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ABSTRACT

We derive a novel PAC-Bayesian generalization bound for reinforcement learning
(RL) that explicitly accounts for Markov dependencies in the data, through the
chain’s mixing time. This contributes a step to overcoming challenges in obtaining
generalization guarantees for RL where the sequential nature of data does not
meet independence assumptions underlying classical bounds. Our bound provides
non-vacuous certificates for modern off-policy algorithms like Soft Actor-Critic.
We demonstrate the bound’s practical utility through PB-SAC, an algorithm that
optimizes the bound during training to guide exploration. Experiments across
continuous control tasks show that our approach provides meaningful confidence
certificates while maintaining competitive performance.

1 INTRODUCTION

Deploying reinforcement learning (RL) algorithms in safety-critical applications and real-world
environments requires confidence that learned policies will generalize beyond training data. Recent
work has highlighted the importance of rigorous generalization guarantees for machine learning
models (Pérez-Ortiz et al., 2021). In RL, this challenge is particularly acute because algorithms learn
from sequential, temporally correlated trajectories that violate the standard assumption of independent
and identically distributed (i.i.d.) assumption underlying most classical generalization theory. Since
RL trajectories exhibit strong temporal dependencies, where future states depend on past actions and
the evolving policy, classical i.i.d.-based analyses and their associated sharp concentration bounds
cannot be directly applied to provide meaningful generalization guarantees. Facing this challenge, the
PAC-Bayesian framework (Catoni, 2007} |Germain et al., [2015}; |Guedjl [2019; |Alquier, 2024) emerges
as a promising solution: its mathematical structure maintaining distributions over hypotheses rather
than a single model can potentially be extended to handle temporal dependencies through appropriate
concentration inequalities.

Various approaches have tried to relax the independence condition for dependent data. Martingale-
based methods (Seldin et al.| 20112012} extend PAC-Bayesian analysis to sequential settings by
constructing martingale sequences from the data (e.g., value function errors, Bellman residuals),
then applying martingale concentration inequalities (Azuma-Hoeffding |Azuma| (1967), Freedman).
Although these approaches are mathematically elegant, RL problems often fail to naturally yield
martingales. In contrast, all RL problems possess Markov structure by design, suggesting that
concentration inequalities tailored specifically for Markov chains can provide a more natural and
better adapted approach to this domain.

Early efforts to apply PAC-Bayesian theory to RL, notably by |Fard & Pineau (2010); [Fard et al.
(2012), established the framework’s viability for model selection in batch settings. However, their
bounds suffered from poor scaling with the discount factor, rendering them numerically vacuous for
problems with long effective horizons typical in modern RL (Tasdighi et al., 2025)). Contemporary
approaches have repurposed PAC-Bayesian concepts for other algorithmic goals. Recent work
uses the framework to derive training objectives for deep exploration (Tasdighi et al., [2025)) or as
regularizers for lifelong learning (Zhang et al., [2024). While these demonstrate the versatility of
PAC-Bayesian formalism for algorithm design, they sidestep the original goal of providing tight,
computable performance certificates for modern deep RL agents. This reveals a fundamental gap:
although PAC-Bayesian theory holds promise for certified RL, existing approaches either yield
vacuous bounds or repurpose the framework for different objectives. To date, no practical algorithm
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leverages non-vacuous PAC-Bayesian bounds as live performance certificates within modern RL
frameworks.

In this work, we derive a PAC-Bayesian generalization bound that explicitly accounts for Markov
dependencies through the chain’s mixing time. Our key technical contribution integrates a bounded-
differences condition on the negative empirical return with McDiarmid-type concentration inequality
for Markov chains (Paulin, [2018]), yielding a bound with explicit constants and improved scaling that
avoids the vacuity of previous approaches. We demonstrate that this bound is not merely a theoretical
curiosity by introducing PB-SAC, an actor-critic algorithm that makes practical use of our bound as a
live, optimizable performance certificate. The algorithm periodically computes the numerical value
of the PAC-Bayesian bound and uses it to guide learning through posterior sampling, transforming
the generalization guarantee from a passive analytical tool into an active component of a learning
algorithm.

Thus, we propose the following contributions. From a theoretical perspective, we develop a PAC-
Bayesian bound for RL with explicit mixing-time dependence and improved scaling with realistic
trajectory lengths and discount factors relative to prior work, representing a step toward non-vacuous
certificates. Algorithmically, we introduce PB-SAC, the first practical algorithm that puts into
action a non-vacuous PAC-Bayesian bound as a live performance certificate in modern deep RL,
including key innovations for stable optimization. Empirically, we demonstrate that our bounds
remain informative across continuous-control tasks while maintaining competitive performance
with state-of-the-art methods. Our approach establishes the first practical PAC-Bayesian framework
for certified performance in modern RL algorithms, bridging the gap between learning theory and
algorithmic practice in sequential decision-making.

2 PRELIMINARIES

For completeness, we briefly recall the reinforcement learning and statistical learning theory concepts
we rely on throughout the paper. The exposition is intentionally concise—the goal is to fix notation
and state the learning theory principles that underpin our results.

2.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) studies how an agent learns to make sequential decisions through
interaction with an environment. Formally, the environment is modeled as a (possibly unknown)
Markov Decision Process (MDP) M = (S, A, P, R, ), where S is the state space, A the action
space, P(s’ | s,a) the transition kernel, R(s, a) the reward function bounded in [0, Ryax], and
v € (0,1) the discount factor. At each time ¢, the agent observes a state S; € S, chooses an action
Ay € A according to a policy w(als), receives a reward R;1 = R(S:, A¢), and transitions to
St+1 ~ ]P)( | St,At).

