
Once-for-All Federated Learning: Learning From and Deploying
to Heterogeneous Clients

Kamala Varma

Amazon

Cambridge, MA, USA

kvarma@amazon.com

Enmao Diao

Amazon

Cambridge, MA, USA

emdiao@amazon.com

Tanya G. Roosta

Amazon

Sunnyvale, CA, USA

troosta@amazon.com

Jie Ding

Amazon

Minneapolis, MN, USA

jiedi@amazon.com

Tao Zhang

Amazon

Cambridge, MA, USA

taozhng@amazon.com

ABSTRACT
Federated learning (FL) enables multiple client devices to train a

single machine learning model collaboratively. As FL often involves

various smart devices, it is important to adapt the FL pipeline to

accommodate device resource constraints. This work addresses

the problem of training and storing memory-intensive deep neural

network architectures on resource-constrained devices. Existing

solutions often involve computationally expensive methods. We

propose Once-for-All Federated Learning (OFA-FL) to overcome

this limitation by learning a model that concurrently optimizes

sub-networks of various sizes. Clients can therefore receive the

sub-network best suited for their device resources without extra

computation. Our experiments show that each component of OFA-

FL contributes to well-performing FL-produced sub-networks while

maintaining a global network design that supports the efficient

deployment of device resource-specific sub-networks.

CCS CONCEPTS
• Computing methodologies→ Ensemble methods; Neural net-
works; • Computer systems organization→ Client-server ar-
chitectures;

KEYWORDS
federated learning, Internet of Things, heterogeneity

ACM Reference Format:
Kamala Varma, Enmao Diao, Tanya G. Roosta, Jie Ding, and Tao Zhang.

2023. Once-for-All Federated Learning: Learning From and Deploying to

Heterogeneous Clients. In KDD FL4Data-Mining ’23, August 7, 2023, Long
Beach, CA, USA.. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Federated learning (FL) is a distributed learning paradigm that

enhances privacy by not requiring training data to leave client de-

vices [9, 13, 19]. In FL, a central server keeps a global model whose

parameters are updated using an aggregate of locally-trained client

model parameters [18]. Federated Averaging (FedAvg) [19] is a sam-

ple size-weighted averaging algorithm that is commonly used in

practice for aggregating local parameters and it will be used in our

approach. After each global model update, the server sends the new

parameters to the clients [19]. However, many client devices can-

not accommodate them due to limited storage and computational

resources. In addition, the global model is sometimes too big to be

deployed on memory-constrained devices that wish to receive the

final learned model [1].

To address this problem, we introduce Once-for-All Federated

Learning (OFA-FL) (Figure 1), which adapts the concept of Once-for-

All (OFA) networks from the centralized setup in which they were

initially introduced [3] into an FL setting. OFA networks concur-

rently optimize sub-networks contained within the global architec-

ture. OFA networks use a progressive shrinking algorithm to jointly

optimize sub-networks during training, which involves an efficient,

generalized pruning method for realizing sub-architectures [8].

We translate this training approach to an FL system by employ-

ing a progressive Lottery Ticket Pruning (LTP) strategy and by

formulating a local training process that jointly optimizes sub-

networks [7, 16]. Our contributions include the following: 1) We

present a new method of globally applying LTP to an FL system to

produce a series of parameter masks, which can be used to instan-

taneously extract sub-networks for clients with different capacities.

2) We adapt the loss function for centralized OFA networks to the

local training process of FL to jointly optimize sub-networks within

a global network. 3) We provide numerical studies to show the

promising performance of the proposed approach.

Related work. The prior work most relevant to our approach is

the concept of the Once-for-All (OFA) network, which solves the

problem of achieving efficient inference across devices with diverse

resource constraints [3]. Through decoupling the training process

and the process of specializing the full network into sub-networks,

OFA networks avoid the costly approach of separately re-training

specialized networks after the architectures are established. We

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Varma, et al.

