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Abstract

Distributionally robust optimization (DRO) is an effective approach for data-driven1

decision-making in the presence of uncertainty. Geometric uncertainty due to sam-2

pling or localized perturbations of data points is captured by Wasserstein DRO3

(WDRO), which seeks to learn a model that performs uniformly well over a Wasser-4

stein ball centered around the observed data distribution. However, WDRO fails5

to account for non-geometric perturbations such as adversarial outliers, which6

can greatly distort the Wasserstein distance measurement and impede the learned7

model. We address this gap by proposing a novel outlier-robust WDRO frame-8

work for decision-making under both geometric (Wasserstein) perturbations and9

non-geometric (total variation (TV)) contamination that allows an ε-fraction of10

data to be arbitrarily corrupted. We design an uncertainty set using a certain robust11

Wasserstein ball that accounts for both perturbation types. We derive minimax12

optimal excess risk bounds for this procedure that explicitly capture the Wasserstein13

and TV risks. We prove a strong duality result that enables efficient computation14

of our outlier-robust WDRO problem. When the loss function depends only on15

low-dimensional features of the data, we eliminate certain dimension dependencies16

from the risk bounds that are unavoidable in the general setting. Finally, we present17

experiments validating our theory on standard regression and classification tasks.18

1 Introduction19

The safety and effectiveness of various operations rely on making informed, data-driven decisions20

in uncertain environments. Distributionally robust optimization (DRO) has emerged as a powerful21

framework for decision-making in the presence of uncertainties. In particular, Wasserstein DRO22

(WDRO) captures uncertainties of geometric nature, e.g., due to sampling or localized (adversarial)23

perturbations of the data points. The WDRO problem is a two-player, zero-sum game between a24

learner (decision-maker), who chooses a decision θ ∈ Θ, and nature (adversary), who chooses a25

distribution ν from an ambiguity set defined as the p-Wasserstein ball of a prescribed radius around26

the observed data distribution µ̃. Namely, WDRO is given by127

inf
θ∈Θ

sup
ν:Wp(ν,µ̃)≤ρ

EZ∼ν [ℓ(θ, Z)], (1)

whose solution θ̂ ∈ Θ performs uniformly well over the Wasserstein ball with respect to (w.r.t.) the28

loss function ℓ. WDRO has received considerable attention in many fields, including machine learning29

[2, 15, 35, 38, 49], estimation and filtering [26, 27, 36], and chance constraint programming [7, 45],30

among others.31

In many practical scenarios, the observed data may be contaminated by non-geometric perturbations,32

such as adversarial outliers. Unfortunately, the WDRO problem from (1) is not suited for handling this33

1Here, Wp(µ, ν) := infπ∈Π(µ,ν)

( ∫
∥x − y∥pdπ(x, y)

)1/p is the p-Wasserstein metric between µ and ν,
where Π(µ, ν) is the set of all their couplings.
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issue, as even a small fraction of outliers can greatly distort the Wp measurement and impede decision-34

making. In this work, we address this gap by proposing a novel outlier-robust WDRO framework35

that can learn well-performing decisions even in the presence of outliers. We couple it with a36

comprehensive theory of excess risk bounds, statistical guarantees, and computationally-tractable37

reformulations, as well as supporting numerical results.38

1.1 Contributions39

We consider a scenario where the observed data distribution µ̃ is subject to both geometric (Wasser-40

stein) perturbations and non-geometric (total variation (TV)) contamination, which allows an ε-41

fraction of data to be arbitrarily corrupted. Namely, if µ is the true (unknown) data distribution, then42

the Wasserstein perturbation maps it to some µ′ with Wp(µ
′, µ) ≤ ρ, and the TV contamination step43

further produces µ̃ with ∥µ̃−µ′∥TV (e.g., in the special case of the Huber model, µ̃ = (1− ε)µ′+ εα44

where α is an arbitrary noise distribution). To enable robust decision-making under this model, we45

replace the Wasserstein ambiguity set in (1) with a ball w.r.t. the recently proposed outlier-robust46

Wasserstein distance Wε
p [28, 29]. The Wε

p distance is defined via a partial optimal transport (OT)47

problem (see (2) ahead) that first filters out the ϵ-fraction of mass from the contaminated distribution48

that contributed most to the transportation cost, and then measures the Wp distance post-filtering. To49

obtain well-performing solutions for our WDRO problem, the Wε
p ball is intersected with a set that50

encodes (necessary) moment assumptions on the uncorrupted data distribution.51

We establish minimax optimal excess risk bounds for the decision θ̂ that solves the proposed outlier-52

robust WDRO problem. The bounds control the gap E[ℓ(θ̂, Z)]− E[ℓ(θ, Z)], where Z ∼ µ follows53

the true data distribution, subject to regularity properties of ℓ(θ, ·) for any arbitrary decision θ ∈ Θ.54

In turn, they imply that the learner can make effective decisions using outlier-robust WDRO based55

on the contaminated observation µ̃, so long that there exists a (near) optimal θ with low variational56

complexity. The bounds capture this complexity using the Lipschitz or Sobolev seminorms of ℓ(θ, ·)57

and clarify the distinct effect of each perturbation (Wasserstein versus TV) on the quality of the58

learned θ̂ solution. Moreover, they demonstrate notable improvements when the loss function depends59

only on k-dimensional linear features, for k ≪ d. All of our bounds are shown to be minimax optimal,60

in that there exists a learning problem for which each is tight.61

We then move to study the computational side of the problem, which may initially appear intractable62

due to non-convexity of the constraint set. We resolve this via a preprocessing step that computes a63

robust estimate of the mean [9] and replaces the original constraint set (that involves the true mean)64

with a version centered around the estimate. We adapt our excess risk bounds to this formulation65

and then prove a strong duality theorem. The dual form is reminiscent of the one for classical66

WDRO with adaptations reflecting the constraint to the clean distribution family and the partial67

transportation under Wε
p. Under additional convexity conditions on the loss, we further derive an68

efficiently-computable, finite-dimensional, convex reformulation. Using the developed machinery,69

we present experiments that validate our theory on simple regression tasks and demonstrate the70

superiority of the proposed approach over classical WRDO, when the observed data is contaminated.71

1.2 Related Work72

Distributionally robust optimization. The Wasserstein distance has emerged as a powerful tool for73

modeling uncertainty in the data generating distribution. It was first used to construct an ambiguity74

set around the empirical distribution in [30]. Recent advancements in convex reformulations and ap-75

proximations of the WDRO problem, as discussed in [4, 14, 25], have brought notable computational76

advantages. Additionally, WDRO is linked to various forms of variation [1, 5, 12, 33] and Lipschitz77

[3, 6, 34] regularization, which contribute to its success in practice. Robust generalization guarantees78

can also be provided by WDRO via measure concentration argument or transportation inequalities79

[11, 21, 22, 41, 43, 44]. Several works have raised concerns regarding the sensitivity of standard80

DRO to outliers [16, 19, 48]. An attempt to address this was proposed in [46] using a refined risk81

function based on a family of f -divergences. This formulation aims to prevent DRO from overfitting82

to potential outliers but is not robust to geometric perturbations. Further, their risk bounds require a83

moment condition to hold uniformly over Θ, in contrast to our bounds that depend only on a single84

(near) optimal θ. We are able to address these limitations by setting a WDRO framework based on85

partial transportation. While partial OT has been previously used in the context of DRO problems, it86
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was introduced to address stochastic programs with side information in [10] rather than to account87

for outlier robustness.88

Robust statistics. The problem of learning from corrupted data corruptions dates back to [20]. Over89

the years, various robust and sample-efficient estimators, particularly for mean and scale parameters,90

have been developed in the robust statistics community; see [31] for a comprehensive survey. The91

theoretical computer science community, on the other hand, has focused on developing computation-92

ally efficient estimators that achieve optimal estimation rates in high dimensions [8, 9]. Recently,93

[48] developed a unified robust estimation framework based on minimum distance estimation that94

gives sharp population-limit and good finite-sample guarantees for mean and covariance estimation.95

Their analysis centers on a generalized resilience quantity, which will be also essential to our work.96

Also key to our analysis is the outlier-robust Wasserstein distance from [28, 29], which was shown to97

yield an optimal minimum distance estimate for robust distribution estimation under Wp loss.98

2 Preliminaries99

Notation. We consider Euclidean space Rd equipped with the ℓ2 norm ∥ · ∥. A continuously100

differentiable function f : Rd → R is called α-smooth if ∥∇f(z) − ∇f(z′)∥ ≤ α∥z − z′∥, for101

all z, z′ ∈ Rd. The perspective function of a lower semi-continuous (l.s.c.) and convex function102

f is Pf (x, λ) := λf(x/λ) for λ > 0, with Pf (x, λ) = limλ→0 λf(x/λ) when λ = 0. The convex103

conjugate of f is f∗(y) := supx∈Rd y⊤x−f(x). The set of integers up to n ∈ N is denote by [n]; we104

also use the shorthand [x]+ = max{x, 0}. We write ≲,≳,≍ for inequalities/equality up to absolute105

constants.106

We use M(Rd) for the set of signed Radon measures on Rd equipped with the TV norm ∥µ∥TV :=107
1
2 |µ|(Z), and write µ ≤ ν for set-wise inequality. The class of Borel probability measures on Rd108

is denoted by P(Rd). Write Eµ[f(Z)] for expectation of f(Z) with Z ∼ µ; when clear from the109

context, the random variable is dropped and we write Eµ[f ]. Define Pp(Rd) := {µ ∈ P(Rd) :110

infz0∈Rd Eµ[∥Z− z0∥p] <∞}. The push-forward of f through µ ∈ P(Rd) is f#µ(·) := µ(f−1(·)),111

and, for A ⊆ P(Rd), write f#A := {f#µ : µ ∈ A}. The pth order homogeneous Sobolev112

