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Abstract
Most existing research in language model ap-001
plications for chemistry employs the Simplified002
Molecular Input Line Entry System (SMILES)003
nomenclature, designed to encode molecu-004
lar structure in a string format as both input005
and output. In contrast, machine learning ap-006
proaches using human-readable IUPAC (Inter-007
national Union of Pure and Applied Chemistry)008
nomenclature remain underexplored. IUPAC009
names are widely used in the chemical liter-010
ature, providing opportunities to train large011
language models on a vast corpus with con-012
textual expertise. We are motivated to com-013
pare these two nomenclatures across various014
language-molecule scenarios. We found that015
simply switching to IUPAC names in challeng-016
ing downstream tasks such as molecular gener-017
ation, captioning, and editing results in a perfor-018
mance improvement of up to 4 times. Addition-019
ally, catastrophic forgetting during fine-tuning020
is reduced by half when using IUPAC names021
compared to SMILES.022

1 Introduction023

Research for capturing domain knowledge achiev-024

able from the natural language of the vast scien-025

tific literature in chemistry is rapidly increasing.026

Integrating semantic supervision of natural lan-027

guage (Edwards et al., 2021; Liu et al., 2023a; Su028

et al., 2022; Luo et al., 2023) has been shown to029

unlock a variety of new capabilities, such as text-030

based molecule generation and molecule caption-031

ing. However, these approaches don’t have the032

conversational capabilities of ChatGPT. Recently,033

the use of large language models (LLMs) that show034

impressive reasoning performance in chemistry is035

a promising research direction(Guo et al., 2024;036

Bran et al., 2023; Jablonka et al., 2024). Most ex-037

isting language model applications for chemistry,038

including molecule generation models(Bagal et al.,039

2021; Liu et al., 2023c; Dobberstein et al., 2023),040

used nomenclatures such as SMILES (Weininger,041

Figure 1: Overall performance of language models on
chemical tasks.

1988; Weininger et al., 1989), InChI (Heller et al., 042

2015), and SELFIES (Krenn et al., 2020), which 043

are proposed for computer processing of molecular 044

structures in text. However, these text represen- 045

tations generally do not benefit from large-scale 046

pre-training since they are not widely used in the 047

scientific literature written in natural language. 048

The IUPAC nomenclature is a systematic method 049

proposed in 1919 to standardize the naming of com- 050

pounds and has been used in a variety of literature 051

for a long time. However, IUPAC names for com- 052

plex compounds are difficult to write and interpret 053

accurately. Therefore, many chemical databases 054

and software rely on SMILES and SELFIES, which 055

are easily processed by computers, as the basic for- 056

mat. Conversion between SMILES and IUPAC 057

was once a challenging problem, but recent ad- 058

vancements in language models have made it easier 059

(Krasnov et al., 2021; Rajan et al., 2021). IUPAC 060

names are widely used in the scientific literature, 061

offering rich learning opportunities from rich cor- 062

pora with domain knowledge compared to other 063
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Figure 2: Example of chemical nomenclatures and overview of the experiment process.

