
Under review as a conference paper at ICLR 2024

WHAT IMPROVES THE GENERALIZATION OF GRAPH
TRANSFORMER? A THEORETICAL DIVE INTO SELF-
ATTENTION AND POSITIONAL ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers, which incorporate self-attention and positional encoding,
have recently emerged as a powerful architecture for various graph learning tasks.
Despite their impressive performance, the complex non-convex interactions across
layers and the recursive graph structure have made it challenging to establish a
theoretical foundation for learning and generalization. This study introduces the
first theoretical investigation of a shallow Graph Transformer for semi-supervised
node classification, comprising a self-attention layer with relative positional en-
coding and a two-layer perception. Focusing on a graph data model with discrim-
inative nodes that determine node labels and non-discriminative nodes that are
class-irrelevant, we characterize the sample complexity required to achieve a zero
generalization error by training with stochastic gradient descent (SGD). This paper
provides the quantitative characterization of the sample complexity and number of
iterations for convergence dependent on the fraction of discriminative nodes, the
dominant patterns, the fraction of erroneous labels, and the initial model errors.
Furthermore, we demonstrate that self-attention and positional encoding enhance
generalization by making the attention map sparse and promoting the core neighbor-
hood during training, which explains the superior feature representation of Graph
Transformers. Our theoretical results are supported by empirical experiments on
synthetic and real-world benchmarks.

1 INTRODUCTION

Graph Transformer (Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Ying et al., 2021) was developed
for graph machine learning as a response to the impressive performance of Transformers demonstrated
in various domains (Vaswani et al., 2017; Kenton & Toutanova, 2019; Brown et al., 2020; Dosovitskiy
et al., 2020; Chen et al., 2019). It is designed specifically to handle graph data by constructing
positional embeddings that capture important graph information and using nodes as input tokens for
the Transformer model. Empirical results have shown that Graph Transformers (GT) outperform
classical graph neural networks (GNN), such as graph convolutional networks (GCN), in graph-level
learning tasks such as molecular property prediction (Rong et al., 2020; Kreuzer et al., 2021; Wu et al.,
2021), image classification (Gabrielsson et al., 2022; Rampášek et al., 2022), as well as node-level
tasks like document analysis (Zhang & Zhang, 2020; Hu et al., 2020c;b; ZHANG et al., 2022; Chen
et al., 2023), semantic segmentation (Rampášek et al., 2022; Hussain et al., 2022), and social network
analysis (Zhao et al., 2021; Dwivedi & Bresson, 2021; Chen et al., 2022).

Despite the notable empirical advancements, some critical theoretical aspects of Graph Transformers
remain much less explored. These include fundamental inquiries such as:

• Under what conditions can a Graph Transformer achieve adequate generalization?
• What is the advantage of self-attention and positional encoding in graph learning?

Some recent works (Ying et al., 2021; Chen et al., 2023) theoretically study GTs by comparing their
expressive power with other graph neural networks without self-attention. Meanwhile, other studies
(Kreuzer et al., 2021; Rampášek et al., 2022; Gabrielsson et al., 2022) explain the design of PE in
terms of graph topology and spectral theory. However, these analyses only establish the existence of
a desired GT model, rather than its achievability through practical learning methods. Additionally,

1

Under review as a conference paper at ICLR 2024

none of the existing works have theoretically examined the generalization of GTs, which is essential
to explain their superior performance and guide the model and algorithm design.

To the best of our knowledge, this paper presents the first learning and generalization analysis of a
basic shallow GT trained using stochastic gradient descent (SGD). We focus on a semi-supervised
binary node classification problem on structured graph data, where each node feature corresponds to
either a discriminative or a non-discriminative pattern, and each ground truth node label is determined
by the dominant discriminative pattern in the core neighborhood.We explicitly characterize the
required number of training samples, i.e., the sample complexity, and the number of SGD iterations
to achieve a desired generalization error. Our sample complexity bound indicates that graphs with a
larger fraction of discriminative nodes tend to have superior generalization performance. Moreover,
our analysis reveals that better generalization performance can be achieved by using graph sampling
methods that prioritize class-relevant nodes.Our technical contributions are highlighted below:

First, this paper establishes a novel framework for the optimization and generalization analysis
of shallow GTs. We consider a shallow GT model with non-convex interactions across layers,
including learnable self-attention and PE parameters, and Relu, softmax activation functions, while
the state-of-the-art works on GNNs (Maskey et al., 2022; Tang & Liu, 2023; Zhang et al., 2023b)
exclude attention layers due to such difficulties. This paper develops a novel and extendable feature-
learning framework for analyzing the optimization and generalization of GTs.

Secondly, this paper theoretically characterizes the benefits of the self-attention layer of GTs.
Our analysis shows that self-attention evolves in a way that promotes class-relevant nodes during
training. Thus, a GT trained produces a sparse attention map. Compared with GCNs without self-
attention, GTs have a lower sample complexity and faster convergence rate for better generalization.

Third, this paper theoretically demonstrates that positional embedding improves the gener-
alization by promoting the nodes in the core neighborhood. Different from the state-of-the-art
theoretical studies on Transformers that either ignore PE in analyzing generalization (Li et al., 2023a;
Tian et al., 2023; Tang & Liu, 2023) or only characterize the expressive power of PE (Rampášek
et al., 2022; Gabrielsson et al., 2022), this paper analyzes the generalization of a GT with a trainable
relative positional embedding and proves that, with no prior knowledge, positional embedding trained
with SGD can identify and promote the core neighborhood. This, in turn, leads to fewer training
iterations and a smaller sample complexity.

