{E}_{\mu'}[Z] \bigr\|,
$$

and that of a family $\mathcal{G} \subseteq \mathcal{P}(\mathbb{R})$ by $\tau(\mathcal{G}, \varepsilon) := \sup_{\mu \in \mathcal{G}} \tau(\mu, \varepsilon)$. The *p*-Wasserstein resilience of μ is ¹²⁷ given by

$$
\tau_p(\mu,\varepsilon) \coloneqq \sup_{\mu' \leq \frac{1}{1-\varepsilon}\mu} \mathsf{W}_p(\mu',\mu)
$$

²While not a metric, W_p^{ϵ} is symmetric and satisfies an approximate triangle inequality ([\[29\]](#page-9-6), Proposition 3).

- 128 and that of a family G by $\tau_p(G, \varepsilon) := \sup_{\mu \in \mathcal{G}} \tau_p(\mu, \varepsilon)$. When inference depends on k-dimensional pro-
- 129 jections, we use $\tau_{p,k}(\mu,\varepsilon) = \sup_{U \in \mathbb{R}^{k \times d}: U U^{\top} = I_k} \tau_p(U_\# \mu,\varepsilon)$ and $\tau_{p,k}(\mathcal{G},\varepsilon) = \sup_{\mu \in \mathcal{G}} \tau_{p,k}(\mu,\varepsilon)$.
- ¹³⁰ The relation between resilience and robust estimation is formalized in the following proposition.
- 131 **Proposition 1** (Robust estimation under resilience [\[29,](#page-9-6) [39\]](#page-9-15)). *For any* $\mu \in \mathcal{G} \subseteq \mathcal{P}(\mathbb{R}^d)$ *and* $\tilde{\mu} \in \mathcal{P}(\mathbb{R}^d)$
- 132 *such that* $\|\tilde{\mu} \mu\|_{TV} \leq \varepsilon \leq 1/2$, the minimum distance estimate $\hat{\mu} = \argmin_{\nu \in \mathcal{G}} \|\nu \tilde{\mu}\|_{TV}$ satisfies
- 133 $\|\mathbb{E}_{\hat{\mu}}[Z] \mathbb{E}_{\mu}[Z]\| \leq 2\tau(\overline{\mathcal{G}}, 2\varepsilon)$. Similarly, if $0 \leq \varepsilon \leq 0.49$ and $\mathsf{W}_{p}^{\varepsilon}(\widetilde{\mu}, \mu) \leq \rho$, then the minimum
- distance estimate $\hat{\mu} = \argmin_{\nu \in \mathcal{G}} \mathsf{W}_p^{\varepsilon}(\nu, \tilde{\mu})$ satisfies $\mathsf{W}_p(\hat{\mu}, \mu) \lesssim \rho + \tau_p(\mathcal{G}, 2\varepsilon)$.^{[3](#page-3-0)} 134
- 135 In practice, we consider families G encoding tail bounds like bounded covariance or sub-Gaussianity:

$$
\mathcal{G}_{\text{cov}} \coloneqq \big\{ \mu \in \mathcal{P}(\mathbb{R}^d) : \Sigma_{\mu} \preceq I_d \big\}, \quad \mathcal{G}_{\text{subG}} \coloneqq \{ \mu \in \mathcal{P}(\mathbb{R}^d) : \mathbb{E}_{\mu}[e^{(\theta^{\top}Z)^2}] \leq 2, \forall \theta \in \mathbb{S}^{d-1} \}.
$$

136 Proposition 2 (Resilience under standard tail bounds). *Fixing* $\mu \in \mathcal{P}(\mathbb{R}^d)$ *and* $0 \le \varepsilon < 1$ *, we have*

$$
\tau(\mathcal{G}_{cov}, \varepsilon) \lesssim \sqrt{\varepsilon}, \qquad \tau_{p,k}(\mathcal{G}_{cov}, \varepsilon) \lesssim \sqrt{k\varepsilon^{\frac{1}{p} - \frac{1}{2}}},
$$

$$
\tau(\mathcal{G}_{subG}, \varepsilon) \lesssim \varepsilon \sqrt{\log \frac{1}{\varepsilon}}, \quad \tau_{p,k}(\mathcal{G}_{subG}, \varepsilon) \lesssim \sqrt{k + p + \frac{1}{\varepsilon}} \varepsilon^{\frac{1}{p}}.
$$

¹³⁷ These bounds are computed in the proof of Theorem 5 in [\[29\]](#page-9-6).

¹³⁸ 3 Outlier-robust WDRO

139 We perform stochastic optimization with respect to an unknown data distribution μ , given access 140 only to a corrupted version $\tilde{\mu}$. We first consider a Wasserstein perturbation mapping μ to μ' such that 141 $W_p(\mu, \mu') \leq \rho$. Then we allow a TV ε -corruption taking μ' to $\tilde{\mu}$ with $\|\tilde{\mu} - \mu'\|_{TV} \leq \varepsilon$. Equivalently, 142 we have $\mathsf{W}_p^{\varepsilon}(\tilde{\mu}, \mu) \leq \rho$. Our full model is as follows.

1[4](#page-3-1)3 Setting A: Fix a p-Wasserstein radius $\rho \ge 0$ and TV contamination level $\varepsilon \in [0, 0.49]^4$. Let $\mathcal L$ be a family of real-valued loss functions on Z, such that each $\ell \in \mathcal{L}$ is l.s.c. with $\sup_{z \in \mathcal{Z}} \frac{\ell(z)}{1 + ||z||^p} < \infty$, 145 and fix a class $\mathcal{G} \subseteq \mathcal{P}_p(\mathbb{R}^d)$ encoding distributional assumptions. We consider the following game:

- 146 (i) Nature selects a distribution $\mu \in \mathcal{G}$, unknown to the learner;
- 147 (ii) The learner observes $\tilde{\mu} \in \mathcal{P}(\mathbb{R}^d)$ with $\mathsf{W}_p^{\varepsilon}(\tilde{\mu}, \mu) \leq \rho$ and selects decision $\hat{\ell} \in \mathcal{L}$;
- 148 (iii) The learner suffers excess risk $\mathbb{E}_{\mu}[\hat{\ell}] \inf_{\ell \in \mathcal{L}} \mathbb{E}_{\mu}[\ell].$
- ¹⁴⁹ We seek a decision-making procedure for the learner which provides strong excess risk guarantees
- 1[5](#page-3-2)0 when $\ell_{\star} := \operatorname{argmin}_{\ell \in \mathcal{L}} \mu(\ell)^5$ is appropriately "simple." To learn in this setting, we introduce the
- ¹⁵¹ ε*-outlier-robust* p*-Wasserstein DRO problem*:

$$
\inf_{\ell \in \mathcal{L}} \sup_{\nu \in \mathcal{G}: W_p^{\varepsilon}(\tilde{\mu}, \nu) \le \rho} \mathbb{E}_{\nu}[\ell].
$$
 (OR-WDRO)

¹⁵² Our results are most cleanly stated under the following structural assumptions.

153 **Assumption 1** (Bounded Orlicz norm). The class $G = G_{\psi}(\sigma)$ consists of all distributions $Z \sim \mu \in$ 154 $\mathcal{P}(\mathbb{R}^d)$ for which $||Z - \mathbb{E}[Z]||_{\psi} \leq \sigma$, where $\psi(x) = \sum_{i \geq 1} a_i x^{2i}$ is real analytic and even, with 155 $a_i \geq 0$ for all $i \geq 1$ and $\psi(1) \leq 2$.

- 156 Assumption 2 (ℓ_{\star} depends on k-dimensional features). The optimal loss function ℓ_{\star} can be decom-157 posed as $\ell_{\star} = \underline{\ell} \circ A$ for an affine map $A : \mathbb{R}^d \to \mathbb{R}^k$ and some $\underline{\ell} : \mathbb{R}^k \to \mathbb{R}$.
- ¹⁵⁸ Assumption [1](#page-3-3) captures a variety of standard Orlicz norm bounds.

Example 1. Taking $\sigma = 1$ and $\psi(x) = x^2$, we obtain the class $\mathcal{G}_{cov} = {\mu \in \mathcal{P}(\mathbb{R}^d) : \Sigma_{\mu} \preceq I_d}$ of

- 160 *bounded covariance distributions, while* $\psi(x) = e^{x^2} 1$ gives the class $\mathcal{G}_{\text{subG}}$ of 1-sub-Gaussian
- ¹⁶¹ *distributions.*

³If a minimizer does not exist for either problem, an infimizing sequence will achieve the same guarantee.

⁴While the choice of 0.49 is arbitrary, our bounds degrade as $\varepsilon \to 1/2$ (the optimal breakdown point).

⁵While our stated risk bounds will depend on ℓ_{\star} , they extend naturally to approximate minimizers.

162 Assumption [2](#page-3-4) is not necessarily restrictive, since one may always take $k = d$ and $A = I_d$. However, 163 in many practical settings, all loss functions exhibit k-dimensional affine structure for $k \ll d$ (e.g., ¹⁶⁴ multi-linear regression). Our risk bounds are substantially stronger in this regime.

Example 2 (Supervised learning with low-dimensional structure). Suppose that $\mathbb{R}^d = \mathbb{R}^{d_f} \times \mathbb{R}^{d_\ell}$ 165 ¹⁶⁶ *for a* d^f *dimensional feature space and* d^ℓ *dimensional label space. Fix any hypothesis class* H 167 *of* \mathbb{R}^{d_ℓ} -valued functions on \mathbb{R}^{d_f} such that each $h \in \mathcal{H}$ can be written as $h(x) = \underline{h}(A(x))$, where 168 $A: \mathbb{R}^d \to \mathbb{R}^{\overline{k}-1}$ is affine and $\underline{h}: \mathbb{R}^{k-1} \to \mathbb{R}^{d_\ell}$ is Lipschitz. Let $L: \mathbb{R}^{d_\ell} \to \mathbb{R}$ be a l.s.c. loss *function with bounded pth order growth, i.e.,* $\sup_{w \in \mathbb{R}^{d_\ell}} \frac{|L(w)|}{1+||w||^p} < \infty$ *. For example, we may take* $L(w) = ||w||^p$ or $L(w) = \mathbb{1}{w \neq 0}$ *. Then* $\mathcal{L} = \{(x, y) \mapsto L(h(x) - y) : h \in \mathcal{H}\}\$ satisfies 171 *Assumption* [2.](#page-3-4) Indeed, for each $h = h \circ A$ in H, we can write $L(h(x) - y) = L(B((x, y)))$, where 172 *B* : \mathbb{R}^d → \mathbb{R}^k *defined by* $B((x, y)) = (Ax, y)$ *is affine and* $\underline{\ell}((Ax, y)) = L(\underline{h}(Ax) - y)$ *.*

¹⁷³ Setting A considers the "population-limit" (i.e. no explicit model for sampling). We examine the ¹⁷⁴ performance of outlier-robust WDRO in this regime before turning to finite-sample risk bounds and ¹⁷⁵ computation. Proofs are provided in Supplement [C.](#page-16-0)

¹⁷⁶ 3.1 Population-Limit Excess Risk Bounds

- 177 We now quantify the excess risk of decisions made using ε -outlier-robust p-WDRO.
- ¹⁷⁸ Theorem 1 (Population-limit excess risk bound). *Consider Setting A under Assumptions [1](#page-3-3) and [2.](#page-3-4)*
- 179 Let $\hat{\ell}$ minimize [\(OR-WDRO\)](#page-3-5). Then, the excess risk $\mathbb{E}_{\mu}[\hat{\ell}] \mathbb{E}_{\mu}[\ell_{\star}]$ is at most

$$
\begin{cases} 2\|\ell_{\star}\|_{\mathrm{Lip}}\big(\rho+\tau_{1,k}(\mathcal{G},2\varepsilon)\big), & p=1,\ell_{\star} \text{ Lipschitz} \\ 2\|\ell_{\star}\|_{\dot{H}^{1,2}(\mu)}\big(\rho+\tau(\mathcal{G},2\varepsilon)\big)+\frac{44\alpha}{1-2\varepsilon}\big(\rho+\tau_{2,k}(\mathcal{G},2\varepsilon)\big)^2, & p=2,\ell_{\star} \text{ α-smooth}. \end{cases}
$$

180 Note that $\frac{1}{1-2\varepsilon} = O(1)$ since $\varepsilon \le 0.49$. These bounds imply that the learner can make effective 181 decisions when the optimal decision ℓ_{\star} has low variational complexity. In contrast, there are simple ¹⁸² regression settings with TV corruption that drive the excess risk of standard WDRO to infinity. 183 Moreover, the TV component of the risk is considerably smaller when $k \ll d$. In Table [1,](#page-4-0) we present ¹⁸⁴ tight risk bounds for OR-WDRO in a variety of environments. Each environment corresponds to a set 185 of restrictions on μ , the optimal loss function ℓ_{\star} , and the order p of the Wasserstein perturbation. The ¹⁸⁶ guarantees of OR-WDRO are minimax optimal for all settings considered (see Appendix [C.2\)](#page-17-0).

¹⁸⁷ Our proof controls excess risk via the following two regularizers:

$$
\Omega_{\mathsf{W}_p}(\ell_\star;\mu,\rho) \coloneqq \sup_{\substack{\nu \in \mathcal{P}(\mathbb{R}^d) \\ \mathsf{W}_p(\nu,\mu) \leq \rho}} \mathbb{E}_\nu[\ell_\star] - \mathbb{E}_\mu[\ell_\star], \quad \Omega_{\mathsf{TV}}(\ell_\star;\mu,\mathcal{G},\varepsilon) \coloneqq \sup_{\substack{\nu \in \mathcal{G} \\ \|\nu - \mu\|_{\mathsf{TV}} \leq \varepsilon}} \mathbb{E}_\nu[\ell_\star] - \mathbb{E}_\mu[\ell_\star].
$$

188 The W_p regularizer is well-studied and known to control excess risk for WDRO. When $\varepsilon = 0$, our 189 proof recovers the known excess risk bound of $\Omega_{W_p}(\ell_\star;\mu,\rho)$, and the theorem's bound is a standard ¹⁹⁰ upper bound on this quantity. The TV regularizer can similarly be shown to control excess risk for 191 population-limit robust statistics (i.e. when $\rho = 0$), though, to the best of our knowledge, no previous ¹⁹² work has derived explicit bounds on this quantity. The risk bound in Theorem [1](#page-4-1) is a consequence of ¹⁹³ the following decomposition,

Table 1: Tight excess risk bounds for OR-WDRO in varied environments. Logarithmic factors omitted for ease of presentation; see Appendix [C.2](#page-17-0) for details.

$$
\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell_{\star}] \leq \Omega_{\mathsf{W}_p}(\ell_{\star}; \mu, 2\rho) + \sup_{\substack{\nu \in \mathcal{P}(\mathbb{R}^d) \\ \mathsf{W}_p(\nu, \mu) \leq \rho}} \Omega_{\mathsf{TV}}(\ell_{\star}; \nu, \mathcal{G}, 2\varepsilon),
$$

¹⁹⁴ whose components reveal the effect of each perturbation (viz. Wasserstein versus TV) on the quality 195 of the decision. When $p = 1$, we rely on Kantorovich duality for W_1 , and, for $p = 2$, we use that ℓ 196 can be well-approximated by its Taylor expansion about $Z \sim \mu$. Finally, we show that Ω_{TV} depends 197 only on a subproblem in \mathbb{R}^k . Notably, WDRO adapts automatically to the intrinsic dimensionality of 198 ℓ_{\star} without requiring knowledge of k.