nomenclatures. However, the benefits of integrat-064

ing IUPAC into LLM haven’t been fully explored.065

For example, Guo et al.(Guo et al., 2024) bench-066

marked several LLMs for various chemistry tasks067

only for SMILES and SELFIES.068

In this study, We report the benefits of using IU-069

PAC nomenclature. When using IUPAC names,070

LLM performances improved by up to 4 times071

on challenging tasks such as molecule generation,072

molecule captioning, and molecule editing (Fig.1).073

In particular, it learns efficiently from fine-tuning074

and forgets less during the training process.075

2 Experiments076

2.1 Tasks077

We selected 3 challenging tasks in chemistry to078

evaluate the benefits of using IUPAC nomenclature079

in language models: Text-based molecule gener-080

ation, molecule captioning, and molecule editing.081

For each task, we compare the zero-shot and fine-082

tuning performance of LLMs for SMILES and IU-083

PAC. Table 1 contains descriptions, datasets, and084

metrics for each task. We also evaluate the catas-085

trophic forgetting during training by evaluating086

benchmarks of LLMs. Detailed evaluation met-087

rics for each task are in Appendix C.088

Text-based molecule generation Text-based089

molecule generation tasks aim to generate can-090

didate molecules with target properties. This091

task can be divided into value-specific genera-092

tion and property-specific generation. For exam-093

ple, property-specific generation involves creating094

molecules that are non-flammable, have a specific095

color, or have specific functional groups. On the096

other hand, value-specific generation aims to find097

molecules that satisfy certain value of properties098

such as bandgap, logP, and TPSA.099

Molecule captioning Molecule captioning aims100

to write text describing the structure and properties101

of a given molecule. It requires extracting patterns102

from given molecular representations and logically103

linking them by combining pre-trained chemical 104

knowledge from text. 105

Molecule editing Molecular editing is a re- 106

cently proposed chemical task. Generating sim- 107

ilar molecules with modified properties, rather than 108

creating them from scratch, is cost-effective for 109

the chemical industry. This challenging task re- 110

quires the ability to estimate a given molecule’s 111

properties and make predictions while preserving 112

substructures. 113

2.2 Model 114

We performed our experiments by fine-tuning the 115

Llama-3-8B-Instruct (Llama3), the latest variant 116

of Llama family (Touvron et al., 2023a,b), and 117

3.8B Phi-3-mini-4k-instruct (Phi3) model (Abdin 118

et al., 2024) on NVIDIA RTX 6000 Ada using 4-bit 119

quantization and 8-bit optimizers with the low-rank 120

adaptation (LoRA) technique(Hu et al., 2021). We 121

consider the standard supervised fine-tuning (Dai 122

and Le, 2015; Devlin et al., 2018) paradigm in full 123

parameter space of LLMs. 512 and 0.0001 were 124

used as LoRA rank and learning rate, respectively. 125

3 Results and discussion 126

3.1 Molecule generation 127

To evaluate the LLM’s ability to generate molecules 128

according to nomenclatures, we used a pre- and 129

post-fine-tuned model to generate molecules with 130

constraints. The temperature was set to 0.8 to bal- 131

ance the basic probability distribution without be- 132

ing too strict. 133

We observe that the Llama3 model already 134

demonstrates zero-shot performance in value- 135

specific molecule generation (Table 2). The pro- 136

duced molecules are mostly valid, but the unique- 137

ness of molecules is limited. Novelty cannot be 138

calculated since the exact molecules included in 139

the training corpus of the Llama3 model are un- 140

known. For SMILES, it shows a lower MAD 141

than IUPAC in the zero-shot setting, meaning it 142
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better satisfies the given conditions. We assume143

that SMILES frequently appear with computable144

properties like logP in RDKit(RDKit, 2024), al-145

lowing related knowledge to be learned during pre-146

training. After fine-tuning, IUPAC also reaches147

a similar performance level. Through fine-tuning,148

we can create more diverse and valid molecules149

with performance comparable to task-specific lan-150

guage models. Recall that Llamol (Dobberstein151

et al., 2023) and MolGPT (Bagal et al., 2021) were152

trained on larger datasets, 13.1M and 1.9M, respec-153

tively, whereas in our study they were trained on154

60k molecules. When IUPAC is used, the gener-155

ated molecules are more valid compared to those156

generated using SMILES. For analysis of property-157

specific generation, please refer to Appendix E.158

3.2 Molecule captioning159

Table 4 shows the overall result of molecule cap-160

tioning. ChEBI-20 (Edwards et al., 2021) test data161

The text2mol score of the original caption is 0.609.162

Most previous studies combined pre-trained MolT5163

with a pre-trained multimodal encoder and then164

fine-tuned it on ChEBI-20. These models have165

high text2mol scores above 0.5. LLMs generate166

captions using IUPAC or SMILES molecular repre-167

sentations as input, respectively, with and without168

additional fine-tuning. All models exhibit better169

metrics when utilizing IUPAC in a zero-shot set-170

ting. After fine-tuning, other metrics increase for171

Llama3, but the Text2mol score slightly decreases,172

while the Phi3 model approaches the highest met-173

ric. Phi3 is trained on synthetic, “textbook-like”174

data, and llama3 is trained on publicly available175

documents. We found that using the IUPAC nam-176

ing system consistently increased captioning per-177

formance in all zero-shot settings. For complete178

metrics and some case studies on the molecule cap-179

tioning task, readers are referred to Appendix F and180

Figure 7. Creating expert-level evaluation metrics181

for chemistry is a challenging and open task. We182

further discuss the reliability of metrics through183

a case study of molecule captions generated by184

Phi3. In zero-shot settings, Phi3 cannot extract185

meaningful explanations from SMILES patterns.186

In contrast, when IUPAC is given as input, Phi3187

successfully captures the structural information of188

the first molecule, a trisaccharide structure. Due189

to LLM’s well-known hallucinations, it refers to190

non-existent esters. After fine-tuning, most of the191

original knowledge is lost and Phi3 focuses on ad-192

hering to the ground truth of the dataset. As a result,193

Figure 3: Visualization of molecule editing tasks.
Llama3 using IUPAC preserves original substructures
better than SMILES.

Phi3 achieves higher metrics due to higher token 194

overlap, but it does not always mean better quality 195

of generated captions. 196

3.3 Molecule editing 197

Even for molecular editing tasks, IUPAC consis- 198

tently achieves higher metrics than SMILES. We 199

illustrate the single- and multi-objective molecule 200

editing results in Tables 5 and 6. If the gener- 201

ated molecule was not valid, it was considered a 202

failure. The editing task itself was not fine-tuned, 203

and instead, a model trained on the value-specific 204

molecule generation task was used. While Llama3 205

is aware to distinguish hydrogen bond acceptors 206

and donors from IUPAC names in a zero-shot set- 207

ting, it appears to be unaware of other information 208

such as logP and QED. As a result, it shows excel- 209

lent performance in tasks 107 and 108 but shows 210

similar performance to the random baseline in other 211

tasks. In the case of the fine-tuned model, which 212

are not trained on the hydrogen bond acceptors and 213

doners, catastrophic forgetting occurs so that per- 214

formance for them decreases while performance 215
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increases for characteristics such as logP. Even in216