2 RELATED WORKS

Theoretical study on GTs. Previous research has applied tools of topology theory, spectral theory,
and expressive power to explain the success of GTs. For example, Ying et al. (2021); Chen et al.
(2023) illustrates that proper weights of the Transformer layer can represent basic operations of
popular GNN models and capture more multi-hop information. Rampášek et al. (2022) explains the
necessity of PEs in distinguishing links that cannot be learned by 1-Weisfeiler-Leman test (Weisfeiler
& Leman, 1968). Kreuzer et al. (2021); Gabrielsson et al. (2022) depict that the PE can measure the
physical interactions between nodes and reconstruct the raw graph as a bijection.

Theoretical analyses of GNNs. The works in (Xu et al., 2019; Cong et al., 2021; Zhang et al.,
2023a) characterize the expressive power of GNNs by studying the Weisfeiler-Leman test, inter-nodal
distances, and graph biconnectivity. Verma & Zhang (2019); Cong et al. (2021); Zhou & Wang
(2021) analyze the stability of training GCNs. References (Liao et al., 2021; Garg et al., 2020; Oono
& Suzuki, 2020; Zhang et al., 2020b) characterize the generalization gap via concentration bound
for transductive learning or dependent variables. In (Li et al., 2022) and (Zhang et al., 2023b), the
authors explore the generalization of GNNs with node sampling.

Learning neural networks on structured data. Shi et al. (2021); Brutzkus & Globerson (2021);
Allen-Zhu & Li (2022); Zhang et al. (2023b); Chowdhury et al. (2023) study one-hidden-layer
fully-connected networks or convolutional neural networks given data containing discriminative
and background patterns. This framework is extended to self-supervised learning and ensemble
learning (Wen & Li, 2021; 2022; Allen-Zhu & Li, 2023). The learning and generalization of one-layer
single-head Vision Transformers are studied in (Jelassi et al., 2022; Li et al., 2023a; Oymak et al.,
2023; Li et al., 2023b) based on the spatial or pattern-space association between tokens.

3 PROBLEM FORMULATION AND LEARNING ALGORITHM

2

Under review as a conference paper at ICLR 2024

Figure 1: Graph
Transformer in (1)

Let G = (V, E) denote an un-directed graph, where V is the set of nodes with
size |V| = N and E is the set of edges. X ∈ Rd×N denotes the matrix of
the features of N nodes, where the n-th column of X , denoted by xn ∈ Rd,
represents the feature of node n. Assume ∥xn∥ = 1 for all nodes without
loss of generality. We study a binary node classification problem 1. The label
of node n is yn ∈ {+1,−1}. Let L ⊂ V denote the set of labeled nodes.
Given X and labels in L, the objective of semi-supervised learning for node
classification is to predict the unknown labels in V−L. The learning process is
implemented on a basic one-layer Graph Transformer in (1)2, which includes
a single-head self-attention layer and a two-layer perception with a relative
positional embedding.

F (xn) = a⊤Relu(WO

∑
s∈T n

WV xssoftmaxn((WKxs)
⊤WQxn+u⊤

(s,n)b))

(1)
where xn,xs ∈ Rd and T n is the set of nodes for the aggregation computation of node n.
softmaxn(g(s, n)) = exp(g(s, n))/

∑
j∈T n exp(g(j, n)) if we denote g(s, n) = xs

⊤W⊤
KWQxn +

u⊤
(s,n)b. WK ∈ Rma×d, WQ ∈ Rma×d, and WV ∈ Rmb×d are key, query, and value parameters to

compute the self-attention representation by multiplying X . WO ∈ Rm×mb and a ∈ Rm are the
hidden and output weights in the two-layer feedforward network. We define the one-hot distance
vector u(s,n) ∈ RZ , where the non-zero index reflects the truncated distance between nodes s and n.
It is an indicator of the shortest-path distance (SPD) between nodes. Then,

u(s,n) =

{
ei, if the SPD of s and n equals i− 1 and i ≤ Z,

eZ , if the SPD of s and n equals i− 1 and i > Z,
(2)

where ei is the i-th standard basis in RZ . This architecture originates from (Vaswani et al., 2017)
and is widely used in (Kreuzer et al., 2021; Zhao et al., 2021; ZHANG et al., 2022; Rampášek et al.,
2022) for node classification on graphs. The PE u⊤

(s,n)b is motivated by (Ying et al., 2021; Rampášek
et al., 2022; Gabrielsson et al., 2022; Wu et al., 2022; Zhang et al., 2023c), which is one of the most
commonly used PEs in GTs. 3

Denote ψ = (a,WO,WV ,WK ,WQ, b) as the set of parameters to train. The semi-supervised
learning problem solves the following empirical risk minimization problem fN (ψ),

min
ψ

: fN (ψ) =
1

|L|
∑
n∈L

ℓ(xn, yn;ψ), ℓ(xn, yn;ψ) = max{1− yn · F (xn), 0}, (3)

where ℓ(xn, yn;ψ) is the Hinge loss function. Assume (xn, yn) are identically distributed but
dependent samples drawn from some unknown distribution D. The sample dependence results from
the dependence of node labels on neighboring node features. The test/generalization performance of
a learned model ψ is evaluated by the population risk f(ψ), where

f(ψ) = f(a,WO,WV ,WK ,WQ, b) = E(x,y)∼D[max{1− y · F (x), 0}]. (4)

Training Algorithm: The training problem (3) is solved via a mini-batch stochastic gradient descent
(SGD), as summarized in Algorithm 1. At each iteration t, the gradient is computed using a mini-
batch Bt with |Bt| = B and step size η with all parameters in ψ except a. At iteration t, we uniformly
sample a subset Sn,t of nodes from the whole graph for aggregation of each node n.

