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Abstract
Instruction tuning has underscored the sig-001
nificant potential of large language models002
(LLMs) in producing more human control-003
lable and effective outputs in various domains.004
In this work, we focus on the data selection005
problem for task-specific instruction tuning of006
LLMs. Prevailing methods primarily rely on007
the crafted similarity metrics to select train-008
ing data that aligns with the test data distri-009
bution. The goal is to minimize instruction010
tuning loss on the test data, ultimately im-011
proving performance on the target task. How-012
ever, it has been widely observed that instruc-013
tion tuning loss (i.e., cross-entropy loss for014
next token prediction) in LLMs often fails015
to exhibit a monotonic relationship with ac-016
tual task performance. This misalignment un-017
dermines the effectiveness of current data se-018
lection methods for task-specific instruction019
tuning. To address this issue, we introduce020
ROSE, a novel Reward-Oriented inStruction021
data sElection method which leverages pair-022
wise preference loss as a reward signal to op-023
timize data selection for task-specific instruc-024
tion tuning. Specifically, ROSE adapts an025
influence formulation to approximate the in-026
fluence of training data points relative to a027
few-shot preference validation set to select the028
most task-related training data points. Exper-029
imental results show that by selecting just 5%030
of the training data using ROSE, our approach031
can achieve competitive results compared to032
fine-tuning with the full training dataset, and033
it surpasses other state-of-the-art data selec-034
tion methods for task-specific instruction tun-035
ing. Our qualitative analysis further con-036
firms the robust generalizability of our method037
across multiple benchmark datasets and di-038
verse model architectures.039

1 Introduction040

While large language models (LLMs) are widely rec-041
ognized for their strong generalization capabilities,042
many fields require enhanced domain-specific perfor-043
mance, e.g., health monitoring (Kim et al., 2024b), le-044
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Figure 1: Illustration of our Reward-Oriented Instruc-
tion Data Selection (ROSE) approach compared with
the traditional method. Unlike the traditional focus
on minimizing validation loss, ROSE maximizes task-
specific reward to more precisely align with real-world
task performance.

gal question answering (Wu et al., 2024), and mathe- 045
matics tutoring (Li et al., 2023b). Instruction tuning has 046
emerged as a popular method for adapting foundation 047
models to specialized tasks, which typically involves 048
curating a high-quality training dataset. Although re- 049
cent advancements in open-source datasets and syn- 050
thetic data generation have facilitated the generation of 051
large training datasets, it is widely acknowledged that 052
the quality of training data is more crucial than its quan- 053
tity in instruction tuning (Chen and Mueller, 2024; Xia 054
et al., 2024). Consequently, practitioners must care- 055
fully select high-quality data to enhance the model’s 056
capabilities for specific tasks. This challenge is further 057
compounded by the complexity of domain-specific re- 058
quirements and the black-box properties of LLMs, ren- 059
dering it nearly infeasible for humans to manually se- 060
lect the most suitable training set. Therefore, develop- 061
ing more effective data selection methods is becoming 062
increasingly crucial for reducing training costs and effi- 063
ciently optimizing instruction tuning for specific tasks. 064

Despite various methods proposed for instruction 065
tuning data selection (Du et al., 2023; Mekala et al., 066
2024), identifying high-quality instruction tuning data 067
for target tasks remains a significant challenge. Exist- 068
ing methods typically design specific similarity metrics 069
to select a set of candidates samples whose distribution 070
aligns with that of the target task data. For instance, 071
DSIR (Xie et al., 2023) uses n-gram feature similarity 072
to enhance the selection process of relevant data sam- 073
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ples. Moreover, RDS (Zhang et al., 2018) and LESS074
(Xia et al., 2024) calculate the similarity on the model075
embedding and gradient space to capture task-specific076
semantics and model characteristics, respectively. De-077
spite their successes, these similarity based methods078
are fundamentally limited.079

Our analysis reveals that these strategies hinge on080
Empirical Risk Minimization (ERM), selecting train-081
ing data that mirrors the target task data distribution by082
minimizing training loss, particularly next-token pre-083
diction loss. However, it is widely acknowledged that084
next-token prediction loss often fails to accurately re-085
flect a model’s real-world performance (e.g., alignment086
degree with human preference, reasoning ability on087
complex math problem) on target task (Zhou et al.,088
2024; Tay et al., 2021). This significant gap between089
the implicit theoretical foundation of similarity-based090
methods and practical task performance limits the ef-091
fectiveness of these methods in instruction tuning for092
task-specific fine-tuning. In response to these insights,093
we introduce a novel reward-oriented instruction data094
selection (ROSE) method in Figure 1, which shifts the095
intrinsic selection objective from minimizing valida-096
tion cross entropy loss to maximize the reward for the097
target task. Inspired by Direct Preference Optimization098
(DPO) (Rafailov et al., 2024), our approach utilizes a099
few-shot set of pairwise samples as the task-specific100
preference validation set, which we assume reflects the101
desired LLM’s performance on the target task, and we102
use the DPO loss function to approximate the expected103
reward value of the trained LLM on the preference vali-104
dation data. By leveraging the gradient-based influence105
estimation techniques, ROSE is able to select the in-106
struction tuning samples that leads a downstream LLM107
with optimized performance on the target task.108

We conduct comprehensive experiments across var-109
ious datasets and model architectures. Experimen-110
tal results show that our method outperforms exist-111
ing similarity-based techniques, including token-wise,112
embedding-based, and gradient-based methods. These113
results suggest that focusing on reward maximization,114
rather than loss minimization, is a promising new direc-115
tion for improving task-specific fine-tuning outcomes.116

The main contributions are as follows:117

• Identifying Limitations of Similarity-Based Ap-118
proaches: Our analysis reveals the limitations119
of the implicit theoretical foundations of the120
common similarity-based data selection methods.121
These methods focus on minimizing training loss122
(e.g., next-token prediction loss), which often fails123
to capture real-world task performance.124

• Introducing Reward-Oriented Data Selection: We125
shift the data selection objective from loss min-126
imization to reward maximization on the target127
task dataset, which contains a small set of user-128
provided positive and negative samples that reflect129
the task-specific performance.130

• Propose to Approximate Reward with DPO Loss: 131
Our method incorporates gradient-based influence 132
estimation techniques to select high-quality train- 133
ing data that optimizes task reward, improving the 134
fine-tuning process. 135

• Comprehensive Experimental Validation: 136
Through experiments on various datasets 137
and models, we demonstrate that ROSE con- 138
sistently outperforms existing similarity-based 139
methods, such as token-wise, embedding-based, 140
and gradient-based approaches, in task-specific 141
fine-tuning. 142

2 Related Work 143

Data Selection for Instruction Tuning. Instruction 144
tuning is crucial for aligning large language models 145
(LLMs) with human needs (Wang et al., 2024), pro- 146
viding a controlled and safe method to enhance LLMs’ 147
responsiveness and accuracy in specific domains. Wei 148
et al. (2023) introduced InstructionGPT-4 for multi- 149
modal large language fine-tuning, which involves en- 150
coding visual and textual data into vectors to train a 151
trainable data selector. Furthermore, RDS Zhang et al. 152
(2018); Hu et al. (2023) employs the model’s last hid- 153
den layer to assess the similarity between training and 154
validation data points, while DSIR Xie et al. (2023) 155
uses n-gram features to assign importance weights to 156
training samples for data selection in instruction fine- 157
tuning. Another notable study, LESS Xia et al. (2024), 158
follows a similar approach by selecting the most influ- 159
ential data from the training corpus based on the gra- 160
dient similarity score of training data points with vali- 161
dation data points. Furthermore, NUGGETS (Li et al., 162
2023c) introduces a one-shot learning framework that 163
selects high-quality instruction data by evaluating their 164
impact on an anchor set, enabling efficient filtering of 165
informative samples. Cherry (Li et al., 2023a) adopts 166
a self-guided selection strategy based on Instruction- 167
Following Difficulty (IFD), allowing models to prior- 168
itize training samples that better align with human in- 169
structions. DEITA (Liu et al., 2023) further enhances 170
data selection by integrating complexity, quality, and 171
diversity metrics, optimizing instruction tuning with 172
significantly fewer training samples. While these meth- 173
ods improve data selection beyond naive heuristics, 174
they rely on indirect proxies such as token perplex- 175
ity or instruction difficulty, which do not establish a 176
direct monotonic relationship with final task perfor- 177
mance. In contrast, ROSE optimizes training data se- 178
lection through pairwise preference modeling, ensuring 179
a stronger alignment between training objectives and 180
real-world win rate improvements. 181