¹⁹⁹ Remark 1 (Comparison to recentered WDRO). We note that non-trivial guarantees can be ob-200 tained by performing classic WDRO recentered around the minimum distance estimate $\hat{\mu}$ = $\operatorname{argmin}_{\nu \in \mathcal{G}} W_1^{\varepsilon}(\tilde{\mu}, \nu)$ with an expanded radius. For example, when $p = 1$, this estimate satis-202 fies $W_1(\mu, \hat{\mu}) \leq 2\rho + 2\tau_1(\mathcal{G}, 2\varepsilon)$, and so WDRO about $\hat{\mu}$ with this expanded radius incurs excess risk 203 at most $O(||\ell_{\star}||_{\text{Lip}}(\rho + \tau_1(\mathcal{G}, 2\varepsilon))$. Ignoring the computational complexity of finding such a center $\hat{\mu}$ 204 (which to the best of our knowledge, has not been established), the full-dimensional W_1 resilience 205 term $\tau_1(G, \varepsilon)$ is substantially larger than the optimal $\tau_{1,k}(G, \varepsilon)$ for $k \ll d$. We defer a comprehensive ²⁰⁶ comparison against this MDE+WDRO approach for future work.

²⁰⁷ 3.2 Finite-Sample Excess Risk Bounds

²⁰⁸ We next formalize a finite-sample model and provide statistical guarantees.

209 **Setting B:** Fix ρ , ε , \mathcal{L} , and \mathcal{G} as in Setting A. We consider the following environment:

210 (i) Nature samples Z_1, \ldots, Z_n i.i.d. from $\mu \in \mathcal{G}$, with empirical measure $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}$;

211 (ii) Nature produces $\tilde{Z}_1,\ldots,\tilde{Z}_n$ with empirical measure $\tilde{\mu}_n$ such that $\mathsf{W}_p^{\varepsilon}(\tilde{\mu}_n,\hat{\mu}_n) \leq \rho;$

212 (iii) The learner observes $\tilde{\mu}_n$, selects $\hat{\ell} \in \mathcal{L}$, and suffers excess risk $\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell_{\star}]$.

213 The learner is now tasked with selecting $\hat{\ell} \in \mathcal{L}$ given only $\tilde{\mu}_n$. The results from Section [3](#page-3-6) apply 214 immediately whenever $\rho \ge \rho_0 + W_p(\mu, \hat{\mu}_n)$ with high probability.

215 Proposition 3 (Choosing ρ). *Consider Setting B under Assumption 2 with* $\mathcal{G} = \mathcal{G}_{cov}$. *Assume* $d \geq 3$. 216 *Take any* $\hat{\ell} \in \mathcal{L}$ *minimizing* [\(OR-WDRO\)](#page-3-5) *when centered about* $\tilde{\mu} = \tilde{\mu}_n$ *with* $p = 1$ *. Then the excess* a ¹⁷ risk bounds of Theorem [1](#page-4-1) hold with probability at least 0.99 so long as $\rho \ge \rho_0 + c\sqrt{d}n^{-\frac{1}{d}}$, where

218 $c > 0$ *is an absolute constant. If rather* $\mathcal{G} = \mathcal{G}_{subG}$ *, we have the same for both* $p = 1$ *and* $p = 2$ *.*

219 While beyond the scope of this workshop submission, we note that this $n^{-1/d}$ rate may be improved 220 to $n^{-1/k}$ under a Poincaré-type assumption on μ and a mild change to [\(OR-WDRO\)](#page-3-5).

²²¹ 4 Tractable Reformulation and Computation

222 We now turn to computation. Due to space constraints, we focus on $\mathcal{G} = \mathcal{G}_{cov}$ with $p = 1$ and $k = d$, though the approach below can be significantly extended. Initially, [\(OR-WDRO\)](#page-3-5) may appear 224 intractable, since \mathcal{G}_{cov} is non-convex when viewed as a subset of the cone $\mathcal{M}_{+}(\mathbb{R}^{d})$. Moreover, ²²⁵ enforcing membership to this class is non-trivial. To remedy these issues, we propose using a cheap 226 preprocessing step to obtain a robust estimate $z_0 \in \mathbb{R}^d$ of the mean $\mathbb{E}_{\mu}[Z]$ and then optimizing over 227 $\mathcal{G}_2(\sigma, z_0) \coloneqq \big\{ \nu \in \mathcal{P}(\mathbb{R}^d) : \sqrt{\mathbb{E}_{\nu}[\|Z - z_0\|^2]} \leq \sigma \big\}$, for some $\sigma > 0$. Finally, for technical reasons 228 it is preferable to consider the one-sided robust distance $\mathsf{W}_p^{\varepsilon}(\mu \| \nu) \coloneqq \inf_{\mu' \in \mathcal{P}(\mathbb{R}^d): \mu' \leq \frac{1}{1-\varepsilon} \mu} \mathsf{W}_p(\mu', \nu)$. ²²⁹ All together, we propose solving the simplified problem

$$
\inf_{\ell \in \mathcal{L}} \sup_{\nu \in \mathcal{G}_2(\sigma, z_0): \mathsf{W}_p^{\varepsilon}(\tilde{\mu}_n \| \nu) \le \rho} \mathbb{E}_{\nu}[\ell],\tag{3}
$$

²³⁰ which admits risk bounds matching Theorem [1.](#page-4-1)

Proposition 4 (Risk bound for simplified problem). *Consider Setting B with* $p = 1$ *and* $\mathcal{G} = \mathcal{G}_{cov}$.

Fix $z_0 \in \mathcal{Z}$ *such that* $||z_0 - \mathbb{E}_{\mu}[Z]|| \leq \rho_0 + O(\sqrt{d})$ *, and take* $\hat{\ell}$ *minimizing* [\(3\)](#page-5-0) *with* $\rho = \rho_0 + O(\sqrt{d})$ 233 $\mathsf{W}_{1}(\hat{\mu}_n,\mu)+O(\sqrt{d\varepsilon})$ and $\sigma=\rho_0+O(\sqrt{d}).$ Then, excess risk is bounded by

 $\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell_{\star}] \lesssim \|\ell_{\star}\|_{\mathrm{Lip}} \big(\rho_0 + \mathsf{W}_1(\hat{\mu}_n,\mu) + \sqrt{d\varepsilon}\,\big).$

234 The proof uses the fact that $\mu \in \mathcal{G}_{\text{cov}}$ implies $\mu \in \mathcal{G}_2(\sqrt{d} + ||z_0 - \mathbb{E}_{\mu}[Z]||, z_0)$, along with the ess resilience bound $\tau_1(G_2(\sigma, z_0), \varepsilon) \lesssim \sqrt{d\varepsilon}$. For efficient computation, we must specify a robust mean

estimation algorithm to obtain z_0 and a procedure for solving [\(3\)](#page-5-0). For the former, we show that the ²³⁷ popular iterative filtering algorithm [\[9\]](#page-8-3) works even with adversarial Wasserstein perturbations.

238 **Proposition 5** (Robust mean estimation). *Consider Setting B with* $G = G_{\text{cov}}$, $p = 1$, and $\varepsilon \le 1/12$. 239 *For* $n = \Omega(d \log(d)/\varepsilon)$, there exists an iterative filtering algorithm which takes $\hat{\mu}_n$ as input, runs in 240 time $\tilde O(nd^2)$, and outputs $z_0\in\mathbb{R}^d$ such that $\|z_0-\mathbb{E}_\mu[Z]\|\lesssim\rho_0+\sqrt{\varepsilon}$ with probability at least 0.99.

241 It is not immediately clear that iterative filtering should still work under W_1^{ϵ} perturbations (compared 242 the TV corruptions it was designed for), since the W_1 step can arbitrarily increase the initial covariance ²⁴³ bound. Fortunately, we show that trimming a small fraction of samples mitigates this potential 244 increase. With some effort omitted from this submission, we expect that the upper bound on ε can be equal replaced with any constant less than $1/2$, and that the running time can be improved to $O(nd)$.

²⁴⁶ We next show that that the inner maximization problem of [\(3\)](#page-5-0) can be simplified to a minimization ²⁴⁷ problem involving only three scalars provided the following assumption holds.

248 Assumption 3 (Slater condition I). Given the distribution $\tilde{\mu}_n$ and the fixed point z_0 , there exists 249 $\nu_0 \in \mathcal{P}(\mathcal{Z})$ such that $\mathsf{W}_p^{\varepsilon}(\tilde{\mu}_n || \nu_0) \leq \rho$ and $\mathbb{E}_{\nu_0}[\Vert Z - z_0 \Vert^2] \leq \sigma^2$. Additionally, we require $\rho > 0$.

- 250 Notice that Assumption [3](#page-6-0) indeed holds for $\nu_0 = \mu$ as applied in Proposition [4.](#page-5-1)
- **Proposition 6** (Strong duality). *Under Assumption [3,](#page-6-0) for any* $\ell \in \mathcal{L}$ and $z_0 \in \mathbb{R}^d$, we have

$$
\sup_{\nu \in \mathcal{G}_2(\sigma, z_0): \mathsf{W}_p^{\varepsilon}(\tilde{\mu}_n \| \nu) \leq \rho} \mathbb{E}_{\nu}[\ell] = \inf_{\substack{\lambda_1, \lambda_2 \in \mathbb{R}_+ \\ \alpha \in \mathbb{R}}} \lambda_1 \sigma^2 + \lambda_2 \rho^p + \alpha + \frac{1}{1 - \varepsilon} \mathbb{E}_{\tilde{\mu}_n} \left[\overline{\ell}(\cdot; \lambda_1, \lambda_2, \alpha) \right], \quad (4)
$$

252 *where* $\overline{\ell}(z; \lambda_1, \lambda_2, \alpha) := \sup_{\xi \in \mathbb{R}^d} \left[\ell(\xi) - \lambda_1 \|\xi - z_0\|^2 - \lambda_2 \|\xi - z\|^p - \alpha \right]_+.$

253 The minimization problem over $(\lambda_1, \lambda_2, \alpha)$ is an instance of stochastic convex optimization, where 254 the expectation of the implicit function $\bar{\ell}$ is taken w.r.t. the contaminated empirical measure $\tilde{\mu}_n$. In 255 contrast, the dual reformulation for classical WDRO only involves λ_2 and takes the expectation of 256 the implicit function $\underline{\ell}(z; \lambda_2) := \sup_{\xi \in \mathbb{R}^d} \ell(\xi) - \lambda_2 ||\xi - z||^p$ w.r.t. $\tilde{\mu}_n$. The additional λ_1 variable 257 above is introduced to account for the clean family $G_2(\sigma, z_0)$, and the use of partial transportation 258 under W^{ϵ} results in the introduction of the operator $[\cdot]_+$ and the decision variable α .

259 Remark 2 (Connection to conditional value at risk $(CVaR)$). The CVaR of a Borel measurable loss

$$
\text{function } \ell \text{ acting on a random vector } Z \sim \mu \in \mathcal{P}(\mathbb{R}^d) \text{ with risk level } \varepsilon \in (0, 1) \text{ is defined as}
$$

$$
\mathrm{CVaR}_{1-\varepsilon,\mu}[\ell(Z)] = \inf_{\alpha \in \mathbb{R}} \alpha + \frac{1}{1-\varepsilon} \mathbb{E}_{Z \sim \mu} [[\ell(Z) - \alpha]_{+}].
$$

261 CVaR is also known as expected shortfall and is equivalent to the conditional expectation of $\ell(Z)$, 262 given that it is above an ε threshold. This concept is often used in finance to evaluate the market risk

²⁶³ of a portfolio. With this definition, the result of Proposition [6](#page-6-1) can be written as

$$
\sup_{\substack{\nu \in \mathcal{G}_2(\sigma,z_0):\\\mathsf{W}_p^{\varepsilon}(\tilde{\mu}_n||\nu) \leq \rho}} \mathbb{E}_{\nu}[\ell] = \inf_{\lambda_1, \lambda_2 \in \mathbb{R}_+} \lambda_1 \sigma^2 + \lambda_2 \rho^p + \text{CVaR}_{1-\varepsilon, \tilde{\mu}_n} \left[\sup_{\xi \in \mathbb{R}^d} \ell(\xi) - \lambda_1 \|\xi - z_0\|^2 - \lambda_2 \|\xi - Z\|^p \right]
$$

.

264 When $\varepsilon \to 0$ and $\sigma \to \infty$, whence CVaR reduces to expected value and the constrained class 265 $\mathcal{G}_2(\sigma, z_0)$ becomes the whole space of distributions $\mathcal{P}(\mathbb{R}^d)$, the dual formulation above reduces to ²⁶⁶ that of classical WDRO [\[13\]](#page-8-17).

 267 Evaluating ℓ , however, requires solving a maximization problem, which could be in itself challenging. ²⁶⁸ To overcome this, we impose additional convexity assumptions, standard for WDRO [\[25,](#page-9-8) [33\]](#page-9-9).

Assumption 4 (Convexity condition). The loss ℓ is a pointwise maximum of finitely many concave

270 functions, i.e., $\ell(\xi) = \max_{j \in [J]} \ell_j(\xi)$, for some $J \in \mathbb{N}$, where ℓ_j is real-valued, l.s.c., and concave.