tasks that modifying two characteristics simultane-217

ously, the zero-shot setting of llama3 using IUPAC218

shows a high success rate.219

In the case study of molecular editing, we can220

see the advantages of IUPAC that are not apparent221

through metrics (Fig. 3). When using SMILES,222

even if editing is successful according to the desired223

conditions, we observed that the substructure of the224

original molecule is not preserved and the positions225

of the elements are mixed up. In contrast, when226

using IUPAC, the substructure of the molecule is227

defined in token units, so the detailed structure228

before and after editing is robustly preserved.229

3.4 Catastrophic forgetting230

Compared to developing small, specialized models231

for each task, the advantage of using a general-232

purpose language model is the flexibility to extend233

the task to a conversational agent. For example,234

Liu et al. (Liu et al., 2023b) combined conversa-235

tional LLM, retrieval DB, and domain feedback236

to achieve high molecular editing performance by237

exchanging conversations repeatedly. To maintain238

these strengths, general-purpose language models239

must not lose their original knowledge even after240

they are fine-tuned for specialized tasks. Therefore,241

we evaluated several challenging NLP benchmarks242

after performing the molecule generation task in243

PubChem (Table 7). As a result, we found that244

using IUPAC achieved higher metrics when trained245

on the same number of data, thereby damaging246

the original knowledge less. The more data you247

train on, the wider the gap becomes. Therefore,248

when IUPAC is used as an input format, it is possi-249

ble to maintain the flexibility of a general-purpose250

language model while achieving higher overall per-251

formance in specialized tasks, as shown in Fig. 4.252

4 Conclusion253

We study the effect of using IUPAC nomenclature254

for language models on various challenging chem-255

istry tasks. We find that an LLM using IUPAC256

nomenclature has the following unique advantages257

for chemistry.258

Performance : Although the final performance259

may converge at the end if sufficient training re-260

sources are given, the training cost of LLM is an im-261

portant aspect of LLM education. IUPAC performs262

better than SMILES in most tasks when investing263

the same training resources.264

Figure 4: An example of open conversation with Llama3
performing molecule captioning and editing simultane-
ously.

Data efficiency : Acquiring high-quality labeled 265

molecular data is challenging. According to LLM’s 266

scaling raw, general-purpose language models us- 267

ing IUPAC allows for a high level of generalization 268

even with less data. 269

Accessibility : By using the IUPAC nomencla- 270

ture, which is closer to natural language, practition- 271

ers unfamiliar with computational chemistry can 272

access a vast knowledge base directly and inter- 273

actively without using domain-expert conversion 274

tools for other molecule representations such as 275

SMILES. 276

Scalability : Using IUPAC minimizes forgetting, 277

allowing the flexibility of the general-purpose lan- 278

guage model to be leveraged for building a variety 279

of specialized task pipelines in chemistry. 280

4



5 Limitations281

We expect that a large language model trained us-282

ing IUPAC names will be able to simultaneously283

perform the task of predicting molecular properties,284

but unfortunately, most of MoleculeNet’s smiles285

could not be converted to valid IUPAC names, so286

we did not experiment as a fair comparison was287

not possible. At the current state of the art, one288

of the limitations is that the conversion between289

IUPAC SMILES relies entirely on neural network-290

based models. In addition, we did not compare291

the performance under equivalent conditions in292

which SMILES representation learns information293

from the surrounding context by controlling the294

placement of SMILES instead of IUPAC in the295

pre-training stage. If these transformations are per-296

formed properly, it is possible to achieve equal or297

better performance than IUPAC by learning expert298

knowledge from the grammar of SMILES. How-299

ever, considering the cost and complexity of mak-300

ing these changes on several terakens of data, us-301

ing IUPAC still has its advantages. Another lim-302

itation is that the model may be used to discover303

potentially dangerous molecules instead of bene-304

ficial molecules. In particular, molecular editing305

technologies and captioning capabilities can sig-306

nificantly lower the effort and cost barriers to syn-307

thesizing harmful molecules. Despite the above308

risks, we believe that the benefits to the chemical309

research community outweigh the disadvantages.310
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data consisting of SMILES strings and biomed-608