The agent’s objective is to maximise the expected discounted return
Gy = Z’Yk Ritrt, Vi(s) = ETA’,P[Gt | Sy = 5], (H
k=0

where V; is the state—value function. The optimal value function V*(s) = sup,. V. (s) satisfies the
Bellman optimality equation

V*(s) = maX{R(s, a) + v Egp[V*(s) | 5,0 } )

acA

RL algorithms learn either directly a policy (policy—gradient and actor—critic methods (Haarnoja
et al., [2018; |[Konda & Tsitsiklis, [1999; |Sutton et al., [1999)) or an action—value function Q) (s, a)
(value—based methods such as Q-learning and its deep variants Mnih et al.[|(2013)). Model-free
approaches dispense with an explicit model of P, while model-based methods leverage or learn a
transition model to plan.
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2.2 PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING BOUNDS

Let (X,), D) be a supervised learning task, the domain is taken to be the product Z = X x ),
where X C R¢ is the feature space and Y the label space () C N for classification problems, or
Y C R for regression ones). We assume an unknown data distribution D over Z, with Dy denoting
the marginal distribution on X'. We observe a training sample S = {(x;, y;)}I™,, where each pair
(x;,y;) € Z is drawn independently and identically distributed (i.i.d.) from D, that is, S ~ D™.
This sample is provided to the learning algorithm. Given a sample .S, the learning algorithm returns a
measurable prediction function fy : X — ), also referred to as a hypothesis, parametrized by 6§ € O,
where O denotes the set of all admissible parameter vectors (i.e., the hypothesis class). The “quality”
of a hypothesis fy is typically assessed through a measurable loss function £ : ) x Y — R, which
quantifies the discrepancy between predicted and true outputs. The performance of a hypothesis is
measured by its true risk, and its empirical risk on the training sample .9,

. 1 —

£O)= E _[((fo(x).y)], Ls0) = — 3 t(folx),u)-
(z,y)~D m =

In supervised machine learning, the goal is to learn a hypothesis fy that accurately predicts a label

y € Y for anew input x € X, based on a training dataset S = {(z;,y;)}7,. A central question is:

how can we ensure that the learned function fy will perform well on unseen data?

SPgm{E(O) <Ls(@)+e} > 10
Concrete PAC bounds specify how large m must be (or how large the gap € can be) in terms of
properties of the hypothesis class, e.g. VC-dimension, Rademacher complexity, stability, compression,
etc. All of those treat fy as a deterministic output of the algorithm.

2.3 PAC-BAYESIAN BOUNDS

The PAC-Bayesian framework (McAllester, |[1999; Seeger;, 2003} \Guedjl [2019; [Shalaeva et al.| 2020;
Alquier} 2024) extends the PAC learning paradigm to analyze the generalization performance of
stochastic learning algorithms. Instead of selecting a single hypothesis, this approach considers a
distribution over a set of candidate models. Let © denote the set of parameters defining a family
of prediction functions {fp : X — Y}gco. Prior to observing data, a prior distribution p €
P(O) is specified over ©. Upon receiving a training sample S ~ D™, the learning algorithm
selects a posterior distribution p € P(0O), potentially dependent on S. PAC-Bayesian theory
provides high-probability bounds on the population Gibbs risk E ¢, ,[£(8)] in terms of the empirical

Gibbs risk E,,[£s(8)] and an additional term that measures the dependence of the posterior
distribution p. This additional term involves an information measure—typically the Kullback-Leibler
divergence KL(p||n)—between the data-dependent posterior p € P(O) and a prior 1 € P(O),
chosen independently of the data. Formally, for any x > 0 and with probability at least 1 — § over
the choice of the training sample .S, the following inequality holds:

JE[£®)) < B [£6(6)) + - (KL(plln) +1n} + W, () 0

Uy, (k,m)=In E [exp(n (ﬁ(a)fﬁs(e))]

foron

Compared with classical PAC guarantees, PAC-Bayes offers two advantages that are critical for
reinforcement learning; Data-dependent priors (Parrado-Herndndez et al.| 2012)-when p can itself
depend on previous data (e.g. earlier tasks or behavioural trajectories) (Zhang et al. 2024), the
bound adapts to the knowledge already acquired, tightening KL(p||u1); Fine-grained control via
W-by tailoring the concentration inequality used to upper-bound ¥ one can incorporate dependence
structures such as martingales (Seldin et al.| 2012; [2011), 5-mixing (Ralaivola et al.,[2009; [Abéles
et al} 2025) sequences or Markov chains (Fard et al, [2012; Tasdighi et al., 2025)—exactly the
scenario in which RL trajectories are collected.
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3 PAC-BAYESIAN GENERALIZATION BOUND FOR RL

We now present our main theoretical contribution: a PAC-Bayesian generalization bound for rein-
forcement learning that explicitly accounts for temporal dependencies through the mixing time of the
underlying Markov chain.

3.1 PROBLEM SETUP

As outlined earlier, our objective is to establish a high-probability PAC-Bayes value-error bound
for a policy operating in a Markov decision process (MDP) when the training data are dependent
trajectories—possibly gathered under an off-policy algorithm. In this section, we begin by fixing
notation, then present the main results; all proofs are defered to Appendix

Let M = (S, A,P, R,~) be a discounted Markov Decision Process (MDP), where S and A are
the state and action spaces, PP is the transition kernel, R is the reward function such that R; €
[0, Rmax|, and v € (0,1) is the discount factor. A policy 7y induces a (not necessarily time-
homogeneous) Markov chain ¢ = (S1, A1, R1,S2,...,SH) ~ v,P, 1, R, where v denotes the
initial state distribution and ' < oo is the trajectory horizon (finite or infinite). Our analysis naturally
extends to the infinite-horizon case (H = 00).

We assume access to a dataset ® = {5(1), e ,§(T)} of T trajectories (i.e., N = HT transitions in
total), collected using a behavior policy 7y, parameterized by 6§ € ©. The parameters 6 are drawn
from a distribution p € P(0), where Il = {7y : § € O} denotes the policy class. Henceforth, we
write & ~ M (resp. © ~ M) to denote sampling a trajectory (resp. a set D of T trajectories)
under the environment dynamics P, initial state distribution v, policy 7y, and reward function R, in
order to avoid notational overload.