271 Theorem 2 (Convex reformulation). *Under Assumption [3,](#page-6-0) for any* $\ell \in \mathcal{L}$ *satisfying Assumption [4](#page-6-2)*

and $z_0 \in \mathbb{R}^d$, we have $\sup_{\nu \in \mathcal{G}_q(\sigma, z_0): \mathsf{W}_p^{\varepsilon}(\tilde{\mu}_n || \nu) \leq \rho} \mathbb{E}_{\nu}[\ell] = \inf_{\nu \in \mathcal{F}_q} \lambda_1 \sigma^2 + \lambda_2 \rho^p + \alpha + \frac{1}{n(1-\varepsilon)} \sum_{i \in [n]} s_i$ ²⁷³ *where the right-hand side is optimized over the constraint set*

$$
\begin{cases} \lambda_1, \lambda_2 \in \mathbb{R}_+, \alpha \in \mathbb{R}, s, \tau_{ij} \in \mathbb{R}_+^n, \zeta_{ij}^{\ell}, \zeta_{ij}^{\mathcal{G}}, \zeta_{ij}^{\mathcal{W}}, \in \mathbb{R}^d, & \forall i \in [n], \forall j \in [J] \\ s_i \ge (-\ell_j)^*(\zeta_{ij}^{\ell}) + z_0^{\top} \zeta_{ij}^{\mathcal{G}} + \tau_{ij} + \tilde{Z}_i^{\top} \zeta_{ij}^{\mathcal{W}} + P_h(\zeta_{ij}^{\mathcal{W}}, \lambda_2) - \alpha, & \forall i \in [n], \forall j \in [J] \\ \zeta_{ij}^{\ell} + \zeta_{ij}^{\mathcal{G}} + \zeta_{ij}^{\mathcal{W}} = 0, & \|\zeta_{ij}^{\mathcal{G}}\|^2 \le \lambda_1 \tau_{ij}, & \forall i \in [n], \forall j \in [J], \\ \end{cases}
$$

²⁷⁴ *and* P^h *is the perspective function of* h *defined by*

$$
h(\zeta) := \begin{cases} \chi_{\{z \in \mathbb{R}^d : \|z\| \le 1\}}(\zeta), & p = 1\\ \frac{(p-1)^{p-1}}{p^p} \|\zeta\|^{\frac{p}{p-1}}, & p > 1 \end{cases}.
$$
 (5)

²⁷⁵ The minimization problem in Theorem [2](#page-6-3) is a finite-dimensional convex program. 0

²⁷⁶ 5 Experiments

 Lastly, we implement our tractable reformulation 278 and validate our excess risk bounds. Fixing \mathbb{R}^d = $\mathcal{X} \times \mathcal{Y} = \mathbb{R}^{d-1} \times \mathbb{R}$, we focus on linear regres- sion with the mean absolute deviation loss, i.e., $\mathcal{L} = \{ \ell_{\theta}(x, y) = |\theta^{\top} x - y| : \theta \in \mathbb{R}^d \}.$ See Sup- plement [E](#page-21-0) for additional experiments treating classi- fication and multivariate regression, along with full code and experimental details. The experiments be- low were run in 30 minutes on an M1 MacBook Air with 16GB RAM.

287 Let $\mathcal{Z} = (\mathbb{R}^d, \|\cdot\|_2)$ for $d \geq 2$ and fix $\rho = 0.1$, 288 $\varepsilon_0 = 0.05$. We take $\theta_0, \theta_1 \in \mathbb{S}^{d-2}$ with $\|\theta_0 - \theta_1\|_2 \leq$ 289 $\rho d^{-1/2}$. Letting $X \sim \mathcal{N}(0, I_{d-1})$, we consider clean 290 − data $(X,\theta_0^\top X)\sim \mu.$ The corrupted data $(\tilde{X},\tilde{Y})\sim \tilde{\mu}$ satisfies $(\tilde{X}, \tilde{Y}) = (X, \theta_1^{\top} X)$ with probability $1 - \varepsilon_0$

regression under W_p and TV corruptions, with several forms of outlier-robust WDRO for linear Figure 1: Excess risk of standard WDRO and gu
rer
ie
ha
] varied sample size.

295 via Theorem [2.](#page-6-3) The results are averaged over $T = 20$ runs for sample size $n \in \{10, 20, 50, 75, 100\}$. 294 constraints) and OR-WDRO with $\varepsilon \in \{0, \varepsilon_0, 2\varepsilon_0\}$, as described by Proposition [4](#page-5-1) and implemented 293 fix $d = 10$ and compare the excess risk $\mathbb{E}_{\mu}[\ell_{\hat{\theta}}] - \mathbb{E}_{\mu}[\ell_{\theta_0}]$ of standard WDRO ($\varepsilon = 0$, no moment 292 and $(\tilde{X}, \tilde{Y}) = (20X, -20\theta_1^{\top} X)$ with probability ε_0 , so that $\mathsf{W}_p^{\varepsilon_0}(\tilde{\mu} \| \mu) \le \rho$. In Figure [1](#page-7-0) (top), we ²⁹⁶ Implementation of the reformulation was performed in MATLAB using the YALMIP toolbox [\[24\]](#page-9-16) ²⁹⁷ and SeDuMi solver [\[40\]](#page-10-8).

²⁹⁸ 6 Concluding Remarks

0.82 ³⁰⁵ principled, data-driven decision-making in realistic scenarios where observations may be subject to 304 \mathcal{G}_{cov} and for $k \ll d$, and a detailed discussion of parameter tuning. Overall, our approach enables 0.86 ³⁰³ include refined statistical guarantees, tractable convex reformulations for distribution families beyond 0.88 ³⁰² that enable efficient computation via convex reformulation. The full version of this paper will 301 and TV, respectively. We provided minimax-optimal excess risk bounds and strong duality results 300 geometric and non-geometric perturbations of the observed data distribution, as captured by W_p 0.94 ²⁹⁹ In this work, we have introduced a novel framework for outlier-robust WDRO that allows for both ve
esion
en
ici ³⁰⁶ adversarial contamination by outliers.

307 References

- [1] D. Bartl, S. Drapeau, J. Obloj, and J. Wiesel. Robust uncertainty sensitivity analysis. *arXiv preprint arXiv:2006.12022*, 4, 2020.
- [2] J. Blanchet, P. W. Glynn, J. Yan, and Z. Zhou. Multivariate distributionally robust convex regression under absolute error loss. In *Advances in Neural Information Processing Systems*, pages 11817–11826, 2019.
- [3] J. Blanchet, Y. Kang, and K. Murthy. Robust Wasserstein profile inference and applications to machine learning. *Journal of Applied Probability*, 56(3):830–857, 2019.
- [4] J. Blanchet and K. Murthy. Quantifying distributional model risk via optimal transport. *Mathe-matics of Operations Research*, 44(2):565–600, 2019.
- [5] J. Blanchet, K. Murthy, and N. Si. Confidence regions in Wasserstein distributionally robust estimation. *Biometrika*, 109(2):295–315, 2022.
- [6] R. Chen and I. C. Paschalidis. A robust learning approach for regression models based on distributionally robust optimization. *Journal of Machine Learning Research*, 19(1):517–564, 2018.
- [7] Z. Chen, D. Kuhn, and W. Wiesemann. Data-driven chance constrained programs over Wasser-stein balls. *Operations Research (Forthcoming)*, 2022.
- [8] Y. Cheng, I. Diakonikolas, and R. Ge. High-dimensional robust mean estimation in nearly-linear time. In *ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2019.
- [9] I. Diakonikolas and D. M. Kane. Recent advances in algorithmic high-dimensional robust statistics. *arXiv preprint arXiv:1911.05911*, 2019.
- [10] A. Esteban-Pérez and J. M. Morales. Distributionally robust stochastic programs with side information based on trimmings. *Mathematical Programming*, 195(1-2):1069–1105, 2022.
- [11] R. Gao. Finite-sample guarantees for Wasserstein distributionally robust optimization: Breaking the curse of dimensionality. *Operations Research*, 2022.
- [12] R. Gao, X. Chen, and A. J. Kleywegt. Wasserstein distributionally robust optimization and variation regularization. *Operations Research (Forthcoming)*, 2022.
- [13] R. Gao and A. Kleywegt. Distributionally robust stochastic optimization with wasserstein distance. *Mathematics of Operations Research*, 48(2):603–655, 2023.
- [14] R. Gao and A. J. Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. *Mathematics of Operations Research (Forthcoming)*, 2023.
- [15] R. Gao, L. Xie, Y. Xie, and H. Xu. Robust hypothesis testing using Wasserstein uncertainty sets. In *Advances in Neural Information Processing Systems*, pages 7902–7912, 2018.
- [16] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang. Fairness without demographics in repeated loss minimization. In *International Conference on Machine Learning*, pages 1929–1938. PMLR, 2018.
- [17] J.-B. Hiriart-Urruty and C. Lemaréchal. *Fundamentals of Convex Analysis*. Springer, 2004.
- [18] S. Hopkins, J. Li, and F. Zhang. Robust and heavy-tailed mean estimation made simple, via regret minimization. *Advances in Neural Information Processing Systems*, 33:11902–11912, 2020.
- [19] W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distributionally robust supervised learning give robust classifiers? In *International Conference on Machine Learning*, pages 2029–2037. PMLR, 2018.
- [20] P. J. Huber. Robust Estimation of a Location Parameter. *The Annals of Mathematical Statistics*, 35(1):73–101, 1964.
- [21] Y. Kwon, W. Kim, J.-H. Won, and M. C. Paik. Principled learning method for Wasserstein distributionally robust optimization with local perturbations. In *International Conference on Machine Learning*, pages 5567–5576, 2020.
- [22] J. Lee and M. Raginsky. Minimax statistical learning with Wasserstein distances. In *Advances in Neural Information Processing Systems*, pages 2687–2696, 2018.
- [23] J. Lei. Convergence and concentration of empirical measures under wasserstein distance in unbounded functional spaces. 2020.
- [24] J. Lofberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In *IEEE international conference on robotics and automation*, pages 284–289. IEEE, 2004.
- [25] P. Mohajerin Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical Programming*, 171(1-2):115–166, 2018.
- [26] V. A. Nguyen, D. Kuhn, and P. Mohajerin Esfahani. Distributionally robust inverse covariance estimation: The Wasserstein shrinkage estimator. *Operations Research*, 70(1):490–515, 2022.
- [27] V. A. Nguyen, S. Shafieezadeh-Abadeh, D. Kuhn, and P. Mohajerin Esfahani. Bridging Bayesian and minimax mean square error estimation via Wasserstein distributionally robust optimization. *Mathematics of Operations Research*, 48(1):1–37, 2023.
- [28] S. Nietert, R. Cummings, and Z. Goldfeld. Outlier-robust optimal transport with applications to generative modeling and data privacy. In *Theory and Practice of Differential Privacy Workshop at ICML (TPDP-2021)*, July 2021.
- [29] S. Nietert, R. Cummings, and Z. Goldfeld. Robust estimation under the Wasserstein distance. *arXiv preprint arXiv:2302.01237*, 2023.
- [30] G. Pflug and D. Wozabal. Ambiguity in portfolio selection. *Quantitative Finance*, 7(4):435–442, 2007.
- [31] E. M. Ronchetti and P. J. Huber. *Robust Statistics*. John Wiley & Sons Hoboken, 2009.
- [32] F. Santambrogio. *Optimal Transport for Applied Mathematicians*, volume 87 of *Progress in Nonlinear Differential Equations and their Applications*. Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling.
- [33] S. Shafieezadeh-Abadeh, L. Aolaritei, F. Dörfler, and D. Kuhn. New perspectives on regular- ization and computation in optimal transport-based distributionally robust optimization. *arXiv preprint arXiv:2303.03900*, 2023.
- [34] S. Shafieezadeh-Abadeh, D. Kuhn, and P. Mohajerin Esfahani. Regularization via mass trans-portation. *Journal of Machine Learning Research*, 20(103):1–68, 2019.
- [35] S. Shafieezadeh-Abadeh, P. Mohajerin Esfahani, and D. Kuhn. Distributionally robust logistic regression. In *Advances in Neural Information Processing Systems*, pages 1576–1584, 2015.
- [36] S. Shafieezadeh-Abadeh, V. A. Nguyen, D. Kuhn, and P. Mohajerin Esfahani. Wasserstein distributionally robust Kalman filtering. In *Advances in Neural Information Processing Systems*, pages 8474–8483, 2018.
- [37] A. Shapiro. On duality theory of conic linear problems. In M. Á. Goberna and M. A. López, editors, *Semi-Infinite Programming*, pages 135–165. Kluwer Academic Publishers, 2001.
- [38] A. Sinha, H. Namkoong, and J. Duchi. Certifying some distributional robustness with principled adversarial training. In *International Conference on Learning Representations*, 2018.
- [39] J. Steinhardt, M. Charikar, and G. Valiant. Resilience: A criterion for learning in the presence of arbitrary outliers. In *Innovations in Theoretical Computer Science Conference*, volume 94, 2018.
- [40] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. *Optimization Methods and Software*, 11(1-4):625–653, 1999.
- [41] Z. Tu, J. Zhang, and D. Tao. Theoretical analysis of adversarial learning: A minimax approach. In *Advances in Neural Information Processing Systems*, pages 12280–12290, 2019.
- [42] C. Villani. *Topics in Optimal Transportation*. Graduate Studies in Mathematics. American Mathematical Society, 2003.
- [43] R. Volpi, H. Namkoong, O. Sener, J. Duchi, V. Murino, and S. Savarese. Generalizing to unseen domains via adversarial data augmentation. In *Advances in Neural Information Processing Systems*, pages 5339–5349, 2018.
- [44] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu. On the convergence and robustness of adversarial training. In *International Conference on Machine Learning*, pages 6586–6595, 2019.
- [45] W. Xie. On distributionally robust chance constrained programs with Wasserstein distance. *Mathematical Programming*, 186(1):115–155, 2021.
- [46] R. Zhai, C. Dan, Z. Kolter, and P. Ravikumar. DORO: Distributional and outlier robust optimization. In *International Conference on Machine Learning*, pages 12345–12355, 2021.
- [47] J. Zhen, D. Kuhn, and W. Wiesemann. Mathematical foundations of robust and distributionally robust optimization. *arXiv preprint arXiv:2105.00760*, 2021.
- [48] B. Zhu, J. Jiao, and J. Steinhardt. Generalized resilience and robust statistics. *The Annals of Statistics*, 50(4):2256 – 2283, 2022.
- [49] S. Zhu, L. Xie, M. Zhang, R. Gao, and Y. Xie. Distributionally robust weighted k-nearest neighbors. In *Advances in Neural Information Processing Systems*, pages 29088–29100, 2022.