Server updates the global network

Clients update multiple sub-networks based on computation resources

Figure 1: Illustration of Once-for-All Federated Learning.

utilize two key components of the OFA progressive shrinking al-

gorithm: 1) the joint optimization approach that allows clients to

train sub-networks of different sizes locally, 2) a generalized pro-

gressive pruning strategy based on LTP [7] that progressively looks

for sparse sub-networks to train more effectively. A variety of FL

methods have been proposed that in some way involve compressed

sub-architectures being utilized by clients [2, 4, 6, 10–12, 16, 17, 20].

Their main shortcomings that OFA-FL is designed to overcome

include imposing extra model-specialization costs on the clients,

either skipping or using expensive methods for specialization, not

catering to client-specific constraints, not concurrently optimiz-

ing all sub-networks, and pruning in a one-shot (as opposed to

progressive) or an inflexible manner.

2 METHOD
In this section, we walk through the full OFA-FL training pipeline,

whose pseudocode is provided in Algorithm 1, which involves

helper functions that are detailed in Algorithms 2, 3, and 4.

Setup and Initialization. We assume the following two hyperpa-

rameters are predetermined. First, a static list of compression ratios,

R = [1.0, 𝑟𝑠−2, 𝑟𝑠−3, . . . , 𝑟0], where each 𝑟 𝑗 is one of 𝑠 ratios of total
global parameters associated with a sub-network that the FL system

will support. Second, a list, C = [𝑐0, 𝑐1, . . . 𝑐𝑖 , . . . , 𝑐𝑛], where each
𝑐𝑖 corresponds to the maximum ratio, chosen from R, of global
model parameters that client 𝑖 (of 𝑛 total clients) can accommodate

locally. The following values are initialized at the server (line 1

of Algorithm 1).M𝑔 represents the global OFA model that the FL

system will learn, where \𝑔 denotes the global parameters of the

model, whose initial values are stored in \
initial

.M and𝑚 are both

dictionaries of key-value pairs where each key is a compression

ratio that has been pruned for. The value for𝑚 is the 0-1 mask,𝑚𝑟 ,

associated with the ratio, 𝑟 , and the value forM is the associated

masked model, 𝑓 (𝑥 ;\𝑟). Each mask is a list of tensors, with each

Algorithm 1: Full Pipeline
This is executed by the server in an FL system with 𝑛

clients. The global OFA model will support 𝑠 sub-networks

of different sizes. The server is provided with a list, R =

[1.0, 𝑟𝑠−2, 𝑟𝑠−3, . . . , 𝑟0], where each 𝑟 𝑗 corresponds to a ra-

tio of total global parameters that the FL system will prune

sub-networks for, and a list, C = [𝑐0, 𝑐1, . . . , 𝑐𝑛], where each
𝑐𝑖 corresponds to the maximum ratio (from R) of global
model parameters that client 𝑖 can accommodate.

1 \𝑔 ← random initialization, \
initial

← \𝑔, M𝑔 ← 𝑓 (𝑥 ;\𝑔),
M ← {}, 𝑚 ← {}

2 for each 𝑟 in R do
3 𝑚𝑟 ← copy of \𝑔 with all values set to 1

4 𝑚[𝑟] =𝑚𝑟

5 R
pruned

← [1.0]
6 𝑛

pruned
← 0

7 for each global epoch 𝑖 = 0, 1, . . . , 𝜖 − 1 do
8 if 𝑛pruned < 𝑠 then
9 if ratio Rpruned [𝑛pruned] model has converged then
10 increment 𝑛

pruned

11 append R[𝑛
pruned

] to R
pruned

12 𝑟
relative

← 1 − Rpruned [𝑛pruned]−Rpruned [𝑛pruned−1]
Rpruned [𝑛pruned−1]

13 𝑚[R[𝑛
pruned

]] ←
𝑃𝑟𝑢𝑛𝑒 (\

initial
,𝑚[R[𝑛

pruned
− 1]] ∗ \𝑔, 𝑟relative)

14 \𝑔 ← 𝑅𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (\
initial

, \𝑔,𝑚[R[𝑛pruned]])