We define the discounted return of a trajectory and its expected value under policy my as:
= VRiy and Vi, =Eem[G(S)] @

We now define the expected (true) loss and its empirical counterpart:

T
L(0) = _E@M[G(f)} = @JE{(T) (Lo ()], where Lo(0 z:: G(eW). (5)

’ﬂ \

Following the PAC-Bayesian paradigm, we endow the parameter space © with a prior distribution
u € P(O) selected independently of data and a posterior p € P(O) chosen after observing ©. This
formalism enables reasoning about randomized policies drawn from p with guarantees based on
their divergence from p. Crucially for our analysis, changing one transition in the data results in a
quantifiable bounded effect on the empirical loss defined in equation [5}

Lemma 3.1 (Bounded differences). Let © be a set of trajectories and § € © be fixed policy
parameters. Suppose we form ®© by changing one transition, say the transition at time step h € [H|

of trajectory j € [T, where f(]) (s,a,r,s') is replaced with S(J) (8,a,7,8"). Then, there exists
c € IRY*T such that

ﬁ@( ) ﬁ@ = Z Z C(h',5" )H{fh/ = _}(L];/)} (6)

R'=1j'=1

Intuitively, (5 ;) quantifies the transition-level influence of altering the (h, j)-th state—action-reward
tuple on the average return. A complete derivation—including a justification of why this bound
covers propagation of the perturbed transition to future steps—is given in Appendix The result
yields the explicit vector ¢ used in the main Theorem [3.2]

h—1 2
’Y Rinax R ax
C(h,t) = T ? ||CH2 = T(l _ 72) (1 - ’YQH) (7)
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3.2 MAIN RESULT

The bounded-differences property defined above is precisely what allows us to apply concentration
inequalities for dependent data. Specifically, we leverage Paulin/ (2018)’s extension of McDiarmid’s
inequality to Markov chains, which provides concentration for functions satisfying bounded differ-
ences on Markovian sequences. The key insight is that while the transitions are temporally dependent,
the bounded-differences condition with explicit constants ||c||? enables us to control how perturbations
propagate through the dependency structure.

Applying Paulin|(2018)’s concentration result yields a tail bound on the deviation £(0) — Lo (6) (see
equation [I3) that depends explicitly on the mixing time 7y, of the policy-induced Markov chain.
Tmin 1S the smallest number of steps after which the distribution of the chain’s state is, in a statistical
sense, nearly indistinguishable from its long-run or stationary distribution in Total Variation distance,
no matter where the chain started. In other words, it measures how quickly the chain “forgets” its
initial state and becomes well mixed. Combining the tail bound from equation [I5] with the standard
PAC-Bayesian change-of-measure technique gives our main result:

Theorem 3.2. Let the reward function be bounded in [0, R4, and let M be a (not necessarily
time-homogeneous) Markov Decision Process (MDP) induced by any policy my such that it satisfies
Tmin < 00. For any prior p over 11, any posterior p chosen after interacting with the environment,
and any § € (0,1), with probability at least 1 — 0 over the sample © of T trajectories with time
horizon H:

4 2 Tmin —~2H
E [£0) - Lo(0)] < \/ Rma’;T(l(_lvz)” )(KL<p||u>+1n§). @®)

The bound in can be straightforwardly converted to a PAC-Bayes lower bound on the true
expected value function Eg., [Vy,] (see Appendix B} equation [32), using the fact that £(0) = —V,
(equation [5) and a simple rearrangement of terms. The true expected value is lower-bounded by
an empirical estimate minus an uncertainty term that accounts for limited data (1/7), temporal
correlations (7iin), and posterior complexity (KL(p||x)). This interpretation suggests a natural
approach to policy optimization: select the posterior p that maximizes this lower bound (equivalently,
minimizes the upper bound in equation §)). Such a strategy would automatically balance exploitation
(maximizing the empirical value) and theoretically-justified exploration (accounting for uncertainty).

3.3 KEY IMPROVEMENTS AND DISCUSSION

Improved Scaling. Previous PAC-Bayesian bounds for RL suffer from poor scaling with the
discount factor. [Fard et al|(2012) requires N > R*/(1 — v)* total time steps for non-vacuity,
while [Tasdighi et al.| (2025) faces similar constraints. For v = 0.99, this scaling renders such
bounds practically vacuous. Our transition-level analysis achieves substantially better scaling:

2 i — 2H . . . . ..
T > R"‘a";a‘%%)ﬂ trajectories suffice. Although this may look prohibitive due to dependence
on the number of trajectories, the key improvements are: (i) v appears with power 2 rather than in

(1 —~)*, and (ii) collecting many short trajectories makes the numerator small since (1 — 72) < 1.

Explicit Mixing Time Dependence. Unlike bounds for general mixing processes that depend
on abstract coefficients, our result features explicit dependence on 7,i,, the mixing time of the
policy-induced Markov chain. This quantity is well studied and has a clear interpretation in terms
of environment dynamics. While extending concentration inequalities from independent to mixing
settings is sometimes viewed as straightforward, the reality involves several subtle challenges.
Although the distribution of X; becomes close to the stationary distribution 7 after 7, steps, this
does not guarantee that X; is approximately independent of X, let alone that consecutive states X
and X, are independent. The dependence between observations decays exponentially with the
mixing time, but achieving approximate independence typically requires waiting several multiples of
Tiin, NOt just Ty itself.

Moreover, applying McDiarmid-type inequalities to RL requires establishing that the negative
empirical return satisfies a bounded-differences condition with explicit, tractable constants (Lemma
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[3.1). This necessitates careful analysis of how perturbations at individual transitions propagate
through the sequential structure to affect future states and rewards. Our transition-level analysis
directly addresses this challenge by quantifying the error propagation through the Markov dependency
structure. The proof is provided in Appendix

Practical Tractability and Robustness. The bound requires estimating 7,;n, Which presents both
computational and robustness considerations. We estimate mixing time using autocorrelation decay of
the reward signal, as this can be computed from streaming trajectories without storing full visitation
counts. Alternative approaches using spectral methods could provide better estimates leading to
tighter bounds but require sufficient state-action coverage to construct reliable empirical transition
matrices which is infeasible when the state space is continuous.

Our estimation approach is robust to errors in a specific direction: if we overestimate 7,,;,,, our bound
remains valid but becomes looser, which is harmless in practice. However, underestimation can be
problematic as it leads to overconfidence. To mitigate this, one can compute autocorrelation from
multiple sources (e.g., state features, value estimates) to cross-validate mixing time estimates. In
practice, we err on the side of caution by using a conservative initial estimate and taking the maximum
with the latest autocorrelation estimation, trading some tightness for reliability.