Following the framework “pre-training & fine-tuning” for node classification using (Zhang et al.,
2020a; Zhang & Zhang, 2020; Hu et al., 2020b; Liu et al., 2021), we set W (0)

V , W (0)
Q , and W

(0)
K

come from an initial model. Every entry of W (0)
O is generated from N (0, ξ2). Every entry of a(0) is

sampled from {+1/
√
m,−1/

√
m} with equal probability. b(0) = 0. a is fixed during the training4.

1Extension to graph classification and multi-classification is briefly discussed in Appendix E.4 and E.5.
2Since the queries and keys are normalized, we remove the

√
ma scaling in the softmax function as in (Li

et al., 2023a; Tian et al., 2023; Tarzanagh et al., 2023; Oymak et al., 2023).
3As the first work on the generalization of GT, we mainly study this PE for simplicity of the presentation.

The analytical framework is extendable to GTs with other PEs. We briefly introduce the formulation and analysis
of absolute PE, such as Laplacian vectors and node degree, in Appendix E.2.

4It is common to fix the output layer weights as the random initialization in the theoretical analysis of neural
networks, including NTK (Allen-Zhu et al., 2019; Arora et al., 2019) and feature learning (Karp et al., 2021;

3

Under review as a conference paper at ICLR 2024

4 THEORETICAL RESULTS

4.1 THEORETICAL INSIGHTS

Before formally introducing our data model in Section 4.2 and the formal theoretical results in Section
4.3, we first summarize our key insights. We consider a data model where node features are noisy
versions of discriminative patterns that directly determine the node labels and non-discriminative
patterns that do not affect the labels. γd is the fraction of discriminative nodes, τ is the noise level
in node features. The node labels are determined by a majority vote of discriminative patterns in a
so-called core neighborhood. A small ϵS corresponds to a clear-cutting vote in sampled nodes in the
core neighborhood. σ and δ are the initial model error. p is the fraction of errors in observed labels.

(P1). A new theoretical framework of a convergence and generalization analysis using SGD for
GT. This paper develops a new framework to analyze GTs based on a more general graph data model
than existing works like (Zhang et al., 2023b). We show that with a proper initialization, the learning
model converges with zero generalization error. The sample complexity bound is linear in γ−2

d ,
(Θ(1)− ϵS)−2. The required number of iterations is proportional to (1−2p)

3
5 and (Θ(1)− δ− τ)−1.

The result indicates that a larger fraction of discriminative nodes and a smaller confusion ratio
improve the sample complexity. A smaller fraction of label errors and smaller pattern/embedding
noises accelerate the convergence.

(P2). Self-attention helps GTs perform better than Graph convolutional networks. We theo-
retically illustrate that the attention weights, i.e., softmax values of each node in the self-attention
module, become increasingly sparse during the training and are concentrated at discriminative nodes.
GTs can then learn more distinguishable representations for different classes, outperforming GCNs.

(P3) Positional embedding promotes the core neighborhood. We prove that starting from zero
initialization, the positional embedding eventually finds the core neighborhood and assigns nodes in
the core neighborhood with higher weights, which improves the generalization.

4.2 DATA MODEL ASSUMPTIONS

Each node feature xn is a noisy version of one of M (2 ≤ M < ma,mb) distinct patterns
{µ1, µ2, · · · ,µM} in Rd with noise level τ , i.e., minj∈[M] ∥xn − µj∥ ≤ τ,∀n ∈ V . µ1 and
µ2 are two discriminative patterns that correspond to the label 1 and −1, respectively All other
patterns µ3,µ4, · · · ,µM are referred to as non-discriminative patterns that do not determine the
labels. Let κ = min1≤i̸=j≤M ∥µi − µj∥ > 0 denote the minimum distance between different
patterns. We assume κ ≥ 4τ . Denote the set of nodes that are noisy versions of µl as Dl, l ∈ [M],
and ∪Ml=1Dl = V . Let γd = |D1 ∪ D2|/|V| = Θ(1) represent the fraction of nodes that contain
discriminative patterns5. We assume the dataset is balanced, i.e., the gap between the numbers of
positive and negative labels is at most O(

√
N).

If node n has the ground truth label ỹn = 1, the nodes in D1 are are called class-relevant nodes for
node n, and nodes in D2 called confusion nodes for node n. Conversely, if ỹn = −1, D2 and D1 are
class-relevant and confusion nodes for node n, respectively. We use notations Dn

∗ and Dn
for the

class-relevant and confusion nodes for node n without specifying D1 and D2. We define distance-z
neighborhood of node n, denoted by Nn

z , as the set of nodes that are away from node n with distance
z. The average winning margin of each node n and the core distance zm are defined as follows.
Definition 1. The winning margin for each node n of distance-z and the average winning margin for
all the nodes of distance-z are defined as

∆n(z) = |Dn
∗ ∩Nn

z | − |Dn
∩Nn

z |, ∆̄(z) =
1

N

∑
n∈V

∆n(z), (5)

for any z ∈ [Z − 1]. The core distance is defined as

zm = arg max
z∈[Z−1]

∆̄(z). (6)

Allen-Zhu & Li, 2022; Li et al., 2023a) type of approaches. The optimization problem of WQ, WK , WV , WO ,
and b with non-linear activations is still highly non-convex and challenging.

5The ground truth label of each node n ∈ V follows a categorical distribution with probability
(ν1, ν2, · · · , νM), where ν1 = ν2 = γd/2 and ν3 + ν4 + · · ·+ νM = 1− γd

4

Under review as a conference paper at ICLR 2024

Assumption 1. ∆n(zm) > 0, for all nodes n.