15 M ← 𝐴𝑝𝑝𝑙𝑦𝑀𝑎𝑠𝑘𝑠 (\𝑔,Rpruned,𝑚)
16 M

local
← []

17 for each client index 𝑖 = 0, . . . , 𝑛 do
18 if C[𝑖] in Rpruned then
19 append 𝐼𝑛𝑖𝑡𝐿𝑜𝑐𝑎𝑙 (C[𝑖],𝑚,𝑀 [C[𝑖]],R

pruned
) to

M
local

20 Θ← []
21 for each local model index 𝑖 = 0, . . . , 𝑙𝑒𝑛𝑔𝑡ℎ(Mlocal) do
22 append 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖,M

local
[𝑖] [0],M

local
[𝑖] [1])

to Θ

23 \𝑔 ← Aggregate(Θ)

24 M𝑔 ← 𝑓 (𝑥 ;\𝑔)

tensor corresponding to a layer of parameters from \𝑔 . For an in-

dividual layer, 𝑘 , parameters are specified by \𝑘 , mask parameters

are specified by𝑚𝑘 , and each parameter within \𝑘 can be indexed

by 𝑙 (i.e. \𝑘 [𝑙]).

Progressive Lottery Ticket Pruning. To start each of 𝜖 total global

epochs, pruning might occur. The progressive shrinking algorithm

used in centralized OFA networks ensures that smaller sub-network

parameters will not interfere with larger sub-network parameters

and gives the compressed networks a head start on training. We

incorporate these components of progressive shrinking into our

OFA-FL method through progressive LTP. In the ‘Prune’ function

(invoked in line 13 of Algorithm 1 and implemented in Algorithm 2),

Once-for-All Federated Learning: Learning From and Deploying to Heterogeneous Clients KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

(a) Accuracies from the global epoch with maximized average accu-
racy across all ratios.

(b) Accuracies achieved after 75 global epochs of training.

Figure 2: The accuracy on the MNIST classification task of sub-networks of different compression ratios produced by either
OFA-FL, LTH pruning, or one-shot pruning, either layerwise pruning (pruning executed separately for each network layer) or
non-layerwise pruning (pruning simultaneously executed across the entire network), and an MLP architecture.

Algorithm 2: Lottery Ticket Pruning

LTP executed by the server.

1 def Prune(\initial, \ , 𝑟):
2 𝛼 ← 100 ∗ (1 − 𝑟) percentile value of nonzero

parameters in \

3 𝑚 ← []
4 for each layer \𝑘 in \ do
5 𝑚𝑘 ← 𝑐𝑜𝑝𝑦 (\𝑘)
6 for each parameter index 𝑙 in layer \𝑘 do
7 if \𝑘 [𝑙] ≥ 𝛼 then
8 𝑚𝑘 [𝑙] ← 1

9 else
10 𝑚𝑘 [𝑙] ← 0

11 append𝑚𝑘 to𝑚

12 return𝑚

the server progressively prunes by starting with the full network

and initially pruning it only to the next smallest sub-network size,

i.e., ratio R[1]. For convenience, the server keeps track of ratios

that have been pruned for in a list, R
pruned

. For an arbitrary round

of pruning, round 𝑛
pruned

, the ratio R[𝑛
pruned

− 1] sub-network
is pruned to result in a mask for the R[𝑛

pruned
] network. A rela-

tive ratio, 𝑟
relative

, will be computed between the two networks’

ratios. It is used to compute a threshold, 𝛼 , and parameters with

magnitudes less than 𝛼 will be pruned from the R[𝑛
pruned

− 1]
network to achieve the R[𝑛

pruned
] network. Each round of prun-

ing can occur either after we determine that the current smallest

sub-network being supported has been sufficiently trained or after

some predetermined number of epochs. We consider the network

Algorithm 3: Additional Server Methods

Additional helper methods executed by the server.

