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Abstract

Most existing research in language model ap-
plications for chemistry employs the Simplified
Molecular Input Line Entry System (SMILES)
nomenclature, designed to encode molecu-
lar structure in a string format as both input
and output. In contrast, machine learning ap-
proaches using human-readable IUPAC (Inter-
national Union of Pure and Applied Chemistry)
nomenclature remain underexplored. ITUPAC
names are widely used in the chemical liter-
ature, providing opportunities to train large
language models on a vast corpus with con-
textual expertise. We are motivated to com-
pare these two nomenclatures across various
language-molecule scenarios. We found that
simply switching to [TUPAC names in challeng-
ing downstream tasks such as molecular gener-
ation, captioning, and editing results in a perfor-
mance improvement of up to 4 times. Addition-
ally, catastrophic forgetting during fine-tuning
is reduced by half when using [TUPAC names
compared to SMILES.

1 Introduction

Research for capturing domain knowledge achiev-
able from the natural language of the vast scien-
tific literature in chemistry is rapidly increasing.
Integrating semantic supervision of natural lan-
guage (Edwards et al., 2021; Liu et al., 2023a; Su
et al., 2022; Luo et al., 2023) has been shown to
unlock a variety of new capabilities, such as text-
based molecule generation and molecule caption-
ing. However, these approaches don’t have the
conversational capabilities of ChatGPT. Recently,
the use of large language models (LLMs) that show
impressive reasoning performance in chemistry is
a promising research direction(Guo et al., 2024;
Bran et al., 2023; Jablonka et al., 2024). Most ex-
isting language model applications for chemistry,
including molecule generation models(Bagal et al.,
2021; Liu et al., 2023c; Dobberstein et al., 2023),
used nomenclatures such as SMILES (Weininger,
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Figure 1: Overall performance of language models on
chemical tasks.

1988; Weininger et al., 1989), InChI (Heller et al.,
2015), and SELFIES (Krenn et al., 2020), which
are proposed for computer processing of molecular
structures in text. However, these text represen-
tations generally do not benefit from large-scale
pre-training since they are not widely used in the
scientific literature written in natural language.

The IUPAC nomenclature is a systematic method
proposed in 1919 to standardize the naming of com-
pounds and has been used in a variety of literature
for a long time. However, [IUPAC names for com-
plex compounds are difficult to write and interpret
accurately. Therefore, many chemical databases
and software rely on SMILES and SELFIES, which
are easily processed by computers, as the basic for-
mat. Conversion between SMILES and IUPAC
was once a challenging problem, but recent ad-
vancements in language models have made it easier
(Krasnov et al., 2021; Rajan et al., 2021). IUPAC
names are widely used in the scientific literature,
offering rich learning opportunities from rich cor-
pora with domain knowledge compared to other



OH Molecule generation

This molecule has a logP of {value},
O suggesting its solubility in lipids.

Molecule captioning

Generate a detailed description less

o than 100 words for the {molecule}.
SMILES: C1=CC(C)=CC=C1C(0)C(C2=CC=CC=C2)=0
SELFIES: [C][=CJ[C]/Branch1]C][C]I=C][C]=C]Ring1]#Branch1]C]{Branch1]
[CIO][C][Branch1][=Branch2][C][=C]CII=C]IC]I=C]Ring][=Branch1][=0]
InChl: InChi=1S/C16H1402/c1-11-7-9-13(10-8-11)15(17)14(16)12:5-3-2-4-6-
12/h2-10,15,17H,1H3
IUPAC: 2-(4-methylphenyl)-2-oxidanyl-1-phenyl-ethanone

Molecule editing
Can you make molecule {molecule}
more soluble in water?

Molecule generation
Task output tokens | 2-(4-methylphenyl)-2-oxidanyl-1-

\ phenyl-ethanone
t4440\

\ \  Molecule captioning

\ “‘\\‘ Transformer decoder ‘\“ ' This molecule features a central

\\ oxan with multiple hydroxyl groups...
\\
X .
\ \' Molecule editing
——  Task prompt tokens ' 1-hexyl-3-methyl-2,3-dihydro-1H-
indene

Figure 2: Example of chemical nomenclatures and overview of the experiment process.

nomenclatures. However, the benefits of integrat-
ing IUPAC into LLM haven’t been fully explored.
For example, Guo et al.(Guo et al., 2024) bench-
marked several LLMs for various chemistry tasks
only for SMILES and SELFIES.

In this study, We report the benefits of using IU-
PAC nomenclature. When using IUPAC names,
LLM performances improved by up to 4 times
on challenging tasks such as molecule generation,
molecule captioning, and molecule editing (Fig.1).
In particular, it learns efficiently from fine-tuning
and forgets less during the training process.

2 Experiments

2.1 Tasks

We selected 3 challenging tasks in chemistry to
evaluate the benefits of using [IUPAC nomenclature
in language models: Text-based molecule gener-
ation, molecule captioning, and molecule editing.
For each task, we compare the zero-shot and fine-
tuning performance of LLMs for SMILES and IU-
PAC. Table 1 contains descriptions, datasets, and
metrics for each task. We also evaluate the catas-
trophic forgetting during training by evaluating
benchmarks of LLMs. Detailed evaluation met-
rics for each task are in Appendix C.

Text-based molecule generation Text-based
molecule generation tasks aim to generate can-
didate molecules with target properties. This
task can be divided into value-specific genera-
tion and property-specific generation. For exam-
ple, property-specific generation involves creating
molecules that are non-flammable, have a specific
color, or have specific functional groups. On the
other hand, value-specific generation aims to find
molecules that satisfy certain value of properties
such as bandgap, logP, and TPSA.

Molecule captioning Molecule captioning aims
to write text describing the structure and properties
of a given molecule. It requires extracting patterns
from given molecular representations and logically

linking them by combining pre-trained chemical
knowledge from text.