Figure 2: Example
of the winning mar-
gin. Node n has
a non-discriminative
feature µ3 and label
+1. Then ∆n(1) =
−2, and ∆n(2) = 3.

Figure 2 provides an example of winning margin. Assumption 1 indicates that
the ground-truth label ỹn for every node n ∈ V is consistent with a majority
voting of µ1 and µ2 patterns in the core neighborhood Nzm , i.e., if ỹn = 1
(or ỹn = −1), then there are more nodes that correspond to µ1 (or µ2) in
Nn
zm . We also assume |Nn

zm | not too small to facilitate the sampling. We
consider the general setup that the observed labels {yn}n∈L contain errors
with the error fraction p. We set |Nn

zm | ≥ N/poly(Z) for all n to avoid a
trivial size of the core neighborhood.

Assumption 2 in Appendix B requires the pre-trained model maps the query,
key, and value embeddings to be close to orthogonal vectors with an error of
σ < O(1/M) for queries and keys and δ < 0.5 for values. It is the same as
Assumption 1 in (Li et al., 2023a). Such assumptions on the orthogonality
of embeddings or data are widely employed in state-of-the-art generalization
analysis for Transformers (Oymak et al., 2023; Tian et al., 2023). 6

4.3 MAIN THEORETICAL RESULTS FOR GRAPH TRANSFORMER

Table 1: Some important notations
V The set of all the nodes Dn

∗ , Dn
Sets of class-relevant nodes and confusion nodes for node n

L The set of labeled nodes T n The set of nodes for aggregation for n

Dl The set of nodes of the pattern µl Sn,t
∗ , Sn,t

Sampled class-relevant and confusion nodes out of T n at iteration t

γd The fraction of discriminative nodes ∆̄(z) Average winning margin of all nodes at the distance-z neighborhood

Nn
z Distance-z neighborhood of node n zm The core distance that has the largest winning margin

ϵS confusion ratio, the average fraction of confusion nodes in sampled nodes of distance-zm neighborhood

We define confusion ratio ϵS as the average fraction of confusion nodes in the distance-zm neighbor-
hood over all iterations and all labeled nodes. Some notations are summarized in Table 1.
Definition 2. The confusion ratio ϵS is

ϵS = Et≥0,n∈(∪M
l=3Dl)∩L(|S

n,t
∩Nn

zm |/|(Sn,t∗ ∪ Sn,t#) ∩Nn
zm |), (7)

where Sn,t∗ and Sn,t# denote the sampled class-relevant and confusion nodes in T n for node n in
training iteration t, respectively.

We then introduce our major theoretical results.
Theorem 4.1. (Generalization Guarantee of Graph Transformers) As long as τ ≤ min(σ, δ); and
a model with m at least M2 logN for ϵ ∈ (0, 1/2), and the mini-batch size B and the number of
sampled nodes |Sn,t| for each iteration t larger than Ω(1). Then, after T iterations such that

T = Θ(η−1/2(1− 2p)−1/2(1− δ − τ)−1/2), (8)

as long as the number of known labels satisfies

|L| ≥ max{Ω((1− 2ϵS(1− γd)− (σ + τ))−2(1 + δ2zm) · logN), BT}, (9)

where δzm = maxn∈V |Nn
zm | measures the maximum number of nodes in distance-zm neighborhood,

for some ϵS ∈ (0, 1/2) and p ∈ (0, 1/2), then with a probability of at least 0.99, the returned model
trained by Algorithm 1 achieves zero generalization error as f(ψ) = 0.

Remark 1. (Generalization improvement by good graph properties) The first term in (9) dominates
when p is not very close to7 1/2, i.e., the fraction of erroneous training labels is small. Then the

6We conduct experiments to verify the existence of discriminative nodes and the core neighborhood with
four real datasets in Appendix A.1. We also show Assumption 1 and 2 are not strong by comparing existing
works in Appendix E.1.

7The exact condition is when p < 1/2− δ−4
zm/2.

5

Under review as a conference paper at ICLR 2024

sample complexity in (9) scales with 1/γ2d , (1 − ϵS)
−2 and (Θ(1) − σ − τ)−2. Hence, a larger

fraction of nodes of discriminative patterns (a larger γd), a smaller fraction of confusion patterns in
the core neighborhood (a smaller ϵS), a smaller pattern noise and embedding noise (a smaller τ and
σ) can reduce the sample complexity. The required number of iterations also reduces with a smaller
fraction of label errors p and the pattern and embedding noises τ, σ.

Remark 2. (Impact of graph sampling) A graph sampling method that can sample more class-relevant
nodes in the distance-zm neighborhood can improve the learning by reducing ϵS .

4.4 WHAT DOES SELF-ATTENTION IMPROVE? A COMPARISON WITH GCN

We show that the attention weights become concentrated on class-relevant nodes in Lemma 1. It
increases the distance between output vectors from different classes, which in turn improves the test
accuracy. In contrast, Theorem 4.2 shows that without the self-attention layer, GCN requires more
iterations and training samples.
Lemma 1. (Sparse attention map) The attention weights for each node become increasingly concen-
trated on those correlated with class-relevant nodes during the training, i.e.,∑
i∈Sn,t

∗

softmaxn(x
⊤
i W

(t)
K

⊤
W

(t)
Q xn+u⊤

(i,n)b
(t)) →

{
1− ηC , n: discriminative,
1− ϵS − ηC , n: non-discriminative.

(10)

at a sublinear rate of O(1/t) as t increases for a large C > 0 and all n ∈ V .