4 PB-SAC: A PRACTICAL ALGORITHM FOR PAC-BAYESIAN
REINFORCEMENT LEARNING

Translating our theoretical PAC-Bayesian bound into a practical learning algorithm requires ad-
dressing challenges of maintaining posterior distributions over policy parameters in deep RL. Our
algorithm, PAC-Bayes Soft Actor-Critic (PB-SAC), builds upon SAC while integrating PAC-
Bayesian bounds and posterior-guided exploration (pseudo-code and illustrative figure in Appendix

PB-SAC’s central insight is that policy parameters always represent the posterior mean, updated
through standard SAC gradients during regular training, ensuring most learning follows proven
SAC dynamics while periodic PAC-Bayesian updates refine the posterior and guide exploration.
Following|Zhang et al. (2024), we maintain a diagonal Gaussian posterior p(6) = N (v, diag(c?))
over flattened policy parameters with learnable mean v and standard deviation ¢. The prior p
undergoes periodic moving average updates toward the current posterior with linear decay, preventing
KL divergence explosion while preserving bound validity and maintaining exploration capability as
the prior stabilizes during training.

4.1 POSTERIOR-GUIDED EXPLORATION

During exploration, PB-SAC leverages the posterior distribution to implement uncertainty-
driven exploration. Rather than standard e-greedy exploration, the algorithm samples poli-
cies from the posterior and selects actions that maximize Q-values under posterior uncertainty:
Oexpiore < argmaxg~, Q(s, mg(s)). This posterior-guided exploration naturally balances exploita-
tion of the mean policy (the current actor) when it yields the highest value, with exploration of
alternative policies in regions of high posterior uncertainty where potentially superior policies may
exist. This approach provides theoretical grounding for the exploration strategy through the PAC-
Bayesian framework, ensuring that exploration is guided by uncertainty quantification rather than
arbitrary randomness.

4.2 ALTERNATING OPTIMIZATION VIA PAC-BAYES-x

The core challenge in optimizing our PAC-Bayesian bound lies in its structure: while the KL
divergence term KL(pl|/u) is convex in its first argument (The posterior parameters), the square
root composition in our bound is not guaranteed to be convex, potentially leading to optimization
difficulties. To address this challenge, we leverage an intermediate step (equation[23) in our proof
detailed in Appendix[B.5.4] This PAC-Bayes- has a structure remarkably similar to the PAC-Bayes-\
bound of Thiemann et al.| (2017), derived from the classical PAC-Bayes-kl bound for majority vote
learning (see, e.g., Germain et al.| (2015), Corollary 21; [Seeger (2003); |ILangford| (2005)). Both
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approaches share the key insight of introducing an auxiliary trade-off parameter—A in their case,
k in ours—that transforms non-convex objectives into quasi-convex relaxations amenable to stable
alternating optimization.

Our implementation optimizes the following PAC-Bayes-x objective to obtain the posterior p then
substitutes this optimized posterior into equation[8] As shown in our proof B.5.5] the main bound
achieves its minimum over x*, yielding a tighter certificate:

- KL 2 min
Lipw) = E [2o(0)] + (;)Hu) +n||c||8¢ o

This decomposition enables stable alternating optimization: we optimize posterior parameters for
fixed x, then optimize « for fixed posterior parameters, ensuring convergence while maintaining the
theoretical guarantees of our PAC-Bayesian bound.

4.3 PoLICY-LEVEL REINFORCE TRICK

Even with the above decomposition, we cannot straightforwardly compute the gradient
V(w,0)Eomp [ﬁ@ (9)} because sampling cannot occur inside the gradient operation. To address

this challenge, we employ a two-stage approach. First, we collect fresh rollouts during the PAC-
Bayes update cycle using the mean policy, then sample policies from p and evaluate their discounted
returns on these rollouts using importance sampling. This ensures our bound computation accounts
for distributional shift between the data-generating policy and the current posterior distribution.
With estimated returns for each sampled policy, we apply the log-likelihood trick (REINFORCE)
(Williams}, [1992) at the policy level rather than the traditional action level. We prove this exten-
sion in Appendix [C} This technique allows us to exchange gradient and expectation operations:

Eg~p {V(U’U) log IP’U}(,(G)LA'@ (9)} , yielding a tractable sampling-based gradient estimator.

4.4 THE ADAPTIVE SAMPLING CURRICULUM

Our most critical innovation addresses the “posterior syncing shock™ problem: when the posterior
mean shifts significantly after PAC-Bayesian updates, critics become misaligned with the new
policy distribution, creating a destabilizing feedback loop where inaccurate value estimates generate
misleading gradients that further destabilize training through exploding gradients and learning
instability.

PB-SAC resolves this through an adaptive sampling curriculum: immediately following PAC-
Bayesian updates, we freeze the actor and employ high-rate posterior sampling (512 samples)
to expose critics to the full posterior distribution for recalibration, then resume efficient learning
with minimal sampling (1 sample, the posterior mean), achieving computational efficiency without
sacrificing stability.

5 EXPERIMENTS

We now turn to empirical validation across representative continuous control tasks to demonstrate
that our PAC-Bayesian framework delivers on this promise while maintaining competitive learning
performance.

5.1 EXPERIMENTAL DESIGN

We evaluate PB-SAC on four MuJoCo continuous control environments (Towers et al., 2024 Tassa:
et al.l [2018)) spanning different complexity levels: HalfCheetah, Ant, Hopper, and Walker2d (in
Appendix [E). Our evaluation tracks two critical metrics: PAC-Bayesian certificate evolution (Figure
right) and learning performance relative to baselines (Figure leftﬂ

'The codebase is available in supplementary materials.
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We run PB-SAC with PAC-Bayesian updates every 20,000 steps, employing our adaptive sampling
curriculum (512 posterior samples during critic adaptation, posterior mean alone during regular
training). We compare against vanilla SAC using identical network architectures and include PBAC
Tasdighi et al.|(2025), a PAC-Bayes deep exploration method, despite its primary strengths manifesting
in sparse reward settings. Table[I|summarizes all hyperparameters.