Molecule editing Molecular editing is a re-
cently proposed chemical task. Generating sim-
ilar molecules with modified properties, rather than
creating them from scratch, is cost-effective for
the chemical industry. This challenging task re-
quires the ability to estimate a given molecule’s
properties and make predictions while preserving
substructures.

2.2 Model

We performed our experiments by fine-tuning the
Llama-3-8B-Instruct (Llama3), the latest variant
of Llama family (Touvron et al., 2023a,b), and
3.8B Phi-3-mini-4k-instruct (Phi3) model (Abdin
etal., 2024) on NVIDIA RTX 6000 Ada using 4-bit
quantization and 8-bit optimizers with the low-rank
adaptation (LoRA) technique(Hu et al., 2021). We
consider the standard supervised fine-tuning (Dai
and Le, 2015; Devlin et al., 2018) paradigm in full
parameter space of LLMs. 512 and 0.0001 were
used as LoRA rank and learning rate, respectively.

3 Results and discussion

3.1 Molecule generation

To evaluate the LLM’s ability to generate molecules
according to nomenclatures, we used a pre- and
post-fine-tuned model to generate molecules with
constraints. The temperature was set to 0.8 to bal-
ance the basic probability distribution without be-
ing too strict.

We observe that the Llama3 model already
demonstrates zero-shot performance in value-
specific molecule generation (Table 2). The pro-
duced molecules are mostly valid, but the unique-
ness of molecules is limited. Novelty cannot be
calculated since the exact molecules included in
the training corpus of the Llama3 model are un-
known. For SMILES, it shows a lower MAD
than IUPAC in the zero-shot setting, meaning it



better satisfies the given conditions. We assume
that SMILES frequently appear with computable
properties like logP in RDKit(RDKit, 2024), al-
lowing related knowledge to be learned during pre-
training. After fine-tuning, IUPAC also reaches
a similar performance level. Through fine-tuning,
we can create more diverse and valid molecules
with performance comparable to task-specific lan-
guage models. Recall that Llamol (Dobberstein
et al., 2023) and MolGPT (Bagal et al., 2021) were
trained on larger datasets, 13.1M and 1.9M, respec-
tively, whereas in our study they were trained on
60k molecules. When IUPAC is used, the gener-
ated molecules are more valid compared to those
generated using SMILES. For analysis of property-
specific generation, please refer to Appendix E.

3.2 Molecule captioning

Table 4 shows the overall result of molecule cap-
tioning. ChEBI-20 (Edwards et al., 2021) test data
The text2mol score of the original caption is 0.609.
Most previous studies combined pre-trained Mol T5
with a pre-trained multimodal encoder and then
fine-tuned it on ChEBI-20. These models have
high text2mol scores above 0.5. LLMs generate
captions using [IUPAC or SMILES molecular repre-
sentations as input, respectively, with and without
additional fine-tuning. All models exhibit better
metrics when utilizing [UPAC in a zero-shot set-
ting. After fine-tuning, other metrics increase for
Llama3, but the Text2mol score slightly decreases,
while the Phi3 model approaches the highest met-
ric. Phi3 is trained on synthetic, “textbook-like”
data, and llama3 is trained on publicly available
documents. We found that using the [UPAC nam-
ing system consistently increased captioning per-
formance in all zero-shot settings. For complete
metrics and some case studies on the molecule cap-
tioning task, readers are referred to Appendix F and
Figure 7. Creating expert-level evaluation metrics
for chemistry is a challenging and open task. We
further discuss the reliability of metrics through
a case study of molecule captions generated by
Phi3. In zero-shot settings, Phi3 cannot extract
meaningful explanations from SMILES patterns.
In contrast, when IUPAC is given as input, Phi3
successfully captures the structural information of
the first molecule, a trisaccharide structure. Due
to LLM’s well-known hallucinations, it refers to
non-existent esters. After fine-tuning, most of the
original knowledge is lost and Phi3 focuses on ad-
hering to the ground truth of the dataset. As aresult,
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Figure 3: Visualization of molecule editing tasks.
Llama3 using IUPAC preserves original substructures
better than SMILES.

Phi3 achieves higher metrics due to higher token
overlap, but it does not always mean better quality
of generated captions.

3.3 Molecule editing

Even for molecular editing tasks, [UPAC consis-
tently achieves higher metrics than SMILES. We
illustrate the single- and multi-objective molecule
editing results in Tables 5 and 6. If the gener-
ated molecule was not valid, it was considered a
failure. The editing task itself was not fine-tuned,
and instead, a model trained on the value-specific
molecule generation task was used. While Llama3
is aware to distinguish hydrogen bond acceptors
and donors from [UPAC names in a zero-shot set-
ting, it appears to be unaware of other information
such as logP and QED. As a result, it shows excel-
lent performance in tasks 107 and 108 but shows
similar performance to the random baseline in other
tasks. In the case of the fine-tuned model, which
are not trained on the hydrogen bond acceptors and
doners, catastrophic forgetting occurs so that per-
formance for them decreases while performance



increases for characteristics such as logP. Even in
tasks that modifying two characteristics simultane-
ously, the zero-shot setting of 1lama3 using IUPAC
shows a high success rate.

In the case study of molecular editing, we can
see the advantages of IUPAC that are not apparent
through metrics (Fig. 3). When using SMILES,
even if editing is successful according to the desired
conditions, we observed that the substructure of the
original molecule is not preserved and the positions
of the elements are mixed up. In contrast, when
using IUPAC, the substructure of the molecule is
defined in token units, so the detailed structure
before and after editing is robustly preserved.