419 A Preliminary Results

- 420 We first recall and prove some basic facts about W_p^{ϵ} , Orlicz norms, projected moment bounds, and 421 resilience. To start, we prove that W_p^{ϵ} is equivalent to a certain partial OT problem.
- **422** Lemma 1 ($\mathsf{W}_{p}^{\varepsilon}$ as partial OT). *For any* $\varepsilon \in [0,1]$ *and* $\mu, \nu \in \mathcal{P}(\mathbb{R}^{d})$ *, we have*

$$
\mathsf{W}_{p}^{\varepsilon}(\mu,\nu) = (1-\varepsilon)^{1/p} \inf_{\substack{\mu',\nu' \in \mathcal{P}(\mathbb{R}^d) \\ \mu' \leq \frac{1}{1-\varepsilon}\mu,\nu' \leq \frac{1}{1-\varepsilon}\nu}} \mathsf{W}_{p}(\mu',\nu')
$$

A23 Proof. Write $\mathsf{W}_p^{\varepsilon}(\mu, \nu)$ for the RHS. Rescaling, we have

$$
\widetilde{\mathsf{W}}_{p}^{\varepsilon}(\mu,\nu) = \inf_{\substack{\mu',\nu' \in (1-\varepsilon)\mathcal{P}(\mathbb{R}^d) \\ \mu' \leq \mu,\nu' \leq \nu}} \mathsf{W}_{p}(\mu',\nu'),\tag{6}
$$

⁴²⁴ matching the definition for robust OT in [\[29\]](#page-9-6). By their triangle inequality (Proposition 3 therein), we 425 have for any $\tilde{\mu} \in \mathcal{P}(\mathbb{R}^d)$ with $\|\tilde{\mu} - \mu\|_{TV} \leq \varepsilon$ that

$$
\widetilde{\mathsf{W}}_p^{\varepsilon}(\mu,\nu) \leq \widetilde{\mathsf{W}}_p^{\varepsilon}(\mu,\tilde{\mu}) + \mathsf{W}_p(\tilde{\mu},\nu) = \mathsf{W}_p(\tilde{\mu},\nu).
$$

Infimizing over $\tilde{\mu}$, we find that $W_p^{\varepsilon}(\mu, \nu) \leq W_p^{\varepsilon}$. For the opposite direction, consider any feasible 427 μ' , ν' for [\(6\)](#page-11-0), and let $\tilde{\mu} = \mu' + (\nu - \nu')$. By construction, we have $\|\tilde{\mu} - \mu\|_{TV} \leq \varepsilon$. Moreover, by 428 Lemma 5 of [\[29\]](#page-9-6), we have $W_p(\tilde{\mu}, \nu) \le W_p(\mu', \nu')$. Thus, $W_p^{\varepsilon}(\mu, \nu) \le W_p(\mu', \nu')$, and infimizing 429 over μ', ν' gives the lemma. П

- ⁴³⁰ Next, we address the simple setting of Orlicz norms for constant random variables.
- **4**31 *Lemma 2* (Orlicz norm of constant random variable). For any constant random variable $Z = z \in \mathbb{R}^d$, 432 *and any Orlicz function* ψ *satisfying the conditions in Assumption [1,](#page-3-3) we have* $||Z||_{\psi} \leq 2||z||$ *.*
- 433 *Proof.* For each $\theta \in \mathbb{S}^{d-1}$, we bound

$$
\mathbb{E}\left[\psi\left(\frac{|\theta^{\top}Z|}{2\|z\|}\right)\right] = \mathbb{E}\left[\psi\left(\frac{|\theta^{\top}z|}{2\|z\|}\right)\right] \n\leq \mathbb{E}[\psi(1/2)] \n= \sum_{i\geq 1} a_i 2^{-2i} \n\leq \sum_{i\geq 1} 2^{-2i} \max_{j\geq 1} a_j \n< 1/2 \cdot \psi(1) < 1.
$$

- 434 Thus $||Z||_{\psi} \leq 2||z||$, as desired.
- ⁴³⁵ Now, we introduce some notation and basic comparison results for projected moment bounds. Given 436 $Z \sim \mu \in \mathcal{P}(\mathbb{R}^d)$, $r \in [d]$, and $q \ge 1$, we write $\sigma_{q,r}(\mu) := \mathsf{W}_{q,r}(\mu, \delta_{\mathbb{E}[Z]})$ and $\sigma_q(\mu) = \sigma_{q,d}(\mu)$. 437 This quantity captures the largest centered qth moment of an r-dimensional projection of μ .
- **138** Lemma 3 (Projected moment comparison). Fix $\mu \in \mathcal{P}(\mathbb{R}^d)$, dimension $r \in [d]$, and power $q \ge 1$. 439 *We then have* $\sigma_{q,r}(\mu) \leq \mathbb{E}[|S_1|^q]^{-1/q} \sigma_{q,1}(\mu)$ *, where* $S \sim \text{Unif}(\mathbb{S}^{r-1})$ *.*
- *440 Proof.* Assume without loss of generality that $Z \sim \mu$ has mean zero. Fix any $U \in \mathbb{R}^{r \times d}$ with 441 $UU^{\dagger} = I_r$, and let $S \sim \text{Unif}(\mathbb{S}^{r-1})$. We then bound

$$
\sigma_{q,1}(\mu)^q \ge \sigma_{q,1}(U_{\#}\mu)^q
$$

=
$$
\sup_{\theta \in \mathbb{S}^{r-1}} \mathbb{E}[|\theta^\top UZ|^q]
$$

$$
\ge \mathbb{E}[|S^\top UZ|^q]
$$

=
$$
\mathbb{E}[|S_1|^q] \mathbb{E}[\|UZ\|^q],
$$

442 where the last equality holds by rotational symmetry. Taking a supremum over U gives the lemma. \Box

Lemma 4 (Moment centering). *Fix* $\mu \in \mathcal{P}(\mathbb{R}^d)$, dimension $r \in [d]$, and power $q \ge 1$. Then for any 444 $z \in \mathbb{R}^d$, we have $\sigma_{q,r}(\mu) \le 2\mathsf{W}_{q,r}(\mu,\delta_z)$.

445 *Proof.* Taking $Z \sim \mu$, we compute

$$
\sigma_{q,r}(\mu) = \mathsf{W}_{q,r}(\mu, \delta_{\mathbb{E}[Z]})
$$

\n
$$
\leq \mathsf{W}_{q,r}(\mu, \delta_z) + \mathsf{W}_{q,r}(\delta_z, \delta_{\mathbb{E}[Z]})
$$

\n
$$
\leq 2\mathsf{W}_{q,r}(\mu, \delta_z),
$$

- ⁴⁴⁶ where the final inequality follows by Jensen's inequality.
- ⁴⁴⁷ Next, we recall two useful results for mean resilience.
- **448** Lemma 5 (Mean resilience under moment bounds). *For any* $\varepsilon \in [0,1)$ *and* $\mu \in \mathcal{P}(\mathbb{R})$ *, we have* 449 $\tau(\mu,\varepsilon) \leq \inf_{q \geq 1} \sigma_{q,1}(\mu) \varepsilon^{1-1/q} (1-\varepsilon)^{-1}.$
- 450 *Proof.* This follows from Lemma E.2 of [\[48\]](#page-10-5), using the Orlicz function $\psi(t) = t^q$ for each $q \ge 1$.
- **Lemma 6** (Mean resilience for large ε , [\[39\]](#page-9-15), Lemma 10). *For any* $\varepsilon \in (0,1)$ *and* $\mu \in \mathcal{P}(\mathbb{R}^d)$, we 452 $have \tau(\mu, 1-\varepsilon) = \frac{1-\varepsilon}{\varepsilon} \tau(\mu, \varepsilon)$.
- ⁴⁵³ Finally, we turn to Wasserstein resilience.
- **Lemma 7** (W_2 resilience and even moment bounds). *Fix* $\varepsilon \in (0,1)$ *and family* $\mathcal{G} \subseteq \mathcal{P}(\mathbb{R}^d)$ *satisfying* ⁴⁵⁵ *Assumption [1.](#page-3-3) We then have*
-

$$
\frac{1}{8}(1-\varepsilon)\tau_2(\mathcal{G},\varepsilon)^2 \leq \sup_{\mu \in \mathcal{G}} \inf_{i \in \mathbb{N}_{>0}} \sigma_{2i}(\mu)^2 \varepsilon^{1-1/i} \leq 2\tau_2(\mathcal{G},\varepsilon)^2.
$$

456 *Proof.* Fix $\mu \in \mathcal{G}$ with mean zero. By the proof of [\[29,](#page-9-6) Theorem 2], we have

$$
\tau_2(\mu, \varepsilon)^2 \le 4(1 - \varepsilon)^{-1} \inf_{i > 1} \sigma_{2i}(\mu)^2 \mathbb{E}[\|Z\|^{2i}]^{1/i} \varepsilon^{1 - 1/i} + 4\varepsilon \sigma_2(\mu)^2
$$

$$
\le 8(1 - \varepsilon)^{-1} \sigma_{2i}(\mu)^2 \varepsilon^{1 - 1/i}.
$$

- 457 Taking a supremum over $\mu \in \mathcal{G}$ gives the first inequality (noting that the centering assumption is 458 without loss of generality since $\mathcal G$ is closed under translations). For the second inequality, we again 459 take mean zero $Z \sim \mu \in \mathcal{G}$. Then, by Assumption [1,](#page-3-3) we have $\sup_{\theta \in \mathbb{S}^{d-1}} \mathbb{E}_{\mu}[\psi(|\theta^{\top} Z|)] \leq 1$, where
- 460 $\psi(x) = \sum_{i \geq 1} a_i x^{2i}$. Taking $S \sim \text{Unif}(\mathbb{S}^{d-1})$, we bound

$$
1 \geq \sup_{\theta \in \mathbb{S}^{d-1}} \mathbb{E}[\psi(|\theta^\top Z|)]
$$

\n
$$
= \sup_{\theta \in \mathbb{S}^{d-1}} \sum_{i \geq 1} a_i \mathbb{E}[|\theta^\top Z|^{2i}]
$$

\n
$$
\geq \sup_{\theta \in \mathbb{S}^{d-1}, i \geq 1} a_i \mathbb{E}[|\theta^\top Z|^{2i}]
$$

\n
$$
= \sup_{i \geq 1} a_i \sup_{\theta \in \mathbb{S}^{d-1}} \mathbb{E}[|\theta^\top Z|^{2i}]
$$

\n
$$
= \sup_{i \geq 1} a_i \sigma_{2i,1}(\mu)^{2i}
$$

\n
$$
= \sup_{i \geq 1} a_i \mathbb{E}[S_1^{2i}] \sigma_{2i}(\mu)^{2i},
$$

- ⁴⁶¹ where the last equality follows by Lemma [3.](#page-11-1)
- ⁴⁶² Next, we define the modified Orlicz functions

$$
\phi(x) := \mathbb{E}[\psi(|S_1|\sqrt{x})] = \sum_{i \ge 1} a_i \mathbb{E}[S_1^{2i}]x^i, \qquad \underline{\phi}(x) = \sup_{i \ge 1} a_i \mathbb{E}[S_1^{2i}]x^i.
$$

⁴⁶³ By design, we have

$$
\underline{\phi}(x) \le \phi(x) = \sum_{i \ge 1} a_i \, \mathbb{E}[S_1^{2i}] (2x)^i 2^{-i} \le \underline{\phi}(2x).
$$

464 Since ϕ and $\underline{\phi}$ are increasing on \mathbb{R}_+ , we have $\frac{1}{2}\underline{\phi}^{-1}(y) \leq \phi^{-1}(y) \leq \underline{\phi}^{-1}(y)$ for $y \geq 0$. Moreover, ⁴⁶⁵ the inverse of this lower bound has closed form

$$
\underline{\phi}^{-1}(y) = \inf_{i \ge i} (a_i \mathbb{E}[S_1^{2i}]/y)^{-1/i}.
$$

⁴⁶⁶ We now bound

$$
\inf_{i \ge 1} \sigma_{2i}(\mu)^2 \varepsilon^{1-1/i} \le \varepsilon \inf_{i \ge 1} (\varepsilon a_i \mathbb{E}[S_1^{2i}])^{-1/i}
$$

= $\varepsilon \underline{\phi}^{-1}(1/\varepsilon)$
 $\le 2\varepsilon \phi^{-1}(1/\varepsilon)$
= $2 \sup \{ \varepsilon x^2 : x \ge 0, \mathbb{E}[\psi(|S_1|x)] \le 1/\varepsilon \}.$

467 Finally, for any feasible x for the final supremum, consider the random variable $Z \sim \nu$ defined by

$$
Z = 0 \text{ w.p. } 1 - \varepsilon, \qquad Z = xS \text{ w.p. } \varepsilon.
$$

⁴⁶⁸ By construction, we have

Combining, we

$$
\tau_2(\nu,\varepsilon)^2 \ge \mathbb{E}[\|Z\|^2] = \varepsilon x^2,
$$

469 and, for any $\theta \in \mathbb{S}^{d-1}$, we have

$$
\mathbb{E}[\psi(|\theta^{\top}(Z - \mathbb{E}[Z])|)] = \varepsilon \mathbb{E}[\psi(|S_1|x)] \le 1.
$$

470 Combining, we have $\tau_2(\mathcal{G}, \varepsilon)^2 \ge \tau_2(\nu, \varepsilon)^2 \ge \varepsilon x^2 \ge \frac{1}{2} \inf_{i \ge 1} \sigma_{2i}(\mu)^2 \varepsilon^{1-1/i}$, as desired.

- ⁴⁷¹ From this result, we obtain the following two lemmas.
- **Lemma 8.** Fix $\varepsilon \in (0,1)$ and $\mu \in \mathcal{G}$ for $\mathcal{G} \subseteq \mathcal{P}(\mathbb{R}^d)$ satisfying Assumption [1.](#page-3-3) Then, for any $\nu \leq \frac{1}{\varepsilon}\mu$,
- 473 *we have* $\varepsilon \sigma_2(\nu)^2 \leq 4\tau_2(\mathcal{G}, \varepsilon)^2$.

474 *Proof.* Assume without loss of generality that μ has mean 0. Taking $Z \sim \mu$ and $Y \sim \nu$, we bound

$$
\varepsilon \sigma_2(\nu)^2 \leq 2\varepsilon \mathbb{E}[\|Y\|^2]
$$
\n
$$
\leq 2\varepsilon \mathbb{E}[\|Z\|^2] + \varepsilon \tau (\|Z\|^2, 1 - \varepsilon)
$$
\n
$$
\leq 2\varepsilon \mathbb{E}[\|Z\|^2] + \inf_{i>1} \mathbb{E}[\|Z\|^{2i}]^{1/i} \varepsilon^{1-1/i}
$$
\n(Lemma 5)\n
$$
\leq 2 \inf_{i\geq 1} \mathbb{E}[\|Z\|^{2i}]^{1/i} \varepsilon^{1-1/i}.
$$

⁴⁷⁵ Applying Lemma [7](#page-12-1) gives the lemma.