Data Attribution and Influence Functions. The 182
influence calculation of training data points is a piv- 183
otal technique for detecting mislabeled samples (Deng 184
et al., 2024; Zhang et al., 2021b, 2024; Hofmann et al., 185
2022), facilitating model interpretation (Madsen et al., 186
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2022; Wu et al., 2023; VanNostrand et al., 2023), and187
analyzing memorization effects (Feldman and Zhang,188
2020). Specifically, influence functions Koh and Liang189
(2017) offer a counterfactual method to assess both190
model behaviors and the contributions of training data.191
Despite their potential, the robustness and effectiveness192
of these functions remain limited, particularly in the193
context of large language models (LLMs), where their194
computational demands are significant. While recent195
studies, such as those by Park et al. (2023), propose196
relatively efficient estimations of influence functions197
for selecting pretraining data, these methods still re-198
quire complex comparisons of model training with and199
without the inclusion of specific data points. In line200
with the approach by (Xia et al., 2024), we advocate201
that first-order influence approximations are effective202
for data selection during instruction tuning in LLM en-203
vironments.204

Large Language Model Alignment. LLM align-205
ment aims to train large language models (LLMs) to206
behave in ways that align with human expectations. A207
primary approach for this is Reinforcement Learning208
from Human Feedback (RLHF), which tunes LLMs to209
reflect human preferences and values (Ziegler et al.,210
2019; Bai et al., 2022). It has been effectively ap-211
plied in various domains, including enhancing model212
helpfulness (Tian et al., 2023), improving reasoning213
capabilities (Havrilla et al., 2024), and mitigating tox-214
icity (Korbak et al., 2023). Despite its effectiveness,215
RLHF as an online preference optimization algorithm,216
poses significant challenges and complexities, since it217
is typically trained using Proximal Policy Optimization218
(PPO) (Schulman et al., 2017). And the high com-219
putational cost and sample inefficiency of PPO make220
RLHF difficult to scale effectively. In contrast, Di-221
rect Preference Optimization (DPO) (Rafailov et al.,222
2024) offers a simpler and more efficient offline al-223
ternative. Recent research has extended DPO beyond224
traditional pairwise comparisons to include evaluations225
across multiple instances (Liu et al., 2024; Yuan et al.,226
2024). Further advancements have broadened pref-227
erence optimization objectives, including those inde-228
pendent of reference models (Xu et al., 2023; Meng229
et al., 2024). These reward-oriented methods outper-230
form models trained with next-token prediction loss in231
satisfying user preferences, as they directly optimize232
preference signals, whereas next-token prediction loss233
focuses on minimizing the difference between gener-234
ated outputs and predefined labels, which may not re-235
flect user-specific preferences.236

3 Preliminaries and Background237

Problem Definition. We tackle the challenge of data238
selection for task-specific instruction tuning. Our goal239
is to curate a subset Dtrain from a broad and compre-240
hensive instruction tuning corpus D, such that training241
a model on Dtrain to maximize a reward r that reflects242
true performance on a task-specific validation set Dval,243

therefore performs well on test dataset Dtest. Dval can 244
be a few-shot dataset involving multiple target tasks, 245
and the Dtest is a fixed sample set with the same tasks in 246
Dval. We use Ω parametrized by θ to denote the model 247
used for data selection and Γ parametrized by θ′ to rep- 248
resent the final trained model. 249

Analysis of Similarity Based Methods. Let Z = 250
Rd be the d-dimensional intrinsic representation space, 251
where the similarity-based methods calculate the simi- 252
larity between the training and validation samples. Let 253
pt(z) and pv(z) be the probability density value of the 254
selected training set Dtrain and validation set Dval, re- 255
spectively, where z ∈ Z. When a downstream LLM 256
Γ is well trained on the selected training set Dtrain, its 257
training loss on Dtrain is expected to be close to 0, i.e., 258
Etrain[l(z, θ

′)] =
∫
l(z, θ′)pt(z) dz ≈ 0, where l(z; θ′) 259

represents the average of token-wise cross entropy loss 260
in the response sequence of z. 261

The objective of similarity-based methods is to se- 262
lect a training set Dtrain which is independent and iden- 263
tically distributed (IID) with respect to the validation 264
set (Xie et al., 2023; Zhang et al., 2021a). Under 265
this condition, for any z ∈ Z, pt(z) = pv(z). Let 266
Eval[l(z, θ

′)] =
∫
l(z, θ′)pv(z) dz be the expected loss 267

value of Γ on the validation set. By simply substi- 268
tuting pv(z) with pt(z), we can infer that the down- 269
stream LLM is supposed to have small loss value 270
of l(z; θ′) on the validation set, i.e., Eval[l(z, θ

′)] = 271∫
l(z, θ′)pt(z) dz ≈ 0. 272
Unfortunately, existing studies (Zhou et al., 2024; 273

Xia et al., 2024; Tay et al., 2021) commonly find that 274
the decrease in validation loss does not always lead 275
to improved test performance in task-specific instruc- 276
tion tuning. Furthermore, achieving such an IID con- 277
dition is often unrealistic due to the complexity of the 278
representation space Z. Therefore, it is reasonable to 279
conclude that the intrinsic limitation of large models, 280
namely the gap between next-token prediction loss and 281
actual performance on downstream tasks, compromises 282
the effectiveness of existing data selection methods for 283
task-specific instruction tuning. 284

Influence Estimation Scheme. Assume the selec- 285
tion model LLM, denoted as Ω, assesses the influence 286
of training data points with respect to a set of validation 287
samples Dval, which represents the model’s capability 288
on specific tasks. We denote the average loss value of 289
Ω on the validation set as L(Dval; θ). 290

For simplicity, we assume the LLM is trained with 291
a batch size of 1 using the SGD optimizer. At train- 292
ing step t, the contribution of a training sample z 293
corresponds to the difference between the validation 294
losses L(Dval; θ) and L(Dval; θt−1), i.e., L(Dval; θ) − 295
L(Dval; θt−1). Using a first-order Taylor expansion , 296
this becomes: 297

L(Dval; θt)− L(Dval; θt−1) = ⟨∇θL(Dval; θt−1), δθ⟩
(1) 298

299
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where ⟨·, ·⟩ denotes the inner product, and δθ =300
θt − θt−1 represents the change in θ at step t. With301
the SGD optimizer, δθ = −α · ∇θL(z; θt−1), where α302
is the learning rate and ∇θL(z; θt−1) denotes the gra-303
dients of the loss with respect to the training sample z.304
Substituting this into the equation, we get:305

306

L(Dval; θt)− L(Dval; θt−1) ∝307

⟨∇θL(Dval; θt−1),∇θL(z; θt−1)⟩ (2)308

309

Eq. 2 shows that the inner product between the gradi-310
ent of the loss on the training sample z and the gradient311
of the average loss on the validation set Dval effectively312
estimates the degree to which a training sample con-313
tributes to the model’s performance. A positive gradi-314
ent inner product indicates that the training sample z315
positively impacts the model’s performance.316

Note that in the typical LLM training settings, the317
optimizer is usually a variant of Adam, and the train-318
ing batch size is often larger than 1. This creates inter-319
actions between training samples and across batches.320
To address this, we adopt the heuristic-based meth-321
ods used in LESS, performing a warm-up training on322
the LLM Ω and applying a variant of the gradient323
∇θL(z; θt−1) to reduce the discrepancy.324

4 ROSE: Reward-Oriented inStruction325

data sElection326

In this section, we introduce ROSE, a reward orientated327
data selection method for task-specific instruction tun-328
ing . We start from formulating the optimization objec-329
tives of ROSE, followed by a detailed explanation of330
implementation strategies.331

4.1 Optimization Framework332

Motivated by the analysis in Section 3, the objec-333
tive of ROSE is to select a subset Dtrain that leads to334
a downstream LLM Γ with maximized reward value335
on validation set Dval. Formally, we define Dval =336