ical text descriptions. Text2Mol(Edwards et al.,609

2021) performs cross-modality search by perform-610

ing contrastive learning between molecular graphs611

and text data. MolT5(Edwards et al., 2022) was612

trained to perform translation between SMILES613

and text annotations of molecules. MoMu(Su614

et al., 2022) showed that the contrast learning615

model between modalities could be extended to616

molecular caption writing and molecule generation617

tasks by introducing an additional projection layer618

and connecting it with pre-trained models such619

as MolT5 and MoFlow(Zang and Wang, 2020) .620

MoleculeSTM(Liu et al., 2023a) has also been ex-621

tended to zero-shot text-based molecular editing622

tasks based on a pre-trained contrastive learning623

model. This work demonstrates the potential of624

LLMs for more realistic drug discovery tasks.625

A.2 Text-based molecular generation626

Various approaches have been attempted to cre-627

ate a molecule generation model depending on the628

modality of the molecule. In graph-based mod-629

els, conditional generation to design molecules630

with desired properties is challenging. JT-VAE(Jin631

et al., 2018) based on molecular graph gener-632

ates molecules in two iterative steps, utilizing633

Bayesian optimization for conditional generation.634

MolGAN(De Cao and Kipf, 2018) is an implicit,635

likelihood-free generative model for small molec-636

ular graphs that uses GANs on graph-structured637

data. This uses reinforcement learning to find638

molecule with desired properties. Flow-based mod-639

els such as GraphNVP(Madhawa et al., 2019) and640

MoFlow(Zang and Wang, 2020) learn the molecule641

generation process through mapping to an invert-642

ible latent space. Optimizations along the latent643

space can be used to generate molecular graphs644

with specific desired properties without any ex-645

pert/domain knowledge. Diffusion-based genera-646

tion models that have been actively studied recently647

mainly focus on 3D molecule generation(Xu et al.,648

2022; Hoogeboom et al., 2022; Huang et al., 2023).649

SMILES-based autoregressive molecule genera-650

tion models have also been actively studied. Molec-651

ularRNN(Popova et al., 2019) sequentially gener-652

ates each character of SMILES. MolGPT(Bagal653

et al., 2021) performs on par with other previously654

proposed modern machine learning frameworks for655

molecular generation in terms of generating valid,656

unique, and novel molecules. MolXPT(Liu et al.,657

2023c) detect the molecule names in each sequence658

and replace them with the corresponding SMILES. 659

Llamol(Dobberstein et al., 2023) trains a 15 million 660

parameter model that is modified from the Llama- 661

2(Touvron et al., 2023b) architecture to generate 662

a SMILES representation that satisfies given char- 663

acteristics. iupacGPT(Mao et al., 2023), learned 664

from 97M molecules, showed an equivalent level 665

of molecule generation ability to SMILES using 666

IUPAC names instead of SMILES. 667

The most closely related work to ours is (Her- 668

nandez et al., 2021) which explored the scaling for 669

knowledge transfer by comparing finetuning with 670

training from scratch. Our study is orthogonal to 671

theirs with significant differences as our key focus 672

is understanding the scaling of different factors for 673

LLM finetuning, rather than the transfer. 674

B Training data 675

PubChem We downloaded 1 million molecules 676

from PubChem. We cleaned the data according to 677

several conditions. 678

• 1. Structures that RDKit could not parse were 679

removed. 680

• 2. Limited to molecules with a total charge of 681

0. 682

• 3. The number of heavy atoms is limited to 30 683

or less (This represents approximately 75% of 684

the total). 685

After this process, approximately 0.6 million, or 686

591,575 molecules remained. Afterward, logP, SA 687

score, QED, TPSA, and molecular weight were 688

calculated from the SMILES representations using 689

RDKit. 690

ChEBI-20 We use ChEBI-20 (Edwards et al., 691

2021) as a training dataset for text-based property- 692

specific molecule generation and molecule caption- 693

ing. This dataset consists of 33,010 molecules with 694

SMILES, IUPAC, and their description. We sepa- 695

rate it into 80/10/10 train/validation/test splits, re- 696

spectively. 697

C Evaluation 698

C.1 Molecule generation 699

We measured the following metrics to evaluate 700

the performance of the molecule generation task. 701

All metrics of value-specific molecule generation 702

were calculated statistically after generating 10k 703

molecules. 704
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Task Task type Fine-tuning Dataset Metrics
Text-based molecule design (Value-specific) Generation Fine-tuning PubChem validity, uniqueness, etc.
Text-based molecule design (property-specific) Generation Fine-tuning ChEBI-20 validity, uniqueness, etc.
Molecule editing Generation Zero-shot PubChem Success rate
Molecule captioning Generation Fine-tuning/zero-shot ChEBI-20 BLEU, Text2mol score, etc.

Table 1: The statistics of tasks, datasets, the number of samples, and evaluation metrics