(semi)norm of continuously differentiable f : Rd → R w.r.t. µ is ∥f∥Ḣ1,p(µ) := Eµ[∥∇f∥p]1/p.113

Given Z ∼ µ and an even convex, non-decreasing function ψ : R → R+ with ψ(0) = 0 and ψ(x) →114

∞ as |x| → ∞, we define the Orlicz norm ∥Z∥ψ = sup{σ ≥ 0 : supθ∈Sd−1 E[ψ(θ⊤Z/σ)] ≤ 1}.115

Classical and outlier-robust Wasserstein distances. For p ∈ [1,∞), the p-Wasserstein distance116

between µ, ν ∈ Pp(Rd) is Wp(µ, ν) := infπ∈Π(µ,ν)

(
Eπ

[
∥X − Y ∥p

])1/p
, where Π(µ, ν) := {π ∈117

P(Rd×Rd) : π(·×Rd) = µ, π(Rd×·) = ν} is the set of all their couplings. Some basic properties118

of Wp are (see, e.g., [32, 42]): (i) Wp is a metric on Pp(Rd); (ii) the distance is monotone in the119

order, i.e., Wp ≤ Wq for p ≤ q; and (iii) Wp metrizes weak convergence plus convergence of pth120

moments: Wp(µn, µ) → 0 if and only if µn
w→ µ and

∫
∥x∥pdµn(x) →

∫
∥x∥pdµ(x).121

To handle corrupted data, we define the ε-outlier-robust p-Wasserstein distance2 between µ and ν by122

Wε
p(µ, ν) := inf

µ′∈P(Rd)
∥µ′−µ∥TV≤ε

Wp(µ
′, ν) = inf

ν′∈P(Rd)
∥ν′−ν∥TV≤ε

Wp(µ, ν
′). (2)

The second equality is a useful consequence of Lemma 4 in [29].123

Robust statistics. Resilience is a standard sufficient condition for population-limit robust statistics124

bounds. The mean resilience of a measure µ ∈ P(Rd) is defined by125

τ(µ, ε) := sup
µ′≤ 1

1−εµ

∥∥Eµ[Z]− Eµ′ [Z]
∥∥,

and that of a family G ⊆ P(R) by τ(G, ε) := supµ∈G τ(µ, ε). The p-Wasserstein resilience of µ is126

given by127

τp(µ, ε) := sup
µ′≤ 1

1−εµ

Wp(µ
′, µ)

2While not a metric, Wε
p is symmetric and satisfies an approximate triangle inequality ([29], Proposition 3).
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and that of a family G by τp(G, ε) := supµ∈G τp(µ, ε). When inference depends on k-dimensional pro-128

jections, we use τp,k(µ, ε) = supU∈Rk×d:UU⊤=Ik
τp(U#µ, ε) and τp,k(G, ε) = supµ∈G τp,k(µ, ε).129

The relation between resilience and robust estimation is formalized in the following proposition.130

Proposition 1 (Robust estimation under resilience [29, 39]). For any µ ∈ G ⊆ P(Rd) and µ̃ ∈ P(Rd)131

such that ∥µ̃−µ∥TV ≤ ε ≤ 1/2, the minimum distance estimate µ̂ = argminν∈G ∥ν− µ̃∥TV satisfies132

∥Eµ̂[Z] − Eµ[Z]∥ ≤ 2τ(G, 2ε). Similarly, if 0 ≤ ε ≤ 0.49 and Wε
p(µ̃, µ) ≤ ρ, then the minimum133

distance estimate µ̂ = argminν∈G Wε
p(ν, µ̃) satisfies Wp(µ̂, µ) ≲ ρ+ τp(G, 2ε).3134

In practice, we consider families G encoding tail bounds like bounded covariance or sub-Gaussianity:135

Gcov :=
{
µ ∈ P(Rd) : Σµ ⪯ Id

}
, GsubG := {µ ∈ P(Rd) : Eµ[e(θ

⊤Z)2 ] ≤ 2, ∀θ ∈ Sd−1}.

Proposition 2 (Resilience under standard tail bounds). Fixing µ ∈ P(Rd) and 0 ≤ ε < 1, we have136

τ(Gcov, ε) ≲
√
ε, τp,k(Gcov, ε) ≲

√
kε

1
p−

1
2 ,

τ(GsubG, ε) ≲ ε
√
log 1

ε , τp,k(GsubG, ε) ≲
√
k + p+ 1

εε
1
p .

These bounds are computed in the proof of Theorem 5 in [29].137

3 Outlier-robust WDRO138

We perform stochastic optimization with respect to an unknown data distribution µ, given access139

only to a corrupted version µ̃. We first consider a Wasserstein perturbation mapping µ to µ′ such that140

Wp(µ, µ
′) ≤ ρ. Then we allow a TV ε-corruption taking µ′ to µ̃ with ∥µ̃− µ′∥TV ≤ ε. Equivalently,141

we have Wε
p(µ̃, µ) ≤ ρ. Our full model is as follows.142

Setting A: Fix a p-Wasserstein radius ρ ≥ 0 and TV contamination level ε ∈ [0, 0.49]4. Let L be a143

family of real-valued loss functions on Z , such that each ℓ ∈ L is l.s.c. with supz∈Z
ℓ(z)

1+∥z∥p <∞,144

and fix a class G ⊆ Pp(Rd) encoding distributional assumptions. We consider the following game:145

(i) Nature selects a distribution µ ∈ G, unknown to the learner;146

(ii) The learner observes µ̃ ∈ P(Rd) with Wε
p(µ̃, µ) ≤ ρ and selects decision ℓ̂ ∈ L;147

(iii) The learner suffers excess risk Eµ[ℓ̂]− infℓ∈L Eµ[ℓ].148

We seek a decision-making procedure for the learner which provides strong excess risk guarantees149

when ℓ⋆ := argminℓ∈L µ(ℓ)
5 is appropriately “simple.” To learn in this setting, we introduce the150

ε-outlier-robust p-Wasserstein DRO problem:151

inf
ℓ∈L

sup
ν∈G:Wε

p(µ̃,ν)≤ρ
Eν [ℓ]. (OR-WDRO)

Our results are most cleanly stated under the following structural assumptions.152

Assumption 1 (Bounded Orlicz norm). The class G = Gψ(σ) consists of all distributions Z ∼ µ ∈153

P(Rd) for which ∥Z − E[Z]∥ψ ≤ σ, where ψ(x) =
∑
i≥1 aix

2i is real analytic and even, with154

ai ≥ 0 for all i ≥ 1 and ψ(1) ≤ 2.155

Assumption 2 (ℓ⋆ depends on k-dimensional features). The optimal loss function ℓ⋆ can be decom-156

posed as ℓ⋆ = ℓ ◦A for an affine map A : Rd → Rk and some ℓ : Rk → R.157

Assumption 1 captures a variety of standard Orlicz norm bounds.158

Example 1. Taking σ = 1 and ψ(x) = x2, we obtain the class Gcov = {µ ∈ P(Rd) : Σµ ⪯ Id} of159

bounded covariance distributions, while ψ(x) = ex
2 − 1 gives the class GsubG of 1-sub-Gaussian160

distributions.161

3If a minimizer does not exist for either problem, an infimizing sequence will achieve the same guarantee.
4While the choice of 0.49 is arbitrary, our bounds degrade as ε → 1/2 (the optimal breakdown point).
5While our stated risk bounds will depend on ℓ⋆, they extend naturally to approximate minimizers.
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Assumption 2 is not necessarily restrictive, since one may always take k = d and A = Id. However,162

in many practical settings, all loss functions exhibit k-dimensional affine structure for k ≪ d (e.g.,163

multi-linear regression). Our risk bounds are substantially stronger in this regime.164

Example 2 (Supervised learning with low-dimensional structure). Suppose that Rd = Rdf × Rdℓ165

for a df dimensional feature space and dℓ dimensional label space. Fix any hypothesis class H166

of Rdℓ-valued functions on Rdf such that each h ∈ H can be written as h(x) = h(A(x)), where167

A : Rd → Rk−1 is affine and h : Rk−1 → Rdℓ is Lipschitz. Let L : Rdℓ → R be a l.s.c. loss168

function with bounded pth order growth, i.e., supw∈Rdℓ

|L(w)|
1+∥w∥p < ∞. For example, we may take169

L(w) = ∥w∥p or L(w) = 1{w ̸= 0}. Then L = {(x, y) 7→ L(h(x) − y) : h ∈ H} satisfies170

Assumption 2. Indeed, for each h = h ◦A in H, we can write L(h(x)− y) = ℓ(B((x, y))), where171

B : Rd → Rk defined by B((x, y)) = (Ax, y) is affine and ℓ((Ax, y)) = L(h(Ax)− y).172

Setting A considers the “population-limit” (i.e. no explicit model for sampling). We examine the173

performance of outlier-robust WDRO in this regime before turning to finite-sample risk bounds and174

computation. Proofs are provided in Supplement C.175

3.1 Population-Limit Excess Risk Bounds176

We now quantify the excess risk of decisions made using ε-outlier-robust p-WDRO.177

Theorem 1 (Population-limit excess risk bound). Consider Setting A under Assumptions 1 and 2.178

Let ℓ̂ minimize (OR-WDRO). Then, the excess risk Eµ[ℓ̂ ]− Eµ[ℓ⋆] is at most179 {
2∥ℓ⋆∥Lip

(
ρ+ τ1,k(G, 2ε)

)
, p = 1, ℓ⋆ Lipschitz

2∥ℓ⋆∥Ḣ1,2(µ)

(
ρ+ τ(G, 2ε)

)
+ 44α

1−2ε (ρ+ τ2,k(G, 2ε))2, p = 2, ℓ⋆ α-smooth
.