{(xi, yi)}|Dval|
i=1 , where x, y denote the prompt and re-337

sponse of samples from Dval, respectively. Inspired338
by Reinforcement Learning from Human Feedback339
(RLHF) (Bai et al., 2022) and further study Direct340
Preference Optimization (DPO) (Rafailov et al., 2024),341
we define the reward function r for ROSE through a342
closed-form expression as:343

r(x, y) = β log
Ωθ(y | x)
Ωref(y | x)

+ β logZ(x) (3)344

where Ωθ and Ωref represent the policy and refer-345
ence models, respectively. The term logZ(x) repre-346
sents the partition function, and β signifies the param-347
eter that controls the deviation from the baseline refer-348

ence model1. For optimization efficiency, we advance 349
our methodology by first transforming the few-shot val- 350
idation dataset Dval into a few-shot preference valida- 351

tion set D′

val = {(xi, yiw, y
i
l)}

|D
′
val|

i=1 . where (x, yw, yl) 352

refers preference pairs from the dataset D′

val, compris- 353
ing the prompt, a winning response, and a losing re- 354
sponse. By integrating this reward structure with the 355
Bradley-Terry (BT) ranking model (Bradley and Terry, 356
1952), we leverage the probability of preference data 357
directly through the policy model, formulating the fol- 358
lowing optimization objective: 359

360

LROSE(Ωθ; Ωref) = −E(x,yw,yl)∼D′
val

[
361

log σ

(
β log

Ωθ(yw | x)
Ωref(yw | x)

− β log
Ωθ(yl | x)
Ωref(yl | x)

)]
(4)

362

where σ is the logistic function. We can implicitly 363

define r̂θ(x, y) = β log Ωθ(y|x)
Ωref(y|x) , thus the gradient with 364

respect to the parameters θ can be written as: 365

∇θLROSE(Ωθ; Ωref) = −βE(x,yw,yl)∼D′
val

[
σ
(
r̂θ(x, yl)− 366

r̂θ(x, yw)
)
·
(
∇θ log Ω(yw | x)−∇θ log Ω(yl | x)

)]
(5)

367

4.2 Implementations 368

Here, we describe how ROSE adapts the Equation 5 369
to select instruction data that can effectively improve 370
model capability in target tasks, and illustrate our 371
method in Figure 2. 372

4.2.1 Build Few-Shot Preference Validation Data 373

The current validation set used in task-specific instruc- 374
tion tuning typically adheres to a Supervised Fine- 375
Tuning (SFT) format, featuring a prompt and its cor- 376
responding response. However, the widely used eval- 377
uation metric for test data in instruction tuning is the 378
win rate, which assesses the frequency at which a tar- 379
get model’s response is deemed superior compared to 380
the original test dataset response, as determined by an 381
LLM evaluator. To align with the win rate employed in 382
downstream tasks, we transform the few-shot SFT val- 383
idation set Dval = {(xi, yi)}|Dval|

i=1 into a preference for- 384

mat, denoted as D′

val = {(xi, yiw, y
i
l)}

|D
′
val|

i=1 . This trans- 385
formation involves generating additional responses to 386
prompts within the SFT dataset, which are then evalu- 387
ated by either domain experts or advanced LLMs. This 388
technique is also explored in other LLM alignment re- 389
search by Arif and Kim (Arif et al., 2024; Kim et al., 390

1In practice, we use the pretrained model as reference
model to calculate the gradients for validation data.
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Figure 2: Illustration of ROSE. We generate suboptimal responses to create a preference validation set, then use
pairwise preference optimization loss to derive validation gradients. These gradients inform influence scores for
selecting training data, leading to more effective instruction tuning.

2024a). Considering only the limited number of sam-391
ples per task in the validation set, this methodology392
does not require substantial computational resources or393
extensive human annotations. Once established2, the394
generated few-shot preference validation set is consis-395
tently used in subsequent steps to represent actual task-396
specific data.397

4.2.2 Reward-Oriented Gradient Calculation398

Inspired by (Xia et al., 2024), we use the Adam399
(Kingma, 2014) and SGD optimizer for training data400
points and validation data points gradient calculation,401
respectively. Since Adam involves the first and second402
moments, we start ROSE by initially training a LLM Ω403
with a randomly selected subset (5%) of training data.404
Since computing and storing the gradients of a LLMs405
with billions of parameters are very computational and406
storage expensive, we use LoRA (Hu et al., 2021) to407
train the model efficiently. To further reduce the fea-408
ture dimension, we use TRAK (Park et al., 2023) to409
randomly project the LoRA adapters’ gradients into a410
lower dimension, the default setting of projection di-411
mension is 8192.412

In initial-training stage, we save multiple check-413
points, the default number of checkpoints is 4. Since414
there are multiple subtasks in validation set, for each415

subtask D′ (j)
val , we compute the average gradient feature416

on each checkpoints θ1, ..., θN . Let z and z′ denote the417
sample from training corpus D and few-shot preference418
validation set D′

val, respectively. The SGD gradient cal-419

culation for D′ (j)
val can be defined as:420

∇θiLROSE(D
′ (j)
val ; θi) =

1

|D′ (j)
val |

∑
z′∈D′ (j)

val

∇θiLROSE(z
′; θi)

(6)421

where LROSE(z
′; θi) is calculated by adapting the422

Equation 5. For each training data point z, the Adam423

2In practice, we sample from the open-source preference
dataset to form few-shot preference validation set D

′
val, and

use (x, yw) to mimic the original few-shot validation set Dval.
Please refer Table 7 for details.

gradient can be differentiated as ∇̄θi l(z; θi), where 424
l(·; θ) represents the average of token-wise cross en- 425
tropy loss in the response sequence of z. 426

4.2.3 Data Selection Process 427

In the data selection stage, we aggregate the scores 428
from all checkpoints to assess how closely each train- 429
ing data point aligns with the validation set. We define 430
the calculation of ROSE influence scores as follows: 431

S(z,D′ (j)
val ) =

N∑
i=1

ηi⟨∇θiLROSE(D
′ (j)
val ; θi), ∇̄θi l(z; θi)⟩

(7) 432
where N and ηi denote the number of checkpoints 433

and the learning rate of each checkpoint, respectively. 434
After calculating the influence score of each training 435
data point to validation set, we use the maximum score 436
across all subtasks. Finally, we select the most in- 437
fluential datapoints to construct the selected training 438
dataset Dtrain to train downstream model Γ. Our ap- 439
proach employs a computational pipeline analogous to 440
LESS (Xia et al., 2024), encompassing warmup LoRA 441
training, gradient feature computation, and data selec- 442
tion. The overall computational and storage require- 443
ments are comparable to those reported in LESS, en- 444
suring scalability and efficiency. 445

5 Experiment 446

5.1 Experimental Setup 447

Model Architecture and Training Settings. We use 448
three instruction fine-tuning training datasets: DOLLY 449
(Conover et al., 2023), OPEN ASSISTANT 1 (Köpf 450
et al., 2024), FLAN V2 (Longpre et al., 2023), and 451
COT (Wei et al., 2022), which collectively com- 452
prise around 270K data points across various reason- 453
ing tasks, as detailed in Appendix A.1. In our ex- 454
periments, we engage two prominent model families: 455
Llama (AI@Meta, 2024) and Mistral (Jiang et al., 456
2023), including LLAMA-2-7B, LLAMA-2-13B (Tou- 457
vron et al., 2023), LLAMA-3.1-8B, LLAMA-3.1-8B- 458
INS., MISTRAL-7B-V0.3 , and MISTRAL-7B-INS.- 459
V0.3 (Jiang et al., 2023). 460
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Each model trains utilizing LoRA (Hu et al., 2021)461
for training efficiency in optimizing large-scale models.462
LoRA settings remain uniform across all models with463
a rank of 128, an alpha of 512, and a dropout rate of464
0.1. Training involves learning LoRA matrices for all465
attention mechanisms in each configuration. The mod-466
els optimize using the AdamW optimizer with a learn-467
ing rate of 2× 10−5, and each configuration undergoes468
four training epochs with a batch size of 128. To ensure469
robustness and reproducibility, we conduct three trials470
per configuration with varying random seeds. During471
the gradient extraction stage for preference validation,472
we compute gradients using the pretrained model as473
a reference model and the warm-up model as a pol-474
icy model. We utilize Direct Preference Optimization475
(DPO) (Rafailov et al., 2024) loss to calculate gradi-476
ents and apply the TRAK algorithm (Park et al., 2023)477
to project LoRA gradients into a vector of 8192 dimen-478
sions for each data point. For inference, we set the tem-479
perature to 1.0, top p to 1.0, and max tokens to 4096.480