• Validity: the fraction of generated molecules705

that are valid. We use RDkit for the validity706

check of molecules. Validity measures how707

well the model has learned the SMILES gram-708

mar and the valency of atoms.709

• Uniqueness: the fraction of validly generated710

molecules that are unique. Low uniqueness711

highlights repetitive molecule generation and712

a low level of distribution learning by the713

model.714

• Novelty: the fraction of valid unique gener-715

ated molecules that are not in the training set.716

Low novelty is a sign of overfitting. We do717

not want the model to memorize the training718

data.719

• Mean absolute deviation (MAD): the devi-720

ation between property values of generated721

molecules and the given target property value.722

The lower MAD indicates a better understand-723

ing of the connection between the properties724

and the molecule.725

In general, novelty is recommended to be mea-726

sured as it is an indicator of overfitting that de-727

termines whether the model remembers the data.728

However, checking for duplicates across hundreds729

of thousands of training data pools would be an730

overwhelming effort. Additionally, in the zero-shot731

setting, it is not possible to determine what data732

the model was exposed to during pre-training, so it733

was not measured in this study.734

In property-specific molecule generation, we735

measure the similarity between the generated736

molecule and the original molecule and the similar-737

ity between the description text and the generated738

molecule using the following metrics.739

• String similarity: BLEU (Papineni et al.,740

2002), Exact, and Levenshtein distance(Miller741

et al., 2009) are used to measure whether ac-742

curacy by comparing the strings of generated743

molecules.744

• Molecular feature similarity: MACCS 745

FTS(Durant et al., 2002), RDK 746

FTS(Schneider et al., 2015), Morgan 747

FTS(Rogers and Hahn, 2010), and 748

FCD(Preuer et al., 2018) measure simi- 749

larity by comparing the features of the 750

generated molecule and the original molecule. 751

• String-Molecule similarity: Text2mol score 752

is designed to measure the similarity between 753

the text description and the molecule by com- 754

paring the latent representation of each branch 755

of the pre-trained multimodal model. 756

C.2 Molecule captioning 757

Molecule captioning. We utilize the ChEBI-20 (Ed- 758

wards et al., 2021) dataset with 33,010 molecule- 759

description pairs. We follow the original 8:1:1 760

train/validation/test split. Evaluation metrics in- 761

clude BLEU (Papineni et al., 2002), ROUGE (Lin, 762

2004), and METEOR (Banerjee and Lavie, 2005) 763

for string-similarity and Text2Mol score (Edwards 764

et al., 2021) for text-molecule similarity 765

C.3 Molecule editing 766

Measure the success rate of introducing new 767

molecules that satisfy predefined properties from 768

given molecules. Generating an invalid molecule 769

is considered a failure. We wanted to use 770

MoleculeSTM as a baseline, which proposed this 771

task, but since their dataset does not support IU- 772

PAC, so we experimented with 200 molecules ran- 773

domly selected from PubChem. 774

C.4 Catastrophic forgetting 775

We measured ARC challenge(Clark et al., 776

2018), HellaSwag(Zellers et al., 2019), and 777

MMLU(Hendrycks et al., 2021), which are bench- 778

marks for measuring the comprehensive perfor- 779

mance of LLM across extensive tasks before and 780

after training, to quantify forgotten knowledge dur- 781

ing fine-tuning. 782
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Figure 5: Visualization of hidden representations of
prompts containing target properties. Five values were
selected for each properties, and different colors were
assigned according to the values.

D Visualization of prompt representation783

After training, the hidden representation of the784

molecule generation condition prompt is visual-785

ized in Fig. 5 using principal component analysis786

(PCA). This contains probability information for787

generating the next molecular token based on the788

given condition and thus represents the interface789

between the text representation of the condition790

and the molecular representation. Prompts for visu-791

alization were selected and assembled from a pool792

of five values for each property condition, therefore793

a total of 55 = 3125.794

We assume that the model before training tends795

to generate specific tokens regardless of the gen-796

eration conditions, which leads to low uniqueness797

since the hidden representation of the model before798

training is strongly clustered. On the other hand,799

after training, the model sorts the molecular feature800

conditions according to their value terms and tries801

to generate more diverse tokens.802

E Learning dynamics of LLMs803

While conducting fine-tuning to evaluate property-804

specific molecule generation performance, we805

found that the learning dynamics were significantly806

different between training datasets, ChEBI-20 and807

PubChem. The starting loss on ChEBI-20 data808

is lower than 0.6 and decreases much faster than809

value-specific molecule generation. Molecules in810

ChEBI-20 data contain a wider variety of special811

symbols such as ‘/’ and ‘@’ than PubChem’s typ-812

ical SMILES to describe their three-dimensional813

stereochemical structures. This may cause the over-814

all difficulty of the dataset to increase with the815

Figure 6: Learning dynamics of large language models
with different nomenclature.

addition of more complex symbols or cause the 816

difficulty to decrease with the inclusion of con- 817

formational information. However, a starting loss 818

of 0.6 or less has approximately a 55% chance of 819

correctly predicting the next token, according to 820

negative log-likelihood calculations. Therefore, we 821

believe that we cannot rule out the possibility that 822

the pre-training data of LLM contains ChEBI-20 823

data. 824

F Examples of generated captions 825

We provide examples of molecule captions gener- 826

ated by Phi3 model. 827

G Performance metrics 828

This section contains Tables of metrics for all tasks 829

studied in this paper. In the case of molecule gen- 830

eration work using IUPAC, due to limitations in 831

tools that can directly parse IUPAC names, the 832

metric was evaluated after conversion to SMILES. 833

Although there are relatively accurate conversion 834

tools such as OPSIN(Lowe et al., 2011), the IUPAC 835

to SMILES conversion took too much time, so we 836

used a neural network-based translation tool(noa, 837

2024) capable of GPU parallel calculation. This 838

conversion tool was evaluated on 50k molecules 839

extracted from PubChem and achieved an accuracy 840

of 99.7%, justifying its usage. What is impres- 841

sive is that failure in the conversion process also 842

shows high validity even though it was considered 843

a failure in validation. 844
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Figure 7: Examples of molecule captioning. We highlight segments included in the ground truth in red, information
not included in the ground truth in blue, and information misunderstood in purple.
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Condition Type Interval Model Novelty [%] ↑ Uniqueness @ 1k [%] ↑ Uniqueness [%] ↑ Validity [%] ↑ MAD ↓