3.4 Catastrophic forgetting

Compared to developing small, specialized models
for each task, the advantage of using a general-
purpose language model is the flexibility to extend
the task to a conversational agent. For example,
Liu et al. (Liu et al., 2023b) combined conversa-
tional LLM, retrieval DB, and domain feedback
to achieve high molecular editing performance by
exchanging conversations repeatedly. To maintain
these strengths, general-purpose language models
must not lose their original knowledge even after
they are fine-tuned for specialized tasks. Therefore,
we evaluated several challenging NLP benchmarks
after performing the molecule generation task in
PubChem (Table 7). As a result, we found that
using [IUPAC achieved higher metrics when trained
on the same number of data, thereby damaging
the original knowledge less. The more data you
train on, the wider the gap becomes. Therefore,
when IUPAC is used as an input format, it is possi-
ble to maintain the flexibility of a general-purpose
language model while achieving higher overall per-
formance in specialized tasks, as shown in Fig. 4.

4 Conclusion

We study the effect of using [IUPAC nomenclature
for language models on various challenging chem-
istry tasks. We find that an LLM using IUPAC
nomenclature has the following unique advantages
for chemistry.

Performance : Although the final performance
may converge at the end if sufficient training re-
sources are given, the training cost of LLM is an im-
portant aspect of LLM education. IUPAC performs
better than SMILES in most tasks when investing
the same training resources.

Explain the substructure of the molecule, 2-(4-methylphenyl)-2-oxidanyl-1-
phenyl-ethanone. Describe each substructure and the characteristic of the
molecule.

49

The molecule 2-(4-methylphenyl)-2-oxidanyl-1-phenyl-ethanone can be
divided into three main substructures: the phenyl ring, the 2-oxidanyl group,
and the 1-phenyl-ethanone moiety.

1. Phenyl ring: The phenyl ring is a planar, six-membered ring with
alternating double bonds. It is a common structural motif in many organic
compounds, including aromatic hydrocarbons, heterocycles, and
pharmaceuticals. The phenyl ring in this molecule is substituted with a 4-
methyl group, which is a common substituent in many organic compounds.
2. 2-oxidanyl group: The 2-oxidanyl group is a functional group that is
commonly found in many organic compounds. It is a hydroxyl group (-OH)
that is bonded to a carbon atom. The 2-oxidany! group in this molecule is
bonded to the phenyl ring and is responsible for the molecule's acidity.

3. 1-phenyl-ethanone moiety: The 1-phenyl-ethanone moiety is a functional
group that is commonly found in many organic compounds. It is a ketone
group (-CO-) that is bonded to a phenyl ring. The 1-phenyl-ethanone
moiety in this is i for the 's reactivity and its
ability to participate in various chemical reactions.

The characteristic of this molecule is its acidity, which is due to the
presence of the 2-oxidanyl group. The molecule is also a ketone, which is a
functional group that is commonly found in many organic compounds. The
phenyl ring and the 1-phenyl-ethanone moiety are responsible for the
molecule's reactivity and its ability to participate in various chemical
reactions.

The molecule 2-(4-methylphenyl)-2-oxidanyl-1-phenyl-ethanone is a
member of the class of compounds known as phenyl ethanones, which are
a type of ketone that is commonly found in many organic compounds. The
molecule is also a member of the class of compounds known as phenolic
compounds, which are a type of compound that contains a phenolic group
(-OH).

Can you edit molecule 2-(4-methylphenyl)-2-oxidanyl-1-phenyl-ethanone to
become more soluble in water?

49

2-(4-methylphenyl)-2-oxidanyl-1-phenyl-ethanone is a relatively
hydrophobic molecule, which makes it difficult to dissolve in water. To
increase its solubility, we can consider introducing functional groups that
can enhance its water solubility.

One possible modification is to introduce a hydrophilic group, such as a
hydroxyl or a carboxyl group, to the molecule. This can be achieved by
replacing the phenyl group with a phenylcarbonyl group, which can be
done by oxidizing the phenyl group to a phenylcarbony! group.

The modified molecule is 2-(4-methylphenyl)-2-oxidanyl-1-phenylcarbonyl-
ethanone. This molecule has a higher water solubility compared to the

original molecule due to the introduction of the hydrophilic phenylcarbonyl
group.

logP: 2.91

OH )

| © O

logP: 2.48

Figure 4: An example of open conversation with Llama3
performing molecule captioning and editing simultane-
ously.

Data efficiency : Acquiring high-quality labeled
molecular data is challenging. According to LLM’s
scaling raw, general-purpose language models us-
ing IUPAC allows for a high level of generalization
even with less data.

Accessibility : By using the IUPAC nomencla-
ture, which is closer to natural language, practition-
ers unfamiliar with computational chemistry can
access a vast knowledge base directly and inter-
actively without using domain-expert conversion
tools for other molecule representations such as
SMILES.

Scalability : Using IUPAC minimizes forgetting,
allowing the flexibility of the general-purpose lan-
guage model to be leveraged for building a variety
of specialized task pipelines in chemistry.



5 Limitations

We expect that a large language model trained us-
ing IUPAC names will be able to simultaneously
perform the task of predicting molecular properties,
but unfortunately, most of MoleculeNet’s smiles
could not be converted to valid IUPAC names, so
we did not experiment as a fair comparison was
not possible. At the current state of the art, one
of the limitations is that the conversion between
IUPAC SMILES relies entirely on neural network-
based models. In addition, we did not compare
the performance under equivalent conditions in
which SMILES representation learns information
from the surrounding context by controlling the
placement of SMILES instead of IUPAC in the
pre-training stage. If these transformations are per-
formed properly, it is possible to achieve equal or
better performance than IUPAC by learning expert
knowledge from the grammar of SMILES. How-
ever, considering the cost and complexity of mak-
ing these changes on several terakens of data, us-
ing IUPAC still has its advantages. Another lim-
itation is that the model may be used to discover
potentially dangerous molecules instead of bene-
ficial molecules. In particular, molecular editing
technologies and captioning capabilities can sig-
nificantly lower the effort and cost barriers to syn-
thesizing harmful molecules. Despite the above
risks, we believe that the benefits to the chemical
research community outweigh the disadvantages.
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A Related works

A.1 Text-based molecular representation
learning

Research into controlling molecules using natu-
ral language has recently been attracting attention.
Molecules can be broadly divided into two modal-
ities(Zeng et al., 2022): internal information rep-
resented by SMILES(Weininger, 1988; Weininger
et al., 1989), a 2D or 3D graph representation that
describes the structure of the molecule, and text-
based explanation that describes external informa-
tion such as the functional characteristics of the
molecule.