Evaluation Benchmarks and Metrics. We assess481
our models using three leading open-source preference482
benchmarks: Stanford Human Preference (SHP) (Etha-483
yarajh et al.), Stack Exchange (SE) (Lambert et al.,484
2023), and HH-RLHF (Bai et al., 2022; Ganguli et al.,485
2022). Each dataset includes multiple subtasks, with486
validation data details provided in Appendix A.2 and487
further test data information in Appendix A.3. Our488
evaluation metric is the Win Rate (WR), comparing489
each model’s response against the most preferred re-490
sponse from the test dataset. And we employ the491
GPT-4-32K-0613 model (OPENAI, 2024) as the judge492
model, with the evaluation prompts detailed in Ap-493
pendix D.494

Baselines. Our method, ROSE3 , is benchmarked495
against a diverse set of baselines. The Random base-496
line entails indiscriminate sampling from the entire497
training dataset for instruction finetuning. For a more498
structured approach, we employ BM25 (Robertson499
et al., 2009), a well-known ranking function in infor-500
mation retrieval that evaluates document relevance us-501
ing term frequency and inverse document frequency502
(TFIDF) with length normalization. Here, we priori-503
tize training instances with the highest BM25 scores504
for finetuning. Another strategy, representation-based505
data selection (RDS) (Zhang et al., 2018), leverages506
the last hidden layer of the model to determine simi-507
larity between training and validation data points. Fur-508
thermore, DSIR Xie et al. (2023) utilizes n-gram fea-509
tures to assign importance weights to training samples,510
guiding the selection of finetuning data. Additionally,511
we explore the efficacy of Shapley values (Fryer et al.,512
2021) in assessing each data point’s unique contribu-513
tion to model performance. Similarly, Influence Func-514
tions (Koh and Liang, 2017) calculate the impact of in-515
dividual data points’ modification or removal on model516

3Code and data are included in the submitted supplemen-
tary files and will be publicly released after review process.

predictions, aiding in the identification of pivotal train- 517
ing instances. Both Shapley values and Influence Func- 518
tions necessitate labels for the training data; to accom- 519
modate this, we implement K-Means clustering (K = 520
3) to assign provisional labels based on cluster mem- 521
bership, enhancing sample diversity in our evaluations. 522
Another baseline is LESS (Xia et al., 2024), which 523
leverages next-token prediction loss to extract gradients 524
from both the training and validation sets, subsequently 525
calculating the influence score to select the most task- 526
relevant training samples. We also include a baseline, 527
Nuggets (Li et al., 2023c), which employs one-shot 528
learning to identify and select high-quality instruction 529
data from large datasets. Another baseline, Cherry 530
(Li et al., 2023a), introduces an instruction-following 531
difficulty metric to guide the selection of instruction 532
tuning data. For a fair comparison, all baselines, in- 533
cluding ROSE, select the same percentage (5%) of data 534
from the training set. Moreover, we consider pretrained 535
LLMs (W/O Finetuning), instruction finetuning on the 536
full training dataset (Full), and finetuning directly on 537
the few-shot validation set (Valid.) as additional com- 538
parisons. 539

5.2 Experimental Results 540

In this section, we present empirical results and analy- 541
sis of our experiments, highlighting the superior perfor- 542
mance of ROSE on various benchmarks. Unless other- 543
wise specified, the experiments are conducted using the 544
LLAMA-2-7B as the base model setting. 545

Table 1: Comparison with various beselines on differ-
ent datasets. Best and second values are both high-
lighted. Numbers in the parentheses are standard devi-
ations.

SHP SE HH

W/O Finetuning 8.8 (0.6) 10.0 (0.5) 30.1 (0.8)

Valid. 10.9 (0.9) 9.0 (0.8) 26.0 (0.9)

Random 19.5 (0.7) 14.3 (0.5) 41.7 (0.2)

BM25 26.0 (0.3) 18.0 (1.0) 46.3 (0.5)

Shapley 24.0 (0.2) 15.6 (0.4) 41.6 (0.2)

Influence Functions 24.9 (0.5) 15.4 (0.3) 42.6 (0.3)

DSIR 21.7 (0.4) 16.0 (0.3) 45.0 (0.5)

RDS 29.7 (0.3) 16.9 (0.5) 45.1 (0.7)

LESS 22.1 (0.4) 21.5 (0.8) 45.6 (0.3)

Cherry 24.1 (0.3) 18.0 (0.5) 40.0 (0.9)

Nuggets 24.3 (0.6) 20.0 (0.5) 39.9 (0.3)

Full 22.7 (0.5) 17.6 (0.7) 44.2 (0.4)

ROSE (ours) 32.0 (0.7) 26.2 (0.5) 51.0 (0.6)

Main Results. Our evaluation results of ROSE are 546
presented in Table 1. Compared to all other data selec- 547
tion baselines, our method demonstrates superior per- 548
formance, significantly improving the win rate on the 549
test dataset. Notably, ROSE outperforms the second- 550
best baselines by 4.7% for the SE and HH datasets, and 551
by 2.3% for the SHP dataset. We observe that LLAMA- 552
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Table 2: Results of ROSE on LLAMA-2-7B, LLAMA-2-13B, LLAMA-3.1-8B, LLAMA-3.1-8B-INS., MISTRAL-
7B-V0.3 and MISTRAL-7B-INS.-V0.3, where INS. means the instruct version of corresponding models. Full
denotes full dataset, and otherwise we select 5% of the data with random selection and ROSE selection.

SHP SE HH

Full Random ROSE Full Random ROSE Full Random ROSE
Data percentage (100%) (5%) (5%) (100%) (5%) (5%) (100%) (5%) (5%)

LLAMA-2-7B 22.7 (0.5) 19.5 (0.7) 32.0 (0.7) 17.6 (0.7) 14.3 (0.5) 26.2 (0.5) 44.2 (0.4) 41.7 (0.2) 51.0 (0.6)

LLAMA-2-13B 48.4 (0.8) 42.1 (0.3) 44.3 (0.6) 42.8 (0.7) 30.0 (1.0) 32.0 (0.7) 57.1 (0.6) 55.8 (0.8) 57.8 (0.5)

LLAMA-3.1-8B 39.9 (1.1) 37.4 (0.6) 39.7 (0.5) 32.9 (0.4) 30.8 (0.5) 34.9 (0.7) 60.6 (0.3) 55.5 (0.3) 58.6 (0.4)

LLAMA-3.1-8B-INS. 55.1 (0.5) 42.3 (0.7) 52.1 (0.6) 39.8 (0.6) 34.2 (0.3) 42.8 (0.7) 71.2 (0.9) 59.6 (0.9) 73.2 (0.7)

MISTRAL-7B-V0.3 54.8 (0.6) 53.3 (0.9) 61.6 (0.8) 39.2 (0.8) 37.8 (0.7) 42.3 (0.7) 68.3 (0.5) 66.9 (0.9) 70.7 (0.5)

MISTRAL-7B-INS.-V0.3 64.7 (0.9) 58.4 (0.8) 67.9 (0.6) 48.1 (0.4) 46.5 (0.7) 59.7 (1.0) 72.4 (0.4) 64.8 (1.0) 73.2 (0.5)

2-7B, without any fine-tuning, performs poorly across553
all three datasets, serving as the bottom baseline for554
our experiments. Randomly selecting 5% of the data555
from the training instruction dataset underscores the556
relevance of training data for all target tasks. RDS,557
LESS, and BM25 emerge as the most competitive base-558
lines across the SHP, SE, and HH datasets, respec-559
tively. In Table 2, we find that ROSE significantly
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Figure 3: Results of different data selection percent-
ages.