Lemma 9. If $\varepsilon \in (0,1)$ and $\mathcal{G} \subseteq \mathcal{P}(\mathbb{R}^d)$ satisfies Assumption [1,](#page-3-3) then $\tau(\mathcal{G}, \varepsilon) \leq 4 \frac{\sqrt{\varepsilon}}{(1-\varepsilon)^2}$ 476 **Lemma 9.** If $\varepsilon \in (0, 1)$ and $\mathcal{G} \subseteq \mathcal{P}(\mathbb{R}^d)$ satisfies Assumption 1, then $\tau(\mathcal{G}, \varepsilon) \leq 4 \frac{\sqrt{\varepsilon}}{(1-\varepsilon)} \tau_{2,1}(\mathcal{G}, \varepsilon)$.

477 *Proof.* For each $\mu \in \mathcal{G}$, we bound

$$
\frac{(1-\varepsilon)^2}{\varepsilon}\tau(\mu,\varepsilon)^2 \le 8 \inf_{q\ge 1} \sigma_{q,1}(\mu)^2 \varepsilon^{1-2/q}
$$
 (Lemma 5)

$$
\le 8 \inf_{i\ge 1} \sigma_{2i,1}(\mu)^2 \varepsilon^{1-1/i}
$$

$$
\le 16\tau_{2,1}(\mathcal{G},\varepsilon).
$$
 (Lemma 7)

478 Taking a supremum over $\mu \in \mathcal{G}$ gives the lemma.

⁴⁷⁹ B Generic DRO Regularizer Bounds

⁴⁸⁰ This section considers a generic DRO problem and a corresponding notion of regularization. As ⁴⁸¹ special cases, we highlight results for WDRO and TV DRO that underlie our proof of Theorem [1.](#page-4-1)

 \Box

482 Fix a distribution class $\mathcal{G} \subseteq \mathcal{P}(\mathbb{R}^d)$ and a loss family $\mathcal{L} \subseteq \bigcap_{\mu \in \mathcal{G}} L^1(\mu)$. Let $C : \mathcal{G} \to \mathcal{P}(\mathbb{R}^d)$ be 483 a corruption channel taking $\mu \in \mathcal{G}$ to a set of potential $\tilde{\mu} \in \mathsf{C}(\mu)$. Then, for any such $\tilde{\mu}$, one can ⁴⁸⁴ consider the generic DRO problem

$$
\inf_{\ell \in \mathcal{L}} \sup_{\nu \in \mathcal{G} \cap \mathsf{C}^{-1}(\tilde{\mu})} \mathbb{E}_{\nu}[\ell]. \tag{7}
$$

485 For a fixed $\nu \in C(G)$ and $\ell \in L \cap L^1(\nu)$, we define the *DRO regularizer*

$$
\Omega(\ell;\nu,\mathcal{G},\mathsf{C}) := \sup_{\nu' \in \mathcal{G} \cap \mathsf{C}^{-1}(\nu)} \mathbb{E}_{\nu'}[\ell] - \mathbb{E}_{\nu}[\ell].
$$

486 Assuming that $\ell \in L^1(\tilde{\mu})$, one can rewrite [\(7\)](#page-14-0) as the regularized minimization problem

$$
\inf_{\ell\in\mathcal{L}}\tilde{\mu}(\ell)+\Omega(\ell;\tilde{\mu},\mathcal{G},\mathsf{C}).
$$

487 In any case, this quantity controls the excess risk of DRO. Writing $C^{-1} \circ C$ for the composite 488 corruption channel taking $\mu \in \mathcal{G}$ to $\nu \in \mathcal{G}$ with $C(\mu) \cap C(\nu) \neq \emptyset$, we have the following.

Lemma 10 (Risk bound for generic DRO). *Fix* $\mu \in \mathcal{G}$ *and* $\tilde{\mu} \in C(\mu)$ *. If* ℓ *minimizes* [\(7\)](#page-14-0)*, then* 490 $\mathbb{E}_{\mu}[\hat{\ell}] \leq \inf_{\ell \in \mathcal{L}} \mathbb{E}_{\mu}[\ell] + \Omega(\ell; \mu, \mathcal{G}, \mathsf{C}^{-1} \circ \mathsf{C}).$

⁴⁹¹ *Proof.* We simply bound

$$
\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell] \leq \sup_{\nu \in \mathcal{G} \cap C^{-1}(\tilde{\mu})} \mathbb{E}_{\nu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell] \leq \sup_{\nu \in \mathcal{G} \cap C^{-1}(\tilde{\mu})} \mathbb{E}_{\nu}[\ell] - \mathbb{E}_{\mu}[\ell] \leq \sup_{\nu \in \mathcal{G} \cap C^{-1}(\mathbb{C}(\mu))} \mathbb{E}_{\nu}[\ell] - \mathbb{E}_{\mu}[\ell] = \Omega_{\mathsf{D}}(\ell, r; \mu, \mathcal{G}, C^{-1} \circ C).
$$

492 Infimizing over $\ell \in \mathcal{L}$ gives the lemma.

493 When $\mathsf{C}(\mu) = \{ \tilde{\mu} \in \mathcal{P}(\mathbb{R}^d) : \mathsf{D}(\tilde{\mu}, \mu) \leq r \}$ for a statistical distance $\mathsf{D} : \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}_+$ and 494 radius $r \geq 0$, we write $\Omega_{\text{D}}(\ell, r; \nu, \mathcal{G}) = \Omega(\ell; \nu, \mathcal{G}, \mathsf{C})$. If distributional assumptions play a minor role, 495 we may opt to consider $\Omega_{\mathsf{D}}(\ell, r; \nu) \coloneqq \Omega_{\mathsf{D}}(\ell, r; \nu, \mathcal{P}(\mathbb{R}^d)).$

⁴⁹⁶ B.1 WDRO Regularization

497 The W_p regularizer, corresponding to $D = W_p$, appears explicitly and implicitly throughout the ⁴⁹⁸ WDRO literature. We now recall standard bounds on this quantity.

Lemma 11 (Ω_{W_1} bound, [\[11\]](#page-8-11), Lemma 1). Fix $\nu \in \mathcal{P}_1(\mathbb{R}^d)$, Lipschitz $\ell : \mathbb{R}^d \to \mathbb{R}$, and $\rho \ge 0$. We δ *then have* $\Omega_{W_1}(\ell,\rho;\nu) \leq \rho \|\ell\|_{\mathrm{Lip}}$, with equality if ℓ is convex and $\mathcal{Z} = \mathbb{R}^d$.

Lemma 12 (Ω_{W_2} bound, [\[11\]](#page-8-11), Lemma 2). *Fix* $\nu \in \mathcal{P}_2(\mathbb{R}^d)$, α -smooth $\ell : \mathbb{R}^d \to \mathbb{R}$, and $\rho \ge 0$. We 502 *then have* $|\Omega_{\mathsf{W}_2}(\tilde{\ell}, \rho; \nu) - \rho \|\tilde{\ell}\|_{\dot{H}^{1,2}(\nu)}| \leq \frac{1}{2}\alpha \rho^2$.

⁵⁰³ B.2 TV DRO Regularization

- 504 We introduce new bounds (to the best of our knowledge) for the DRO regularizer with $D = TV$.
- 505 **Lemma 13** (Ω_{TV} bound under Lipschitzness). Fix $\mu \in \mathcal{G} \subseteq \mathcal{P}_1(\mathbb{R}^d)$ and l.s.c. $\ell : \mathbb{R}^d \to \mathbb{R}$ with 506 $\ \sup_{z\in\mathbb{R}^d} \frac{|\ell(z)|}{1+ \|z\|} < \infty$. If ℓ is Lipschitz, then

$$
\Omega_{\mathsf{TV}}(\ell,\varepsilon;\mu,\mathcal{G}) \leq \Omega_{\mathsf{W}_1}(\ell,2\tau_1(\mathcal{G},\varepsilon);\mu).
$$

507 *Proof.* Fix $ν ∈ G$ with $||ν - μ||_{TV} ≤ ε$, and write $κ = \frac{1}{(ν ∧ μ)(ℝ^d)}ν ∧ μ$ for their midpoint distribution. $\overline{(\nu \wedge \mu)(\mathbb{R}^d)}$ 508 Note that $(\nu \wedge \mu)(\mathbb{R}^d) \geq 1 - \varepsilon$ by the TV bound. We then have $W_1(\nu, \mu) \leq W_1(\nu, \kappa) + W_1(\kappa, \mu) \leq$ 509 $2\tau_1(\mathcal{G},\varepsilon)$, implying the lemma.

510 **Lemma 14** (Ω_{TV} bound under smoothness). Fix $\mu \in \mathcal{G}$ for $\mathcal{G} \subseteq \mathcal{P}_2(\mathbb{R}^d)$ satisfying Assumption [1,](#page-3-3) \mathfrak{so}_1 and let $\ell : \mathbb{R}^d \to \mathbb{R}$ be l.s.c. with $\sup_{z \in \mathbb{R}^d} \frac{|\ell(z)|}{1 + |z||^2} < \infty$. If ℓ is α -smooth, then

$$
\Omega_{\text{TV}}(\ell, \varepsilon; \mu, \mathcal{G}) \leq 2\|\nabla \ell(\mathbb{E}_\mu[Z])\|\tau(\mathcal{G}, \varepsilon) + 44\alpha(1-\varepsilon)^{-1}\tau_2(\mathcal{G}, \varepsilon)^2.
$$

512 *Proof.* Fix any $\nu \in \mathcal{G}$ with $\|\nu - \mu\|_{TV} \leq \varepsilon$, and decompose $\nu = \mu + \varepsilon(\kappa_+ - \kappa_-)$, where $\kappa_\pm \in \mathcal{P}(\mathcal{Z})$ 513 with $\varepsilon \kappa_-\leq \mu$ and $\varepsilon \kappa_+\leq \nu$. Let $Z\sim \mu, Y\sim \kappa_-, X\sim \nu$, and $W\sim \kappa_+$. We bound

$$
\mathbb{E}[\ell(X) - \ell(Z)] = \varepsilon \mathbb{E}[\ell(W) - \ell(Y)]
$$

= $\varepsilon \mathbb{E}[\ell(W) - \ell(\mathbb{E}[W])] + \varepsilon[\ell(\mathbb{E}[W]) - \ell(\mathbb{E}[Y])] + \varepsilon \mathbb{E}[\ell(\mathbb{E}[Y]) - \ell(Y)].$

514 To bound the first and last terms, we observe that for $V \sim \kappa = \kappa_{\pm}$, we have

$$
\varepsilon \mathbb{E} \big[\ell(V) - \ell(\mathbb{E}[V]) \big] \leq \alpha \varepsilon \mathbb{E} [\|V - \mathbb{E}[V]\|^2]
$$

$$
\leq \alpha \varepsilon \sigma_2(\kappa)^2
$$

$$
\leq 4\alpha \tau_2(\mathcal{G}, \varepsilon)^2,
$$

515 by α -smoothness of ℓ and Lemma [8.](#page-13-0) For the second term, write $I = \text{conv}(\{\mathbb{E}[W], \mathbb{E}[Y]\})$ for the 516 line segment connecting $\mathbb{E}[W]$ and $\mathbb{E}[Y]$. By the definition of mean resilience, we bound

$$
\begin{aligned} &\|\mathbb{E}[W] - \mathbb{E}[X]\| \leq \tau(\mathcal{G}, 1-\varepsilon),\\ &\|\mathbb{E}[Y] - \mathbb{E}[Z]\| \leq \tau(\mathcal{G}, 1-\varepsilon),\\ &\|\mathbb{E}[Z] - \mathbb{E}[X]\| \leq 2\tau(\mathcal{G}, \varepsilon), \end{aligned}
$$

- ⁵¹⁷ where the last inequality follows by the same midpoint argument applied in the proof of Lemma [13.](#page-14-1)
- 518 Writing $L = ||\nabla \ell(\mathbb{E}[Z])||$, we have for each $x \in I$ that

$$
\|\nabla \ell(x)\| \le L + \alpha \|x - \mathbb{E}[Z]\|
$$

\n
$$
\le L + \alpha \max\{ \|\mathbb{E}[W] - \mathbb{E}[Z]\|, \|\mathbb{E}[Y] - \mathbb{E}[Z]\| \}
$$

\n
$$
\le L + \alpha \max\{\tau(\mathcal{G}, 1 - \varepsilon) + 2\tau(\mathcal{G}, \varepsilon), \tau(\mathcal{G}, 1 - \varepsilon) \}
$$

\n
$$
\le L + \alpha \left(\frac{1 - \varepsilon}{\varepsilon} + 2\right) \tau(\mathcal{G}, \varepsilon),
$$

519 again using smoothness of ℓ . We then bound

$$
\varepsilon[\ell(\mathbb{E}[W]) - \ell(\mathbb{E}[Y])] \leq \varepsilon \max_{x \in I} \|\nabla \ell(x)\| \|\mathbb{E}[X] - \mathbb{E}[Z]\|
$$

\n
$$
= \max_{x \in I} \|\nabla \ell(x)\| \|\mathbb{E}[X] - \mathbb{E}[Z]\|
$$

\n
$$
\leq \left[L + \alpha \left(\frac{1-\varepsilon}{\varepsilon} + 2\right) \tau(\mathcal{G}, \varepsilon)\right] 2\tau(\mathcal{G}, \varepsilon)
$$

\n
$$
= 2L\tau(\mathcal{G}, \varepsilon) + 2\alpha \left(\frac{1-\varepsilon}{\varepsilon} + 2\right) \tau(\mathcal{G}, \varepsilon)^2
$$

\n
$$
= 2L\tau(\mathcal{G}, \varepsilon) + 4\alpha \tau_2(\mathcal{G}, \varepsilon)^2 + 2\alpha \frac{1-\varepsilon}{\varepsilon} \tau(\mathcal{G}, \varepsilon)^2
$$

\n
$$
\leq 2L\tau(\mathcal{G}, \varepsilon) + 4\alpha \tau_2(\mathcal{G}, \varepsilon)^2 + 32\alpha (1-\varepsilon)^{-1} \tau_{2,1}(\mathcal{G}, \varepsilon)^2 \quad \text{(Lemma 9)}
$$

\n
$$
\leq 2L\tau(\mathcal{G}, \varepsilon) + 36\alpha (1-\varepsilon)^{-1} \tau_{2,1}(\mathcal{G}, \varepsilon)^2.
$$

⁵²⁰ Combining the above, we obtain

$$
\mathbb{E}[\ell(X)] - \mathbb{E}[\ell(Z)] \le 8\alpha \tau_2(\mathcal{G}, \varepsilon) + 2L\tau(\mathcal{G}, \varepsilon) + 36\alpha (1 - \varepsilon)^{-1} \tau_{2,1}(\mathcal{G}, \varepsilon)^2
$$

$$
\le 2L\tau(\mathcal{G}, \varepsilon) + 44\alpha (1 - \varepsilon)^{-1} \tau_2(\mathcal{G}, \varepsilon)^2,
$$

⁵²¹ as desired.