Lemma 1 indicates that the outputs of the self-attention layer for all nodes, which are weighted
summations of value vectors, evolve in the direction of the class-relevant value features along the
training. Then it promotes learning class-relevant features while ignoring other features. Lemma 1
is a generalization of Proposition 2 in (Li et al., 2023a), which considers a shallow ViT with one
self-attention layer without positional embedding or graph structure. Here, we extend the analysis to
node classification on graphs with PE.

Theorem 4.2 indicates that without the self-attention layer, the resulting GCN requires more training
iterations and samples to achieve zero generalization, even if the core distance zm is known, and the
learning is performed on the core neighborhood only. Specifically,
Theorem 4.2. (Generalization of GCN) When fixing WK = WQ = 0 and b = 0 in (1), and all Sn,t
(n ∈ L) and T n (n ∈ V − L) are subsets of Nn

zm , the resulting GCN (Kipf & Welling, 2017; Nt &
Maehara, 2019) learning on the core neighborhood Nn

zm can achieve a zero generalization with the
same condition in Theorem 4.1, but the number of iterations and the sample complexity should satisfy

T = Θ(η−1/2(1− 2p)−1/2γ−2
d (1− δ − τ)−1/2), (11)

|L| ≥ max{Ω((γ2d − (σ + τ))−2(1 + δ2zm) logN), BT}, (12)

When m≫ ma, mb, i.e., the number of parameters is almost the same for GCN and GT, Theorem
4.2 shows that GCN requires Θ(γ−2

d) times more training samples and iterations8 to achieve zero
generalization error than those using GT in (9) and (8), respectively. This explains the advantage of
using self-attention layers as in insight (P2).

4.5 HOW DOES POSITIONAL ENCODING GUIDE GRAPH LEARNING PROCESS?

In this section, we study how PE affects learning performance. Our insight is that the learnable
parameter for the PE promotes the core neighborhood for classification and, thus, improves the sample
complexity and required number of iterations for generalization. To see this, first, Lemma 2 shows
that the largest entry in b(T) indeed corresponds to the core distance zm. Therefore, PE “attracts the
attention” of GT to the zm-distance neighborhood. Then, Theorem 4.3 indicates that learning with
the positional embedding has the same generalization performance as an artificial learning process
when the core neighborhood Nn

zm is known, and the learning is performed on Nn
zm only.

8All the sample complexity and iteration bounds in this paper are obtained based on sufficient conditions for
zero generalization. Rigorously speaking, necessary conditions are also required to compare the generalization
of different network architectures. However, necessary conditions are rarely considered in the literature due to
technical challenges. Here we still believe it is a fair comparison of sufficient conditions because we employ the
same tools to analyze different neural network architectures.

6

Under review as a conference paper at ICLR 2024

Lemma 2. Starting from b(0) = 0, if T satisfies (8), the returned model trained by Algorithm 1
satisfies

b(T)
zm − b(T)

z ≥ Ω(γd(∆̄(zm)− ∆̄(z))), (13)

Lemma 2 shows that bzm is the largest one among all 1 ≤ z ≤ Z − 1 because ∆̄(zm) is the largest
by (6). Because the softmax function employs ebz when computing the attention map, nodes at the
zm-distance neighborhood dominate the attention weights.

Theorem 4.3. (The equivalent effect of the positional embedding)9 when b = 0 in (1), and all Sn,t
(n ∈ L) and T n (n ∈ V − L) are subsets of Nn

zm , a zero generalization can be achieved when the
sample complexity and the number of iterations satisfy (9) and (8) in Theorem 4.1.

The learning process described in Theorem 4.3 is artificial because zm is generally unknown. Theorem
4.3 shows that learning with position embedding has an equivalent generalization performance to
learning from the core neighborhood Nn

zm only.

4.6 PROOF SKETCH

The main proof idea of Theorem 4.1 is to unveil a joint learning mechanism of GTs for our graph
data model: (i) identifying discriminative features and the core neighborhood using PE and (ii)
determining the labels of non-discriminative nodes through a majority vote in the core neighborhood
by self-attention. Several lemmas are introduced to support the proof.

Specifically, by supportive Lemmas 8 and 9, we first characterize two groups of neurons that
respectively activate the self-attention layer output of µ1 and µ2 nodes from initialization. Then,
Lemma 4 shows that the neurons of WO in these two groups grow along the two directions of the
discriminative pattern embeddings. Lemma 7 indicates that the updates of WV consist of neuron
weights from these two groups. Meanwhile, Lemma 5 states that WQ and WK evolve to promote
the magnitude of query and key embeddings of discriminative nodes. Lemma 6 depicts the training
trajectory of the learning parameter of PE that emphasizes the core neighborhood. Different from
the proof in (Li et al., 2023a; Tian et al., 2023; Li et al., 2023b; Tarzanagh et al., 2023) that does not
consider PE and graph structure, we make the proof of each lemma tractable by studying gradient
growth per distance-z neighborhood for each z rather than directly characterizing the gradient growth
over the whole graph. Such a technique enables a dynamic tracking of per-parameter gradient updates.
As a novel aspect, we prove Lemma 6 by showing that its most significant gradient component is
proportional to the average winning margin in the core neighborhood.

Proof of Theorem 4.1 We can build the generalization guarantee in Theorem 4.1 from the above.
First, Lemma 5 and 6 collaborate to illustrate that attention weights correlated with class-relevant
nodes become close to 1 when ηt = Θ(1). Second, we compute the network output by Lemmas 4
and 7. By enforcing the output to be either ≥ 1 or ≤ −1 to achieve zero Hinge loss, we derive the
sample complexity bound and the required number of iterations by concentration inequalities.