1 def InitLocal(𝑟𝑎𝑡𝑖𝑜 ,𝑚,M𝑖 , Rpruned):
2 𝑚𝑖 ← []
3 for 𝑟 in Rpruned do
4 if 𝑟 < 𝑟𝑎𝑡𝑖𝑜 then
5 append𝑚[𝑟] to𝑚𝑖

6 return (M𝑖 ,𝑚𝑖)
7 def Reinitialize(\initial, \𝑔 ,𝑚𝑎𝑠𝑘):
8 for each layer index 𝑘 in \𝑔 do
9 for each parameter index 𝑙 in layer \𝑔 [𝑘] do
10 if 𝑚𝑎𝑠𝑘 [𝑘] [𝑙] is 1 then
11 \𝑔 [𝑘] [𝑙] ← \

initial
[𝑙]

12 return \𝑔

13 def ApplyMasks(\𝑔 , Rpruned,𝑚,M):
14 for each 𝑟 in Rpruned do
15 \𝑟 ←𝑚[𝑟] ∗ \𝑔
16 M[𝑟] ← 𝑓 (𝑥 ;\𝑟)
17 returnM
18 def Aggregate(Θ):
19 \ ←

∑
Θ
|Θ |

20 return \

sufficiently trained if it has converged, meaning either the evalua-

tion loss from the current round has increased from the previous

round or it has only improved by some small predefined threshold.

The parameters of the global network that have not been pruned

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Varma, et al.

Algorithm 4: Local Once-for-All Training
Executed by each participating client. Each client 𝑖 will each

have a local dataset, 𝐷𝑖 , split into batches 𝑑 , and a list of

masks,𝑚𝑖 , corresponding to all sub-networks smaller than

the client’s designated sub-networks. Clients train for 𝜖
local

local epochs and use learning rate [.

1 def LocalUpdate(𝑖 , 𝑓 (𝑥 ;\𝑖),𝑚𝑖):
2 for 𝜖local epochs do
3 for each 𝑑 in 𝐷𝑖 do
4 L𝑑 = [ℓ (𝑑 ;\𝑖)]
5 for each𝑚𝑖, 𝑗 in𝑚𝑖 do
6 append ℓ (𝑑 ;𝑚𝑖, 𝑗 ∗ \𝑖) to L𝑑
7 ℓavg ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (L𝑑)
8 \𝑖 ← \𝑖 − [∇ℓavg

9 return \𝑖

in the current round will be restored to the values that they were

initialized with before the start of the training. This will prompt the

clients to fine-tune this new smallest sub-network by training it

from scratch yet incorporating only the parameters that have been

proven important.

Local Once-for-All Training. We adapt the joint optimization

from centralized OFA networks to the local training step in OFA-FL

(the ‘LocalUpdate’ function invoked in line 22 of Algorithm 1 and

implemented in Algorithm 4). Clients participate in training once

the global OFA network supports their designated sub-network size.

The server provides clients with tuples that contain their designated

sub-network,M𝑖 , and a list,𝑚𝑖 , of all masks corresponding to all

ratios smaller than the client’s designated ratio. The server keeps

all tuples in a list,M
local

. The local OFA training process executes

for 𝜖
local

epochs per global epoch. Client 𝑖 will forward-pass their

local training dataset, 𝐷𝑖 , through their designated sub-network,

𝑓 (𝑥 ;\𝑖). For each mini-batch, 𝑑 , they will compute a loss value

with the output of the forward pass using some loss function, ℓ (·),
and use this loss to initialize a list of losses, L𝑑 . Then, the client
will apply each of the masks in𝑚𝑖 to its designated sub-network.

The same mini-batch will be used with each of these masked sub-

networks to compute new loss values that are appended to L𝑑 .
This is why, in Figure 1, the client that has the least computational

resources and therefore holds the smallest sub-network is only

considering a single loss value. The clients associated with the

larger sub-networks consider loss values associated with their own

sub-network size in addition to the losses of all smaller sub-network

sizes. The gradient of the average of L𝑑 is used to update the

parameter values in \𝑖 . This updated list of parameters is returned

to the server for aggregation.