Note that 1
1−2ε = O(1) since ε ≤ 0.49. These bounds imply that the learner can make effective180

decisions when the optimal decision ℓ⋆ has low variational complexity. In contrast, there are simple181

regression settings with TV corruption that drive the excess risk of standard WDRO to infinity.182

Moreover, the TV component of the risk is considerably smaller when k ≪ d. In Table 1, we present183

tight risk bounds for OR-WDRO in a variety of environments. Each environment corresponds to a set184

of restrictions on µ, the optimal loss function ℓ⋆, and the order p of the Wasserstein perturbation. The185

guarantees of OR-WDRO are minimax optimal for all settings considered (see Appendix C.2).186

Our proof controls excess risk via the following two regularizers:187

ΩWp(ℓ⋆;µ, ρ) := sup
ν∈P(Rd)

Wp(ν,µ)≤ρ

Eν [ℓ⋆]− Eµ[ℓ⋆], ΩTV(ℓ⋆;µ,G, ε) := sup
ν∈G

∥ν−µ∥TV≤ε

Eν [ℓ⋆]− Eµ[ℓ⋆].

The Wp regularizer is well-studied and known to control excess risk for WDRO. When ε = 0, our188

proof recovers the known excess risk bound of ΩWp(ℓ⋆;µ, ρ), and the theorem’s bound is a standard189

upper bound on this quantity. The TV regularizer can similarly be shown to control excess risk for190

population-limit robust statistics (i.e. when ρ = 0), though, to the best of our knowledge, no previous191

work has derived explicit bounds on this quantity. The risk bound in Theorem 1 is a consequence of192

the following decomposition,193

Environment

µ ∈ Gcov µ ∈ GsubG µ ∈ Gcov µ ∈ GsubG

∥ℓ⋆∥Lip ≤ L ∥ℓ⋆∥Lip ≤ L ∥ℓ⋆∥Ḣ1,2(µ) ≤ L ∥ℓ⋆∥Ḣ1,2(µ) ≤ L
p = 1 p = 1 ℓ⋆ α-smooth, p = 2 ℓ⋆ α-smooth, p = 2

OR-WDRO L(ρ+
√
kε) L(ρ+

√
kε) L(ρ+

√
ε) L(ρ+ ε)

excess risk (OPT) +α(ρ2 + k) +α(ρ2 + kε)

Table 1: Tight excess risk bounds for OR-WDRO in varied environments. Logarithmic factors omitted for ease
of presentation; see Appendix C.2 for details.
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Eµ[ℓ̂ ]− Eµ[ℓ⋆] ≤ ΩWp(ℓ⋆;µ, 2ρ) + sup
ν∈P(Rd)

Wp(ν,µ)≤ρ

ΩTV(ℓ⋆; ν,G, 2ε),

whose components reveal the effect of each perturbation (viz. Wasserstein versus TV) on the quality194

of the decision. When p = 1, we rely on Kantorovich duality for W1, and, for p = 2, we use that ℓ195

can be well-approximated by its Taylor expansion about Z ∼ µ. Finally, we show that ΩTV depends196

only on a subproblem in Rk. Notably, WDRO adapts automatically to the intrinsic dimensionality of197

ℓ⋆ without requiring knowledge of k.198

Remark 1 (Comparison to recentered WDRO). We note that non-trivial guarantees can be ob-199

tained by performing classic WDRO recentered around the minimum distance estimate µ̂ =200

argminν∈G Wε
1(µ̃, ν) with an expanded radius. For example, when p = 1, this estimate satis-201

fies W1(µ, µ̂) ≤ 2ρ+2τ1(G, 2ε), and so WDRO about µ̂ with this expanded radius incurs excess risk202

at most O(∥ℓ⋆∥Lip(ρ+ τ1(G, 2ε)). Ignoring the computational complexity of finding such a center µ̂203

(which to the best of our knowledge, has not been established), the full-dimensional W1 resilience204

term τ1(G, ε) is substantially larger than the optimal τ1,k(G, ε) for k ≪ d. We defer a comprehensive205

comparison against this MDE+WDRO approach for future work.206

3.2 Finite-Sample Excess Risk Bounds207

We next formalize a finite-sample model and provide statistical guarantees.208

Setting B: Fix ρ, ε, L, and G as in Setting A. We consider the following environment:209

(i) Nature samples Z1, . . . , Zn i.i.d. from µ ∈ G, with empirical measure µ̂n = 1
n

∑n
i=1 δZi

;210

(ii) Nature produces Z̃1, . . . , Z̃n with empirical measure µ̃n such that Wε
p(µ̃n, µ̂n) ≤ ρ;211

(iii) The learner observes µ̃n, selects ℓ̂ ∈ L, and suffers excess risk Eµ[ℓ̂]− Eµ[ℓ⋆].212

The learner is now tasked with selecting ℓ̂ ∈ L given only µ̃n. The results from Section 3 apply213

immediately whenever ρ ≥ ρ0 +Wp(µ, µ̂n) with high probability.214

Proposition 3 (Choosing ρ). Consider Setting B under Assumption 2 with G = Gcov. Assume d ≥ 3.215

Take any ℓ̂ ∈ L minimizing (OR-WDRO) when centered about µ̃ = µ̃n with p = 1. Then the excess216

risk bounds of Theorem 1 hold with probability at least 0.99 so long as ρ ≥ ρ0 + c
√
dn−

1
d , where217

c > 0 is an absolute constant. If rather G = GsubG, we have the same for both p = 1 and p = 2.218

While beyond the scope of this workshop submission, we note that this n−1/d rate may be improved219

to n−1/k under a Poincaré-type assumption on µ and a mild change to (OR-WDRO).220

4 Tractable Reformulation and Computation221

We now turn to computation. Due to space constraints, we focus on G = Gcov with p = 1 and222

k = d, though the approach below can be significantly extended. Initially, (OR-WDRO) may appear223

intractable, since Gcov is non-convex when viewed as a subset of the cone M+(Rd). Moreover,224

enforcing membership to this class is non-trivial. To remedy these issues, we propose using a cheap225

preprocessing step to obtain a robust estimate z0 ∈ Rd of the mean Eµ[Z] and then optimizing over226

G2(σ, z0) :=
{
ν ∈ P(Rd) :

√
Eν [∥Z − z0∥2] ≤ σ

}
, for some σ > 0. Finally, for technical reasons227

it is preferable to consider the one-sided robust distance Wε
p(µ∥ν) := infµ′∈P(Rd):µ′≤ 1

1−εµ
Wp(µ

′, ν).228

All together, we propose solving the simplified problem229

inf
ℓ∈L

sup
ν∈G2(σ,z0):Wε

p(µ̃n∥ν)≤ρ
Eν [ℓ], (3)

which admits risk bounds matching Theorem 1.230

Proposition 4 (Risk bound for simplified problem). Consider Setting B with p = 1 and G = Gcov.231

Fix z0 ∈ Z such that ∥z0−Eµ[Z]∥ ≤ ρ0 + O(
√
d), and take ℓ̂ minimizing (3) with ρ = ρ0 +232

W1(µ̂n, µ) +O(
√
dε) and σ = ρ0 +O(

√
d). Then, excess risk is bounded by233

Eµ[ℓ̂]−Eµ[ℓ⋆] ≲∥ℓ⋆∥Lip
(
ρ0 +W1(µ̂n, µ) +

√
dε

)
.
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The proof uses the fact that µ ∈ Gcov implies µ ∈ G2

(√
d + ∥z0 − Eµ[Z]∥, z0

)
, along with the234

resilience bound τ1
(
G2(σ, z0), ε

)
≲

√
dε. For efficient computation, we must specify a robust mean235

estimation algorithm to obtain z0 and a procedure for solving (3). For the former, we show that the236

popular iterative filtering algorithm [9] works even with adversarial Wasserstein perturbations.237

Proposition 5 (Robust mean estimation). Consider Setting B with G = Gcov, p = 1, and ε ≤ 1/12.238

For n = Ω(d log(d)/ε), there exists an iterative filtering algorithm which takes µ̂n as input, runs in239

time Õ(nd2), and outputs z0 ∈ Rd such that ∥z0 −Eµ[Z]∥ ≲ ρ0 +
√
ε with probability at least 0.99.240

It is not immediately clear that iterative filtering should still work under Wε
1 perturbations (compared241

the TV corruptions it was designed for), since the W1 step can arbitrarily increase the initial covariance242

bound. Fortunately, we show that trimming a small fraction of samples mitigates this potential243

increase. With some effort omitted from this submission, we expect that the upper bound on ε can be244

replaced with any constant less than 1/2, and that the running time can be improved to Õ(nd).245

We next show that that the inner maximization problem of (3) can be simplified to a minimization246

problem involving only three scalars provided the following assumption holds.247

Assumption 3 (Slater condition I). Given the distribution µ̃n and the fixed point z0, there exists248

ν0 ∈ P(Z) such that Wε
p(µ̃n∥ν0) < ρ and Eν0 [∥Z − z0∥2] < σ2. Additionally, we require ρ > 0.249

Notice that Assumption 3 indeed holds for ν0 = µ as applied in Proposition 4.250

Proposition 6 (Strong duality). Under Assumption 3, for any ℓ ∈ L and z0 ∈ Rd, we have251

sup
ν∈G2(σ,z0):Wε

p(µ̃n∥ν)≤ρ
Eν [ℓ] = inf

λ1,λ2∈R+

α∈R

λ1σ
2 + λ2ρ

p + α+
1

1− ε
Eµ̃n

[
ℓ(· ;λ1, λ2, α)

]
, (4)

where ℓ(z;λ1, λ2, α) := supξ∈Rd

[
ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − z∥p − α

]
+

.252

The minimization problem over (λ1, λ2, α) is an instance of stochastic convex optimization, where253

the expectation of the implicit function ℓ is taken w.r.t. the contaminated empirical measure µ̃n. In254

contrast, the dual reformulation for classical WDRO only involves λ2 and takes the expectation of255

the implicit function ℓ(z;λ2) := supξ∈Rd ℓ(ξ) − λ2∥ξ − z∥p w.r.t. µ̃n. The additional λ1 variable256

above is introduced to account for the clean family G2(σ, z0), and the use of partial transportation257

under Wε
p results in the introduction of the operator [·]+ and the decision variable α.258

Remark 2 (Connection to conditional value at risk (CVaR)). The CVaR of a Borel measurable loss259

function ℓ acting on a random vector Z ∼ µ ∈ P(Rd) with risk level ε ∈ (0, 1) is defined as260

CVaR1−ε,µ[ℓ(Z)] = inf
α∈R

α+
1

1− ε
EZ∼µ

[
[ℓ(Z)− α]+

]
.