⁵²² C Proofs for Section [3](#page-3-6)

⁵²³ C.1 Proof of Theorem [1](#page-4-1)

524 Our proof follows by analyzing the W_p^{ε} regularizer

$$
\Omega_{\mathsf{W}_p^{\varepsilon}}(\ell,\rho;\mu,\mathcal{G}) = \sup_{\substack{\nu \in \mathcal{G} \\ \mathsf{W}_p^{\varepsilon}(\nu,\mu) \leq \rho}} \mathbb{E}_{\nu}[\ell] - \mathbb{E}_{\mu}[\ell].
$$

- 525 We bound this quantity from above by a W_p regularizer and a TV regularizer maximized over a
- 526 Wasserstein ball centered at μ .
- **Lemma 15.** Fix $\varepsilon \in [0,1)$ and $\rho \ge 0$. For any $\mu \in \mathcal{G} \subseteq \mathcal{P}_p(\mathbb{R}^d)$ and $\ell : \mathbb{R}^d \to \mathbb{R}$ l.s.c. with 528 $\sup_{z\in\mathbb{R}^d} \frac{|\ell(z)|}{1+||z||^p} < \infty$, we have

$$
\Omega_{\mathsf{W}_p^{\varepsilon}}(\ell,\rho;\mu,\mathcal{G}) \leq \Omega_{\mathsf{W}_p}(\ell,\rho;\mu) + \sup_{\substack{\nu \in \mathcal{P}(\mathbb{R}^d) \\ \mathsf{W}_p(\nu,\mu) \leq \rho}} \Omega_{\mathsf{TV}}(\ell,\varepsilon;\nu,\mathcal{G}).
$$

Froof. Fix any $\kappa \in \mathcal{G}$ with $\mathsf{W}_p^{\varepsilon}(\kappa, \mu) \leq \rho$. By the definition of $\mathsf{W}_p^{\varepsilon}$, there exists $\mu' \in \mathcal{P}(\mathbb{R}^d)$ with 530 $\mathsf{W}_p(\mu', \mu) \leq \rho$ and $\|\mu' - \kappa\|_{\mathsf{TV}} \leq \varepsilon$. We thus bound

$$
\mathbb{E}_{\kappa}[\ell] - \mathbb{E}_{\mu}[\ell] = (\mathbb{E}_{\kappa}[\ell] - \mathbb{E}_{\mu'}[\ell]) + (\mathbb{E}_{\mu'}[\ell] - \mathbb{E}_{\mu}[\ell])
$$

\n
$$
\leq \sup_{\substack{\nu \in \mathcal{P}(\mathbb{R}^d) \\ W_p(\nu,\mu) \leq \rho}} \Omega_{\mathsf{TV}}(\ell,\varepsilon;\nu,\mathcal{G}) + \Omega_{\mathsf{W}_p}(\ell,\rho;\mu).
$$

531 Supremizing over κ gives the lemma.

532 Next, we show that, under the affine structure of ℓ_{\star} , one can instead consider DRO in \mathbb{R}^k . In particular, 533 writing $\mathcal{G}_k = \mathcal{G} \cap \mathcal{P}(\mathbb{R}^k)$ for some $U \in \mathbb{R}^{k \times d}$ with $UU^\top = I_k$ (the choice is not important due to ⁵³⁴ rotational symmetry), we have the following.

535 **Lemma 16.** Under Assumption [2,](#page-3-4) we may decompose $\ell_{\star} = \tilde{\ell} \circ Q$ for $Q \in \mathbb{R}^{k \times d}$ with $QQ^{\top} = I_k$ *and l.s.c.* ˜^ℓ *with* supz∈R^d |ℓ˜(z)| ⁵³⁶ 1+∥z∥^p < ∞*. For any such decomposition, we have*

$$
\sup_{\substack{\nu \in \mathcal{G}\\W_p^{\varepsilon}(\nu,\tilde{\mu}) \leq \rho}} \mathbb{E}_{\nu}[\ell_{\star}] = \sup_{\substack{\nu \in \mathcal{G}_k\\W_p^{\varepsilon}(\nu,Q_{\#}\tilde{\mu}) \leq \rho}} \mathbb{E}_{\nu}[\tilde{\ell}].
$$

- 537 *Proof.* By Assumption [2,](#page-3-4) we can write $\ell_{\star} = \ell \circ A$ for $A : \mathbb{R}^d \to \mathbb{R}^k$ affine and ℓ l.s.c. with $\sup_{z \in \mathbb{R}^d} \frac{|\tilde{\ell}(z)|}{1+|z|^p}$ 538 $\sup_{z \in \mathbb{R}^d} \frac{|\ell(z)|}{1+|z|^p} < \infty$. We further decompose $A(z) = RQz + z_0$, where $Q \in \mathbb{R}^{k \times d}$ with $QQ^\top = I_k$, 539 $R \in \mathbb{R}^{k \times k}$, and $z_0 \in \mathbb{R}^k$. Note that the orthogonality condition ensures that Q^{\top} isometrically embeds 540 \mathbb{R}^k into \mathbb{R}^d . We can then choose $\tilde{\ell}(w) = \underline{\ell}(Rw + z_0)$.
- 541 Next, given any $\nu \in \mathcal{G}$, we have $Q_{\#}\nu \in \mathcal{G}_k$ with $\mathsf{W}_p^{\varepsilon}(Q_{\#}\nu, Q_{\#}\tilde{\mu}) \leq \mathsf{W}_p^{\varepsilon}(\nu, \tilde{\mu})$, and $\mathbb{E}_{\nu}[\ell] = \mathbb{E}_{Q_{\#}\nu}[\tilde{\ell}]$. ⁵⁴² Thus, the RHS supremum is always at least as large as the LHS. It remains to show the reverse.

543 Fix $\nu \in \mathcal{G}_k$ with $\mathsf{W}_p^{\varepsilon}(\nu, Q_{\#}\tilde{\mu})$. Take any $\nu' \in \mathcal{P}(\mathbb{R}^k)$ with $\mathsf{W}_p(\nu, \nu') \leq \rho$ and $\|\nu' - Q_{\#}\tilde{\mu}\|_{\mathsf{TV}} \leq \varepsilon$. 544 Write $\kappa = Q^{\top}_{\#}\nu \in \mathcal{G}$ and $\kappa' = Q^{\top}_{\#}\nu'$. Since Q^{\top} is an isometric embedding, we have $\kappa \in \mathcal{G}$, 545 $\mathsf{W}_p(\kappa, \kappa') = \mathsf{W}_p(\nu, \nu') \leq \rho$, and $\|\kappa' - \tilde{\mu}\|_{\mathsf{TV}} = \|\nu' - Q_{\#}\tilde{\mu}\|_{\mathsf{TV}} \leq \varepsilon$. Finally, we have $\mathbb{E}_{\nu}[\ell] = \mathbb{E}_{\kappa}[\tilde{\ell}]$. ⁵⁴⁶ Thus, the RHS supremum is no greater than the LHS, and we have the desired equality.

547 We are now equipped to prove the theorem. Applying Lemma [16,](#page-16-1) we decompose $\ell_{\star} = \tilde{\ell} \circ Q$. We ⁵⁴⁸ bound risk by

$$
\mathbb{E}_{\mu}[\hat{\ell}] \leq \sup_{\substack{\nu \in \mathcal{G} \\ W_p^{\varepsilon}(\nu, \tilde{\mu}) \leq \rho}} \mathbb{E}_{\nu}[\hat{\ell}]
$$

$$
\leq \sup_{\substack{\nu \in \mathcal{G} \\ W_p^{\varepsilon}(\nu, \tilde{\mu}) \leq \rho}} \mathbb{E}_{\nu}[\ell_{\star}]
$$

$$
\leq \sup_{\substack{\nu \in \mathcal{G}_k \\ W_p^{\varepsilon}(\nu, Q_{\#}\tilde{\mu}) \leq \rho}} \mathbb{E}_{\nu}[\tilde{\ell}]
$$

$$
\leq \sup_{\substack{\nu \in \mathcal{G}_k \\ \nu \in \mathcal{G}_k}} \mathbb{E}_{\nu}[\tilde{\ell}].
$$

549 Writing $\mu_k = Q_{\#} \mu$, we can then bound excess risk by

$$
\mathbb{E}_\mu[\hat{\ell}] - \mathbb{E}_\mu[\ell_\star] \leq \sup_{\substack{\nu \in \mathcal{G}_k \\ \mathsf{W}_p^{2\epsilon}(\nu, \mu_k) \leq 2\rho}} \mathbb{E}_\nu[\tilde{\ell}] - \mathbb{E}_{\mu_k}[\tilde{\ell}].
$$

550 Noting that the RHS is just the $\mathsf{W}_p^{\varepsilon}$ regularizer of ℓ in \mathbb{R}^k , we apply Lemma [15](#page-16-2) to obtain

$$
\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell_{\star}] \leq \Omega_{\mathsf{W}_p}(\tilde{\ell}, 2\rho; \mu_k) + \sup_{\substack{\nu \in \mathcal{P}(\mathbb{R}^k) \\ \mathsf{W}_p(\nu, \mu_k) \leq \rho}} \Omega_{\mathsf{TV}}(\tilde{\ell}, 2\varepsilon; \nu, \mathcal{G}_k),
$$

551 If $p = 1$ and ℓ_{\star} is Lipschitz, we apply Lemma [13](#page-14-1) and Lemma [11](#page-14-2) to obtain

$$
\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell_{\star}] \leq \|\tilde{\ell}\|_{\mathrm{Lip}}(2\rho + 2\tau_{1}(\mathcal{G}_{k}, 2\varepsilon))
$$

\n
$$
\leq \|\tilde{\ell}\|_{\mathrm{Lip}}(2\rho + 2\tau_{1}(\mathcal{G}_{k}, 2\varepsilon))
$$

\n
$$
\leq \|\ell_{\star}\|_{\mathrm{Lip}}(2\rho + 2\tau_{1,k}(\mathcal{G}, 2\varepsilon))
$$

552 If $p = 2$ and ℓ_{\star} is α -smooth, we apply Lemma [14](#page-14-3) and Lemma [12](#page-14-4) to bound $\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell_{\star}]$ by

$$
2\rho \|\tilde{\ell}\|_{\dot{H}^{1,2}(\mu_{k})} + 4\alpha \rho^{2} + \sup_{\nu \in \mathcal{P}(\mathbb{R}^{k})} 2\|\nabla \tilde{\ell}(\mathbb{E}_{\nu}[Z])\| \tau(\mathcal{G}_{k}, 2\varepsilon) + 44\alpha (1 - 2\varepsilon)^{-1} \tau_{2}(\mathcal{G}_{k}, 2\varepsilon)^{2}
$$

\n
$$
\leq 2\rho \|\tilde{\ell}\|_{\dot{H}^{1,2}(\mu_{k})} + 4\alpha \rho^{2} + 2(\|\nabla \tilde{\ell}(\mathbb{E}_{\mu_{k}}[Z])\| + \alpha \rho) \tau(\mathcal{G}_{k}, 2\varepsilon) + 44\alpha (1 - 2\varepsilon)^{-1} \tau_{2}(\mathcal{G}_{k}, 2\varepsilon)^{2}
$$

\n
$$
\leq 2\rho \|\tilde{\ell}\|_{\dot{H}^{1,2}(\mu_{k})} + 2\|\nabla \tilde{\ell}(\mathbb{E}_{\mu_{k}}[Z])\| \tau(\mathcal{G}_{k}, 2\varepsilon) + 44\alpha (1 - 2\varepsilon)^{-1} (\rho^{2} + \rho \tau(\mathcal{G}_{k}, 2\varepsilon) + \tau_{2}(\mathcal{G}_{k}, 2\varepsilon)^{2})
$$

\n
$$
\leq 2\rho \|\tilde{\ell}\|_{\dot{H}^{1,2}(\mu_{k})} + 2\|\nabla \tilde{\ell}(\mathbb{E}_{\mu_{k}}[Z])\| \tau(\mathcal{G}_{k}, 2\varepsilon) + 44\alpha (1 - \varepsilon)^{-1} (\rho + \tau_{2}(\mathcal{G}_{k}, 2\varepsilon))^{2}
$$

\n
$$
= 2\rho \|\ell_{\star}\|_{\dot{H}^{1,2}(\mu)} + 2\|\nabla \ell_{\star}(\mathbb{E}_{\mu}[Z])\| \tau(\mathcal{G}_{k}, 2\varepsilon) + 44\alpha (1 - 2\varepsilon)^{-1} (\rho + \tau_{2}(\mathcal{G}_{k}, 2\varepsilon))^{2}
$$

\n
$$
= 2\rho \|\ell_{\star}\|_{\dot{H}^{1,2}(\mu)} + 2\|\nabla \ell_{\star}(\mathbb{E}_{\mu}[Z])
$$

⁵⁵³ as desired.