The proof of Theorem 4.2 and 4.3 follow a similar idea as Theorem 4.1. When the self-attention
layer weights are fixed at 0 in Theorem 4.2, since that γd = Θ(1) and a given core neighborhood
still ensure non-trivial attention weights correlated with class-relevant nodes along the training, the
updates of WO and WV are order-wise the same as Lemmas 4 and 7. Then, we can apply Lemmas 4
and 7 to derive the required number of samples and iterations for zero generalization. Likewise, given
a known core neighborhood in Theorem 4.3, the remaining parameters follow the same order-wise
update as Lemmas 4, 5 and 7. Hence, Theorems 4.2 and 4.3 can be proved.

5 NUMERICAL EXPRIMENTS

5.1 EXPERIMENTS ON SYNTHETIC DATA

Graph data generation: The graph contains 1000 nodes in total. M = 10, µ1 to µM are selected as
orthonormal vectors in Rd, where d is 20. Node features that correspond to pattern µi are sampled
from Gaussian distributions N (µi, c

2
0 · I), where c0 = 0.01, and I ∈ Rd is the identity matrix. γd/2

fraction of nodes are selected as noisy versions of class-discriminative µ1 and µ2, respectively. The
remaining nodes are evenly distributed among other non-discriminative M − 2 patterns. γd = 0.4

9We discuss the application of Theorem 4.3 to analyze the generalization of one-layer GAT in Appendix E.3.

7

Under review as a conference paper at ICLR 2024

unless otherwise specified. Our graph construction method is motivated by and extends from that in
(Zhang et al., 2023b). Every non-discriminative node is labeled with +1 or -1 with equal probability.
If labeled +1, that non-discriminative node is randomly connected with 120 · (1− ϵS) nodes of µ1

and 120 · ϵS of µ2 for some ϵS in [0, 1/2). If labeled -1, it is randomly connected with 120 · (1− ϵS)
nodes of µ2 and 120 · ϵS of µ1. We also add edges among µ1 nodes themselves, and edges among
µ2 nodes themselves to make each node degree at least 120. There is no edge between µ1 nodes and
µ2 nodes. The ground-truth label for µ1 or µ2 nodes is +1 or -1, respectively. p = 0 if not otherwise
specified.

Learner network and algorithm: The learner network is a one-layer GT defined in equation 1. Set
dimensions of embeddings to be ma = mb = 20. The number of neurons m of WO is 400. δ = 0.2,
σ = 0.1, and ξ = 0.01. W

(0)
Q = W

(0)
Q = δ2I/c20, W (0)

V = σ2U/c20, where each entry of W (0)
O

follows N (0, ξ2). U is an ma×ma orthonormal matrix. The step size η = 0.01. Sn,t contains node
n and 60 uniformly sampled nodes from distance-1 and distance-2 neighborhood for each node n at
iteration t.

Sample complexity and convergence rate: We first study the impact of the fraction γd of discrimi-
native nodes on the sample complexity. Let ϵS = 0.05. We implement 20 independent experiments
with the same γd and |L| while randomly generating graph structure, node features, and sampled
labels. An experiment is successful if the Hinge testing loss is smaller than 10−3. A black block
means all the trials fail, while a white block means they all succeed. Figure 3 (a) shows that the
sample complexity is indeed almost linear in γ−2

d , as indicated in 9. We next set γd = 0.4 and vary
ϵS . Figure 3 (b) shows that the sample complexity is linear in (1− ϵS)

−2, which is consistent with
our result in (9). We then change p and evaluate the prediction error when the number of training
iterations change, when γd = 0.4, ϵS = 0, and |L| = 400. Figure 4 shows that a larger p requires
more iterations to achieve the same generalization, and the increase is significant when p increases to
0.5, which is consistent with (8).

(a) (b)
Figure 3: The impact of γd and ϵS on the sample complexity of
GT.

Figure 4: The test Hinge
loss against the number of
epochs for different p.

Figure 5: Concentration of at-
tention weights

Figure 6: Sample complexity
against γd

Figure 7: The required #
of iterations against γd

Attention map and comparison with GCN: We then verify the sparsity of the attention map during
the training. Let |L| = 400, γd = 0.2. In Figure 5, the blue circled line shows the summation of
attention weights on class-relevant nodes averaged over all labeled nodes increases to be close to 1
during training, which justifies (10), since when ϵS = 0, the left side of (10) converges to 1− ηC for
C > 0 for all nodes. Meanwhile, the summation of attention weights on other nodes decreases to
be close to 0, as shown in the red dotted line. We also compare the performance on GT in (1) and a
one-layer GCN with a similar architecture, and WK and WQ being 0, ϵS = 0.2. Figures 6 and 7
show the sample complexity and the required number of iterations of GCN are almost linear in γ−4

d

and γ−2
d , consistent with theoretical results in (12) and (11), respectively. In contrast, the theoretical

sample complexity and the number of iterations of GT are respectively linear in γ−2
d (also see Figure

3) and independent of γd, which are order-wise smaller than GCN.

8

Under review as a conference paper at ICLR 2024

5.2 EXPERIMENTS ON REAL-WORLD DATASET

Dataset and neural network model: We evaluate node classification tasks on three benchmarks,
a seven-classification citation graph PubMed (Kipf & Welling, 2017), a five-classification Actor
co-occurrence graph (Chien et al., 2021), and a four-classification computer vision graph PascalVOC-
SP-1G (Dwivedi et al., 2022), which are a homophilous, heterophilous, and a long-range graph,
respectively. Please refer to Appendix A for detailed information on these datasets and results on
large-scale dataset Ogbn-Arxiv (Hu et al., 2020a). The network contains four layers of four-head
Transformer blocks. We implement the SPD-based PE as defined in (2) with Z = 20 and uniformly
sample 20 nodes across the whole graph for feature aggregation of each node during every iteration.