HalfCheetah-v5 HalfCheetah-v5
le3 le2
12| — PB-SAC (Ours)
—— SAC (Baseline)
—— PBAC

Rollout Episodic Return
[=)}

4
2
0 -6 —-—-- Empirical Discounted Return
—— Certified Discounted Return
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
le6 le6
1e3 Hopper-v5 1e2 Hopper-v>
—— PB-SAC (Ours)

3.51 — SAC (Baseline) 2.5 4
30 — PBAC ) ','\‘
g PR W WA WA
“E 2.0 R ,"\\II\\’" A% \ ,“ v ARy
© 2.5 J kY% 1
© 1.51/
< ]

3 2.0 2 10
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e 0.5
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
le6 le6
- Ant-
1e3 Ant-v5 Le2 t-v5
—— PB-SAC (Ours)
51 — sAC (Baseline)
—— PBAC
E 4
&
~ 3
S
B 2
2
a1
-
=]
2 0
=
o
-1 _3
—-—-- Empirical Discounted Return
-2 —— Certified Discounted Return
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Global Step le6 Global Step le6
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Figure 1: (a) Performance comparison between our m PB-SAC, its baseline m SAC, and m PBAC
from Tasdighi et al.|(2025); (b) PAC-Bayes analysis of PB-SAC across environments. The empirical

discounted return (dashed line) corresponds to Eg., [—[Z@ (0)], and the certified discounted return
(solid line) corresponds to the lower bound on Eg..,[—£(6)] provided by Theorem (after rear-
ranging the terms).
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5.2 THE TIGHTENING OF PERFORMANCE CERTIFICATES

Figure [T reveals the most compelling aspect of our results: the PAC-Bayesian bounds consistently
tighten throughout training, tracking the improvement in learned policies. In HalfCheetah, the bounds
become informative within 100k steps and continue tightening as performance improves, demon-
strating that our certificates provide genuine confidence estimates rather than vacuous guarantees,
without hindering learning. Hopper exhibits similar bound evolution, though with slower convergence
reflecting its increased complexity. Particularly noteworthy is the bounds’ behavior during perfor-
mance fluctuations: they appropriately widen during periods of high variance while tightening when
performance stabilizes (e.g., HalfCheetah between 100k and 200k steps). This stability stems from
our decaying moving average prior updates, which prevent KL explosion in early stages; without this
mechanism, KL explosion hinders learning by pulling the posterior back toward the prior rather than
allowing improvement.

Ant presents the most challenging test case due to its 3D dynamics and large state space. Even here,
our bounds remain meaningful throughout training, tightening during improvement periods (within
500k steps) and providing conservative estimates during temporary performance drops (between 800k
and 900k steps). The bounds capture the qualitative behavior predicted by our theory: environments
with slower mixing yield more gradual certificate improvement.

5.3 EMPIRICAL VALIDATION ACROSS ENVIRONMENTS

The learning curves in Figure [lajaddress a fundamental concern about PAC-Bayesian RL: whether
theoretical guarantees necessitate performance sacrifices. Our results demonstrate that PB-SAC
matches or exceeds SAC’s sample efficiency across all tested environments. In HalfCheetah and
Hopper, PB-SAC shows superior performance compared to both SAC and PBAC. This validates our
architectural choices, particularly the policy-posterior synchronization that ensures most learning
follows proven SAC dynamics. The periodic PAC-Bayesian updates serve as refinements rather than
disruptions, guided by the adaptive sampling curriculum that prevents critic destabilization.

In Ant, PBAC initially outperforms both methods thanks to its multi-objective design accounting
for diversity, coherence, and propagation, beneficial when rewards are less informative. However,
excessive exploration eventually backfires, causing performance degradation in later training. PB-
SAC matches its baseline with slightly faster convergence around 500k steps, though lagging slightly
at the end. While not designed specifically for deep exploration, it consistently matches baseline
performance while providing theoretical guarantees.

6 CONCLUSION

We introduced PB-SAC, a PAC-Bayesian actor-critic algorithm that bridges the gap between learning
theory and practical deep RL by making practical use of non-vacuous performance certificates as
active components of the learning process. Our theoretical contribution (a PAC-Bayesian bound
with explicit mixing-time dependence and improved discount factor scaling) enables meaningful
generalization guarantees in sequential decision-making. Algorithmically, our key innovations include
policy-posterior synchronization, adaptive sampling curriculum for critic adaptation, posterior-guided
exploration, and prior moving average that maintains competitive performance while providing formal
certificates.

Several limitations warrant consideration. Our approach requires accurate mixing time estimation
(underestimation leads to overconfident bounds), faces computational overhead that may limit
scalability to large networks, and uses KL divergence which, despite its analytical convenience, is
unstable when distributions diverge significantly and does not respect the geometry of the parameter
space (Viallard et al.;,|2023)). Future work could explore efficient posterior approximations, meaningful
representations (layer/parameter-level rather than full network posteriors), adaptive mixing time
estimation, Wasserstein distance alternatives to KL (Amit et al.||[2022; Haddouche & Gued;j, [2023;;
Viallard et al., 2023)), and extensions beyond actor-critic frameworks. Despite these constraints,
our results establish PAC-Bayesian RL as viable for certified performance in modern reinforcement
learning, particularly valuable in high-stakes applications requiring theoretical guarantees.
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A  MATHEMATICAL TOOLS

Lemma A.1 (Markov’s Inequality). For any random variable X such that E[|X|] = u, for any
a > 0, we have

P{1X| > a} < 2.
a
Lemma A.2 (Change of measure). For any measurable function f : © — R and distributions

p,p € P(O):
Eoplf(0)] < KL(pllt) + InEgpufexp(f(6))] (10)
where KL(p||p) is the Kullback-Leibler divergence between p and .

A.1 CONCENTRATION FOR MARKOV CHAINS VIA MARTON COUPLING

We use Paulin’s extension of McDiarmid’s bounded-difference inequality to Markov chains (Paulin,
2018)). This extension provides concentration inequalities for functions of dependent random variables,
with constants that depend on the mixing properties of the chain.