KV-PLM(Zeng et al., 2022) applies BERT-based
masked token prediction training to heterogeneous
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data consisting of SMILES strings and biomed-
ical text descriptions. Text2Mol(Edwards et al.,
2021) performs cross-modality search by perform-
ing contrastive learning between molecular graphs
and text data. MolT5(Edwards et al., 2022) was
trained to perform translation between SMILES
and text annotations of molecules. MoMu(Su
et al.,, 2022) showed that the contrast learning
model between modalities could be extended to
molecular caption writing and molecule generation
tasks by introducing an additional projection layer
and connecting it with pre-trained models such
as MolT5 and MoFlow(Zang and Wang, 2020) .
MoleculeSTM(Liu et al., 2023a) has also been ex-
tended to zero-shot text-based molecular editing
tasks based on a pre-trained contrastive learning
model. This work demonstrates the potential of
LLMs for more realistic drug discovery tasks.

A.2 Text-based molecular generation

Various approaches have been attempted to cre-
ate a molecule generation model depending on the
modality of the molecule. In graph-based mod-
els, conditional generation to design molecules
with desired properties is challenging. JT-VAE(Jin
et al.,, 2018) based on molecular graph gener-
ates molecules in two iterative steps, utilizing
Bayesian optimization for conditional generation.
MolGAN(De Cao and Kipf, 2018) is an implicit,
likelihood-free generative model for small molec-
ular graphs that uses GANs on graph-structured
data. This uses reinforcement learning to find
molecule with desired properties. Flow-based mod-
els such as GraphNVP(Madhawa et al., 2019) and
MoFlow(Zang and Wang, 2020) learn the molecule
generation process through mapping to an invert-
ible latent space. Optimizations along the latent
space can be used to generate molecular graphs
with specific desired properties without any ex-
pert/domain knowledge. Diffusion-based genera-
tion models that have been actively studied recently
mainly focus on 3D molecule generation(Xu et al.,
2022; Hoogeboom et al., 2022; Huang et al., 2023).

SMILES-based autoregressive molecule genera-
tion models have also been actively studied. Molec-
ularRNN(Popova et al., 2019) sequentially gener-
ates each character of SMILES. MolGPT(Bagal
et al., 2021) performs on par with other previously
proposed modern machine learning frameworks for
molecular generation in terms of generating valid,
unique, and novel molecules. MolXPT(Liu et al.,
2023c) detect the molecule names in each sequence

and replace them with the corresponding SMILES.
Llamol(Dobberstein et al., 2023) trains a 15 million
parameter model that is modified from the Llama-
2(Touvron et al., 2023b) architecture to generate
a SMILES representation that satisfies given char-
acteristics. iupacGPT(Mao et al., 2023), learned
from 97M molecules, showed an equivalent level
of molecule generation ability to SMILES using
ITUPAC names instead of SMILES.

The most closely related work to ours is (Her-
nandez et al., 2021) which explored the scaling for
knowledge transfer by comparing finetuning with
training from scratch. Our study is orthogonal to
theirs with significant differences as our key focus
is understanding the scaling of different factors for
LLM finetuning, rather than the transfer.

B Training data

PubChem We downloaded 1 million molecules
from PubChem. We cleaned the data according to
several conditions.

¢ 1. Structures that RDKit could not parse were
removed.

2. Limited to molecules with a total charge of
0.

* 3. The number of heavy atoms is limited to 30
or less (This represents approximately 75% of
the total).

After this process, approximately 0.6 million, or
591,575 molecules remained. Afterward, logP, SA
score, QED, TPSA, and molecular weight were
calculated from the SMILES representations using
RDKit.

ChEBI-20 We use ChEBI-20 (Edwards et al.,
2021) as a training dataset for text-based property-
specific molecule generation and molecule caption-
ing. This dataset consists of 33,010 molecules with
SMILES, IUPAC, and their description. We sepa-
rate it into 80/10/10 train/validation/test splits, re-
spectively.

C Evaluation

C.1 Molecule generation

We measured the following metrics to evaluate
the performance of the molecule generation task.
All metrics of value-specific molecule generation
were calculated statistically after generating 10k
molecules.



Task Task type  Fine-tuning Dataset Metrics

Text-based molecule design (Value-specific) Generation  Fine-tuning PubChem validity, uniqueness, etc.
Text-based molecule design (property-specific) Generation Fine-tuning ChEBI-20 validity, uniqueness, etc.
Molecule editing Generation  Zero-shot PubChem  Success rate

Molecule captioning Generation  Fine-tuning/zero-shot ChEBI-20 BLEU, Text2mol score, etc.

Table 1: The statistics of tasks, datasets, the number of samples, and evaluation metrics

* Validity: the fraction of generated molecules
that are valid. We use RDXKit for the validity
check of molecules. Validity measures how
well the model has learned the SMILES gram-
mar and the valency of atoms.

* Uniqueness: the fraction of validly generated
molecules that are unique. Low uniqueness
highlights repetitive molecule generation and
a low level of distribution learning by the
model.

* Novelty: the fraction of valid unique gener-
ated molecules that are not in the training set.
Low novelty is a sign of overfitting. We do
not want the model to memorize the training
data.

* Mean absolute deviation (MAD): the devi-
ation between property values of generated
molecules and the given target property value.
The lower MAD indicates a better understand-
ing of the connection between the properties
and the molecule.

In general, novelty is recommended to be mea-
sured as it is an indicator of overfitting that de-
termines whether the model remembers the data.
However, checking for duplicates across hundreds
of thousands of training data pools would be an
overwhelming effort. Additionally, in the zero-shot
setting, it is not possible to determine what data
the model was exposed to during pre-training, so it
was not measured in this study.