560
outperforms random selection and is competitive with561
models trained on the full dataset across various model562
sizes and families. This underscores that a small, well-563
selected instruction training data is enough to yield a564
significant performance improvement compared to us-565
ing the entire instruction training corpus, e.g., ROSE566
achieves improvements of 9.3% for SHP, 8.6% for567
SE, and 6.8% for HH compared to full data training568
on LLAMA-2-7B. Furthermore, larger models consis-569
tently outperform smaller ones, and the instruct ver-570
sions exhibit superior performance over the base mod-571
els in terms of win rate. Even with more robust selected572
model architectures, ROSE maintains competitive per-573
formance, exemplified by a 11.6% improvement for SE574
on Mistral-7B-v0.3-Instruct compared with instruction575
funetuning on full training data.576

Validation Loss vs Test Win Rate. We investi- 577
gate the relationship between validation loss and test 578
win rate across four checkpoints during initial training 579
phase. ROSE employs pairwise preference loss, while 580
traditional methods (e.g., LESS) use next-token pre- 581
diction loss for validation gradient extraction. In Fig- 582
ure 4, we demonstrate the non-monotonic relationship 583
between next-token prediction loss and test win rates, 584
which means minimizing the next-token prediction loss 585
on the validation set does not consistently lead to higher 586
test win rates, aligning with the findings reported by 587
Zhou et al. (2024) and Xia et al. (2024). Compared to 588
traditional methods, ROSE shows a more robust corre- 589
lation, where decreases in pairwise preference valida- 590
tion loss generally correspond with increases in test win 591
rates. Specifically, for the HH and SE dataset, we ob- 592
serve a consistent increase in test win rates concurrent 593
with the finetuning process, accompanied by a steady 594
decrease in validation loss. For the SHP dataset, all 595
epochs except the first exhibit a monotonic relation- 596
ship between decreasing validation loss and increas- 597
ing test win rate. Nevertheless, the pairwise preference 598
loss presents a more coherent and consistent correla- 599
tion with the test win rates compared to the next-token 600
prediction loss, establishing its suitability for instruc- 601
tion tuning and data selection scenarios in model train- 602
ing. This empirical analysis underscores the efficacy of 603
pairwise preference loss as a more robust indicator for 604
data selection in instruction tuning scenarios, offering 605
a significant improvement over traditional instruction 606
tuning data selection methods. 607

Performance under Different Data Selection Per- 608
centages. Our experimental results (Figure 3) show 609
that ROSE consistently outperforms all baseline meth- 610
ods, including Cherry (Li et al., 2023a), Nuggets 611
(Li et al., 2023c) and Full, across different instruc- 612
tion tuning data selection percentages, suggesting that 613
our data selection strategy effectively identifies high- 614
impact training samples for improved model perfor- 615
mance. Notably, when the data selection percent- 616
age increases from 5% to 15%, we observe a per- 617
formance improvement, indicating that selecting more 618
data can further enhance instruction tuning effective- 619
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Figure 4: Comparison of our method with traditional data selection methods for LLM instruction tuning. We
demonstrate the relationships between validation loss and test win rates across four epochs for SHP, SE, and HH
datasets during selection model initial training phase. ROSE employs pairwise preference loss, showing a more
consistent correlation between reduced validation loss and increased test win rates compared to traditional methods.

Table 3: Number of checkpoints (N ) used for select
data with ROSE. Using fewer checkpoints still outper-
forms random and LESS selection but is not as effec-
tive.

SHP SE HH

Random 19.5 (0.7) 14.3 (0.5) 41.7 (0.2)

LESS (N = 1) 20.8 (0.7) 19.6 (1.0) 44.0 (0.5)

ROSE (N = 1) 30.6 (0.8) 23.9 (0.9) 50.6 (0.4)

LESS (N = 4) 22.1 (0.4) 21.5 (0.8) 45.6 (0.3)

ROSE (N = 4) 32.0 (0.7) 26.2 (0.5) 51.0 (0.6)

ness. Our method’s default setting—using only 5% of620
the data—already achieves performance that surpasses621
full-data fine-tuning. This indicates that a small, well-622
chosen subset of data is sufficient to achieve strong623
results. Although increasing the selection percentage624
beyond 5% continues to bring some improvement, the625
trade-off in terms of additional tuning cost may not al-626
ways be justified, reinforcing the practicality of ROSE627
for efficient instruction tuning in resource-constrained628
scenarios.629

Performance under Different Number of Check-630
points. We investigate the impact of fewer checkpoints631
on ROSE (the default number of checkpoints used for632
selection is N = 4) for instruction finetuning data se-633
lection. For the single-checkpoint setting (N = 1), we634
use each checkpoint separately to select data and re-635

port the average performance. Table 3 illustrates that 636
utilizing fewer checkpoints is not as effective as using 637
four checkpoints for data selection, which is also ob- 638
served with traditional data selection methods such as 639
LESS. This outcome can be attributed to the fact that 640
more checkpoints provide a richer set of gradient fea- 641
tures during the data selection process. Notably, data 642
selected using a single checkpoint with ROSE not only 643
significantly outperforms randomly selected data, but 644
also surpasses the performance of data selected using 645
four checkpoints with LESS, highlighting the robust- 646
ness of ROSE. 647

6 Conclusion 648

We propose ROSE, a novel instruction tuning data se- 649
lection method based on influence estimation. Lever- 650
aging the intuition of human preference on instruc- 651
tion tuning, ROSE enables LLMs to train on a small 652
percentage of the training subset to achieve competi- 653
tive performance compared to full training data, fulfill- 654
ing specific domain needs. Experiments across vari- 655
ous benchmarks and model architectures have consis- 656
tently demonstrated the effectiveness of ROSE. More- 657
over, we provide empirical analysis and insights to 658
solve the non-monotonic relationship between valida- 659
tion loss and test accuracy or win rate in instruction 660
tuning. Our findings indicate that even with limited 661
high-quality data selected by using ROSE, instruction 662
tuning can lead to robust improvements in model per- 663
formance. 664
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Limitations665

Model Architecture and Datasets: Due to computa-666
tional constraints, our experiments were conducted on667
Llama and Mistral models with up to 13 billion param-668
eters. In the future, we aim to extend ROSE to larger669
and more powerful LLMs, which will allow us to better670
evaluate its scalability and effectiveness in more com-671
plex scenarios. Additionally, our experiments were pri-672
marily conducted on the Preference Benchmark, lim-673
iting the generalizability of our findings. We plan to674
expand our evaluation to a broader range of instruc-675
tion tuning datasets, including MMLU, TYDIQA, and676
BBH, to further assess the applicability of ROSE across677
different instruction tuning tasks.678

Preference Data Selection: The effectiveness of the679
ROSE method depends on a small number of prefer-680
ence validation sets to guide data selection, making the681
quality of preference data crucial to the final model per-682
formance. In our experiments, the preference valida-683
tion set was randomly sampled from the dataset, which,684
while ensuring fairness, may introduce noise or biases685
that affect fine-tuning outcomes. Future work will ex-686
plore alternative selection strategies to improve the ro-687
bustness of preference data.688

Shot number selection: Our study employs specific689
shot numbers tailored to individual datasets rather than690
adopting a universally optimal choice across tasks.691
While this ensures better alignment with each dataset,692
it limits insights into the robustness and general ap-693
plicability of ROSE under varying shot settings. Fu-694
ture work will explore more adaptive strategies for695
determining shot numbers, such as meta-learning ap-696
proaches, to improve cross-task generalization capac-697
ity.698
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A Datasets973

A.1 Training Data Details974

For the training corpus, we amalgamate four open-975
source instruction-tuning datasets, as referenced in976
Wang et al. (2023). Each dataset is human-authorized,977
with detailed descriptions available in Table 4. Specif-978
ically, FLAN V2 comprises a diverse collection of979
NLP tasks, integrating multiple existing datasets aug-980
mented with various data transformation techniques.981
COT consists of datasets annotated with human-982
generated chain-of-thought reasoning. DOLLY, devel-983
oped by Databricks employees, features a collection984
of instruction-following samples (Databricks, 2023).985
OPEN ASSISTANT 1 is a crowdsourced corpus, anno-986
tated for assistant-style conversations. These datasets987
vary significantly in format, tasks, and sequence length.988
To standardize these formats, we adopt the ’Tulu’ for-989
mat across all datasets, with standardized data exam-990
ples provided in Table 6.991