Aggregation. For aggregation, each parameter contained in the

full global model architecture’s parameter matrix, \𝑔 , is updated to

be the sample size-weighted average of all corresponding values

taken from each local update in the list of local parameters, Θ, that
contains the parameter.

3 EXPERIMENTS
Experiment setup. We evaluate the performance of our algorithm

through ablation studies. Our approach is unique in that it sup-

ports multiple sub-networks simultaneously within a single global

network, which is not addressed in existing FL methods. To demon-

strate the effectiveness of this key component of our method, we

compare the performance of OFA-FL to other state-of-the-art FL

algorithms that only involve learning from compressed models.

In our studies, we simulate an FL system with 10 client devices.

Two clients can accommodate a maximum number of model pa-

rameters corresponding to each of the five ratios of total global

parameters: 1.0, 0.8, 0.6, 0.4, and 0.2. We use either a convolutional

neural network (CNN) with the same architecture as in [4] or a

simple multi-layer perception (MLP) architecture to classify MNIST

handwritten digits [15]. We use a ResNet50 architecture [21] to

classify CIFAR-10 images [14]. We use one local epoch, a 0.0005

learning rate decay, and a 0.9 momentum coefficient.

Figure 3: Accuracies from the final epoch and the epoch with
maximized average accuracy across all ratios resulting from
the use of OFA-FL, LTH pruning, or one-shot pruning with a
CNN model and MNIST data.

Experiment results. ForMNIST classification, we use amini-batch

size of 10 and an initial learning rate of 0.01. Figure 2 includes plots

of the MLP results, and Figure 3 plots the CNN results. They col-

lectively demonstrate the fact that our OFA-FL method generally

results in the highest average sub-network accuracy and the low-

est variance across the accuracies of different sub-networks. This

variance-minimizing effect is important since it shows that the

global network is being optimized across all sub-network sizes.

Instead of only prioritizing the optimization of the largest sub-

network or some subset of the larger sub-networks, which would

likely cause the performance of the smaller sub-networks to be

severely compromised, OFA-FL is prioritizing optimization across

all sub-network sizes simultaneously. This ensures that the smaller

sub-networks can still perform comparably well to the larger sub-

networks, as opposed to having a high variance among the larger

Once-for-All Federated Learning: Learning From and Deploying to Heterogeneous Clients KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

Table 1: Classifying CIFAR-10 images, waiting for 200 epochs to start pruning, and then waiting for the number of epochs in
the pruning frequency column for each subsequent round of pruning. The accuracy reported corresponds to five compression
ratios (1.0, 0.8, 0.6, 0.4, 0.2), including final values and values from the epoch with the maximum average accuracy across ratios.

Pruning

frequency
Method Maximized accuracy per ratio

Variance across the

five max accuracies
Final accuracy per ratio

Variance across the

five final accuracies

1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2

50

OFA-FL 34.67 34.68 34.67 34.66 34.65 .0001 34.67 34.68 34.67 34.66 34.65 .0001

LTP 58.95 58.9 58.79 53.93 45.34 27.89 43.49 43.48 43.45 43.18 41.8 .4227

One-shot 80.78 80.78 80.72 79.32 66.95 29.26 39.53 39.53 39.53 38.19 32.96 6.489

100

OFA-FL 49.83 49.81 49.8 44.09 37.52 23.79 43.70 43.70 43.70 43.70 43.61 .0012

LTP 53.72 53.72 53.63 46.04 38.87 35.44 40.27 40.25 40.26 40.11 38.14 .6973

One-shot 80.78 80.78 80.72 79.32 66.95 29.26 36.4 36.4 36.39 34.66 29.78 6.568

Table 2: Classifying CIFAR-10 images. The accuracy reported corresponds to five compression ratios (1.0, 0.9, 0.8, 0.7, 0.6),
including final values and values from the epoch with the maximum average accuracy across ratios.