Figure 8: The values of entries of b and the test accuracy of PE-based sampling. Left to right:
PubMed, Actor, PascalVOC-SP-1G.

Figure 9: Test accuracy of GT with/without PE and GCN when the number of labeled nodes varies.
Left to right: PubMed, Actor, PascalVOC-SP-1G.
Success of PE: The blue circled lines in Figure 8 show the average values of each dimension of the
last-layer learned PE vector b(T) in these three datasets. We additionally train multiple models with
the same setup, except that only distance-z nodes are used for training and label prediction, i.e., Sn,t
(for all labeled nodes n and iteration t) and T n (for all unlabeled nodes n) belong to Nn

z . |Sn,t| is
still 20. The red dashed curves show the test accuracy of these models. One can see that the test
accuracy of these models has a similar trend as that of bz values. This justifies the success of PE and
the existence of a core neighborhood defined in Definition 1. Moreover, SPD-based PE also correctly
reflects the homophily, heterophily, and long-range dependency of these three datasets.

Comparison of GTs with/without PE and GCN. We use a four-layer GCN defined in (Kipf &
Welling, 2017). The model size of GCN is slightly larger than GT by ≤ 10%. Figure 9 shows that GT
with PE has a better performance than that without PE and is better than GCN. This verifies Theorem
4.2 and discussions in Section 4.5.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

This paper presents a novel theoretical analysis of Graph Transformers by explicitly characterizing
the sample complexity and required number of SGD iterations needed to achieve zero generaliza-
tion for node classification tasks. The analysis is based on a new graph data model that includes
class-discriminative features that determine classes and class-irrelevant features, as well as a core
neighborhood that determines the labels based on a majority vote of class-discriminative features.
This paper shows that the sample complexity and training iterations are reduced when the fraction
of class-discriminative nodes increases and/or the sampled nodes have a clear-cutting vote in the
core neighborhood. This paper also proves that attention weights are concentrated on those of class-
relevant nodes, and the positional embedding promotes the core neighborhood. All the theoretical
results are centered on simplified shallow Transformer architectures, while experimental results on
real-world datasets and deep neural network architectures support our theoretical findings. One future
direction is theoretically analyzing more complex network architectures with milder assumptions.
The authors find no ethical or immediate negative societal consequences of this work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022. 2, 4

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=Uuf2q9TfXGA. 2

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. In Advances in neural information processing systems,
pp. 6155–6166, 2019. 3

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332, 2019. 3

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 1

Alon Brutzkus and Amir Globerson. An optimization and generalization analysis for max-pooling
networks. In Uncertainty in Artificial Intelligence, pp. 1650–1660. PMLR, 2021. 2

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022. 1

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=8KYeilT3Ow. 1, 2

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer for
e-commerce recommendation in alibaba. In Proceedings of the 1st International Workshop on
Deep Learning Practice for High-Dimensional Sparse Data, pp. 1–4, 2019. 1

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=n6jl7fLxrP. 9

Mohammed Nowaz Rabbani Chowdhury, Shuai Zhang, Meng Wang, Sijia Liu, and Pin-Yu Chen.
Patch-level routing in mixture-of-experts is provably sample-efficient for convolutional neural
networks. In International Conference on Machine Learning, 2023. 2

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34, 2021. 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020. 1

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Advances
in Neural Information Processing Systems, pp. 5724–5734, 2019. 48

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021. 1

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022. 9, 15

10

https://openreview.net/forum?id=Uuf2q9TfXGA
https://openreview.net/forum?id=8KYeilT3Ow
https://openreview.net/forum?id=n6jl7fLxrP

Under review as a conference paper at ICLR 2024

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. Advances in Neural Information
Processing Systems, 34:27043–27056, 2021. 48

Rickard Brüel Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional
encodings for GNNs, 2022. URL arXivpreprintarXiv:2201.12674. 1, 2, 3, 46

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR,
2020. 2, 48

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020a. 9, 15

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020b. 1, 3

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pp. 2704–2710, 2020c. 1

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022. 1

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022. 2, 45

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. Advances in Neural Information Processing Systems,
34:24883–24897, 2021. 3

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019. 1

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proc. International Conference on Learning (ICLR), 2017. 6, 9

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021. 1, 2, 3, 46, 47

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of
training graph convolutional networks with graph topology sampling. In International Conference
on Machine Learning, pp. 13014–13051. PMLR, 2022. 2

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision
transformers: Learning, generalization, and sample complexity. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=jClGv3Qjhb. 2, 3, 4, 5, 6, 7, 18, 19, 22, 45, 47, 48

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023b. 2, 7, 45

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. In International Conference on Learning Representations, 2021. 2, 48

Yong Liu, Susen Yang, Chenyi Lei, Guoxin Wang, Haihong Tang, Juyong Zhang, Aixin Sun, and
Chunyan Miao. Pre-training graph transformer with multimodal side information for recommenda-
tion. In Proceedings of the 29th ACM International Conference on Multimedia, pp. 2853–2861,
2021. 3

11

arXiv preprint arXiv:2201.12674
https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=jClGv3Qjhb

Under review as a conference paper at ICLR 2024

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
passing neural networks on large random graphs. Advances in neural information processing
systems, 35:4805–4817, 2022. 2

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019. 6

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33, 2020. 2

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In Fortieth International Conference on Machine Learning (ICML),
2023. 2, 3, 5, 45, 48

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1e2agrFvS. 15

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. arXiv preprint
arXiv:2205.12454, 2022. 1, 2, 3, 46

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020. 1

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021. 2

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks. In
Fortieth International Conference on Machine Learning (ICML), 2023. 2