CVaR is also known as expected shortfall and is equivalent to the conditional expectation of ℓ(Z),261

given that it is above an ε threshold. This concept is often used in finance to evaluate the market risk262

of a portfolio. With this definition, the result of Proposition 6 can be written as263

sup
ν∈G2(σ,z0):
Wε

p(µ̃n∥ν)≤ρ

Eν [ℓ] = inf
λ1,λ2∈R+

λ1σ
2+λ2ρ

p+CVaR1−ε,µ̃n

[
sup
ξ∈Rd

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − Z∥p
]
.

When ε → 0 and σ → ∞, whence CVaR reduces to expected value and the constrained class264

G2(σ, z0) becomes the whole space of distributions P(Rd)), the dual formulation above reduces to265

that of classical WDRO [13].266

Evaluating ℓ, however, requires solving a maximization problem, which could be in itself challenging.267

To overcome this, we impose additional convexity assumptions, standard for WDRO [25, 33].268

Assumption 4 (Convexity condition). The loss ℓ is a pointwise maximum of finitely many concave269

functions, i.e., ℓ(ξ) = maxj∈[J] ℓj(ξ), for some J ∈ N, where ℓj is real-valued, l.s.c., and concave.270

Theorem 2 (Convex reformulation). Under Assumption 3, for any ℓ ∈ L satisfying Assumption 4271

and z0 ∈ Rd, we have supν∈Gq(σ,z0):Wε
p(µ̃n∥ν)≤ρ Eν [ℓ] = inf λ1σ

2 + λ2ρ
p + α+ 1

n(1−ε)
∑
i∈[n] si,272

where the right-hand side is optimized over the constraint set273 
λ1, λ2 ∈ R+, α ∈ R, s, τij ∈ Rn+, ζℓij , ζ

G
ij , ζ

W
ij ,∈ Rd, ∀i ∈ [n],∀j ∈ [J ]

si ≥ (−ℓj)∗(ζℓij) + z⊤0 ζ
G
ij + τij + Z̃⊤

i ζ
W
ij + Ph(ζ

W
ij , λ2)− α, ∀i ∈ [n],∀j ∈ [J ]

ζℓij + ζGij + ζWij = 0, ∥ζGij∥2 ≤ λ1τij , ∀i ∈ [n],∀j ∈ [J ],
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and Ph is the perspective function of h defined by274

h(ζ) :=

χ{z∈Rd: ∥z∥≤1}(ζ), p = 1

(p−1)p−1

pp ∥ζ∥
p

p−1 , p > 1
. (5)

The minimization problem in Theorem 2 is a finite-dimensional convex program.275

5 Experiments276

NeurIPS Rebutal: Figures

1. Corruption model diagram:
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2. Updated plots using corrected dual implementation:
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3. Preliminary results for robust classification of MNIST digits:
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Figure 1: Excess risk of standard WDRO and
several forms of outlier-robust WDRO for linear
regression under Wp and TV corruptions, with
varied sample size.

Lastly, we implement our tractable reformulation277

and validate our excess risk bounds. Fixing Rd =278

X × Y = Rd−1 × R, we focus on linear regres-279

sion with the mean absolute deviation loss, i.e.,280

L = {ℓθ(x, y) = |θ⊤x − y| : θ ∈ Rd}. See Sup-281

plement E for additional experiments treating classi-282

fication and multivariate regression, along with full283

code and experimental details. The experiments be-284

low were run in 30 minutes on an M1 MacBook Air285

with 16GB RAM.286

Let Z = (Rd, ∥ · ∥2) for d ≥ 2 and fix ρ = 0.1,287

ε0 = 0.05. We take θ0, θ1 ∈ Sd−2 with ∥θ0−θ1∥2 ≤288

ρd−1/2. Letting X ∼ N (0, Id−1), we consider clean289

data (X, θ⊤0 X) ∼ µ. The corrupted data (X̃, Ỹ ) ∼ µ̃290

satisfies (X̃, Ỹ ) = (X, θ⊤1 X) with probability 1−ε0291

and (X̃, Ỹ ) = (20X,−20θ⊤1 X) with probability ε0, so that Wε0
p (µ̃∥µ) ≤ ρ. In Figure 1 (top), we292

fix d = 10 and compare the excess risk Eµ[ℓθ̂] − Eµ[ℓθ0 ] of standard WDRO (ε = 0, no moment293

constraints) and OR-WDRO with ε ∈ {0, ε0, 2ε0}, as described by Proposition 4 and implemented294

via Theorem 2. The results are averaged over T = 20 runs for sample size n ∈ {10, 20, 50, 75, 100}.295

Implementation of the reformulation was performed in MATLAB using the YALMIP toolbox [24]296

and SeDuMi solver [40].297

6 Concluding Remarks298

In this work, we have introduced a novel framework for outlier-robust WDRO that allows for both299

geometric and non-geometric perturbations of the observed data distribution, as captured by Wp300

and TV, respectively. We provided minimax-optimal excess risk bounds and strong duality results301

that enable efficient computation via convex reformulation. The full version of this paper will302

include refined statistical guarantees, tractable convex reformulations for distribution families beyond303

Gcov and for k ≪ d, and a detailed discussion of parameter tuning. Overall, our approach enables304

principled, data-driven decision-making in realistic scenarios where observations may be subject to305

adversarial contamination by outliers.306
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A Preliminary Results419

We first recall and prove some basic facts about Wε
p, Orlicz norms, projected moment bounds, and420

resilience. To start, we prove that Wε
p is equivalent to a certain partial OT problem.421

Lemma 1 (Wε
p as partial OT). For any ε ∈ [0, 1] and µ, ν ∈ P(Rd), we have422

Wε
p(µ, ν) = (1− ε)1/p inf

µ′,ν′∈P(Rd)
µ′≤ 1

1−εµ, ν
′≤ 1

1−εν

Wp(µ
′, ν′)

Proof. Write W̃ε
p(µ, ν) for the RHS. Rescaling, we have423

W̃ε
p(µ, ν) = inf

µ′,ν′∈(1−ε)P(Rd)
µ′≤µ, ν′≤ν

Wp(µ
′, ν′), (6)

matching the definition for robust OT in [29]. By their triangle inequality (Proposition 3 therein), we424

have for any µ̃ ∈ P(Rd) with ∥µ̃− µ∥TV ≤ ε that425

W̃ε
p(µ, ν) ≤ W̃ε

p(µ, µ̃) +Wp(µ̃, ν) = Wp(µ̃, ν).

Infimizing over µ̃, we find that W̃ε
p(µ, ν) ≤ Wε

p. For the opposite direction, consider any feasible426

µ′, ν′ for (6), and let µ̃ = µ′ + (ν − ν′). By construction, we have ∥µ̃− µ∥TV ≤ ε. Moreover, by427

Lemma 5 of [29], we have Wp(µ̃, ν) ≤ Wp(µ
′, ν′). Thus, Wε

p(µ, ν) ≤ Wp(µ
′, ν′), and infimizing428

over µ′, ν′ gives the lemma.429

Next, we address the simple setting of Orlicz norms for constant random variables.430

Lemma 2 (Orlicz norm of constant random variable). For any constant random variable Z = z ∈ Rd,431

and any Orlicz function ψ satisfying the conditions in Assumption 1, we have ∥Z∥ψ ≤ 2∥z∥.432

Proof. For each θ ∈ Sd−1, we bound433

E
[
ψ

(
|θ⊤Z|
2∥z∥

)]
= E

[
ψ

(
|θ⊤z|
2∥z∥

)]
≤ E[ψ(1/2)]

=
∑
i≥1

ai2
−2i

≤
∑
i≥1

2−2imax
j≥1

aj

< 1/2 · ψ(1) < 1.

Thus ∥Z∥ψ ≤ 2∥z∥, as desired.434

Now, we introduce some notation and basic comparison results for projected moment bounds. Given435

Z ∼ µ ∈ P(Rd), r ∈ [d], and q ≥ 1, we write σq,r(µ) := Wq,r(µ, δE[Z]) and σq(µ) = σq,d(µ).436

This quantity captures the largest centered qth moment of an r-dimensional projection of µ.437

Lemma 3 (Projected moment comparison). Fix µ ∈ P(Rd), dimension r ∈ [d], and power q ≥ 1.438

We then have σq,r(µ) ≤ E[|S1|q]−1/qσq,1(µ), where S ∼ Unif(Sr−1).439

Proof. Assume without loss of generality that Z ∼ µ has mean zero. Fix any U ∈ Rr×d with440

UU⊤ = Ir, and let S ∼ Unif(Sr−1). We then bound441

σq,1(µ)
q ≥ σq,1(U#µ)

q

= sup
θ∈Sr−1

E[|θ⊤UZ|q]

≥ E[|S⊤UZ|q]
= E[|S1|q]E[∥UZ∥q],

where the last equality holds by rotational symmetry. Taking a supremum overU gives the lemma.442
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Lemma 4 (Moment centering). Fix µ ∈ P(Rd), dimension r ∈ [d], and power q ≥ 1. Then for any443

z ∈ Rd, we have σq,r(µ) ≤ 2Wq,r(µ, δz).444

Proof. Taking Z ∼ µ, we compute445

σq,r(µ) = Wq,r(µ, δE[Z])

≤ Wq,r(µ, δz) +Wq,r(δz, δE[Z])

≤ 2Wq,r(µ, δz),

where the final inequality follows by Jensen’s inequality.446

Next, we recall two useful results for mean resilience.447

Lemma 5 (Mean resilience under moment bounds). For any ε ∈ [0, 1) and µ ∈ P(R), we have448

τ(µ, ε) ≤ infq≥1 σq,1(µ)ε
1−1/q(1− ε)−1.449

Proof. This follows from Lemma E.2 of [48], using the Orlicz function ψ(t) = tq for each q ≥ 1.450

Lemma 6 (Mean resilience for large ε, [39], Lemma 10). For any ε ∈ (0, 1) and µ ∈ P(Rd), we451

have τ(µ, 1− ε) = 1−ε
ε τ(µ, ε).452

Finally, we turn to Wasserstein resilience.453

Lemma 7 (W2 resilience and even moment bounds). Fix ε ∈ (0, 1) and family G ⊆ P(Rd) satisfying454

Assumption 1. We then have455

1

8
(1− ε)τ2(G, ε)2 ≤ sup

µ∈G
inf
i∈N>0

σ2i(µ)
2ε1−1/i ≤ 2τ2(G, ε)2.