Unconditional - Llamol 97.58 100.0 100.0 99.49
- MolGPT 79.7 100.0 100.0 99.4
- Llama3:Zero-shot (SMILES) - 25.30 14.95 87.90
- Llama3:Zero-shot (IUPAC) - 42.70 26.47 97.29
- Llama3:Fine-tuned (SMILES) 100.0 96.70 90.14 60.79
- Llama3:Fine-tuned (IUPAC) 99.95 97.70 87.23 97.94
- Phi3:Zero-shot (SMILES) - 34.1 21.08 64.56
- Phi3:Zero-shot (IUPAC) - 28.20 15.82 71.88
- Phi3:Fine-tuned (SMILES) 98.37 31.3 20.29 63.67
- Phi3:Fine-tuned (IUPAC) 96.59 29.40 15.69 70.94

LogP {2, 4, 6} Llamol 97.45 100.0 99.82 99.61 0.194
{2, 4, 6} MolGPT 100.0 99.8 99.8 97.1 0.23
{2, 4, 6} Llama3:Zero-shot (SMILES) - 52.00 37.26 81.74 0.73
{2, 4, 6} Llama3:Zero-shot (IUPAC) - 57.27 40.16 96.45 2.85
{2, 4, 6} Llama3:Fine-tuned (SMILES) 100.0 96.27 90.15 65.84 0.66
{2, 4, 6} Llama3:Fine-tuned (IUPAC) 99.94 95.40 85.74 97.27 0.86
{2, 4, 6} Phi3:Zero-shot (SMILES) - 54.77 37.68 57.25 0.96
{2, 4, 6} Phi3:Zero-shot (IUPAC) - 23.87 11.34 97.30 1.82
{2, 4, 6} Phi3:Fine-tuned (SMILES) 99.95 53.10 38.12 57.36 0.94
{2, 4, 6} Phi3:Fine-tuned (IUPAC) 97.63 23.53 11.52 97.19 1.85

SAScore {2, 3, 4} Llamol 97.41 100.0 99.94 99.70 0.099
{2, 3, 4} MolGPT 97.0 100.0 99.5 97.7 0.13
{2, 3, 4} Llama3:Zero-shot (SMILES) - 38.73 26.28 86.71 0.78
{2, 3, 4} Llama3:Zero-shot (IUPAC) - 20.93 16.01 65.95 1.66
{2, 3, 4} Llama3:Fine-tuned (SMILES) 99.96 95.30 90.66 70.43 0.59
{2, 3, 4} Llama3:Fine-tuned (IUPAC) 99.93 94.83 87.87 96.68 0.54
{2, 3, 4} Phi3:Zero-shot (SMILES) - 48.47 32.33 66.98 0.86
{2, 3, 4} Phi3:Zero-shot (IUPAC) - 11.17 5.21 80.65 0.81
{2, 3, 4} Phi3:Fine-tuned (SMILES) 99.61 47.63 32.04 67.57 0.86
{2, 3, 4} Phi3:Fine-tuned (IUPAC) 94.45 11.43 5.17 80.39 0.78

Table 2: Value-specific molecule generation performance metrics for various models. Comparing IUPAC and
SMILES, the better one is written in bold.

Model BLEU ↑ Exact ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Text2Mol ↑ Validity ↑
Ground Truth 1.000 1.000 0.0 1.000 1.000 1.000 0.0 0.609 1.0
RNN 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906
T5-Small 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608
MolT5-Small 0.755 0.079 25.988 0.703 0.568 0.517 2.49 0.482 0.721
T5-Base 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660
MolT5-Base 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772
T5-Large 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902
MolT5-Large 0.854 0.311 16.071 0.834 0.746 0.684 1.20 0.554 0.905
Llama:Zero-shot (SMILES) 0.322 0.003 59.75 0.573 0.316 0.275 19.40 0.387 0.214
Llama:Zero-shot (IUPAC) 0.230 0.011 63.33 0.440 0.256 0.204 19.00 0.256 0.863
Llama3:Fine-tuned (SMILES) 0.688 0.075 37.13 0.798 0.606 0.550 20.00 0.547 0.652
Llama3:Fine-tuned (IUPAC) 0.362 0.055 47.37 0.698 0.520 0.430 19.44 0.462 0.891
Phi3:Zero-shot (SMILES) 0.256 0.001 65.69 0.439 0.206 0.159 16.55 0.268 0.243
Phi3:Zero-shot (IUPAC) 0.212 0.003 67.68 0.394 0.219 0.150 20.00 0.194 0.842
Phi3:Fine-tuned (SMILES) 0.554 0.017 51.55 0.696 0.480 0.416 19.81 0.480 0.510
Phi3:Fine-tuned (IUPAC) 0.314 0.025 55.58 0.572 0.370 0.280 19.86 0.355 0.863

Table 3: Property-specific molecule generation performance metrics for various models on different metrics.
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Decoder Encoder BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol

MolT5-small MolT5-small (Edwards et al., 2022) 0.519 0.436 0.620 0.469 0.563 0.551 0.540
MoMu (Su et al., 2022) 0.532 0.445 0.621 0.469 0.564 0.557 0.543
GraphMVP (Liu et al., 2022) 0.540 0.449 0.619 0.465 0.560 0.562 0.553
MolFM (Luo et al., 2023) 0.542 0.452 0.623 0.469 0.562 0.564 0.557