Method Maximized accuracy per ratio
Variance across the

five max accuracies
Final accuracy per ratio

Variance across the

five final accuracies

1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6

OFA-FL 76.99 76.99 76.99 76.98 76.96 .0001 76.99 76.99 76.99 76.98 76.96 .0001

LTP 79.72 79.7 79.7 79.65 79.58 .0026 79.17 79.17 79.18 79.19 79.13 .0004

sub-network performance and the smaller sub-network perfor-

mance. Figure 2 additionally compares the result of using layer-wise

pruning against the use of pruning that is executed across the entire

network. Here, it is evident that the non-layer-wise pruning that

we propose for OFA-FL, which resembles the flexibility of the cen-

tralized OFA network progressive shrinking algorithm, is superior

to the more conventional layer-wise pruning implementation.

For CIFAR-10 classification, we use a mini-batch size of 128 and

an initial learning rate of 0.0004. We initially wait 200 epochs to

start the pruning. In Table 1, we compare results where subsequent

pruning rounds occur after either every 50 or 100 epochs. Although

waiting for the full model to converge before the initial pruning is

crucial for ensuring that smaller sub-network parameters will not

interfere with larger sub-network parameters, these results show

that the frequency with which subsequent pruning occurs is not as

important. We also find that the accuracy of the system peaks when

only the full network has been trained, which is demonstrated

in the plot of each sub-network’s accuracy throughout training

with OFA-FL (Figure 4). This is right after it first converges and

before any pruning occurs. Then, with each round of pruning,

the sub-network accuracies drop as a new sub-network joins the

system, then the accuracies increase again until the next round of

pruning, but they increase to lower accuracies for each of these

cycles. This explains why one-shot pruning can achieve the highest

maximum average accuracy. We only consider epochs where all

sub-network sizes are included in the system when finding the

maximum average accuracy, and for one-shot pruning, this includes

Figure 4: Accuracies across 600 epochs of global training for
each sub-network size on the CIFAR-10 classification task
using our OFA-FL method. Initial pruning occurred after 200
epochs and subsequent pruning occurred every 100 epochs.
Note that in this plot, a sub-network’s compression ratio’s
accuracy is considered 0 until that sub-network size has been
pruned for by the server. The different lines are difficult to
distinguish between because they are mostly overlapping.

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Varma, et al.

Figure 5: Accuracies across 400 epochs of global training
for each sub-network size on the CIFAR-10 classification
task using our one-shot pruning. Pruning occurred after 200
epochs. Note that in this plot, a sub-network’s compression
ratio’s accuracy is considered 0 until that sub-network size
has been pruned for by the server.

the epochs following just one round of pruning, whereas with OFA-

FL, all sub-networks are not included in the system until 4 rounds of

pruning have occurred and each one causes the system to converge

at increasingly low accuracies. An example of this pattern for the

one-shot pruning method can be seen in Figure 5. The low final

accuracy across all methods in this set of experiments suggests that

the results are not reliable, so we ran additional experiments that

use a set of compression ratios, 1.0, 0.9, 0.8, 0.7, and 0.6, that do not

shrink the overall network as drastically. These results are reported

in Table 2 and again show that OFA-FL leads to minimized variance

across sub-network accuracies, which demonstrates the efficacy of

its joint optimization approach.

4 CONCLUSION
We presented a new FL approach to learning a global model where

clients have device resource constraints that may not be able to

accommodate the full global architecture. Our method translates

the centralized concepts of OFA networks to an FL setting through

a server-side application of LTP and client-side local OFA training.

We have shown promising results of the proposed method through

numerical studies. A future problem is to study more sophisticated

pruning techniques, e.g., those based on the PQ Index [5].

REFERENCES
[1] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,

H Brendan McMahan, et al. 2019. Towards federated learning at scale: System

design.

[2] Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. 2020. Adaptive Federated

Dropout: Improving Communication Efficiency and Generalization for Federated

Learning. https://doi.org/10.48550/ARXIV.2011.04050

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-

for-All: Train One Network and Specialize it for Efficient Deployment. https:

//doi.org/10.48550/ARXIV.1908.09791

[4] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation and

Communication Efficient Federated Learning for Heterogeneous Clients. In In-
ternational Conference on Learning Representations (ICLR).