Proof. Fix µ ∈ G with mean zero. By the proof of [29, Theorem 2], we have456

τ2(µ, ε)
2 ≤ 4(1− ε)−1 inf

i>1
σ2i(µ)

2 E[∥Z∥2i]1/iε1−1/i + 4εσ2(µ)
2

≤ 8(1− ε)−1σ2i(µ)
2ε1−1/i.

Taking a supremum over µ ∈ G gives the first inequality (noting that the centering assumption is457

without loss of generality since G is closed under translations). For the second inequality, we again458

take mean zero Z ∼ µ ∈ G. Then, by Assumption 1, we have supθ∈Sd−1 Eµ[ψ(|θ⊤Z|)] ≤ 1, where459

ψ(x) =
∑
i≥1 aix

2i. Taking S ∼ Unif(Sd−1), we bound460

1 ≥ sup
θ∈Sd−1

E[ψ(|θ⊤Z|)]

= sup
θ∈Sd−1

∑
i≥1

ai E[|θ⊤Z|2i]

≥ sup
θ∈Sd−1,i≥1

ai E[|θ⊤Z|2i]

= sup
i≥1

ai sup
θ∈Sd−1

E[|θ⊤Z|2i]

= sup
i≥1

ai σ2i,1(µ)
2i

= sup
i≥1

ai E[S2i
1 ]σ2i(µ)

2i,

where the last equality follows by Lemma 3.461

Next, we define the modified Orlicz functions462

ϕ(x) := E[ψ(|S1|
√
x)] =

∑
i≥1

ai E[S2i
1 ]xi, ϕ(x) = sup

i≥1
ai E[S2i

1 ]xi.

By design, we have463

ϕ(x) ≤ ϕ(x) =
∑
i≥1

ai E[S2i
1 ](2x)i2−i ≤ ϕ(2x).
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Since ϕ and ϕ are increasing on R+, we have 1
2ϕ

−1(y) ≤ ϕ−1(y) ≤ ϕ−1(y) for y ≥ 0. Moreover,464

the inverse of this lower bound has closed form465

ϕ−1(y) = inf
i≥i

(ai E[S2i
1 ]/y)−1/i.

We now bound466

inf
i≥1

σ2i(µ)
2ε1−1/i ≤ ε inf

i≥1
(εai E[S2i

1 ])−1/i

= εϕ−1(1/ε)

≤ 2εϕ−1(1/ε)

= 2 sup
{
εx2 : x ≥ 0,E[ψ(|S1|x)] ≤ 1/ε

}
.

Finally, for any feasible x for the final supremum, consider the random variable Z ∼ ν defined by467

Z = 0 w.p. 1− ε, Z = xS w.p. ε.

By construction, we have468

τ2(ν, ε)
2 ≥ E[∥Z∥2] = εx2,

and, for any θ ∈ Sd−1, we have469

E[ψ(|θ⊤(Z − E[Z])|)] = εE[ψ(|S1|x)] ≤ 1.

Combining, we have τ2(G, ε)2 ≥ τ2(ν, ε)
2 ≥ εx2 ≥ 1

2 infi≥1 σ2i(µ)
2ε1−1/i, as desired.470

From this result, we obtain the following two lemmas.471

Lemma 8. Fix ε ∈ (0, 1) and µ ∈ G for G ⊆ P(Rd) satisfying Assumption 1. Then, for any ν ≤ 1
εµ,472

we have εσ2(ν)2 ≤ 4τ2(G, ε)2.473

Proof. Assume without loss of generality that µ has mean 0. Taking Z ∼ µ and Y ∼ ν, we bound474

εσ2(ν)
2 ≤ 2εE[∥Y ∥2] (Lemma 4)

≤ 2εE[∥Z∥2] + ετ(∥Z∥2, 1− ε)

≤ 2εE[∥Z∥2] + inf
i>1

E[∥Z∥2i]1/iε1−1/i (Lemma 5)

≤ 2 inf
i≥1

E[∥Z∥2i]1/iε1−1/i.

Applying Lemma 7 gives the lemma.475

Lemma 9. If ε ∈ (0, 1) and G ⊆ P(Rd) satisfies Assumption 1, then τ(G, ε) ≤ 4
√
ε

(1−ε)τ2,1(G, ε).476

Proof. For each µ ∈ G, we bound477

(1− ε)2

ε
τ(µ, ε)2 ≤ 8 inf

q≥1
σq,1(µ)

2ε1−2/q (Lemma 5)

≤ 8 inf
i≥1

σ2i,1(µ)
2ε1−1/i

≤ 16τ2,1(G, ε). (Lemma 7)

Taking a supremum over µ ∈ G gives the lemma.478

B Generic DRO Regularizer Bounds479

This section considers a generic DRO problem and a corresponding notion of regularization. As480

special cases, we highlight results for WDRO and TV DRO that underlie our proof of Theorem 1.481
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Fix a distribution class G ⊆ P(Rd) and a loss family L ⊆ ∩µ∈GL
1(µ). Let C : G → P(Rd) be482

a corruption channel taking µ ∈ G to a set of potential µ̃ ∈ C(µ). Then, for any such µ̃, one can483

consider the generic DRO problem484

inf
ℓ∈L

sup
ν∈G∩C−1(µ̃)

Eν [ℓ]. (7)

For a fixed ν ∈ C(G) and ℓ ∈ L ∩ L1(ν), we define the DRO regularizer485

Ω(ℓ; ν,G,C) := sup
ν′∈G∩C−1(ν)

Eν′ [ℓ]− Eν [ℓ].

Assuming that ℓ ∈ L1(µ̃), one can rewrite (7) as the regularized minimization problem486

inf
ℓ∈L

µ̃(ℓ) + Ω(ℓ; µ̃,G,C).

In any case, this quantity controls the excess risk of DRO. Writing C−1 ◦ C for the composite487

corruption channel taking µ ∈ G to ν ∈ G with C(µ) ∩ C(ν) ̸= ∅, we have the following.488

Lemma 10 (Risk bound for generic DRO). Fix µ ∈ G and µ̃ ∈ C(µ). If ℓ̂ minimizes (7), then489

Eµ[ℓ̂] ≤ infℓ∈L Eµ[ℓ] + Ω(ℓ;µ,G,C−1 ◦ C).490

Proof. We simply bound491

Eµ[ℓ̂]− Eµ[ℓ] ≤ sup
ν∈G∩C−1(µ̃)

Eν [ℓ̂]− Eµ[ℓ]

≤ sup
ν∈G∩C−1(µ̃)

Eν [ℓ]− Eµ[ℓ]

≤ sup
ν∈G∩C−1(C(µ))

Eν [ℓ]− Eµ[ℓ] = ΩD(ℓ, r;µ,G,C−1 ◦ C).

Infimizing over ℓ ∈ L gives the lemma.492

When C(µ) = {µ̃ ∈ P(Rd) : D(µ̃, µ) ≤ r} for a statistical distance D : P(Rd)×P(Rd) → R+ and493

radius r ≥ 0, we write ΩD(ℓ, r; ν,G) = Ω(ℓ; ν,G,C). If distributional assumptions play a minor role,494

we may opt to consider ΩD(ℓ, r; ν) := ΩD(ℓ, r; ν,P(Rd)).495

B.1 WDRO Regularization496

The Wp regularizer, corresponding to D = Wp, appears explicitly and implicitly throughout the497

WDRO literature. We now recall standard bounds on this quantity.498

Lemma 11 (ΩW1
bound, [11], Lemma 1). Fix ν ∈ P1(Rd), Lipschitz ℓ : Rd → R, and ρ ≥ 0. We499

then have ΩW1
(ℓ, ρ; ν) ≤ ρ∥ℓ∥Lip, with equality if ℓ is convex and Z = Rd.500

Lemma 12 (ΩW2
bound, [11], Lemma 2). Fix ν ∈ P2(Rd), α-smooth ℓ : Rd → R, and ρ ≥ 0. We501

then have |ΩW2
(ℓ, ρ; ν)− ρ∥ℓ∥Ḣ1,2(ν)| ≤

1
2αρ

2.502

B.2 TV DRO Regularization503

We introduce new bounds (to the best of our knowledge) for the DRO regularizer with D = TV.504

Lemma 13 (ΩTV bound under Lipschitzness). Fix µ ∈ G ⊆ P1(Rd) and l.s.c. ℓ : Rd → R with505

supz∈Rd
|ℓ(z)|
1+∥z∥ <∞. If ℓ is Lipschitz, then506

ΩTV(ℓ, ε;µ,G) ≤ ΩW1
(ℓ, 2τ1(G, ε);µ).