MolT5-base MolT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.578 0.569 0.547
MoMu (Su et al., 2022) 0.549 0.462 0.630 0.479 0.575 0.576 0.558
GraphMVP (Liu et al., 2022) 0.577 0.491 0.651 0.505 0.592 0.599 0.570
MolFM (Luo et al., 2023) 0.585 0.498 0.653 0.508 0.594 0.607 0.576

Llama-3:Zero-shot (SMILES) - 0.104 0.025 0.253 0.058 0.171 0.206 0.241
Llama-3:Zero-shot (IUPAC) - 0.140 0.049 0.276 0.069 0.171 0.244 0.447
Llacha-3:Fine-tuned (IUPAC) - 0.290 0.188 0.410 0.222 0.343 0.317 0.407

Phi-3:Zero-shot (SMILES) - 0.080 0.013 0.214 0.039 0.147 0.172 0.225
Phi-3:Zero-shot (IUPAC) - 0.131 0.044 0.261 0.056 0.167 0.220 0.453
Phi-3:Fine-tuned (IUPAC) - 0.316 0.250 0.461 0.321 0.403 0.511 0.569

GPT-3.5-turbo (SMILES) - 0.102 0.028 0.217 0.051 0.155 0.165 0.336
GPT-3.5-turbo (IUPAC) - 0.125 0.048 0.245 0.059 0.163 0.221 0.451

GPT-4o (SMILES) - 0.093 0.021 0.215 0.039 0.139 0.180 0.434
GPT-4o (IUPAC) - 0.133 0.052 0.257 0.056 0.161 0.239 0.488

Table 4: Molecule captioning results on the test split of ChEBI-20.

Single Target Properties ∆
Random

(MoleculeSTM)
MoleculeSTM

(SMILES)
MoleculeSTM

(Graph)
Random
(Ours)

Llama3:Zero-shot
(SMILES)

Llama3:Zero-shot
(IUPAC)

Llama3:Fine-tuned
(SMILES)

Llama3:Fine-tuned
(IUPAC)

101 more soluble in water 0 35.33 ± 1.31 61.87 ± 2.47 67.86 ± 4.37 49.67 ± 3.33 24.37 ± 7.30 50.15 ± 4.70 50.17 ± 3.86 61.55 ± 3.21
0.5 11.04 ± 2.40 49.02 ± 1.84 54.44 ± 3.99 38.83 ± 2.02 18.79 ± 5.47 41.07 ± 5.03 42.26 ± 5.00 48.77 ± 3.28

102 less soluble in water 0 43.36 ± 3.06 52.71 ± 1.67 64.79 ± 2.76 50.17 ± 2.75 20.15 ± 2.49 46.67 ± 5.77 29.25 ± 4.63 34.81 ± 0.79
0.5 19.75 ± 1.56 47.17 ± 1.37 48.70 ± 2.04 36.83 ± 2.47 12.90 ± 4.00 30.93 ± 7.98 21.73 ± 2.83 25.36 ± 2.23

103 more like a drug 0 38.06 ± 2.57 36.52 ± 2.46 39.97 ± 4.32 49.83 ± 1.61 10.24 ± 6.80 44.39 ± 18.53 25.13 ± 2.35 35.81 ± 2.42
0.1 5.27 ± 0.24 8.11 ± 0.82 14.06 ± 3.18 33.83 ± 1.26 6.56 ± 7.21 29.61 ± 21.78 15.08 ± 2.85 24.09 ± 1.12

104 less like a drug 0 36.96 ± 2.25 58.59 ± 1.10 77.62 ± 2.80 50.50 ± 1.32 13.53 ± 8.98 42.09 ± 5.10 49.77 ± 4.55 60.26 ± 1.01
0.1 6.16 ± 1.87 11.55 ± 0.90 54.22 ± 3.01 33.50 ± 3.50 10.52 ± 9.37 33.28 ± 7.24 38.36 ± 2.05 45.59 ± 2.20

105 higher permeability 0 25.23 ± 2.13 61.87 ± 1.76 59.84 ± 0.78 44.17 ± 0.76 7.45 ± 5.50 15.87 ± 16.72 43.50 ± 1.80 51.09 ± 1.90
10 17.41 ± 1.43 47.45 ± 1.88 50.42 ± 2.73 32.17 ± 1.89 5.93 ± 7.10 9.21 ± 7.99 34.00 ± 2.29 38.66 ± 3.90

106 lower permeability 0 16.79 ± 2.54 31.76 ± 0.97 40.35 ± 1.87 52.67 ± 4.51 8.94 ± 4.06 37.78 ± 10.72 29.77 ± 1.61 49.80 ± 6.09
10 11.02 ± 0.71 29.37 ± 0.96 31.71 ± 1.47 41.83 ± 2.02 5.24 ± 2.48 21.48 ± 11.18 21.41 ± 3.22 40.52 ± 5.10