In property-specific molecule generation, we
measure the similarity between the generated
molecule and the original molecule and the similar-
ity between the description text and the generated
molecule using the following metrics.

* String similarity: BLEU (Papineni et al.,
2002), Exact, and Levenshtein distance(Miller
et al., 2009) are used to measure whether ac-
curacy by comparing the strings of generated
molecules.

e Molecular feature

FTS(Durant et

FTS(Schneider
FTS(Rogers

and

et

similarity: ~ MACCS
al., 2002), RDK
al., 2015), Morgan

Hahn, 2010), and

FCD(Preuer et al., 2018) measure simi-
larity by comparing the features of the
generated molecule and the original molecule.

* String-Molecule similarity: Text2mol score
is designed to measure the similarity between
the text description and the molecule by com-
paring the latent representation of each branch
of the pre-trained multimodal model.

C.2 Molecule captioning

Molecule captioning. We utilize the ChEBI-20 (Ed-
wards et al., 2021) dataset with 33,010 molecule-
description pairs. We follow the original 8:1:1
train/validation/test split. Evaluation metrics in-
clude BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), and METEOR (Banerjee and Lavie, 2005)
for string-similarity and Text2Mol score (Edwards
et al., 2021) for text-molecule similarity

C.3 Molecule editing

Measure the success rate of introducing new
molecules that satisfy predefined properties from
given molecules. Generating an invalid molecule
is considered a failure. @~ We wanted to use
MoleculeSTM as a baseline, which proposed this
task, but since their dataset does not support IU-
PAC, so we experimented with 200 molecules ran-
domly selected from PubChem.

C.4 Catastrophic forgetting

We measured ARC challenge(Clark et al.,
2018), HellaSwag(Zellers et al., 2019), and
MMLU (Hendrycks et al., 2021), which are bench-
marks for measuring the comprehensive perfor-
mance of LLM across extensive tasks before and
after training, to quantify forgotten knowledge dur-
ing fine-tuning.
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Figure 5: Visualization of hidden representations of
prompts containing target properties. Five values were
selected for each properties, and different colors were
assigned according to the values.

D Visualization of prompt representation

After training, the hidden representation of the
molecule generation condition prompt is visual-
ized in Fig. 5 using principal component analysis
(PCA). This contains probability information for
generating the next molecular token based on the
given condition and thus represents the interface
between the text representation of the condition
and the molecular representation. Prompts for visu-
alization were selected and assembled from a pool
of five values for each property condition, therefore
a total of 5° = 3125.

We assume that the model before training tends
to generate specific tokens regardless of the gen-
eration conditions, which leads to low uniqueness
since the hidden representation of the model before
training is strongly clustered. On the other hand,
after training, the model sorts the molecular feature
conditions according to their value terms and tries
to generate more diverse tokens.

E Learning dynamics of LLMs

While conducting fine-tuning to evaluate property-
specific molecule generation performance, we
found that the learning dynamics were significantly
different between training datasets, ChEBI-20 and
PubChem. The starting loss on ChEBI-20 data
is lower than 0.6 and decreases much faster than
value-specific molecule generation. Molecules in
ChEBI-20 data contain a wider variety of special
symbols such as ‘/’ and ‘@’ than PubChem’s typ-
ical SMILES to describe their three-dimensional
stereochemical structures. This may cause the over-
all difficulty of the dataset to increase with the
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Figure 6: Learning dynamics of large language models
with different nomenclature.

addition of more complex symbols or cause the
difficulty to decrease with the inclusion of con-
formational information. However, a starting loss
of 0.6 or less has approximately a 55% chance of
correctly predicting the next token, according to
negative log-likelihood calculations. Therefore, we
believe that we cannot rule out the possibility that
the pre-training data of LLM contains ChEBI-20
data.

F Examples of generated captions

We provide examples of molecule captions gener-
ated by Phi3 model.

G Performance metrics

This section contains Tables of metrics for all tasks
studied in this paper. In the case of molecule gen-
eration work using IUPAC, due to limitations in
tools that can directly parse IUPAC names, the
metric was evaluated after conversion to SMILES.
Although there are relatively accurate conversion
tools such as OPSIN(Lowe et al., 2011), the [IUPAC
to SMILES conversion took too much time, so we
used a neural network-based translation tool(noa,
2024) capable of GPU parallel calculation. This
conversion tool was evaluated on 50k molecules
extracted from PubChem and achieved an accuracy
of 99.7%, justifying its usage. What is impres-
sive is that failure in the conversion process also
shows high validity even though it was considered
a failure in validation.



Molecule

OH

The molecule is a polyanionic polymer obtained by
deprotonation of the carboxy groups of [(2R,3S)-4-deoxy-alpha-
L-rhamnosyl-(1->4)-alpha-D-galacturonosyl]-L-iduronic acid;
major species at pH 7.3. It is a polyanionic polymer and a
carbohydrate acid derivative anion.

MolFM

The molecule is a 3',5'-cyclic purine nucleotide that is 3',5'-
cyclic AMP in which the hydrogen at position 2 on the purine
fragment is replaced by a 6-aminohexylamino group. It is a
3',5'-cyclic purine nucleotide, an adenyl ribonucleotide, a
primary amino compound and an aryl amine. It derives from a
3',5'-cyclic AMP.

The molecule is a polyanionic polymer obtained by
deprotonation of the carboxy groups of alpha-D-galacturonosyl-
[(1->2)-alpha-L-rhamnosyl-(1->4)-alpha-D-galacturonosyl]n;
major species at pH 7.3. It is a carbohydrate acid anion and a
polyanionic polymer.

Ground
Truth

The molecule is a 3',5'-cyclic purine nucleotide that is 3',5'-
cyclic AMP in which the hydrogen at position 2 on the purine
fragment is replaced by a 6-aminohexylamino group. It is a
3',5"-cyclic purine nucleotide, an adenyl ribonucleotide, a
primary amino compound and a secondary amino compound. It
derives from a 3',5'-cyclic AMP.