Proof. Fix ν ∈ G with ∥ν − µ∥TV ≤ ε, and write κ = 1
(ν∧µ)(Rd)

ν ∧ µ for their midpoint distribution.507

Note that (ν ∧µ)(Rd) ≥ 1− ε by the TV bound. We then have W1(ν, µ) ≤ W1(ν, κ)+W1(κ, µ) ≤508

2τ1(G, ε), implying the lemma.509
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Lemma 14 (ΩTV bound under smoothness). Fix µ ∈ G for G ⊆ P2(Rd) satisfying Assumption 1,510

and let ℓ : Rd → R be l.s.c. with supz∈Rd
|ℓ(z)|

1+∥z∥2 <∞. If ℓ is α-smooth, then511

ΩTV(ℓ, ε;µ,G) ≤ 2∥∇ℓ(Eµ[Z])∥τ(G, ε) + 44α(1− ε)−1τ2(G, ε)2.

Proof. Fix any ν ∈ G with ∥ν−µ∥TV ≤ ε, and decompose ν = µ+ε(κ+−κ−), where κ± ∈ P(Z)512

with εκ− ≤ µ and εκ+ ≤ ν. Let Z ∼ µ, Y ∼ κ−, X ∼ ν, and W ∼ κ+. We bound513

E[ℓ(X)− ℓ(Z)] = εE[ℓ(W )− ℓ(Y )]

= εE
[
ℓ(W )− ℓ(E[W ])

]
+ ε

[
ℓ(E[W ])− ℓ(E[Y ])

]
+ εE

[
ℓ(E[Y ])− ℓ(Y )

]
.

To bound the first and last terms, we observe that for V ∼ κ = κ±, we have514

εE
[
ℓ(V )− ℓ(E[V ])

]
≤ αεE[∥V − E[V ]∥2]
≤ αεσ2(κ)

2

≤ 4ατ2(G, ε)2,

by α-smoothness of ℓ̃ and Lemma 8. For the second term, write I = conv({E[W ],E[Y ]}) for the515

line segment connecting E[W ] and E[Y ]. By the definition of mean resilience, we bound516

∥E[W ]− E[X]∥ ≤ τ(G, 1− ε),

∥E[Y ]− E[Z]∥ ≤ τ(G, 1− ε),

∥E[Z]− E[X]∥ ≤ 2τ(G, ε),

where the last inequality follows by the same midpoint argument applied in the proof of Lemma 13.517

Writing L = ∥∇ℓ(E[Z])∥, we have for each x ∈ I that518

∥∇ℓ(x)∥ ≤ L+ α∥x− E[Z]∥
≤ L+ αmax{∥E[W ]− E[Z]∥, ∥E[Y ]− E[Z]∥}
≤ L+ αmax{τ(G, 1− ε) + 2τ(G, ε), τ(G, 1− ε)}

≤ L+ α

(
1− ε

ε
+ 2

)
τ(G, ε),

again using smoothness of ℓ. We then bound519

ε
[
ℓ(E[W ])− ℓ(E[Y ])

]
≤ εmax

x∈I
∥∇ℓ(x)∥∥E[X]− E[Z]∥

= max
x∈I

∥∇ℓ(x)∥∥E[X]− E[Z]∥

≤
[
L+ α

(
1− ε

ε
+ 2

)
τ(G, ε)

]
2τ(G, ε)

= 2Lτ(G, ε) + 2α

(
1− ε

ε
+ 2

)
τ(G, ε)2

= 2Lτ(G, ε) + 4ατ2(G, ε)2 + 2α
1− ε

ε
τ(G, ε)2

≤ 2Lτ(G, ε) + 4ατ2(G, ε)2 + 32α(1− ε)−1τ2,1(G, ε)2 (Lemma 9)

≤ 2Lτ(G, ε) + 36α(1− ε)−1τ2,1(G, ε)2.

Combining the above, we obtain520

E[ℓ(X)]− E[ℓ(Z)] ≤ 8ατ2(G, ε) + 2Lτ(G, ε) + 36α(1− ε)−1τ2,1(G, ε)2

≤ 2Lτ(G, ε) + 44α(1− ε)−1τ2(G, ε)2,

as desired.521
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C Proofs for Section 3522

C.1 Proof of Theorem 1523

Our proof follows by analyzing the Wε
p regularizer524

ΩWε
p
(ℓ, ρ;µ,G) = sup

ν∈G
Wε

p(ν,µ)≤ρ

Eν [ℓ]− Eµ[ℓ].

We bound this quantity from above by a Wp regularizer and a TV regularizer maximized over a525

Wasserstein ball centered at µ.526

Lemma 15. Fix ε ∈ [0, 1) and ρ ≥ 0. For any µ ∈ G ⊆ Pp(Rd) and ℓ : Rd → R l.s.c. with527

supz∈Rd
|ℓ(z)|

1+∥z∥p <∞, we have528

ΩWε
p
(ℓ, ρ;µ,G) ≤ ΩWp

(ℓ, ρ;µ) + sup
ν∈P(Rd)

Wp(ν,µ)≤ρ

ΩTV(ℓ, ε; ν,G).

Proof. Fix any κ ∈ G with Wε
p(κ, µ) ≤ ρ. By the definition of Wε

p, there exists µ′ ∈ P(Rd) with529

Wp(µ
′, µ) ≤ ρ and ∥µ′ − κ∥TV ≤ ε. We thus bound530

Eκ[ℓ]− Eµ[ℓ] = (Eκ[ℓ]− Eµ′ [ℓ]) + (Eµ′ [ℓ]− Eµ[ℓ])
≤ sup

ν∈P(Rd)
Wp(ν,µ)≤ρ

ΩTV(ℓ, ε; ν,G) + ΩWp(ℓ, ρ;µ).

Supremizing over κ gives the lemma.531

Next, we show that, under the affine structure of ℓ⋆, one can instead consider DRO in Rk. In particular,532

writing Gk = G ∩ P(Rk) for some U ∈ Rk×d with UU⊤ = Ik (the choice is not important due to533

rotational symmetry), we have the following.534

Lemma 16. Under Assumption 2, we may decompose ℓ⋆ = ℓ̃ ◦Q for Q ∈ Rk×d with QQ⊤ = Ik535

and l.s.c. ℓ̃ with supz∈Rd
|ℓ̃(z)|

1+∥z∥p <∞. For any such decomposition, we have536

sup
ν∈G

Wε
p(ν,µ̃)≤ρ

Eν [ℓ⋆] = sup
ν∈Gk

Wε
p(ν,Q#µ̃)≤ρ

Eν [ℓ̃].

Proof. By Assumption 2, we can write ℓ⋆ = ℓ ◦ A for A : Rd → Rk affine and ℓ l.s.c. with537

supz∈Rd
|ℓ̃(z)|
1+|z|p <∞. We further decompose A(z) = RQz+ z0, where Q ∈ Rk×d with QQ⊤ = Ik,538

R ∈ Rk×k, and z0 ∈ Rk. Note that the orthogonality condition ensures thatQ⊤ isometrically embeds539

Rk into Rd. We can then choose ℓ̃(w) = ℓ(Rw + z0).540

Next, given any ν ∈ G, we haveQ#ν ∈ Gk with Wε
p(Q#ν,Q#µ̃) ≤ Wε

p(ν, µ̃), and Eν [ℓ] = EQ#ν [ℓ̃].541

Thus, the RHS supremum is always at least as large as the LHS. It remains to show the reverse.542

Fix ν ∈ Gk with Wε
p(ν,Q#µ̃). Take any ν′ ∈ P(Rk) with Wp(ν, ν

′) ≤ ρ and ∥ν′ −Q#µ̃∥TV ≤ ε.543

Write κ = Q⊤
#ν ∈ G and κ′ = Q⊤

#ν
′. Since Q⊤ is an isometric embedding, we have κ ∈ G,544

Wp(κ, κ
′) = Wp(ν, ν

′) ≤ ρ, and ∥κ′− µ̃∥TV = ∥ν′−Q#µ̃∥TV ≤ ε. Finally, we have Eν [ℓ] = Eκ[ℓ̃].545

Thus, the RHS supremum is no greater than the LHS, and we have the desired equality.546

We are now equipped to prove the theorem. Applying Lemma 16, we decompose ℓ⋆ = ℓ̃ ◦Q. We547

bound risk by548

Eµ[ℓ̂] ≤ sup
ν∈G

Wε
p(ν,µ̃)≤ρ

Eν [ℓ̂]

≤ sup
ν∈G

Wε
p(ν,µ̃)≤ρ

Eν [ℓ⋆]
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≤ sup
ν∈Gk

Wε
p(ν,Q#µ̃)≤ρ

Eν [ℓ̃] (Lemma 16)

≤ sup
ν∈Gk

W2ε
p (ν,Q#µ)≤2ρ

Eν [ℓ̃].

Writing µk = Q#µ, we can then bound excess risk by549

Eµ[ℓ̂]− Eµ[ℓ⋆] ≤ sup
ν∈Gk

W2ε
p (ν,µk)≤2ρ

Eν [ℓ̃]− Eµk
[ℓ̃].