[5] Enmao Diao, Ganghua Wang, Jiawei Zhan, Yuhong Yang, Jie Ding, and Vahid

Tarokh. 2023. Pruning Deep Neural Networks from a Sparsity Perspective. In

International Conference on Learning Representations (ICLR).
[6] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. 2020. Personalized

Federated Learning: A Meta-Learning Approach. arXiv:2002.07948 https://arxiv.

org/abs/2002.07948

[7] Jonathan Frankle and Michael Carbin. 2018. The Lottery Ticket Hypothesis:

Finding Sparse, Trainable Neural Networks. https://doi.org/10.48550/ARXIV.

1803.03635

[8] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

[9] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise

Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage.

2018. Federated learning for mobile keyboard prediction.

[10] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Towards Non-

I.I.D. and Invisible Data with FedNAS: Federated Deep Learning via Neural

Architecture Search. https://doi.org/10.48550/ARXIV.2004.08546

[11] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I.

Venieris, and Nicholas D. Lane. 2021. FjORD: Fair and Accurate Federated Learn-

ing under heterogeneous targets with Ordered Dropout. https://doi.org/10.

48550/ARXIV.2102.13451

[12] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K.

Leung, and Leandros Tassiulas. 2019. Model Pruning Enables Efficient Federated

Learning on Edge Devices. https://doi.org/10.48550/ARXIV.1909.12326

[13] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning:

Strategies for improving communication efficiency.

[14] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2009. CIFAR-10 (Canadian

Institute for Advanced Research). http://www.cs.toronto.edu/~kriz/cifar.html

[15] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. , 2278–2324 pages.

[16] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li.

2020. LotteryFL: Personalized and Communication-Efficient Federated Learning

with Lottery Ticket Hypothesis on Non-IID Datasets. https://doi.org/10.48550/

ARXIV.2008.03371

[17] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021.

FedMask: Joint Computation and Communication-Efficient Personalized Fed-

erated Learning via Heterogeneous Masking. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems (Coimbra, Portugal) (Sen-
Sys ’21). Association for Computing Machinery, New York, NY, USA, 42–55.

https://doi.org/10.1145/3485730.3485929

[18] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated

learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[19] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2016. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. arXiv:1602.05629 [cs.LG]

[20] Anish K. Vallapuram, Pengyuan Zhou, Young D. Kwon, Lik Hang Lee, Hengwei

Xu, and Pan Hui. 2022. HideNseek: Federated Lottery Ticket via Server-side

Pruning and Sign Supermask. https://doi.org/10.48550/ARXIV.2206.04385

[21] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. https:

//doi.org/10.48550/ARXIV.1605.07146

https://doi.org/10.48550/ARXIV.2011.04050
https://doi.org/10.48550/ARXIV.1908.09791
https://doi.org/10.48550/ARXIV.1908.09791
https://arxiv.org/abs/2002.07948
https://arxiv.org/abs/2002.07948
https://arxiv.org/abs/2002.07948
https://doi.org/10.48550/ARXIV.1803.03635
https://doi.org/10.48550/ARXIV.1803.03635
https://doi.org/10.48550/ARXIV.2004.08546
https://doi.org/10.48550/ARXIV.2102.13451
https://doi.org/10.48550/ARXIV.2102.13451
https://doi.org/10.48550/ARXIV.1909.12326
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.48550/ARXIV.2008.03371
https://doi.org/10.48550/ARXIV.2008.03371
https://doi.org/10.1145/3485730.3485929
https://arxiv.org/abs/1602.05629
https://doi.org/10.48550/ARXIV.2206.04385
https://doi.org/10.48550/ARXIV.1605.07146
https://doi.org/10.48550/ARXIV.1605.07146

	Abstract
	1 Introduction
	2 Method
	3 Experiments
	4 Conclusion
	References