⁵⁵⁴ C.2 Risk bounds in Table [1](#page-4-0)

⁵⁵⁵ The upper bounds for OR-WDRO follow by combining Theorem [1](#page-4-1) with Proposition [2.](#page-3-7)

556 To see that these are minimax optimal, we start by proving that no ℓ chosen as a function of $\tilde{\mu}$ can 557 obtain risk less than $L\rho$ in the worst-case, for any of the considered settings. We fix $\tilde{\mu} = \delta_{0_d}$ and 558 consider two candidates $\mu_{\pm} = \delta_{\pm \rho e_1}$ for μ . We let $\mathcal L$ consist of the two L-Lipschitz loss functions

$$
\ell_+(z) \coloneqq Le_1^\top(\rho - z), \quad \ell_-(z) \coloneqq Le_1^\top z.
$$

559 By construction, μ_+ and μ_- both belong to $\mathcal{G} \in {\{\mathcal{G}_{\text{cov}}}, \mathcal{G}_{\text{subG}}\}$ and, for $\mu = \mu_{\pm}$, we have that 560 $\|\ell_\pm\|_{\operatorname{Lip}} = \|\ell_\pm\|_{\dot H^{1,2}(\mu)} = L.$ Moreover, we have

$$
\mathbb{E}_{\mu_+}[\ell_+]=0, \mathbb{E}_{\mu_+}[\ell_-]=L\rho, \mathbb{E}_{\mu_-}[\ell_+]=0, \mathbb{E}_{\mu_-}[\ell_-]=-L\rho.
$$

561 Thus, for any $\hat{\ell}$ selected as a function of $\tilde{\mu}$ (with $W_p(\tilde{\mu}, \mu) \le \rho$), there exists $\mu \in {\{\mu_+, \mu_-\}}$ such that

$$
\mu(\hat{\ell}) - \inf_{\ell \in \mathcal{L}} \mu(\ell) \ge L\rho.
$$

562 Next, we fix $p = 1$. For ease of presentation, suppose $d = 2m$ is even. Consider \mathbb{R}^d as $\mathbb{R}^m \times \mathbb{R}^m$, 563 and let $\mathcal L$ consist of the two L-Lipschitz loss functions

$$
\ell_{+}(x, y) \coloneqq L \|x + y\|, \quad \ell_{-}(x, y) \coloneqq L \|x - y\|
$$

(Lemma [16\)](#page-16-1)

564 Fixing corrupted measure $\tilde{\mu} = \delta_0$, we consider the following candidates for the clean measure μ :

$$
\mu_{+} := (1 - \varepsilon)\delta_0 + \varepsilon (\text{Id}, -\text{Id})_{\#} \kappa
$$

$$
\mu_{-} := (1 - \varepsilon)\delta_0 + \varepsilon (\text{Id}, +\text{Id})_{\#} \kappa
$$

565 where Id : $x \mapsto x$ is the identity map and $\kappa \in \mathcal{P}(\mathbb{R}^m)$ will be selected later as a function of \mathcal{G} . By 566 design, we have $\|\tilde{\mu} - \mu_+\|, \|\tilde{\mu} - \mu_-\|_{TV} \leq \varepsilon$ and

$$
\begin{aligned} \mathbb{E}_{\mu_+}[\ell_+] &= \mathbb{E}_{\mu_-}(\ell_-) = 0 \\ \mathbb{E}_{\mu_+}[\ell_-] &= \mathbb{E}_{\mu_-}[\ell_+] = 2L\varepsilon \mathbb{E}_{\kappa}[||Z||] \end{aligned}
$$

567 Thus, for any ℓ selected as a function of $\tilde{\mu}$, there exists $\mu \in {\{\mu_{+}, \mu_{-}\}}$ such that

$$
\mu(\hat{\ell}) - \inf_{\ell \in \mathcal{L}} \mu(\ell) = \mu(\hat{\ell}) \ge 2L\varepsilon \mathbb{E}_{\kappa}[\|Z\|].
$$

When $G = G_{\text{cov}}$, taking $\kappa = \mathcal{N}(0_m, \frac{1}{\varepsilon} I_m)$ ensures that $\mu_{\pm} \in \mathcal{G}_{\text{cov}}$, and $L \varepsilon \mathbb{E}_{\kappa} [\Vert Z \Vert] \gtrsim L \sqrt{\frac{1}{\varepsilon} \mathcal{J}(\mu)}$ 568 When $\mathcal{G} = \mathcal{G}_{cov}$, taking $\kappa = \mathcal{N}(0_m, \frac{1}{\varepsilon} I_m)$ ensures that $\mu_{\pm} \in \mathcal{G}_{cov}$, and $L \in \mathbb{E}_{\kappa} [\Vert Z \Vert] \gtrsim L \sqrt{d \varepsilon}$, as 569 desired. When $\mathcal{G} = \mathcal{G}_{subG}$, taking $\kappa = \mathcal{N}(0_m, I_m)$ ensures that $\mu_{\pm} \in \mathcal{G}_{subG}$, and $\mathcal{L} \in \mathbb{E}_{\kappa}[\Vert Z \Vert] \gtrsim$ Les desired. When $\mathcal{Y} = \mathcal{Y}_{subG}$, taking $\kappa = \mathcal{N}(0_m, I_m)$ ensures that $\mu_{\pm} \in \mathcal{Y}_{subG}$, and $L \in \mathbb{E}_{\kappa}[\|\mathcal{Z}\|] \gtrsim$
570 $L \in \sqrt{d}$. The alternative choice of $\kappa = \delta_{\sqrt{\log(1/\varepsilon)}e_1}$ also ensures $\mu_{\pm} \$ 571 $L\varepsilon\sqrt{\log(1/\varepsilon)}$. Combining gives a minimax lower lower bound of $L\varepsilon\sqrt{d+\log(1/\varepsilon)}$ for $\mathcal{G}_{\text{subG}}$. 572 These match the claimed lower bounds for $p = 1$ when $k = d$; for smaller k, we simply apply the 573 same construction with $m = k/2$, ignoring the extra $d - k$ coordinates. 574 For $p = 2$, take $\mathcal L$ consisting of the α -smooth loss functions $\ell_{\pm}(x, y) = \alpha ||x \mp y||^2$. For μ_{\pm} as above 575 with $\kappa = \mathcal{N}(0_m, \frac{1}{\varepsilon}I_m)$, we have $\|\ell_{\pm}\|_{\dot{H}^{1,2}(\mu_{\pm})} = 0$. The same argument as above gives a lower

576 bound of αd for \mathcal{G}_{cov} . Repeating with the corresponding measures for \mathcal{G}_{subG} gives a lower bound of $\alpha d\varepsilon \log(1/\varepsilon)$. Going through this process with $\ell_{\pm}(x,y) = L\varepsilon_1^{\top}(x-y)$ adds a mean resilience term of $L\sqrt{\varepsilon}$ for \mathcal{G}_{cov} and $L\varepsilon\sqrt{\log(1/\varepsilon)}$ for \mathcal{G}_{subG} . Taking $\ell_+(z) = \alpha(\rho^2 - ||z||^2)$ and $\ell_-(z) = \alpha||z||^2$ 578 579 with $\mu_{\pm} = \delta_{\pm \rho e_1}$ adds a final $\alpha \rho^2$ to both lower bounds. We may substitute d by k as above.

⁵⁸⁰ In all of the table's cases, we find that the minimax lower bound matches the upper bound for ⁵⁸¹ OR-WDRO given by Theorem [1.](#page-4-1)

⁵⁸² C.3 Proof of Proposition [3](#page-5-2)

583 This is an immediate consequence of Markov's inequality and the empirical convergence bound 584 $\mathbb{E}[W_1(\hat{\mu}_n, \mu)] \lesssim \sqrt{d}n^{-1/d}$, which follows by [\[23,](#page-9-17) Theorem 3.1] since $\mu \in \mathcal{G}_{\text{cov}}$. \Box

⁵⁸⁵ D Proofs for Section [4](#page-5-3)

⁵⁸⁶ D.1 Proof of Proposition [4](#page-5-1)

587 For $\mu \in \mathcal{G}_{\text{cov}}$, we bound

$$
\mathbb{E}_{\mu}[\|Z - z_0\|^2] \le 2 \mathbb{E}_{\mu}[\|Z - \mathbb{E}_{\mu}[Z]\|^2] + 2\|\mathbb{E}_{\mu}[Z] - z_0\|^2
$$

= $2 \operatorname{tr}(\Sigma_{\mu}) + 2\|\mathbb{E}_{\mu}[Z] - z_0\|^2$
 $\le 2d + 2\|\mathbb{E}_{\mu}[Z] - z_0\|^2$
 $\le 2(\sqrt{d} + \|\mathbb{E}_{\mu}[Z] - z_0\|)^2.$

Consequently, we have $\mu \in \mathcal{G}_2(\sigma, z_0)$ for $\sigma =$ $2d +$ 588 Consequently, we have $\mu \in \mathcal{G}_2(\sigma, z_0)$ for $\sigma = \sqrt{2d} + \sqrt{2} ||\mathbb{E}_{\mu}[Z] - z_0||$.

589 Next, we note that $W_p^{\varepsilon}(\tilde{\mu}_n, \mu) \leq \rho_0 + W_p(\hat{\mu}_n, \mu)$. Thus, applying Theorem [1](#page-4-1) with $\mathcal{G} = \mathcal{G}_2(\sigma, z_0)$ and 590 using the resilience bound from Proposition [2](#page-3-7) gives that for $\rho = \rho_0 + W_p(\hat{\mu}_n, \mu) + 8\sigma \varepsilon^{1/p-1/2} (1 -$ 591 ε)^{-1/p}, the desired excess risk bounds hold so long as $\|\mathbb{E}_{\mu}[Z] - z_0\| = \rho_0 + O(\sqrt{d})$. Indeed, under 592 these conditions with $p = 1$, we have for each $\ell \in \mathcal{L}$ that

$$
\mathbb{E}_{\mu}[\hat{\ell}] - \mathbb{E}_{\mu}[\ell] \le c \|\ell\|_{\text{Lip}} (\rho + 2\tau_1(\mathcal{G}_2(\sigma, z_0))
$$

\n
$$
\lesssim \|\ell\|_{\text{Lip}} (\rho + \sigma \sqrt{\varepsilon})
$$
 (Proposition 2)
\n
$$
\lesssim \|\ell\|_{\text{Lip}} (\rho_0 + \mathsf{W}_1(\hat{\mu}_n, \mu) + \sigma \sqrt{\varepsilon})
$$

\n
$$
\lesssim \|\ell\|_{\text{Lip}} (\rho_0 + \mathsf{W}_1(\hat{\mu}_n, \mu) + \sqrt{d\varepsilon}),
$$

⁵⁹³ as desired.

⁵⁹⁴ D.2 Proof of Proposition [5](#page-6-4)

595 Since iterative filtering works by identifying a subset of samples with bounded covariance and W_1 perturbations can arbitrarily increase second moments, it is not immediately clear how to apply this method. Fortunately, trimming out a small fraction of samples ensures that second moments do not increase too much.

- **Lemma 17.** *For any* $\tau \in (0,1]$ *and* $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ *, we have* $\mathsf{W}_2^{\tau}(\mu, \nu) \leq \mathsf{W}_1(\mu, \nu) \sqrt{2/\tau}$ *.*
- 600 *Proof.* Let (X, Y) be a coupling of μ and ν such that $\mathbb{E}[\|X Y\|] = \mathsf{W}_1(\mu, \nu)$. Write $\Delta = \|X Y\|$, 601 let F denote its CDF, and note that $F^{-1}(1 - \tau) \le W_1(\mu, \nu)/\varepsilon$ by Markov's inequality. Thus,

$$
W_2^{\tau}(\mu, \nu)^2 \leq \mathbb{E}[\Delta^2 | \Delta \leq F^{-1}(1-\tau)]
$$

\n
$$
\leq \mathbb{E}[\Delta^2 | \Delta \leq W_1(\mu, \nu)/\tau]
$$

\n
$$
= \int_0^{W_1(\mu, \nu)^2 \tau^{-2}} \Pr[\Delta > \sqrt{t} | \Delta \leq W_1(\mu, \nu)/\tau] dt
$$

\n
$$
\leq \int_0^{W_1(\mu, \nu)^2 \tau^{-2}} \left(\mathbb{E}[\Delta | \Delta \leq W_1(\mu, \nu)/\tau] t^{-1/2} \wedge 1 \right) dt
$$

\n
$$
\leq \int_0^{W_1(\mu, \nu)^2 \tau^{-2}} \left(W_1(\mu, \nu) t^{-1/2} \wedge 1 \right) dt
$$

\n
$$
= W_1(\mu, \nu)^2 + W_1(\mu, \nu) \int_{W_1(\mu, \nu)^2}^{W_1(\mu, \nu)^2 \tau^{-2}} t^{-1/2} dt
$$

\n
$$
= W_1(\mu, \nu)^2 + W_1(\mu, \nu) \cdot 2\sqrt{t} \Big|_{W_1(\mu, \nu)^2}^{W_1(\mu, \nu)^2 \tau^{-2}}
$$

\n
$$
= W_1(\mu, \nu)^2 + 2W_1(\mu, \nu)^2 / \tau - 2W_1(\mu, \nu)^2
$$

\n
$$
\leq 2W_1(\mu, \nu)^2 / \tau.
$$

⁶⁰² Taking a square root gives the claim.

603 Write μ'_n for any uniform discrete measure over n points such that $W_1(\mu'_n, \hat{\mu}_n) \le \rho_0$ and $\|\mu'_n \|\tilde{\mu}_n\|_{TV} \leq \varepsilon$. It is well known that the empirical measure $\hat{\mu}_n$ will inherit the bounded covariance 605 of μ for n sufficiently large, so long as a small fraction of samples are trimmed out. In particular, by Lemma 4.2 of [\[18\]](#page-8-18) and our sample complexity requirement, there exists a uniform discrete 606 by Lemma 4.2 of [18] and our sample complexity requirement, there exists a uniform discrete \cos measure α_m over a subset of $m = (1 - \varepsilon/120)n$ points, such that $\|\mathbb{E}_{\alpha_m}[Z] - \mathbb{E}_{\mu}[Z]\| \lesssim \sqrt{\varepsilon}$ and $\Sigma_{\alpha_m} \preceq O(1)I_d$ with probability at least 0.99. Moreover, by Lemma [17](#page-19-0) with $\tau = \varepsilon/120$, there exists $\beta \in \mathcal{P}(\mathbb{R}^d)$ with $\|\beta - \mu_n'\|_{\mathsf{TV}} \leq \varepsilon/120$ and $\mathsf{W}_2^{\varepsilon/120}(\beta, \hat{\mu}_n) \leq \sqrt{240/\varepsilon \rho_0}$. Combining, we have that $\mathsf{W}_{2}^{\varepsilon/120+\varepsilon/120+\varepsilon}(\alpha_{m}, \tilde{\mu}_n) = \mathsf{W}_{2}^{61\varepsilon/60}(\alpha_{m}, \tilde{\mu}_n) \leq \sqrt{240/\varepsilon}\rho_0.$

611 Thus, there exists a uniform discrete measure γ_m with support size m such that $\|\gamma_m - \tilde{\mu}_n\|_{TV} \leq$ 612 61/60ε, $\mathsf{W}_2(\gamma_m, \alpha_m) \leq \sqrt{240/\varepsilon} \rho_0$, and $\mathsf{W}_1(\gamma_m, \alpha_m) \leq \rho_0$. The W_2 bound implies that $\Sigma_{\gamma_m} \preceq$ 613 $O(1 + \rho_0^2 \varepsilon^{-1})I_d$. Thus, by the proof of Theorem 4.1 in [\[18\]](#page-8-18) and our sample complexity requirement, 614 the iterative filtering algorithm (Algorithm 1 therein) applied with an outlier fraction of $61/60 \epsilon \leq$ 615 1/10 returns a reweighting of $\tilde{\mu}_m$ whose mean $z_0 \in \mathbb{R}^{\overline{d}}$ is within $O(\sqrt{\varepsilon} + \rho_0)$ of that of γ_m . By a 616 triangle inequality, the same error bound holds with respect to the mean of μ .