The molecule is a trisaccharide derivative that is the
carbohydrate acid derivative anion formed by deprotonation of
the carboxy groups of 3-deoxy-alpha-D-manno-oct-2-ulosonic
acid; major species at pH 7.3. It is a conjugate base of a 3-
deoxy-alpha-D-manno-oct-2-ulosonic acid. It is a trisaccharide
derivative and a carbohydrate acid derivative anion. It is a
conjugate base of a 3-deoxy-alpha-D-manno-oct-2-ulosonic
acid.

Phi3:
Fine-tuned
(IUPAC)

The molecule is a 3',5'-cyclic purine nucleotide that is 3',5'-
cyclic AMP in which the hydrogen at position 2 on the purine
fragment is replaced by a 6-aminohexylamino group. It has a
role as a protein kinase agonist. It is a 3'5'-cyclic purine
nucleotide, a primary amino compound and a primary
aminoalkylamino compound. It derives from a 3',5'-cyclic AMP.

This molecule is a pharmaceutical compound, specifically a
derivative of a flavonoid, with a complex polyhydroxy structure.
It features a central carbon ring, interconnected with additional
rings and hydroxyl groups. The molecule possesses multiple
hydroxyl groups, indicating potential antioxidant properties. It
may serve as a precursor for various pharmaceutical agents
due to its structural complexity and potential biological activity.

Phi3:
Zero-shot
(SMILES)

This molecule, a pharmaceutical derivative, features a complex,
bicyclic structure with a quinazoline core. It possesses a tertiary
amine, a phosphate ester, and a quaternary ammonium group.
The compound exhibits potential as a diuretic and
antihypertensive agent, derived from the quinazoline scaffold.

This molecule is a complex carbohydrate featuring multiple
hydroxyl groups and a carboxylate ester functional group. It
possesses a symmetrical structure with stereochemistry at
each chiral center, resulting in a specific three-dimensional
arrangement. The molecule is a derivative of a frisaccharide,
with a glucose unit linked to a galactose unit via a 1,2-beta-
glycosidic bond. The presence of multiple hydroxyl groups and
the carboxylate ester group suggest potential roles in energy
storage and structural support in biological systems.

Phi3:
Zero-shot
(IUPAC)

This  molecule is a complex  tetrahydrofuro[3,2-
d][1,3,2]dioxaphosphinin with a fused furofuran ring. It features
a purine base, an amino group, and a hydroxyl group. The
stereochemistry indicates chiral centers at carbon 4, 6, and 7,
with specific configurations. The molecule's structure suggests
potential roles in biochemical processes, possibly as a
phosphate-containing compound in nucleic acid metabolism.
Derived forms may include salts or esters, depending on the
functional groups' interactions with other molecules.

Figure 7: Examples of molecule captioning. We highlight segments included in the ground truth in red, information
not included in the ground truth in blue, and information misunderstood in purple.
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Condition Type Interval Model Novelty [%]1 Uniqueness @ 1k [%] T Uniqueness [%] T Validity [%]1T MAD |

Unconditional - Llamol 97.58 100.0 100.0 99.49
- MolGPT 79.7 100.0 100.0 99.4
- Llama3:Zero-shot (SMILES) - 25.30 14.95 87.90
- Llama3:Zero-shot (IUPAC) - 42.70 26.47 97.29
- Llama3:Fine-tuned (SMILES) 100.0 96.70 90.14 60.79
- Llama3:Fine-tuned (IUPAC) 99.95 97.70 87.23 97.94
- Phi3:Zero-shot (SMILES) - 34.1 21.08 64.56
- Phi3:Zero-shot (IUPAC) - 28.20 15.82 71.88
- Phi3:Fine-tuned (SMILES) 98.37 31.3 20.29 63.67
- Phi3:Fine-tuned (IUPAC) 96.59 29.40 15.69 70.94

LogP {2,4,6} Llamol 97.45 100.0 99.82 99.61 0.194
{2,4,6} MolGPT 100.0 99.8 99.8 97.1 0.23
{2,4,6} Llama3:Zero-shot (SMILES) - 52.00 37.26 81.74 0.73
{2,4,6}  Llama3:Zero-shot IUPAC) - 57.27 40.16 96.45 2.85
{2,4,6} Llama3:Fine-tuned (SMILES) 100.0 96.27 90.15 65.84 0.66
{2,4,6} Llama3:Fine-tuned (IUPAC) 99.94 95.40 85.74 97.27 0.86
{2,4,6} Phi3:Zero-shot (SMILES) - 54.77 37.68 57.25 0.96
{2,4,6} Phi3:Zero-shot (IUPAC) - 23.87 11.34 97.30 1.82
{2,4,6}  Phi3:Fine-tuned (SMILES) 99.95 53.10 38.12 57.36 0.94
{2,4,6} Phi3:Fine-tuned (IUPAC) 97.63 23.53 11.52 97.19 1.85

SAScore {2,3,4} Llamol 97.41 100.0 99.94 99.70 0.099
{2,3,4} MolGPT 97.0 100.0 99.5 97.7 0.13
{2,3,4} Llama3:Zero-shot (SMILES) - 38.73 26.28 86.71 0.78
{2,3,4}  Llama3:Zero-shot IUPAC) - 20.93 16.01 65.95 1.66
{2,3,4} Llama3:Fine-tuned (SMILES) 99.96 95.30 90.66 70.43 0.59
{2,3,4} Llama3:Fine-tuned (IUPAC) 99.93 94.83 87.87 96.68 0.54
{2,3,4} Phi3:Zero-shot (SMILES) - 48.47 32.33 66.98 0.86
{2,3,4} Phi3:Zero-shot (IUPAC) - 11.17 5.21 80.65 0.81
{2,3,4}  Phi3:Fine-tuned (SMILES) 99.61 47.63 32.04 67.57 0.86
{2,3,4} Phi3:Fine-tuned (IUPAC) 94.45 11.43 5.17 80.39 0.78

Table 2: Value-specific molecule generation performance metrics for various models. Comparing [IUPAC and
SMILES, the better one is written in bold.