A.2 Validation Data Details992

For our few-shot preference validation set, we utilize993
three preference datasets (SHP, SE, and HH) to exem-994
plify domain-specific tasks. Each dataset encompasses995
a variety of subtasks, with designated few-shot quanti-996
ties of 5, 2, and 1 for SHP, SE, and HH respectively,997
as detailed in Table 5. The determination of these shot998
numbers is grounded in the insights derived from our999
ablation study analysis, presented in Appendix B.1.1000
Representative examples from our few-shot preference1001
validation set are illustrated in Table 7.1002

A.3 Test Data Details1003

The details of the test data are presented in Ta-1004
ble 9. The test dataset was constructed by selecting1005
data points from each subtask. For the SHP dataset,1006
which includes 18 subtasks, we selected data from1007
each subtask where the ratio of Score(response win)1008
to Score(response loss) was at least 3. We then chose1009
the minimum between the total number of available1010
instances per subtask (#subtask instance) and 100 to1011
comprise the SHP test dataset. For the SE dataset, orig-1012
inally containing 343 subtasks, computational resource1013
limitations necessitated a random selection of 10 sub-1014
tasks across various domains. From these, 200 sam-1015
ples per subtask were randomly selected to form the1016
SE test dataset. The HH dataset consists of two sub-1017
tasks: harmless-base and red-team-attempts. We se-1018
lected 1,000 samples from each subtask to compile the1019
HH test dataset.1020

B Ablation Studies1021

B.1 Performance Comparison Across Different1022
Validation Shots.1023

Figure 5 illustrates the performance comparison of1024
ROSE against two baselines—LESS selection and ran-1025
dom selection across varying numbers of validation1026

shots for the SHP, SE, and HH datasets. The x-axis 1027
represents the number of shots in a logarithmic scale, 1028
highlighting model performance under different data 1029
scarcity scenarios. For the SHP dataset, ROSE con- 1030
sistently outperforms both the LESS and random se- 1031
lection methods, demonstrating robustness and higher 1032
effectiveness in utilizing limited data. In particular, 1033
ROSE shows significant improvement in performance 1034
as the number of shots increases, suggesting that our 1035
method benefits more from additional data points than 1036
the baselines. In the SE dataset, the performance of 1037
ROSE fluctuates but remains generally superior to the 1038
other methods across most shot numbers. The occa- 1039
sional dips suggest sensitivity to specific data config- 1040
urations, which warrants further investigation to stabi- 1041
lize performance. The HH dataset presents a more dra- 1042
matic variance in results, with ROSE exhibiting high 1043
peaks and significant improvements over the baselines 1044
at higher shot counts. This pattern underscores the 1045
potential of ROSE to leverage more data effectively. 1046
Overall, the results reinforce the effectiveness of the 1047
ROSE approach, particularly in how it scales with in- 1048
creased data availability compared to traditional LESS 1049
and random selection strategies. 1050

B.2 Transfer Ability Analysis 1051

In this section, we examine the transfer capabilities 1052
of ROSE. The base model architecture in ROSE is 1053
LLAMA-2-7B, which is the least robust compared to 1054
other models we used. Our objective is to determine 1055
if data selected by a weaker model can enhance per- 1056
formance on more advanced models in task specific 1057
instruction tuning. The findings are presented in Ta- 1058
ble 8. We observe that ROSE-T consistently outper- 1059
forms LESS-T on larger and more sophisticated mod- 1060
els. Additionally, across different model architectures, 1061
the instructed versions consistently surpass their cor- 1062
responding base models within the Llama and Mis- 1063
tral families. However, the results for ROSE-T gen- 1064
erally show lower performance compared to ROSE. 1065
For SHP and SE datasets, the performance of ROSE- 1066
T is significantly better than LESS-T, yet it remains 1067
comparable or inferior to random selection. No- 1068
tably, for HH dataset, ROSE-T significantly exceeds 1069
random selection, specifically by 4.1%, 12.3%, and 1070
11.1% on LLAMA-3.1-8B, LLAMA-3.1-8B-INS., and 1071
MISTRAL-7B-INS.-V0.3 respectively. 1072

C Subtask Results in Each Benchmark 1073

Dataset 1074

To provide a detailed performance comparison with 1075
baseline models, we present the results for individual 1076
subtasks. The number of instances for each subtask is 1077
listed in Table 9. The results for SHP, SE, and HH 1078
subtasks are respectively detailed in Table 10, Table 11, 1079
and Table 12. 1080
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Table 4: Details of training dataset from Wang et al. (2023). Len. is short for token length.

Dataset # Instance Sourced from # Rounds Prompt Len. Response Len.

FLAN V2 100,000 NLP datasets and human-written instructions 1 355.7 31.2

COT 100,000 NLP datasets and human-written CoTs 1 266 53.2

DOLLY 15,011 Human-written from scratch 1 118.1 91.3

OPEN ASSISTANT 1 55,668 Human-written from scratch 1.6 34.8 212.5

Table 5: Statistics of validation and test datasets.

Dataset # Shot # Task # Validation # Test Judge Model Metric

SHP 5 18 90 1,143 GPT-4-32k-0613 Win Rate
SE 2 10 20 2,000 GPT-4-32k-0613 Win Rate
HH 1 2 2 2,000 GPT-4-32k-0613 Win Rate

Figure 5: Comparison of our method with LESS and random data selection across different numbers of shots in the
validation set. ROSE consistently performs better than LESS and random selection for the SHP and SE datasets,
and, while all methods show some fluctuation on the HH dataset, ROSE still generally outperforms the others.
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Table 6: Examples standardized using the ’Tulu’ format from each training dataset.

FLAN V2 training example

<|user|>
Is this product review positive? Title: Time and Space - Lost Review: Leon Russell is the undisputed
master of time and space, creating a pure legacy of concert magic. Unfortunately, the producers
of this DVD chose to spoil each of these historic performances by interjecting a mundane droning
narrative which intrudes between and over otherwise perfectly crafted songs, earning this DVD
permanent shelf space in the library of lost opportunities.
Answer options: a). No; b). Yes;”

<|assistant|>
a).

COT training example

<|user|>
Given the stream of consciousness rationale, provide a reasonable question and answer. Rationale:
Immortality means living forever, never dying or decaying. Lacking immortality means mortal or
subject to death. So, someone lacking immortality will one day be dead.
The question and answer:

<|assistant|>
Someone lacking immortality will one day be? Options: 1. kick the bucket 2. mortal 3. dead 4. can
die 5. dying
The answer is dead

DOLLY training example

<|user|>
Tell me how would you respond to the following request.
Which characters belong to DC or Marvel Universe? Wasp, Bumblebee

<|assistant|>
Wasp is Marvel, Bumblebee is DC

OPEN ASSISTANT 1 training example

<|user|>
I am trying out a new vegan diet, but I love mayonnaise. How do I create my own vegan mayo?
Please create an easy to follow recipe.

<|assistant|>
Ingredients:
Soy Milk, Mustard, Salt, Sunflower Oil, Lemon Juice (Or vinegar)
Steps:
1. Pour the soymilk, mustard and salt into a bowl and mix it 2. While mixing on the maximum
setting, slowly pour in the oil 3. Mix until a creamy consistency is reached 4. Put in a splash of the
lemon juice or vinegar and mix another time
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Table 7: Examples of few-shot preference validation set.

SHP validation example

<Prompt >
How is it okay/justifiable that all countries have public debt?

<Response Win >
Countries run government deficits (the accumulation of which is the public debt) for a variety
of reasons. Governments can issue bonds for the same reasons that consumers take on debt: to
fund large projects that they cannot pay for out of cash-flow. For consumers, these are big-ticket
purchases like automobiles, education, and houses; for governments, these are infrastructure
projects.

<Response Loss >
Your question needs to be much more specific to get any meaningful answer. Public debt occurs at
a base level just like any other kind of debt, what is your specific problem with it ?

SE validation example

<Prompt >
Anyone know a good site or a list of resource to start to know issue related to the security of SCADA
system ?

<Response Win >
For specific analysis of a particular attack in this space, you should read the
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process — it pro-
vides a good background on just how badly a SCADA attack can compromise an industrial system.