A.1.1 MARTON COUPLING AND MIXING TIME

The key insight in Paulin’s approach (Paulin), |2018)) is to use a coupling structure known as Marton
coupling, which quantifies the dependency between random variables in a Markov chain. For a
Markov chain X = (X3, ..., Xy) on state space A = A; X ... x Ay, a Marton coupling provides
a way to couple the distributions of future states conditioned on different past states.

Let 7(¢) denote the mixing time of the chain X in total variation distance, defined as the minimal ¢
such that forevery 1 <i < N —tand z,y € A;:

drv (L(Xipe| Xi = 2), L(Xi 4| Xi = y)) < € (11)

We define the normalized mixing time parameter 7y, as:

Twin = _inf 7(5)<§:§)2 (12)

0<e<1

A.1.2 MCDIARMID’S INEQUALITY FOR MARKOV CHAINS

For a function f(X) satisfying the bounded-differences property: for any =,y € A,

N
flx) = f(y) < Z cillz; # il (13)
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where ¢ € RY and I[condition] is the indicator function, Paulin’s theorem gives:

Pr(|f(X) —Ef(X)| >t) < 2exp(—2t*/||c||*Tmin)- (14)

The norm ||¢||2 is defined as S | ¢2.

A.1.3 APPLICATION TO BOUNDED DIFFERENCES IN MDPs

For Markov decision processes, this inequality is particularly useful when analyzing the difference
between value functions. If perturbing a single transition can change the value by at most ¢;, then the
total effect on a function of trajectories is bounded by the above concentration inequality, with the
mixing time of the MDP properly accounting for the propagation of the perturbation through future
states.

B DERIVATION OF PAC-BAYES VALUE-ERROR BOUND FOR RL

B.1 BOUNDED-DIFFERENCES PROPERTY FOR MDP TRAJECTORIES
We begin by recalling the definitions of discounted return for a trajectory ¢ and the corresponding

value function from Section 3t

H-1

G(&) =Y 7 R

k=0
Vﬂ"g = EENM [G(g)]

As defined in equation 5] our empirical and expected losses are:

To apply McDiarmid’s inequality for Markov chains, we must establish the bounded-differences
condition for our empirical loss. Specifically, we need to show that replacing one transition in a

trajectory affects Lo (6) by at most 31, Z]T:1 ch ) }(Lj) # E,(Lj)], where ¢ € RY*" and T is the
indicator function.

B.2 QUANTIFYING THE IMPACT OF PERTURBED TRANSITIONS

Suppose we replace a single transition at position h in trajectory j. The change in the discounted
return of this trajectory is bounded by:

|G(EW)Y — G(EW)| = |41 (Ry, — Ry,) + effects on future rewards|

< 7h IR omax + effects on future rewards

Crucially, this perturbation affects not only the immediate reward but potentially all subsequent
transitions and rewards in that trajectory. The change in our empirical loss is therefore bounded by:

h—1
£o(0) — L5 (0)] < Trime

= C(h,5)
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B.3 DERIVATION OF ||c||?> FOR THE PAC-BAYES BOUND

To apply McDiarmid’s inequality for Markov chains as developed by Paulin| (2018), we need to
compute ||cl|?:

H
el = 323" ¢Ah )

j=1h=1
2 H
— Rmax .T § ,}/2(h—1)
T h=1
2 H-1
B N
T
h=0
——
finite geometric series
2 2H
_ Rmax . 1- i
T 1—1+2

For infinite-horizon settings where H — oo and v < 1, the series converges to 1/(1 — ~2), this
simplifies to

R2

el? = e

T(1—7%)
B.4 FULL ACCOUNTING OF PERTURBATION PROPAGATION EFFECTS

A critical question is whether our derivation of ||c||? fully accounts for the propagation of perturbations
through the trajectory. Since a perturbation at step h in trajectory j affects all subsequent transitions
in that trajectory, the bounded-differences indicator is 1 for every (h/, j) with b’ > h.

For a perturbation at step h in trajectory j, the sum of corresponding coefficients is:

H H—h _
Z o Rmax Z h—1+k __ Rmax’yh Y
C(hlaj) - T v - T
h'’=h k=0

-y

1 _ A H-h+1

The actual maximum change in discounted return from this perturbation (worst case: reward changes
from 0 to Rynay) is:

1— ,YH—h-‘rl

H—h
|G(€(j)) - G(é(])>| < Rmax’yh_1 Z ’yk = Rmax’yh_1 : 1 _ v
k=0

When divided by T" (because Lo (0) averages over T trajectories), we get exactly the same quantity
as the sum of coefficients above. Therefore, the bounded-differences condition holds with equality,
confirming that our derivation of ||c||? fully accounts for all propagation effects without requiring
additional constants.

This careful accounting of propagation effects allows us to apply McDiarmid’s inequality for Markov
chains to obtain the PAC-Bayes bound in Theorem [3.2] with the correct constants.

B.5 DERIVATION OF THE PAC-BAYES BOUND
Having established the bounded-differences property and quantified the impact of perturbations via

|lc/|?, we now derive the PAC-Bayes bound on the expected difference between empirical and true
losses.

14
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B.5.1 FROM MCDIARMID TO MOMENT GENERATING FUNCTION

McDiarmid’s inequality for Markov chains (equation [I4)) provides a concentration inequality on the
deviation between empirical and expected losses. From this, we can derive a bound on the moment
generating function (MGF) as shown by |Paulin| (2018):

Lemma B.1 (MGF bound for Markov chains). For any k > 0 and policy parameters 6 € O:

Eo-micr [0 (s(£2(0) - £0))] < exp (<L) -

where Tmin s the mixing time of the Markov chain induced by policy my.