Noting that the RHS is just the Wε
p regularizer of ℓ in Rk, we apply Lemma 15 to obtain550

Eµ[ℓ̂]− Eµ[ℓ⋆] ≤ ΩWp(ℓ̃, 2ρ;µk) + sup
ν∈P(Rk)

Wp(ν,µk)≤ρ

ΩTV(ℓ̃, 2ε; ν,Gk),

If p = 1 and ℓ⋆ is Lipschitz, we apply Lemma 13 and Lemma 11 to obtain551

Eµ[ℓ̂]− Eµ[ℓ⋆] ≤ ∥ℓ̃∥Lip(2ρ+ 2τ1(Gk, 2ε))
≤ ∥ℓ̃∥Lip(2ρ+ 2τ1(Gk, 2ε))
≤ ∥ℓ⋆∥Lip(2ρ+ 2τ1,k(G, 2ε))

If p = 2 and ℓ⋆ is α-smooth, we apply Lemma 14 and Lemma 12 to bound Eµ[ℓ̂]− Eµ[ℓ⋆] by552

2ρ∥ℓ̃∥Ḣ1,2(µk)
+ 4αρ2 + sup

ν∈P(Rk)
Wp(ν,µk)≤ρ

2∥∇ℓ̃(Eν [Z])∥τ(Gk, 2ε) + 44α(1− 2ε)−1τ2(Gk, 2ε)2

≤ 2ρ∥ℓ̃∥Ḣ1,2(µk)
+ 4αρ2 + 2(∥∇ℓ̃(Eµk

[Z])∥+ αρ)τ(Gk, 2ε) + 44α(1− 2ε)−1τ2(Gk, 2ε)2

≤ 2ρ∥ℓ̃∥Ḣ1,2(µk)
+ 2∥∇ℓ̃(Eµk

[Z])∥τ(Gk, 2ε) + 44α(1− 2ε)−1
(
ρ2 + ρτ(Gk, 2ε) + τ2(Gk, 2ε)2

)
≤ 2ρ∥ℓ̃∥Ḣ1,2(µk)

+ 2∥∇ℓ̃(Eµk
[Z])∥τ(Gk, 2ε) + 44α(1− ε)−1(ρ+ τ2(Gk, 2ε))2

=2ρ∥ℓ⋆∥Ḣ1,2(µ) + 2∥∇ℓ⋆(Eµ[Z])∥τ(Gk, 2ε) + 44α(1− 2ε)−1(ρ+ τ2(Gk, 2ε))2

=2ρ∥ℓ⋆∥Ḣ1,2(µ) + 2∥∇ℓ⋆(Eµ[Z])∥τ(G, 2ε) + 44α(1− 2ε)−1(ρ+ τ2,k(G, 2ε))2,

as desired.553

C.2 Risk bounds in Table 1554

The upper bounds for OR-WDRO follow by combining Theorem 1 with Proposition 2.555

To see that these are minimax optimal, we start by proving that no ℓ̂ chosen as a function of µ̃ can556

obtain risk less than Lρ in the worst-case, for any of the considered settings. We fix µ̃ = δ0d and557

consider two candidates µ± = δ±ρe1 for µ. We let L consist of the two L-Lipschitz loss functions558

ℓ+(z) := Le⊤1 (ρ− z), ℓ−(z) := Le⊤1 z.

By construction, µ+ and µ− both belong to G ∈ {Gcov,GsubG} and, for µ = µ±, we have that559

∥ℓ±∥Lip = ∥ℓ±∥Ḣ1,2(µ) = L. Moreover, we have560

Eµ+
[ℓ+] = 0,Eµ+

[ℓ−] = Lρ,Eµ− [ℓ+] = 0,Eµ− [ℓ−] = −Lρ.

Thus, for any ℓ̂ selected as a function of µ̃ (with Wp(µ̃, µ) ≤ ρ), there exists µ ∈ {µ+, µ−} such that561

µ(ℓ̂)− inf
ℓ∈L

µ(ℓ) ≥ Lρ.

Next, we fix p = 1. For ease of presentation, suppose d = 2m is even. Consider Rd as Rm × Rm,562

and let L consist of the two L-Lipschitz loss functions563

ℓ+(x, y) := L∥x+ y∥, ℓ−(x, y) := L∥x− y∥
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Fixing corrupted measure µ̃ = δ0, we consider the following candidates for the clean measure µ:564

µ+ := (1− ε)δ0 + ε(Id,− Id)#κ

µ− := (1− ε)δ0 + ε(Id,+Id)#κ

where Id : x 7→ x is the identity map and κ ∈ P(Rm) will be selected later as a function of G. By565

design, we have ∥µ̃− µ+∥, ∥µ̃− µ−∥TV ≤ ε and566

Eµ+
[ℓ+] = Eµ−(ℓ−) = 0

Eµ+ [ℓ−] = Eµ− [ℓ+] = 2LεEκ[∥Z∥]
Thus, for any ℓ̂ selected as a function of µ̃, there exists µ ∈ {µ+, µ−} such that567

µ(ℓ̂)− inf
ℓ∈L

µ(ℓ) = µ(ℓ̂) ≥ 2LεEκ[∥Z∥].

When G = Gcov, taking κ = N (0m,
1
εIm) ensures that µ± ∈ Gcov, and LεEκ[∥Z∥] ≳ L

√
dε, as568

desired. When G = GsubG, taking κ = N (0m, Im) ensures that µ± ∈ GsubG, and LεEκ[∥Z∥] ≳569

Lε
√
d. The alternative choice of κ = δ√

log(1/ε)e1
also ensures µ± ∈ GsubG and LεEκ[∥Z∥] ≳570

Lε
√

log(1/ε). Combining gives a minimax lower lower bound of Lε
√
d+ log(1/ε) for GsubG.571

These match the claimed lower bounds for p = 1 when k = d; for smaller k, we simply apply the572

same construction with m = k/2, ignoring the extra d− k coordinates.573

For p = 2, take L consisting of the α-smooth loss functions ℓ±(x, y) = α∥x∓ y∥2. For µ± as above574

with κ = N (0m,
1
εIm), we have ∥ℓ±∥Ḣ1,2(µ±) = 0. The same argument as above gives a lower575

bound of αd for Gcov. Repeating with the corresponding measures for GsubG gives a lower bound of576

αdε log(1/ε). Going through this process with ℓ±(x, y) = Le⊤1 (x− y) adds a mean resilience term577

of L
√
ε for Gcov and Lε

√
log(1/ε) for GsubG. Taking ℓ+(z) = α(ρ2 − ∥z∥2) and ℓ−(z) = α∥z∥2578

with µ± = δ±ρe1 adds a final αρ2 to both lower bounds. We may substitute d by k as above.579

In all of the table’s cases, we find that the minimax lower bound matches the upper bound for580

OR-WDRO given by Theorem 1.581

C.3 Proof of Proposition 3582

This is an immediate consequence of Markov’s inequality and the empirical convergence bound583

E[W1(µ̂n, µ)] ≲
√
dn−1/d, which follows by [23, Theorem 3.1] since µ ∈ Gcov.584

D Proofs for Section 4585

D.1 Proof of Proposition 4586

For µ ∈ Gcov, we bound587

Eµ[∥Z − z0∥2] ≤ 2Eµ[∥Z − Eµ[Z]∥2] + 2∥Eµ[Z]− z0∥2

= 2 tr(Σµ) + 2∥Eµ[Z]− z0∥2

≤ 2d+ 2∥Eµ[Z]− z0∥2

≤ 2(
√
d+ ∥Eµ[Z]− z0∥)2.

Consequently, we have µ ∈ G2(σ, z0) for σ =
√
2d+

√
2∥Eµ[Z]− z0∥.588

Next, we note that Wε
p(µ̃n, µ) ≤ ρ0+Wp(µ̂n, µ). Thus, applying Theorem 1 with G = G2(σ, z0) and589

using the resilience bound from Proposition 2 gives that for ρ = ρ0 +Wp(µ̂n, µ) + 8σε1/p−1/2(1−590

ε)−1/p, the desired excess risk bounds hold so long as ∥Eµ[Z]− z0∥ = ρ0 +O(
√
d). Indeed, under591

these conditions with p = 1, we have for each ℓ ∈ L that592

Eµ[ℓ̂]− Eµ[ℓ] ≤ c∥ℓ∥Lip
(
ρ+ 2τ1(G2(σ, z0)

)
≲ ∥ℓ∥Lip

(
ρ+ σ

√
ε
)

(Proposition 2)

≲ ∥ℓ∥Lip
(
ρ0 +W1(µ̂n, µ) + σ

√
ε
)

≲ ∥ℓ∥Lip
(
ρ0 +W1(µ̂n, µ) +

√
dε
)
,

as desired.593
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D.2 Proof of Proposition 5594

Since iterative filtering works by identifying a subset of samples with bounded covariance and W1595

perturbations can arbitrarily increase second moments, it is not immediately clear how to apply this596

method. Fortunately, trimming out a small fraction of samples ensures that second moments do not597

increase too much.598

Lemma 17. For any τ ∈ (0, 1] and µ, ν ∈ P(Rd), we have Wτ
2(µ, ν) ≤ W1(µ, ν)

√
2/τ .599

Proof. Let (X,Y ) be a coupling of µ and ν such that E[∥X−Y ∥] = W1(µ, ν). Write ∆ = ∥X−Y ∥,600

let F denote its CDF, and note that F−1(1− τ) ≤ W1(µ, ν)/ε by Markov’s inequality. Thus,601

Wτ
2(µ, ν)

2 ≤ E[∆2 | ∆ ≤ F−1(1− τ)]

≤ E[∆2 | ∆ ≤ W1(µ, ν)/τ ]

=

∫ W1(µ,ν)
2τ−2

0

Pr
[
∆ >

√
t | ∆ ≤ W1(µ, ν)/τ

]
dt

≤
∫ W1(µ,ν)

2τ−2

0

(
E[∆ | ∆ ≤ W1(µ, ν)/τ ] t

−1/2 ∧ 1
)
dt

≤
∫ W1(µ,ν)

2τ−2

0

(
W1(µ, ν) t

−1/2 ∧ 1
)
dt

= W1(µ, ν)
2 +W1(µ, ν)

∫ W1(µ,ν)
2τ−2

W1(µ,ν)2
t−1/2 dt

= W1(µ, ν)
2 +W1(µ, ν) · 2

√
t |W1(µ,ν)

2τ−2

W1(µ,ν)2

= W1(µ, ν)
2 + 2W1(µ, ν)

2/τ − 2W1(µ, ν)
2

≤ 2W1(µ, ν)
2/τ.