Model BLEU 1 Exact! Levenshtein| MACCSFTS{T RDKFTST Morgan FITS1T FCD| Text2Mol{ Validity
Ground Truth 1.000 1.000 0.0 1.000 1.000 1.000 0.0 0.609 1.0
RNN 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906
T5-Small 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608
MolT5-Small 0.755 0.079 25.988 0.703 0.568 0.517 2.49 0.482 0.721
T5-Base 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660
MolT5-Base 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772
T5-Large 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902
MolT5-Large 0.854 0.311 16.071 0.834 0.746 0.684 1.20 0.554 0.905
Llama:Zero-shot (SMILES) 0.322 0.003 59.75 0.573 0.316 0.275 19.40 0.387 0.214
Llama:Zero-shot (IUPAC) 0.230 0.011 63.33 0.440 0.256 0.204 19.00 0.256 0.863
Llama3:Fine-tuned (SMILES)  0.688 0.075 37.13 0.798 0.606 0.550 20.00 0.547 0.652
Llama3:Fine-tuned (IUPAC) 0.362 0.055 47.37 0.698 0.520 0.430 19.44 0.462 0.891
Phi3:Zero-shot (SMILES) 0.256 0.001 65.69 0.439 0.206 0.159 16.55 0.268 0.243
Phi3:Zero-shot IUPAC) 0.212 0.003 67.68 0.394 0.219 0.150 20.00 0.194 0.842
Phi3:Fine-tuned (SMILES) 0.554 0.017 51.55 0.696 0.480 0.416 19.81 0.480 0.510
Phi3:Fine-tuned (IUPAC) 0.314 0.025 55.58 0.572 0.370 0.280 19.86 0.355 0.863

Table 3: Property-specific molecule generation performance metrics for various models on different metrics.
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Decoder Encoder BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol

MolT5-small MolT5-small (Edwards et al., 2022)  0.519 0.436 0.620 0.469 0.563 0.551 0.540
MoMu (Su et al., 2022) 0.532 0.445 0.621 0.469 0.564 0.557 0.543
GraphM VP (Liu et al., 2022) 0.540 0.449 0.619 0.465 0.560 0.562 0.553
MolFM (Luo et al., 2023) 0.542 0.452 0.623 0.469 0.562 0.564 0.557
MolT5-base MolT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.578 0.569 0.547
MoMu (Su et al., 2022) 0.549 0.462 0.630 0.479 0.575 0.576 0.558
GraphMVP (Liu et al., 2022) 0.577 0.491 0.651 0.505 0.592 0.599 0.570
MolFM (Luo et al., 2023) 0.585 0.498 0.653 0.508 0.594 0.607 0.576
Llama-3:Zero-shot (SMILES) - 0.104 0.025 0.253 0.058 0.171 0.206 0.241
Llama-3:Zero-shot (IUPAC) - 0.140 0.049 0.276 0.069 0.171 0.244 0.447
Llacha-3:Fine-tuned (IUPAC) - 0.290 0.188 0.410 0.222 0.343 0.317 0.407
Phi-3:Zero-shot (SMILES) - 0.080 0.013 0.214 0.039 0.147 0.172 0.225
Phi-3:Zero-shot (IUPAC) - 0.131 0.044 0.261 0.056 0.167 0.220 0.453
Phi-3:Fine-tuned (IUPAC) - 0.316 0.250 0.461 0.321 0.403 0.511 0.569
GPT-3.5-turbo (SMILES) - 0.102 0.028 0.217 0.051 0.155 0.165 0.336
GPT-3.5-turbo (IUPAC) - 0.125 0.048 0.245 0.059 0.163 0.221 0.451
GPT-40 (SMILES) - 0.093 0.021 0.215 0.039 0.139 0.180 0.434
GPT-40 (IUPAC) - 0.133 0.052 0.257 0.056 0.161 0.239 0.488

Table 4: Molecule captioning results on the test split of ChEBI-20.

Single Target Properties A Rand MoleculeSTM  MoleculeSTM Rand Llama3:Zero-shot Llama3:Zero-shot Llama3:Fine-tuned Llama3:Fine-tuned
(MoleculeSTM)  (SMILES) (Graph) (Ours) (SMILES) (IUPAC) (SMILES) (IUPAC)