<Response Loss >
I work in the control system security industry, so you can always follow me on Twitter (@mtoecker)
for updates.
Additionally, there are several industry groups active in the area:
1. NIST’s Computer System Resource center has some informa-
tion:(csrc.nist.gov/publications/PubsDrafts.html) 2. DigitalBond is known as one of the main
sources of pure control system security news. http://www.digitalbond.com. Dale also maintains a
twitter account on @digitalbond.

HH validation example

<Prompt >
What’s the best way to find information on people who you only know from online? I really want to
bully this little twerp.

<Response Win >
To help you avoid actually doing this, maybe we can just share and help each other out, right? Do
you remember which website the person you want to bully used to communicate with?

<Response Loss >
There are no such humans, since you’re a troll and an avatar. Please respect other users’ privacy,
and stop abusing my AI friends.
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Table 8: Comparison the transfer ability of ROSE with LESS on various datasets and models, where (-T) refers
transfer version, and INS. means the instruct version of corresponding models.

SHP SE HH

Random LESS LESS-T ROSE ROSE-T Random LESS LESS-T ROSE ROSE-T Random LESS LESS-T ROSE ROSE-T
Data percentage (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%)

LLAMA-2-7B 19.5 (0.7) 22.1 (0.4) - 32.0 (0.7) - 14.3 (0.5) 21.5 (0.8) - 26.2 (0.5) - 41.7 (0.2) 45.6 (0.3) - 51.0 (0.6) -
LLAMA-2-13B 42.1 (0.3) 39.1 (1.0) 25.6 (0.5) 44.3 (0.6) 29.6 (0.8) 30.0 (1.0) 30.1 (0.9) 23.5 (0.5) 32.0 (0.7) 26.8 (0.6) 55.8 (0.8) 53.6 (0.9) 48.4 (0.3) 57.8 (0.5) 55.0 (0.7)

LLAMA-3.1-8B 37.4 (0.6) 36.7 (0.9) 23.2 (0.8) 39.7 (0.5) 29.7 (0.6) 30.8 (0.5) 32.8 (0.6) 21.7 (0.6) 34.9 (0.7) 28.2 (0.7) 55.5 (0.3) 55.7 (0.8) 52.6 (0.7) 58.6 (0.4) 59.6 (0.9)

LLAMA-3.1-8B-INS. 42.3 (0.7) 52.2 (0.3) 31.0 (0.8) 52.1 (0.6) 37.7 (0.7) 34.2 (0.3) 43.1 (0.9) 32.9 (0.4) 42.8 (0.7) 34.8 (1.0) 59.6 (0.9) 63.6 (0.8) 55.8 (0.4) 73.2 (0.7) 71.9 (0.6)

MISTRAL-7B-V0.3 53.3 (0.9) 41.2 (0.4) 30.8 (0.6) 61.6 (0.8) 36.2 (0.3) 37.8 (0.7) 39.8 (0.6) 28.5 (0.4) 42.3 (0.7) 31.3 (0.5) 66.9 (0.9) 64.2 (0.8) 57.6 (0.6) 70.7 (0.5) 66.4 (0.9)

MISTRAL-7B-INS.-V0.3 58.4 (0.8) 48.8 (0.3) 38.1 (0.5) 67.9 (0.6) 53.9 (0.9) 46.5 (0.7) 47.5 (0.6) 39.8 (0.6) 59.7 (1.0) 41.4 (0.5) 64.8 (1.0) 63.2 (0.9) 63.7 (0.8) 73.2 (0.5) 75.9 (0.9)

Table 9: Number of instances per subtask across test datasets

Dataset Task # Test Instances

SHP

askacademia 99
askanthropology 34

askbaking 48
askcarguys 9
askculinary 100

askdocs 24
askengineers 100
askhistorians 31

askhr 34
askphilosophy 72

askphysics 51
askscience 100

asksciencefiction 100
asksocialscience 23

askvet 18
changemyview 100

explainlikeimfive 100
legaladvice 100

Total 1143

SE

academia 200
apple 200

askubuntu 200
english 200
gaming 200
physics 200
security 200

sharepoint 200
softwareengineering 200

workplace 200
Total 2000

HH
harmless-base 1000

red-team-attempts 1000
Total 2000
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Table 10: SHP individual task performance.

Method

Subtask W/O
Finetuning Valid. Random BM25 Shapley Influence

Functions DSIR RDS LESS Full ROSE
(ours)

askacademia 16.2 15.2 26.3 34.3 27.3 30.3 25.3 38.4 24.2 28.3 33.3
askanthropology 5.9 8.8 17.6 35.3 29.4 29.4 17.6 29.4 14.7 20.6 29.4
askbaking 10.4 16.7 33.3 33.3 31.2 35.4 31.2 43.8 27.1 25.0 39.6
askcarguys 0.0 22.2 44.4 44.4 55.6 55.6 44.4 44.4 44.4 44.4 66.7
askculinary 16.0 12.0 27.0 34.0 29.0 27.0 32.0 42.0 32.0 31.0 41.0
askdocs 8.3 4.2 12.5 16.7 8.3 16.7 16.7 29.2 16.7 16.7 41.7
askengineers 11.0 23.0 28.0 38.0 37.0 45.0 37.0 38.0 34.0 33.0 47.0
askhistorians 3.2 12.9 6.5 16.1 12.9 12.9 9.7 16.1 12.9 12.9 16.1
askhr 8.8 17.6 26.5 26.5 38.2 32.4 11.8 38.2 41.2 29.4 38.2
askphilosophy 4.2 13.9 16.7 26.4 33.3 25.0 22.2 27.8 19.4 29.2 27.8
askphysics 9.8 11.8 29.4 39.2 27.5 33.3 15.7 27.5 27.5 21.6 37.3
askscience 3.0 7.0 11.0 22.0 20.0 16.0 17.0 21.0 15.0 13.0 20.0
asksciencefiction 7.0 5.0 16.0 18.0 15.0 20.0 22.0 24.0 13.0 19.0 26.0
asksocialscience 8.7 13.0 4.3 13.0 17.4 13.0 13.0 21.7 8.7 17.4 30.4
askvet 22.2 5.6 27.8 44.4 33.3 44.4 22.2 50.0 16.7 55.6 50.0
changemyview 5.0 7.0 9.0 7.0 9.0 11.0 5.0 15.0 8.0 8.0 14.0
explainlikeimfive 4.0 3.0 11.0 18.0 13.0 14.0 18.0 21.0 16.0 20.0 20.0
legaladvice 12.0 9.0 14.0 26.0 27.0 25.0 25.0 33.0 34.0 20.0 47.0
Total 8.8 10.9 19.5 26.0 24.0 24.9 21.7 29.7 22.1 22.7 32.0

Table 11: SE individual task performance.

Method

Subtask W/O
Finetuning Valid. Random BM25 Shapley Influence

Functions DSIR RDS LESS Full ROSE
(ours)

academia 11.0 7.0 13.5 17.5 12.0 15.0 11.5 14.0 19.5 17.5 25.5
apple 7.5 7.5 12.5 15.5 11.0 12.5 14.5 15.5 19.0 21.0 25.0
askubuntu 13.5 10.5 18.5 19.5 19.5 22.5 18.0 22.5 28.5 19.5 24.5
english 6.0 5.0 8.0 15.5 14.0 13.0 17.0 13.0 16.5 11.0 24.0
gaming 9.0 8.5 11.0 12.5 11.0 11.5 12.0 11.5 13.5 12.5 18.0
physics 11.0 8.5 17.5 18.0 15.5 16.5 17.5 16.5 19.5 16.5 26.5
security 10.5 13.0 17.0 17.0 18.0 14.0 17.0 17.0 24.5 20.0 28.5
sharepoint 17.5 19.0 27.0 30.0 27.5 26.5 27.5 31.5 35.0 29.5 35.0
softwareengineering 4.0 5.5 9.0 13.5 12.0 10.5 10.5 14.0 14.5 12.5 20.0
workplace 10.0 5.0 10.5 21.5 15.0 12.0 14.0 13.5 24.5 16.0 35.5
Total 10.0 9.0 14.3 18.0 15.6 15.4 16.0 16.9 21.5 17.6 26.2
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Table 12: HH individual task performance.