Taking a square root gives the claim.602

Write µ′
n for any uniform discrete measure over n points such that W1(µ

′
n, µ̂n) ≤ ρ0 and ∥µ′

n −603

µ̃n∥TV ≤ ε. It is well known that the empirical measure µ̂n will inherit the bounded covariance604

of µ for n sufficiently large, so long as a small fraction of samples are trimmed out. In particular,605

by Lemma 4.2 of [18] and our sample complexity requirement, there exists a uniform discrete606

measure αm over a subset of m = (1 − ε/120)n points, such that ∥Eαm
[Z] − Eµ[Z]∥ ≲

√
ε and607

Σαm
⪯ O(1)Id with probability at least 0.99. Moreover, by Lemma 17 with τ = ε/120, there exists608

β ∈ P(Rd) with ∥β − µ′
n∥TV ≤ ε/120 and W

ε/120
2 (β, µ̂n) ≤

√
240/ερ0. Combining, we have that609

W
ε/120+ε/120+ε
2 (αm, µ̃n) = W

61ε/60
2 (αm, µ̃n) ≤

√
240/ερ0.610

Thus, there exists a uniform discrete measure γm with support size m such that ∥γm − µ̃n∥TV ≤611

61/60ε, W2(γm, αm) ≤
√

240/ερ0, and W1(γm, αm) ≤ ρ0. The W2 bound implies that Σγm ⪯612

O(1 + ρ20ε
−1)Id. Thus, by the proof of Theorem 4.1 in [18] and our sample complexity requirement,613

the iterative filtering algorithm (Algorithm 1 therein) applied with an outlier fraction of 61/60ε ≤614

1/10 returns a reweighting of µ̃m whose mean z0 ∈ Rd is within O(
√
ε+ ρ0) of that of γm. By a615

triangle inequality, the same error bound holds with respect to the mean of µ.616

D.3 Proof of Proposition 6617

We have618

sup
ν∈G2(σ,z0)

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] = sup
µ′,ν∈P(Rd)
π∈Π(µ′,ν)

Eν [ℓ] :
Eν [∥Z − z0∥2] ≤ σ2,

Eπ[∥Z ′ − Z∥p] ≤ ρp,

µ′ ≤ 1
1−ε µ̃n
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= sup
m∈Rn

ν1,...,νn∈P(Rd)


∑
i∈[n]

mi Eνi [ℓ] :

∑
i∈[n]mi Eνi [∥Zi − z0∥2] ≤ σ2,∑
i∈[n]mi Eνi [∥z̃i − Zi∥p] ≤ ρp,

0 ≤ mi ≤ 1
n(1−ε) , ∀i ∈ [n]∑

i∈[n]mi = 1

,
where the first equality follows from the definitions of G2(σ, z0) and Wε

p(µ̃n∥ν). The second equality619

holds because µ̃n = 1
n

∑
i∈[n] δz̃i , which implies that the distributions µ′, ν and π take the form620

µ′ =
∑
i∈[n]miδz̃i , ν =

∑
i∈[n]miνi, and π =

∑
i∈[n]miδz̃i ⊗ νi, respectively. Note that the621

distribution νi models the probability distribution of the random variable Z condition on the event622

that Z ′ = z̃i. Using the definition of the expectation operator and introducing the positive measure623

ν′i = miνi for every i ∈ [n], we arrive at624

sup
ν∈G2(σ,z0)

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] = sup
m∈Rn

ν′
1,...,ν

′
n≥0


∑
i∈[n]

Eν′
i
[ℓ] :

∑
i∈[n]

∫
Rd ∥zi − z0∥2dν′i(zi) ≤ σ2,∑

i∈[n]

∫
Z ∥zi − z̃i∥pdν′i(zi) ≤ ρp,

0 ≤ mi ≤ 1
n(1−ε) , ∀i ∈ [n],∑

i∈[n]mi = 1∫
Z dν

′
i(zi) = mi, ∀i ∈ [n]



= inf
λ1,λ2∈R+

r,s∈Rn,α∈R

λ1σq + λ2ρ
p +

∑
i∈[n] si

n(1− ε)
+ α :

si ≥ max{0, ri − α}, ∀i ∈ [n],

ri ≥ ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − z̃i∥p,
∀ξ ∈ Rd,∀i ∈ [n]

,
where the second equality follows from strong duality, which holds because the Slater condition625

outlined in [37, Proposition 3.4] is satisfied thanks to Assumption 3. The proof concludes by removing626

the decision variables r and s and using the definition of µ̃n.627

D.4 Proof of Theorem 2628

The proof requires the following preparatory lemma. We say that the function f is proper if629

f(x) > −∞ and dom(f) ̸= ∅.630

Lemma 18. The followings hold.631

(i) Let f(x) = λg(x − x0), where λ ≥ 0 and g : Rd → R is l.s.c. and convex. Then,632

f∗(y) = x⊤0 y + λg∗(y/λ).633

(ii) Let f(x) = ∥x∥p for some p ≥ 1. Then, f∗(y) = h(y), where the function h is defined as634

in (5).635

(iii) Let f(x) = x⊤Σx for some Σ ≻ 0. Then, f∗(y) = 1
4y

⊤Σ−1y.636

Proof. The claims follows from [17, §E, Proposition 1.3.1 ], [47, Lemma B.8 (ii)] and [17, §E,637

Example 1.1.3], respectively.638

Now, by Proposition 6 and exploiting the definition of µ̃n, we have639

sup
ν∈G2(σ,z0)

Wε
p(µ̃n∥ν)≤ρ

Eν [ℓ] (8)

=


inf λ1σ

2 + λ2ρ
p + α+

1

n(1− ε)

∑
i∈[n]

si

s.t. λ1, λ2 ∈ R+, s ∈ Rn+

si ≥ sup
ξ∈Z

ℓ(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − z̃i∥p − α ∀i ∈ [n]
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=


inf λ1σ

2 + λ2ρ
p + α+

1

n(1− ε)

∑
i∈[n]

si

s.t. λ1, λ2 ∈ R+, s ∈ Rn+

si ≥ sup
ξ∈Z

ℓj(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − z̃i∥p − α ∀i ∈ [n],∀j ∈ [J ]

(9)

where the second equality follows from Assumption 4. For any fixed i ∈ [n] and j ∈ [J ], we have640

sup
ξ∈Z

ℓj(ξ)− λ1∥ξ − z0∥2 − λ2∥ξ − z̃i∥p − α

=

{
inf (−ℓj)∗(ζℓij) + z⊤0 ζ

G
ij + τij + z̃⊤i ζ

W
ij + Ph(ζ

W
ij , λ2)− α

s.t. τij ∈ Rn+, ζℓij , ζ
G
ij , ζ

W
ij , ζ

ℓ
ij + ζGij + ζWij+ = 0, ∥ζGij∥2 ≤ λ1τij

where the equality is a result of strong duality due to [47, Theorem 2] and Lemma 18. The claim641

follows by substituting all resulting dual minimization problems into (9) and eliminating the corre-642

sponding minimization operators.643

E Additional Experiments644

In addition to the experiments in the main body, we also present applications to classification645

and multivariate regression. Code for all experiments is provided at https://anonymous.4open.646

science/r/outlier-robust-WDRO-14EB/. We first consider linear classification with the hinge647

loss, i.e. L = {ℓθ(x, y) = max{0, 1− y(θ⊤x)} : θ ∈ Rd−1}. This time (to ensure that the resulting648

optimization problem is convex), our approach supports Euclidean Wasserstein perturbations in649

the feature space, but no Wasserstein perturbations in the label space (this corresponds to using650

Z = Rd−1 × R equipped with the (extended) norm ∥(x, y)∥ = ∥x∥2 + ∞ · 1{y ̸= 0}. We651

consider clean data (X, θ⊤0 X) ∼ µ as defined in Section 5. The corrupted data (X̃, Ỹ ) ∼ µ̃652

satisfies (X̃, Ỹ ) = (X + ρe1, Y ) with probability 1 − ε and (X̃, Ỹ ) = (20X,−20θ⊤0 X) with653

probability ε, so that Wε
p(µ̃∥µ) ≤ ρ. In Figure 2 (left), we fix d = 10 and compare the excess654

risk Eµ[ℓθ̂]− Eµ[ℓθ0 ] of standard WDRO and outlier-robust WDRO with A = G2, as described by655

Proposition 4 and implemented via Theorem 2. The results are averaged over T = 20 runs for sample656

size n ∈ {10, 20, 50, 75, 100}. We note that this contamination example cannot drive the excess risk657

of standard WDRO to infinity, so the separation between standard and outlier-robust WDRO is less658

striking than regression, though still present.659

Finally, we present results for multivariate regression. This time, we consider Z = Rd×k equipped660

with the ℓ2 norm, and use the loss family L = {ℓM (x, y) = ∥Mx − y∥1 : M ∈ Rk×d}. We661

consider clean data (X,M⊤
0 X) ∼ µ, where M0 ∈ Rk×d and X have standard normal entries.662

The corrupted data (X̃, Ỹ ) ∼ µ̃ satisfies (X̃, Ỹ ) = (X + ρe1, Y ) with probability 1 − ε and663

(X̃, Ỹ ) = (20X,−20M0X) with probability ε, so that Wε
p(µ̃∥µ) ≤ ρ. In Figure 2 (right), we fix664

d = 10 and k = 3, and compare the excess risk Eµ[ℓθ̂] − Eµ[ℓθ0 ] of standard WDRO and outlier-665

robust WDRO with A = G2, as described by Proposition 4 and implemented via Theorem 2. The666

results are averaged over T = 10 runs for sample size n ∈ {10, 20, 50, 75, 100}. We are restricted667

to low k since the ℓ1 norm in the losses is expressed as the maximum of 2k concave functions668

(specifically, we use that ℓM (x, y) = maxα∈{−1,1}k α⊤(Mx− y)).669

In both cases, confidence bands are plotted representing the top and bottom 10% quantiles among670

100 bootstrapped means from the T runs. The additional experiments were performed on an M1671

Macbook Air with 16GB RAM in roughly 30 minutes each.672
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Figure 2: Excess risk of standard WDRO and outlier-robust WDRO for classification and multivariate linear
regression under Wp and TV corruptions, with varied sample size.
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