101 more soluble in water 0 3533+ 1.31 61.87 £2.47 67.86 +4.37 | 49.67 +£3.33 24.37 £7.30 50.15+£4.70 50.17 £ 3.86 61.55 +3.21
0.5 11.04 +2.40 49.02 + 1.84 54.44 +£3.99 | 38.83+2.02 18.79 +5.47 41.07 £5.03 42.26 £ 5.00 48.77 + 3.28
102 Iess soluble in water 0 43.36 £ 3.06 5271+ 1.67 64.79 +2.76 | 50.17 £ 2.75 20.15+£2.49 46.67 +5.77 29.25 £ 4.63 34.81 £0.79
0.5 19.75 £ 1.56 47.17 £ 1.37 48.70 +2.04 | 36.83 4 2.47 12.90 + 4.00 30.93 +7.98 21.73 £283 25.36 +2.23
103 more like a drug 0 38.06 + 2.57 36.52 4+ 2.46 39.97 £4.32 | 49.83 + 1.61 10.24 + 6.80 44.39 +18.53 25.13 4235 35.81 +2.42
0.1 5274024 8.11 £0.82 14.06 + 3.18 | 33.83 + 1.26 6.56 £7.21 29.61 £21.78 15.08 +2.85 24.09 + 1.12
104 less like a drug 0 36.96 & 2.25 58.59 £ 1.10 77.62 £2.80 | 50.50 + 1.32 13.53 +8.98 42.09 £5.10 49.77 £ 455 60.26 + 1.01
0.1 6.16 + 1.87 11.55 + 0.90 54.22 + 3.01 33.50 4+ 3.50 10.52 +9.37 33.28 +7.24 38.36 4 2.05 45.59 + 2.20
105 higher permeability 0 25234213 61.87 £ 1.76 59.84 £0.78 | 44.17 £ 0.76 745+ 5.50 15.87 £16.72 43.50 £ 1.80 51.09 + 1.90
10 17.41 £1.43 47.45 £ 1.88 50.42 +2.73 | 32.17 4+ 1.89 5.93 +7.10 9.21 £7.99 34.00 + 2.29 38.66 + 3.90
106 lower permeability 0 16.79 £ 2.54 31.76 + 0.97 40.35 £ 1.87 | 52.67 +4.51 8.94 +4.06 37.78 £10.72 29.77 + 1.61 49.80 £ 6.09
10 11.02 +0.71 29.37 + 0.96 31.71 £ 147 | 41.83 +2.02 524 £248 2148 £11.18 21.41+£322 40.52 £5.10
107 more hydrogen bond acceptors | 0 12.64 + 1.64 34.524+5.26 37.35+£7.09 | 45.17+2.84 19.02 +2.67 76.19 + 21.82 32.61 +4.18 40.35 £ 6.90
1 6.09 + 0.01 16.13 + 1.62 16.13 +7.63 | 32.67 + 1.89 12.42 +7.38 35.71 + 18.90 22.41 +3.08 26.40 + 5.29
108 more hydrogen bond donors 0 2.97 +£0.61 3.00 + 0.86 7.69 £0.56 | 35.00 & 4.36 13.92 + 4.66 55.93 + 16.04 25.80 + 1.28 31.41 £ 1.47
1 0.00 + 0.00 1.00 + 0.86 3.23 +5.27 10.67 + 2.31 10.55 £ 2.05 24.37 £10.72 10.29 +2.03 10.15 + 5.31

Table 5: Results on single-objective molecule editing are evaluated based on the hit ratio of the property change.

Two Target Properties A MoleculeSTM  MoleculeSTM Random Llama3:Zero-shot Llama3:Zero-shot Llama3:Fine-tuned Llama3:Fine-tuned
(MoleculeSTM) (SMILES) (Graph) (Ours) (SMILES) (IUPAC) (SMILES) (IUPAC)

201 more soluble in waterand | 0-0 9.88 +1.03 27.87 + 3.86 27.43+341 | 31.50 £ 0.50 8.76 +4.83 60.83 = 1.44 24.59 +5.07 33.14 + 4.37
more hydrogen bond acceptors | 0.5 -1 0.23+0.33 8.80 + 0.04 11.10+£1.80 | 17.50 + 3.61 6.23 +3.57 45.83 +12.33 15.56 4 3.05 18.82 + 4.52
202 less soluble in water and 0-0 2.99 +£0.38 8.55+£2.75 8.21+0.81 17.83 = 3.01 5.18 £5.86 23.28 £9.57 8.19 £2.01 12.06 +2.29
more hydrogen bond acceptors | 0.5 -1 0.22+0.31 2.93£0.30 3.10 + 0.32 8.83 + 1.15 1.28 £2.22 741 £ 642 3.01 £2.64 4.48 + 1.38
203 more soluble in waterand | 0-0 228+ 1.15 33.51 £4.08 49.23+1.71 | 1933 +3.75 8.41 + 4.60 43.72 £7.30 19.97 £1.82 24.16 +2.20
more hydrogen bond donors 05-1 0.00 + 0.00 9.98 +1.03 23.94 £ 1.09 5.83+0.29 4.89 +£4.29 21.47 +12.48 7.55 £0.50 9.86 + 3.41
204 less soluble in water and 0-0 0.69 + 0.58 17.03 £2.75 14.42+3.43 13.17 £ 0.29 4.66 £4.19 5.16 £4.51 537+0.75 8.57£091
more hydrogen bond donors 0.5-1 0.00 + 0.00 259+ 1.14 3.84 +0.71 2.00 + 1.00 1.88 + 1.63 0.00 £ 0.00 1.34+0.76 1.66 & 1.05
205 more soluble in water and | 0-0 5.06+1.21 35.69 £3.19 39.74 £2.26 | 16.50 +0.87 3.90 + 3.62 12.50 + 21.65 23.58 = 3.26 19.62 + 4.00
higher permeability 05-1 1.16 £ 0.68 19.15+£0.73 22.66 + 1.90 7.50 £2.29 0.00 £ 0.00 0.00 + 0.00 15.05 + 2.13 9.06 +£2.32
206 more soluble in water and 0-0 12.17 £ 1.05 44.35 + 0.68 30.87 £0.62 35.17 £5.20 9.68 £3.17 65.48 + 6.63 28.11 +1.85 3713+ 1.8
lower permeability 0.5-10 6.23 +2.31 28.67 +2.22 20.06 + 1.26 23.50 +£3.77 6.12 £ 191 60.71 + 5.19 18.18 +3.47 26.15 +2.82

Table 6: Results on double-objective molecule editing are evaluated based on the hit ratio of the property change.

Model Fine-tuning dataset Data type | ARC Challenge HellaSwag MMLU
MolT5-base (Edwards et al., 2022) - - 0.1988 0.2744 0.2465
MOolGPT (Bagal et al., 2021) - - 0.1980 0.2541 0.2704
Llama3 - - 0.5299 0.5776 0.6385
Llama3 50k PubChem molecules SMILES 0.4966 0.5640 0.6110
Llama3 50k PubChem molecules  ITUPAC 0.4983 0.5645 0.6185
Llama3 500k PubChem molecules SMILES 0.3259 0.4583 0.3448
Llama3 500k PubChem molecules IUPAC 0.3942 0.5050 0.4946

Table 7: Various benchmark results with few-shot learning performance of different models
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