⁶¹⁷ D.3 Proof of Proposition [6](#page-6-1)

⁶¹⁸ We have

$$
\sup_{\substack{\nu \in \mathcal{G}_2(\sigma, z_0) \\ W_p^{\varepsilon}(\tilde{\mu}_n || \nu) \leq \rho}} \mathbb{E}_{\nu}[\ell] = \sup_{\substack{\mu', \nu \in \mathcal{P}(\mathbb{R}^d) \\ \pi \in \Pi(\mu', \nu)}} \left\{ \mathbb{E}_{\nu}[\ell] : \begin{array}{l} \mathbb{E}_{\nu}[||Z - z_0||^2] \leq \sigma^2, \\ \mathbb{E}_{\pi}[\|Z' - Z\|^p] \leq \rho^p, \\ \mu' \leq \frac{1}{1 - \varepsilon} \tilde{\mu}_n \end{array} \right\}
$$

$$
= \sup_{\substack{m\in\mathbb{R}^n\\ \nu_1,\ldots,\nu_n\in\mathcal{P}(\mathbb{R}^d)}} \left\{\sum_{i\in[n]} m_i \mathbb{E}_{\nu_i}[\ell]: \frac{\sum_{i\in[n]} m_i \mathbb{E}_{\nu_i}[\|Z_i - z_0\|^2] \leq \sigma^2,}{0 \leq m_i \leq \frac{1}{n(1-\varepsilon)}, \forall i\in[n]} \right\},\newline \frac{\sum_{i\in[n]} m_i \mathbb{E}_{\nu_i}[\|Z_i - z_i\|^2] \leq \sigma^2,}{\sum_{i\in[n]} m_i = 1},\newline
$$

619 where the first equality follows from the definitions of $G_2(\sigma, z_0)$ and $\mathsf{W}_p^{\epsilon}(\tilde{\mu}_n||\nu)$. The second equality 620 holds because $\tilde{\mu}_n = \frac{1}{n} \sum_{i \in [n]} \delta_{\tilde{z}_i}$, which implies that the distributions μ', ν and π take the form $\mu' = \sum_{i \in [n]} m_i \delta_{\tilde{z}_i}, \nu = \sum_{i \in [n]} m_i \nu_i$, and $\pi = \sum_{i \in [n]} m_i \delta_{\tilde{z}_i} \otimes \nu_i$, respectively. Note that the 622 distribution ν_i models the probability distribution of the random variable Z condition on the event ϵ_{23} that $Z' = \tilde{z}_i$. Using the definition of the expectation operator and introducing the positive measure 624 $v'_i = m_i v_i$ for every $i \in [n]$, we arrive at

$$
\sup_{\substack{\nu \in \mathcal{G}_2(\sigma, z_0) \\ \nu \in \mathcal{G}_2(\sigma, z_0)}} \mathbb{E}_{\nu}[\ell] = \sup_{\substack{m \in \mathbb{R}^n \\ \nu_1', \dots, \nu_n' \ge 0}} \left\{ \sum_{i \in [n]} \mathbb{E}_{\nu_i'}[\ell] : \begin{array}{l} \sum_{i \in [n]} \int_{\mathbb{R}^d} ||z_i - z_0||^2 d\nu_i'(z_i) \le \sigma^2, \\ \sum_{i \in [n]} \int_{\mathbb{Z}} ||z_i - \tilde{z}_i||^p d\nu_i'(z_i) \le \rho^p, \\ \sum_{i \in [n]} m_i = 1 \\ \int_{\mathbb{Z}} d\nu_i'(z_i) = m_i, \ \forall i \in [n] \end{array} \right\}
$$

$$
= \inf_{\substack{\lambda_1, \lambda_2 \in \mathbb{R}_+ \\ r, s \in \mathbb{R}^n, \alpha \in \mathbb{R}}} \left\{ \lambda_1 \sigma^q + \lambda_2 \rho^p + \frac{\sum_{i \in [n]} s_i}{n(1 - \varepsilon)} + \alpha : r_i \ge \ell(\xi) - \lambda_1 ||\xi - z_0||^2 - \lambda_2 ||\xi - \tilde{z}_i||^p, \\ \forall \xi \in \mathbb{R}^d, \forall i \in [n] \right\}
$$

,

⁶²⁵ where the second equality follows from strong duality, which holds because the Slater condition ⁶²⁶ outlined in [\[37,](#page-9-18) Proposition 3.4] is satisfied thanks to Assumption [3.](#page-6-0) The proof concludes by removing 627 the decision variables r and s and using the definition of $\tilde{\mu}_n$. \Box

⁶²⁸ D.4 Proof of Theorem [2](#page-6-3)

 629 The proof requires the following preparatory lemma. We say that the function f is proper if 630 $f(x) > -\infty$ and $dom(f) \neq \emptyset$.

⁶³¹ Lemma 18. *The followings hold.*

 $f(x) = \lambda g(x - x_0)$ *, where* $\lambda \geq 0$ *and* $g : \mathbb{R}^d \to \mathbb{R}$ *is l.s.c. and convex. Then,* 633 $f^*(y) = x_0^{\top}y + \lambda g^*(y/\lambda).$

 $\mathcal{L}(ii)$ *Let* $f(x) = ||x||^p$ for some $p \ge 1$. Then, $f^*(y) = h(y)$, where the function h is defined as ⁶³⁵ *in* [\(5\)](#page-7-1)*.*

636 *(iii) Let*
$$
f(x) = x^{\top} \Sigma x
$$
 for some $\Sigma \succ 0$. Then, $f^*(y) = \frac{1}{4} y^{\top} \Sigma^{-1} y$.

⁶³⁷ *Proof.* The claims follows from [\[17,](#page-8-19) §E, Proposition 1.3.1], [\[47,](#page-10-9) Lemma B.8 (ii)] and [\[17,](#page-8-19) §E, ⁶³⁸ Example 1.1.3], respectively. П

639 Now, by Proposition [6](#page-6-1) and exploiting the definition of $\tilde{\mu}_n$, we have

$$
\sup_{\nu \in \mathcal{G}_2(\sigma, z_0)} \mathbb{E}_{\nu}[\ell] \tag{8}
$$
\n
$$
w_p^{\varepsilon}(\bar{\mu}_n \| \nu) \le \rho
$$
\n
$$
= \begin{cases}\n\inf \quad \lambda_1 \sigma^2 + \lambda_2 \rho^p + \alpha + \frac{1}{n(1 - \varepsilon)} \sum_{i \in [n]} s_i \\
\text{s.t.} \quad \lambda_1, \lambda_2 \in \mathbb{R}_+, s \in \mathbb{R}_+^n \\
s_i \ge \sup_{\xi \in \mathcal{Z}} \ell(\xi) - \lambda_1 \|\xi - z_0\|^2 - \lambda_2 \|\xi - \tilde{z}_i\|^p - \alpha \quad \forall i \in [n]\n\end{cases}
$$

$$
= \begin{cases} \inf \quad \lambda_1 \sigma^2 + \lambda_2 \rho^p + \alpha + \frac{1}{n(1-\varepsilon)} \sum_{i \in [n]} s_i \\ \text{s.t.} \quad \lambda_1, \lambda_2 \in \mathbb{R}_+, s \in \mathbb{R}_+^n \\ s_i \ge \sup_{\xi \in \mathcal{Z}} \ell_j(\xi) - \lambda_1 \|\xi - z_0\|^2 - \lambda_2 \|\xi - \tilde{z}_i\|^p - \alpha \quad \forall i \in [n], \forall j \in [J] \end{cases}
$$
(9)

640 where the second equality follows from Assumption [4.](#page-6-2) For any fixed $i \in [n]$ and $j \in [J]$, we have

$$
\sup_{\xi \in \mathcal{Z}} \ell_j(\xi) - \lambda_1 \|\xi - z_0\|^2 - \lambda_2 \|\xi - \tilde{z}_i\|^p - \alpha
$$
\n
$$
= \begin{cases}\n\inf \left(-\ell_j \right)^* (\zeta_{ij}^\ell) + z_0^\top \zeta_{ij}^\mathcal{G} + \tau_{ij} + \tilde{z}_i^\top \zeta_{ij}^\mathsf{W} + P_h(\zeta_{ij}^\mathsf{W}, \lambda_2) - \alpha \\
\text{s.t.} \quad \tau_{ij} \in \mathbb{R}_+^n, \zeta_{ij}^\ell, \zeta_{ij}^\mathsf{W}, \zeta_{ij}^\ell + \zeta_{ij}^\mathcal{G} + \zeta_{ij}^\mathsf{W} + \epsilon_0, \|\zeta_{ij}^\mathcal{G}\|^2 \le \lambda_1 \tau_{ij}\n\end{cases}
$$

 where the equality is a result of strong duality due to [\[47,](#page-10-9) Theorem 2] and Lemma [18.](#page-20-0) The claim follows by substituting all resulting dual minimization problems into [\(9\)](#page-21-1) and eliminating the corre- sponding minimization operators. \Box

⁶⁴⁴ E Additional Experiments

⁶⁴⁵ In addition to the experiments in the main body, we also present applications to classification ⁶⁴⁶ [a](https://anonymous.4open.science/r/outlier-robust-WDRO-14EB/)nd multivariate regression. Code for all experiments is provided at [https://anonymous.4open.](https://anonymous.4open.science/r/outlier-robust-WDRO-14EB/) ⁶⁴⁷ [science/r/outlier-robust-WDRO-14EB/](https://anonymous.4open.science/r/outlier-robust-WDRO-14EB/). We first consider linear classification with the hinge 648 loss, i.e. $\mathcal{L} = \{\ell_{\theta}(x, y) = \max\{0, 1 - y(\theta^\top x)\} : \theta \in \mathbb{R}^{d-1}\}.$ This time (to ensure that the resulting ⁶⁴⁹ optimization problem is convex), our approach supports Euclidean Wasserstein perturbations in ⁶⁵⁰ the feature space, but no Wasserstein perturbations in the label space (this corresponds to using $\mathcal{Z} = \mathbb{R}^{d-1} \times \mathbb{R}$ equipped with the (extended) norm $||(x, y)|| = ||x||_2 + \infty \cdot \mathbb{1}{y \neq 0}$. We 652 consider clean data $(X, \theta_0^{\top} X) \sim \mu$ as defined in Section [5.](#page-7-2) The corrupted data $(\tilde{X}, \tilde{Y}) \sim \tilde{\mu}$ 653 satisfies $(\tilde{X}, \tilde{Y}) = (X + \rho e_1, Y)$ with probability $1 - \varepsilon$ and $(\tilde{X}, \tilde{Y}) = (20X, -20\theta_0^{\top}X)$ with 654 probability ε , so that $\mathsf{W}_{p}^{\varepsilon}(\tilde{\mu}||\mu) \leq \rho$. In Figure [2](#page-22-0) (left), we fix $d = 10$ and compare the excess 655 risk $\mathbb{E}_{\mu}[\ell_{\hat{\theta}}] - \mathbb{E}_{\mu}[\ell_{\theta_0}]$ of standard WDRO and outlier-robust WDRO with $\mathcal{A} = \mathcal{G}_2$, as described by 656 Proposition [4](#page-5-1) and implemented via Theorem [2.](#page-6-3) The results are averaged over $T = 20$ runs for sample 657 size $n \in \{10, 20, 50, 75, 100\}$. We note that this contamination example cannot drive the excess risk ⁶⁵⁸ of standard WDRO to infinity, so the separation between standard and outlier-robust WDRO is less ⁶⁵⁹ striking than regression, though still present.

660 Finally, we present results for multivariate regression. This time, we consider $\mathcal{Z} = \mathbb{R}^{d \times k}$ equipped 661 with the ℓ_2 norm, and use the loss family $\mathcal{L} = \{\ell_M(x, y) = ||Mx - y||_1 : M \in \mathbb{R}^{k \times d}\}\.$ We 662 consider clean data $(X, M_0^{\top} X) \sim \mu$, where $M_0 \in \mathbb{R}^{k \times d}$ and X have standard normal entries. 663 The corrupted data $(\tilde{X}, \tilde{Y}) \sim \tilde{\mu}$ satisfies $(\tilde{X}, \tilde{Y}) = (X + \rho e_1, Y)$ with probability $1 - \varepsilon$ and 664 $(\tilde{X}, \tilde{Y}) = (20X, -20M_0X)$ with probability ε , so that $\mathsf{W}_{p}^{\varepsilon}(\tilde{\mu}||\mu) \leq \rho$. In Figure [2](#page-22-0) (right), we fix 665 $d = 10$ and $k = 3$, and compare the excess risk $\mathbb{E}_{\mu}[\ell_{\hat{\theta}}] - \mathbb{E}_{\mu}[\ell_{\theta_0}]$ of standard WDRO and outlier-666 robust WDRO with $A = \mathcal{G}_2$, as described by Proposition [4](#page-5-1) and implemented via Theorem [2.](#page-6-3) The 667 results are averaged over $T = 10$ runs for sample size $n \in \{10, 20, 50, 75, 100\}$. We are restricted 668 to low k since the ℓ_1 norm in the losses is expressed as the maximum of 2^k concave functions 669 (specifically, we use that $\ell_M(x, y) = \max_{\alpha \in \{-1, 1\}^k} \alpha^{\top} (Mx - y)$).

⁶⁷⁰ In both cases, confidence bands are plotted representing the top and bottom 10% quantiles among 671 100 bootstrapped means from the T runs. The additional experiments were performed on an M1 ⁶⁷² Macbook Air with 16GB RAM in roughly 30 minutes each.

Figure 2: Excess risk of standard WDRO and outlier-robust WDRO for classification and multivariate linear regression under W_p and TV corruptions, with varied sample size.