107 more hydrogen bond acceptors 0 12.64 ± 1.64 34.52 ± 5.26 37.35 ± 7.09 45.17 ± 2.84 19.02 ± 2.67 76.19 ± 21.82 32.61 ± 4.18 40.35 ± 6.90
1 6.09 ± 0.01 16.13 ± 1.62 16.13 ± 7.63 32.67 ± 1.89 12.42 ± 7.38 35.71 ± 18.90 22.41 ± 3.08 26.40 ± 5.29

108 more hydrogen bond donors 0 2.97 ± 0.61 3.00 ± 0.86 7.69 ± 0.56 35.00 ± 4.36 13.92 ± 4.66 55.93 ± 16.04 25.80 ± 1.28 31.41 ± 1.47
1 0.00 ± 0.00 1.00 ± 0.86 3.23 ± 5.27 10.67 ± 2.31 10.55 ± 2.05 24.37 ± 10.72 10.29 ± 2.03 10.15 ± 5.31

Table 5: Results on single-objective molecule editing are evaluated based on the hit ratio of the property change.

Two Target Properties ∆
Random

(MoleculeSTM)
MoleculeSTM

(SMILES)
MoleculeSTM

(Graph)
Random
(Ours)

Llama3:Zero-shot
(SMILES)

Llama3:Zero-shot
(IUPAC)

Llama3:Fine-tuned
(SMILES)

Llama3:Fine-tuned
(IUPAC)

201 more soluble in water and 0 – 0 9.88 ± 1.03 27.87 ± 3.86 27.43 ± 3.41 31.50 ± 0.50 8.76 ± 4.83 60.83 ± 1.44 24.59 ± 5.07 33.14 ± 4.37
more hydrogen bond acceptors 0.5 – 1 0.23 ± 0.33 8.80 ± 0.04 11.10 ± 1.80 17.50 ± 3.61 6.23 ± 3.57 45.83 ± 12.33 15.56 ± 3.05 18.82 ± 4.52
202 less soluble in water and 0 – 0 2.99 ± 0.38 8.55 ± 2.75 8.21 ± 0.81 17.83 ± 3.01 5.18 ± 5.86 23.28 ± 9.57 8.19 ± 2.01 12.06 ± 2.29
more hydrogen bond acceptors 0.5 – 1 0.22 ± 0.31 2.93 ± 0.30 3.10 ± 0.32 8.83 ± 1.15 1.28 ± 2.22 7.41 ± 6.42 3.01 ± 2.64 4.48 ± 1.38
203 more soluble in water and 0 – 0 2.28 ± 1.15 33.51 ± 4.08 49.23 ± 1.71 19.33 ± 3.75 8.41 ± 4.60 43.72 ± 7.30 19.97 ± 1.82 24.16 ± 2.20
more hydrogen bond donors 0.5 – 1 0.00 ± 0.00 9.98 ± 1.03 23.94 ± 1.09 5.83 ± 0.29 4.89 ± 4.29 21.47 ± 12.48 7.55 ± 0.50 9.86 ± 3.41
204 less soluble in water and 0 – 0 0.69 ± 0.58 17.03 ± 2.75 14.42 ± 3.43 13.17 ± 0.29 4.66 ± 4.19 5.16 ± 4.51 5.37 ± 0.75 8.57 ± 0.91
more hydrogen bond donors 0.5 – 1 0.00 ± 0.00 2.59 ± 1.14 3.84 ± 0.71 2.00 ± 1.00 1.88 ± 1.63 0.00 ± 0.00 1.34 ± 0.76 1.66 ± 1.05
205 more soluble in water and 0 – 0 5.06 ± 1.21 35.69 ± 3.19 39.74 ± 2.26 16.50 ± 0.87 3.90 ± 3.62 12.50 ± 21.65 23.58 ± 3.26 19.62 ± 4.00
higher permeability 0.5 – 1 1.16 ± 0.68 19.15 ± 0.73 22.66 ± 1.90 7.50 ± 2.29 0.00 ± 0.00 0.00 ± 0.00 15.05 ± 2.13 9.06 ± 2.32
206 more soluble in water and 0 – 0 12.17 ± 1.05 44.35 ± 0.68 30.87 ± 0.62 35.17 ± 5.20 9.68 ± 3.17 65.48 ± 6.63 28.11 ± 1.85 37.13 ± 1.8
lower permeability 0.5 – 10 6.23 ± 2.31 28.67 ± 2.22 20.06 ± 1.26 23.50 ± 3.77 6.12 ± 1.91 60.71 ± 5.19 18.18 ± 3.47 26.15 ± 2.82

Table 6: Results on double-objective molecule editing are evaluated based on the hit ratio of the property change.

Model Fine-tuning dataset Data type ARC Challenge HellaSwag MMLU
MolT5-base (Edwards et al., 2022) - - 0.1988 0.2744 0.2465
MolGPT (Bagal et al., 2021) - - 0.1980 0.2541 0.2704
Llama3 - - 0.5299 0.5776 0.6385
Llama3 50k PubChem molecules SMILES 0.4966 0.5640 0.6110
Llama3 50k PubChem molecules IUPAC 0.4983 0.5645 0.6185
Llama3 500k PubChem molecules SMILES 0.3259 0.4583 0.3448
Llama3 500k PubChem molecules IUPAC 0.3942 0.5050 0.4946

Table 7: Various benchmark results with few-shot learning performance of different models
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