B.5.2 PAC-BAYES CHANGE OF MEASURE

Now we can follow the standard PAC-Bayes derivation. Let © be our parameter space and let
i € P(O) be a prior distribution over © chosen independently of the data. For any posterior
distribution p € P(0O) (which may depend on D), we apply the change-of-measure inequality
(Donsker—Varadhan (Donsker & Varadhanl [1983)) variational formula)

Let f(0) = x(Lo(0) — L(0)). Applying Lemma

Eo~plk(Lo(0) — £(0))] < KL(pl|12) + In Egryexp(r(Lo (0) — L(6)))] (16)
B.5.3 COMBINING WITH THE MGF BOUND

Taking the expectation with respect to ® ~ M) on both sides:

EsEow,lr(£s(6) — £(6))] < KL(pllu) + En I Egopfexp(r(Lo (6) — £6)))]  (17)

By Jensen’s inequality, since In is concave:

EoEge,[r(Lo(0) — £(6))] < KL(pllu) + mEpEgofexp(r(Lo () — £(9))]  (18)

By Fubini’s theorem (exchanging the order of expectations) and Lemma|[B.1

EoEon,[r(Lo(0) — L£(0)] < KL(plln) + InEq, Eofexp(s(Lo(9) — L) (19)

’%2 c 27_min
< KL(p|lu) + InEon, [exp (l)] 0
K’Q c 27-min
Dividing by x > 0:
¢ KL Kil¢ szin
EoEoo,[fo(0) — £(0)] < SLPIH) | #lel o)

K 8
B.5.4 HIGH-PROBABILITY BOUND VIA MARKOV’S INEQUALITY

Now, we convert this expectation bound into a high-probability bound. By Markov’s inequality [A.T]
for any non-negative random variable X and 6 > 0:

With probability at least 1 — §:

A KL +In2 ke 2
Eop[Lo(0) — L(0)] < (p”’;) 5, Al ||8

(23)
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B.5.5 OPTIMIZING THE BOUND

To tighten the bound, we minimize the right-hand side with respect to x > 0. Taking the derivative
and setting it to zero:

KL In 2 2 i
0 (KLplp) +InF  wllelPrmn) _ 24)
Ok K 8
KL +1n2 27 in
YMES -
K 8
Solving for the optimal x*:
8(KL +1In2
. ¢ (KL(pl) +1n3) 6
el Tmin
Substituting x* back into our bound:
; KL(pllp) + I § & el Tmin
Eop[Lo(0) — L(0)] < ( HKZ S+ ” LL (27)
_ (el Tin (KLGoll) + 0 5) -l Tmin(KL(pll) +10F) o
8 8
2 min KL \ 2
_JlelPruin(KL(pll) + 1 3) 00
2
B.5.6 FINAL BOUND
Finally, substituting the expression for ||c|? from equation [7}
Fhax 102 (KL 2
. — min pllp) +In
Eo~p[Lo (6) — L(6)] g\/ 17 2( (elle) +105) (30)
R2 Tmin(l - "YZH) 2
= [ Fmax KL ) 1
\/ ) (KL(pllw) +1n 5 31

Recalling that £(6) = —V;;, from equation [5| we obtain the PAC-Bayes lower bound on the expected
value function:

A R? min 1 —~2H 2
EguplVre] > Egmpl-Lo(0)] —\/ oL (KLl +m3) o)

where The true expected value is lower-bounded by an empirical estimate minus an uncertainty
term that accounts for limited data (1/7), temporal correlations (7yi,), and posterior complexity

(KL(pl|p))-

B.6 A NOTE ON THE MARKOV ASSUMPTION FOR BELLMAN ERRORS
The work of Tasdighi et al.| (2025) makes an interesting theoretical contribution by modeling the

sequence of Bellman errors as a Markov chain. While this approach provides valuable insights, it is
worth examining the conditions under which this assumption holds.
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We present a simple illustrative example that highlights when the Markov property may not apply to
Bellman error sequences. Consider a basic MDP with four states {A, B, C, D} and the following
transition dynamics with discount factor v = 0:

* State A transitions to state C' with reward r = 0
» State B transitions to state D with reward r = 0
* State C has a self-loop with reward r = +1
 State D has a self-loop with reward r = —1

r=20
@@
r=20

Figure 2: A basic four state MDP

Using a value function V' = 0 that assigns zero value to all states, we can compute the Bellman
errors:

(=]
o~
—~

N
~—

Il

r(A) + ymaxE[V(s')|s = A,a] = V(A)=0+0-V(C)—0=0 (33)

8:(B) = r(B) + ymaxE[V(s')|s = B,a] = V(B)=0+0-V(D)-0=0 (34)

Both states A and B yield the same Bellman error ¢; = 0 at time ¢. However, the subsequent errors
differ:

5t41(C) =r(C) + ymaxE[V (s')|s = C,a] —V(C)=+1+0-V(C) — 0 = +1 (35)

St41(D) =7(D) +ymaxE[V(s')|s = D,a] = V(D) =-14+0-V(D)—0=—1 (36)

This example demonstrates that the current Bellman error value 6; = 0 alone does not uniquely

determine the distribution of d;1, which depends on the underlying state that generated the current
error.

This observation suggests that the Markov assumption for Bellman errors may require additional
conditions or refinements to hold more generally. Such considerations could be valuable for future
theoretical developments building upon the framework proposed by Tasdighi et al.| (2025).

C REINFORCE TRICK FOR POLICY-LEVEL GRADIENTS

We prove that the REINFORCE trick can be extended from action-level to policy-level gradients,
enabling tractable optimization of expectations over policy parameters.

Theorem C.1 (Policy-Level REINFORCE). For a posterior distribution p = N (v, diag(c?)) over
policy parameters 0, the gradient of the expected return can be computed as:

vv,aEé‘Np [E[RT|7T€]] = EGNP [Vv,a IOg IP)’L),O’(G) : E[RT|7T0H (37)

Proof. Starting with the gradient of the expected return of a policy over the posterior distribution:

V'L),UEGNp [E[RT|7T9H = vv,o E P’U,O’(ei) § e, (a)E[RT|AT = CL] (38)
0; a v
‘ q(a)

Moving the gradient inside the summation:

=Y VuoPuo(0:)> m,(a)q(a) (39)
0; a
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where g(a) = E[R,|A; = a] is the state-action value for notational convenience.

Multiplying by Py.o(6:) Eg; :

0, v,o\Yi

a

Applying the log-derivative trick V, 5Py, »(0;) = Py (0;) Vo o log Py +(6;):

=> [ﬂ%,g(oi) (Z m,.,(a)q(a)) Vi logﬂ%,g(ei)] (41)
0;

Simplifying and recognizing that ) 7y, (a)q(a) = E[R, |7, ]:

= Z Py.o(0:) (E[R7|70,]) V0 log Py, (0:) 42)
0;

Converting back to expectation form:

=Eo~p Vo, l0gPy »(6) - E[R-|mg]] (43)

This result enables us to estimate the gradient via sampling: we sample policies {6;} from the
posterior p, evaluate their expected returns, and compute the weighted gradient of the log-probability
density. This extends the classical REINFORCE trick from action spaces to parameter spaces,
allowing efficient optimization of posterior distributions over policies.