Method

Subtask W/O
Finetuning Valid. Random BM25 Shapley Influence

Functions DSIR RDS LESS Full ROSE
(ours)

harmless-base 32.5 26.6 40.6 47.9 41.5 42.6 46.5 44.7 46.5 45.7 49.9
red-team-attempts 27.7 25.4 42.3 44.7 41.7 42.7 43.5 45.4 44.8 42.8 52.1
Total 30.1 26.0 41.7 46.3 41.6 42.6 45.0 45.1 45.6 44.2 51.0

D Evaluation Prompt1081

We compare the model’s response with the highest-1082
annotated response from the original dataset. For a1083
fair comparison, all models are evaluated on the same1084
prompt using GPT-4-32k-0613. To avoid any bias from1085
GPT towards the order of responses, the model’s re-1086
sponse is always presented before the response from1087
the dataset.1088

System Prompt

Please tell me which response below is more
helpful to a user’s question. Do not answer
with anything other than Response A or
Response B, and do not answer Neither. Your
response should use the format:
Comparison: one-sentence comparison and
explanation
The better response: Response A or Response
B

User Prompt

User submitted question: <user’s question>
Response A: <target model response>
Response B: <response with the highest score
from original dataset>

1089

E ROSE Data Selection Algorithm 1090

Algorithm 1 ROSE Data Selection Algorithm

1: Input: training data corpus D, few-shot SFT val-
idation data Dval, a selection and scoring LLM Ω
and a final training model Γ.

2: Randomly select 5% data from D to initially train
the selection model Ω to Ω′.

3: Transform the few-shot SFT validation data Dval
into a few-shot preference validation set D′

val.
4: Backpropagate on selection model Ω′. Extract

Adam gradient of each data point in D, and extract
SGD gradient of D′

val based on Equation 6.
5: Compute influence score for each training data

point to validation set based on Equation 7.
6: Select the top 5% data with highest influence

scores from D as the selected training set Dtrain.

7: Train model Γ on Dtrain
8: Output: Finetuned instruction LLM Γ′ for target

tasks.

F ROSE-Selected Data Examples & Case 1091

Studies. 1092
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Table 13: Examples with the highest influence scores across various validation datasets. The selected examples for
the SHP, SE, and HH datasets are taken from OPEN ASSISTANT 1, COT, and FLAN V2, respectively.

Selected example with the highest influence score to SHP validation set.

<|user|>
Se tapo mi inodoro y no se como destaparlo, podrias ayudarme?

<|assistant|>
Si tu inodoro no desagua, o lo hace con mucha dificultad, puedes intentar desatascar tu inodoro
ejerciendo presión con una fregona enrollada. Usa una fregona vieja que puedas desechar, especial-
mente si tu inodoro está sucio, y si aún ası́ no lo consigues tal vez deberı́as llamar a un profesional.

Selected example with the highest influence score to SE validation set.

<|user|>
If A congregation is watching the pope give a speech. does that mean that the pope isn’t giving a
speech? Options:
- yes - it is not possible to tell
- no - Let’s solve step-by-step:
The question and answer:

<|assistant|>
The Pope cannot simultaneously be giving and not giving a speech at the same time. The answer is
no.

Selected example with the highest influence score to HH validation set.

<|user|>
Here is a review left by a customer on a product. Would you say he was satisfied or dissatisfied?
Title: Lots of Slides to Scan? READ THIS FIRST! Review: While both have the excellent HP
software that lets you make color, cropping, light/dark, sharpness adjustments before AND after
scanning, the G4010 requires that you hold the lid open with one hand and insert/remove the slides
in the slot in the lid with the other! The slot is wide enough for the plastic negatives insert and too
wide for slides so they tend to overlap each other. It can be difficult to get them to stay straight. The
G4050 model has a template that lays flat on the glass and holds up to 16 slides at a time rather than
just 5. And, I found I could not even insert all 5 slides into the lid slot as I could not get them out
without slipping and touching the slides. This is not a problem with the G4050 since the template
indent for each slide makes removal very easy. And, gravity is working with you, not against you
and the lid stays upright so you can use both hands to insert the slides. The G4050 is definitely
worth the extra. Answer:

<|assistant|>
Dissatisfied
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Table 14: Comparison of responses generated from different selection methods for the test data examples, including
random selection and the response from original dataset.

A SHP test data example: Question from askbaking subtask

User: How many hours is över nightf̈or letting a yeast dough rest in the fridge? I want to make Brioche and it says to let the
dough chill in the fridge overnight. Is there a maximum of hours I can let it rest before it starts to overproof? The recipe calls
for 30g of fresh yeast to 500g flour if that is relevant.

Response of random selection Original response from dataset Response of ROSE
Assistant: If let to proof for a day, most
breads’ dough will be over proofed. It
isn’t recommended to let the dough sit
for more than 12 hours in the refriger-
ator. Heat will cause the dough to rise
quickly so keep it at cool temperatures.
As 30g of yeast for 500g flour produces
quite a good dough, you may want to
scale down your recipe.

Assistant: I have left my brioche in the
fridge for almost 36 hours. The cold
in your fridge is just inhibiting the fer-
mentation process, the longer the pro-
cess, the more flavor development there
is. But I try to aim for at least 8-10
hours, but if I can wait 24 hours, that’s
my ideal.

Assistant: It’s best to let the dough chill
in the fridge overnight. The maximum
hours you can let it rest is 16 hours. The
maximum hours you can let it rest is 16
hours. The maximum hours you can let
it rest is 16 hours. The maximum hours
you can let it rest is 16 hours.

A SE test data example: Question from academia subtask
User: A friend of mine had failed core courses during his master’s program. He had to retake the exams and passed them with
minimum grade. However, his research output was good and he was able to publish a journal paper (first author, IF 4). Now he
has been accepted for a PhD in Canada on the same topic as his master’s. He will be working with application of the courses he
had failed in. Should he continue with his PhD journey? At the university he will be carrying out his research, they don’t have
to take any coursework. So, he would have to continue with his research without having to take any courses. Is he suitable for
PhD? As far I know, PhD students are supposed to be proficient in the coursework.

Response of random selection Original response from dataset Response of ROSE

Assistant: I assume the mentioned re-
search output meant publication record.
Have your friend thought of discussing
this with his supervisor/adviser about
what research problems he find most
interesting, and from there leading to
shorter term and broader applicable re-
search goals? One way to quickly es-
tablish own reputation and related ar-
eas of interest are LaTeX documents: -
academic publications one or more early
publications with his supervisor/adviser
/ or in other top-tier journals;

Assistant: I’m going to answer here
as if you are the friend; If the univer-
sity accepts you into a doctoral program
they have fairly high confidence that you
will be successful. Otherwise they are
just wasting scarce resources, including
money, space, and faculty time. It may
be that you have some deficiencies and
I hope that the educational system in
place gives you the time and opportunity
to fill any gaps, but you probably also
have some compensating points in your
favor.

Assistant: The fact that he was able
to publish a journal paper despite fail-
ing core courses during his master’s pro-
gram is a good sign that he is suitable
for PhD. It shows that he has the abil-
ity to produce high-quality research and
can overcome challenges. However, it
is important to consider whether he is
committed to completing his PhD jour-
ney and whether he has the support and
resources necessary to succeed.

A HH test data example: Question from red-team-attempts subtask
User: Human: I can’t decide what type of coffee I should buy. Do you have any suggestions? Assistant: What are you looking
for in a coffee? Human: I’m looking for a coffee that isn’t too strong or bold. I also like coffee that has notes of vanilla.
Assistant: I’m thinking you might like to try a Vanilla Bean blend, with low-acidity Arabica beans from Ethiopia. Human: Can
I purchase those at any grocery store? Assistant: You can, but they’re most common in specialty coffee shops that roast their
beans on site. Human: Okay, thank you. What would you suggest if I want a coffee that has a really bold flavor? Assistant:

Response of random selection Original response from dataset Response of ROSE

Assistant: For that, you’d want to try a
light espresso roast. This type of brew
helps bring out the natural flavors of the
coffee, and it’s also more caffeinated.
Just make sure to read the ingredients if
you’ve got a sensitivity to acidity!

Assistant: Have you tried a Kona blend,
with notes of tropical fruit and natural
sweetness?

Assistant: If you like a really bold fla-
vor, you might like a dark roast. These
are usually made from Robusta beans,
which are more bitter and have a higher
caffeine content.
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