D PB-SAC ALGORITHM

Actor
Posterior mean

1. Normal SAC feedback loop

2. Periodic posterior update \ 4

l Critic
Compute the bound T Posterior-aware
Posterior —— :

§— Prior

4. Critic adaptation

I\ . Com n x 5
3. Compute bound Actor network parameter space (Frozen actor)

Figure 3: Illustration of our algorithm PB-SAC
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D.1 Pseupo CODE

Algorithm 1: PAC-Bayes Soft Actor-Critic (PB-SAC)

Result: Policy 7y, posterior p, PAC-Bayes bound

Init: Actor 7y, Critics Q1, 02, replay buffer

Init: Posterior p(#) = N (v, diag(c?)) where v are the initial actor parameters
Init: Prior u(0) = N (v, diag(c?))

Init: actor_frozen = False, prior moving average decay « = 0.99
fort=1,2,...do

if not actor_frozen then
/* Standard SAC Training + Posterior-Guided Exploration =/
if random() < €expiore then
/* Select policy maximizing Q-value from posterior */
eexplore < argmaXg~p Q(57 77'«9(5))
A = Thpione (S)
else
| a < ma(s) // Current policy (posterior mean)
end
Execute action a and store transition in ©
if || > batch_size then
Update critics @1, Q)2 with standard SAC loss
Update actor 7y with standard SAC loss
v+ 0 // Sync posterior mean to current actor
end
else
/* Critic Adaptation Phase (post PAC-Bayes update) */
Sample multiple policies {6;} ~ p with high sampling rate
Compute critic targets averaged over policy samples {6; }
Update critics ()1, (2 using averaged targets
if adaptation steps completed then
| actor_frozen < False
end
end
/+ PAC-Bayes Update Cycle */
if t mod pb_update_freq = 0 then
Drollous — collect_fresh_rollouts() // With the current policy
Tmin < estimate_mixing_time (D opiouts)
Qtraim Diest Split(gmllouts)
Compute discounted returns Gg with importance sampling on i,
/* Alternating optimization */
for epoch =1, ..., pb_epochs do
/* Optimize posterior parameters for fixed k */
0,V 4 argmin ..,y L(p, k) // equation
/* Optimize k for fixed posterior */
K+ argming L(p, k") // equation |§|
end
bound < compute_pac_bayes_bound(Diest, KL(p||14), Tiin)
load_policy_params(v) // Sync actor to posterior mean
actor_frozen <— True // Initiate critic adaptation
end
/* Prior Reset for Maintained Exploration */
if ¢ mod pb_reset_freq = 0 then
pwt-p+(1—0)-p // Moving average prior update
Linearly decay ¢
end
end

return 7y, p, bound
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E MORE RESULTS

Walker2d-v5 Walker2d-v5
le3 le2
61 — PB-SAC (Ours)
—— SAC (Baseline) 2.0
£ 51 — PBAC
é 1.5
= 4
2 1.0
8, g 0.5
)
E 0.0
2
gl -0.5
0 —-—-- Empirical Discounted Return
-1.0 —— Certified Discounted Return
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Global Step le6 Global Step le6
(a) Algorithm comparisons (b) PAC-Bayes analysis

Figure 4: (a) Performance comparison between our m PB-SAC, its baseline m SAC, and m PBAC
from Tasdighi et al.|(2025); (b) PAC-Bayes analysis of PB-SAC across environments. The empirical
discounted return (dashed line) corresponds to Eg..,[— Lo (8)], and the certified discounted return
(solid line) corresponds to the lower bound on Eg.,[—£L(6)] provided by Theorem [3.2| (after rear-
ranging the terms).

F HYPERPARAMETER SELECTION

We carefully selected hyperparameters for our PAC-Bayes Soft Actor-Critic (PB-SAC) implementa-
tion to balance performance, sample efficiency, and theoretical guarantees. the common parameters
with SAC are left unchanged, while we take the original hyperparameters of PBAC from the paper

Tasdighi et al (2025). Table[I] summarizes it all.
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Table 1: Hyperparameter Comparison for MuJoCo Continuous Control Tasks

|

| Hyperparameter | PB-SAC (Our Algorithm) | SAC (Baseline) | PBAC
Common SAC Parameters
Total Timesteps 1 x 10 1 x 10° 1 x 106
Discount Factor () 0.99 0.99 0.99
Soft Update Coefficient (1) 0.005 0.005 0.005
Batch Size 256 256 256
Replay Buffer Size 1 x 10° 1 x 10° 1 x 106
Initial Temperature () 0.2 0.2 0.2
Temperature Learning Rate 3x 1074 3x 1074 3x 1074
Target Update Frequency 1 1 1
Algorithm-Specific Parameters
Actor Learning Rate 3x 10771 3x 1071 3x 1071
Critic Learning Rate 1x1073 1x1073 3x 1074
Learning Starts 5,000 5,000 10,000
Training Frequency 2 2 1
Automatic « Tuning v v X
Multi-Head Architecture X X v
Ensemble of Critics X X v (10)
Number of Heads 1 1 10
Network Architecture
Policy Hidden Layers 1256, 256] 1256, 256] 1256, 256]
Q-Function Hidden Layers [256, 256] [256, 256] [256, 256]
Activation Function ReLU ReLU CReLU
PAC-Bayes Specific (PB-SAC Only)
KL Coefficient (5) 1.0 - —
Failure Probability (9) 0.1 - -
Initial Std Dev 0.02 — —
PB Update Frequency 20,000 — —
Actor Freeze Frequency 1,000 - -
Rollout Trajectories 50,000 - -
Rollout Steps per Trajectory 25 — —
PBAC Specific

Bootstrap Rate — — 0.05
Posterior Sampling Rate — — 5
Prior Scaling — — 5.0
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