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. arXiv preprint arXiv:2306.13596, 2023. 3, 7, 45, 48

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. arXiv preprint arXiv:2305.16380, 2023.
2, 3, 5, 7, 45, 48

Ilya Tolstikhin, Gilles Blanchard, and Marius Kloft. Localized complexities for transductive learning.
In Conference on Learning Theory, pp. 857–884. PMLR, 2014. 48

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 1, 3

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 46

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1539–1548, 2019. 2, 48

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010. 19, 20

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.
46

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968. 2

12

https://openreview.net/forum?id=S1e2agrFvS

Under review as a conference paper at ICLR 2024

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122. PMLR,
2021. 2

Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive self-supervised
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=d-kvI4YdNu. 2

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022. 3

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021. 1

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations (ICLR), 2019. 2

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021. 1, 2, 3, 46, 47

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023a. URL https://openreview.net/forum?id=r9hNv76KoT3. 2

Haopeng Zhang and Jiawei Zhang. Text graph transformer for document classification. In Conference
on empirical methods in natural language processing (EMNLP), 2020. 1, 3

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020a. 3

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Fast learning of graph neural
networks with guaranteed generalizability: One-hidden-layer case. In International Conference on
Machine Learning, pp. 11268–11277. PMLR, 2020b. 2, 23, 48

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
sparse learning is provably efficient for graph neural networks. In The Eleventh International
Conference on Learning Representations, 2023b. URL https://openreview.net/forum?
id=4UldFtZ_CVF. 2, 4, 8

ZAIXI ZHANG, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. In Advances in Neural Information Processing Systems, 2022. 1, 3

Zizhao Zhang, Xin Wang, Chaoyu Guan, Ziwei Zhang, Haoyang Li, and Wenwu Zhu. Autogt:
Automated graph transformer architecture search. In The Eleventh International Conference on
Learning Representations, 2023c. 3

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint arXiv:2110.13094,
2021. 1, 3

Xianchen Zhou and Hongxia Wang. The generalization error of graph convolutional networks may
enlarge with more layers. Neurocomputing, 424:97–106, 2021. 2

13

https://openreview.net/forum?id=d-kvI4YdNu
https://openreview.net/forum?id=d-kvI4YdNu
https://openreview.net/forum?id=r9hNv76KoT3
https://openreview.net/forum?id=4UldFtZ_CVF
https://openreview.net/forum?id=4UldFtZ_CVF

Under review as a conference paper at ICLR 2024

APPENDIX
The appendix contains five sections. We add some extra experiments in Section A. In Section
B, we introduce some definitions and assumptions in accordance with the main paper for ease
of proof. Section C first lists some key lemmas and then provides the proof of Theorem 4.1,
Theorem 4.2, Theorem 4.3, Lemma 1, and Lemma 2. Section D shows the proof of lemmas of
this paper. We finally add the extension of our analysis and other discussions in Section E.

A ADDITIONAL EXPERIMENTS

A.1 VERIFYING ASSUMPTIONS MADE ON THE GRAPH DATA MODEL

For the assumption on the graph data model, we conduct several experiments to verify this assumption
on the real-world dataset Cora, PubMed, Actor, and PascalVOC-SP-1G.

Existence of discriminative nodes. We first compute the eigenvalue of the covariance matrix of the
feature matrix of data of all classes in Figures 10, 11, 12, and 13. One can observe that the feature
matrix is almost low-rank, which indicates that node features from the same class can be represented
by a few eigenvectors. Therefore, for each class, we select the top three eigenvectors and compute the
3-dimensional representations of each node feature with these three eigenvectors. Then, we select all
nodes with features that are less than π/4 angle away from the mean of 3-dimensional representations
as discriminative nodes. Non-discriminative nodes are the remaining nodes of each class. Tables 2, 3,
4, and 6 show the fraction of discriminative nodes in each class. One can see a large fraction of the
node features in each class is close to its top three eigenvectors.

The core distance (Assumption 1). We further probe the core distance of each dataset by computing
the fraction of nodes of which the label is aligned with the majority vote of the discriminative nodes
in the distance-z neighborhood. To extend the definition from binary classification in our formulation
to multi-classification tasks, we use the average number of confusion nodes per class in the distance-z
neighborhood as |Dn

∩Nn
z |, the number of confusion nodes in the distance-z neighborhood of node

n. Figure 14 shows the value of a normalized ∆̄(z) for z = 1, 2, · · · , 12, where ∆̄(z) is divided by
|Nn

z | to control the gap of different numbers of nodes in different neighborhoods. The empirical result
indicates that (1) homophilous graphs Cora and PubMed have a decreasing value of the normalized
bar∆(z) as z increases. The gap between the largest and the smallest normalized ∆̄(z) is large.
This implies the core distance is 1 for Cora and PubMed and is aligned with the PE-based sampling
performance of PubMed in Figure 8. (2) the heterophilous graph Actor has the largest normalized
∆̄(z) at z = 1, but the difference from other z is very small. This is consistent with the result in Figure
8 where the PE-based sampling has a close performance of less than 0.5% across z. (3) the long-range
graph PascalVOC-SP-1G has the normalized ∆̄(z) when z = 1, but the value when z = 12 is also
remarkable. This corresponds to Figure 8 where the testing performance of PascalVOC-SP-1G is the
highest when z = 1 or z = 12.

We then verify the balanced dataset assumption and show a difference of no more than O(
√
N) could

be achieved in practical datasets. Table 9 shows that for Cora and Actor, this condition holds since
the largest gap between the average number of nodes and the number of any class of nodes is smaller
than O(

√
N) = 10

√
N .

class 1 class 2 class 3 class 4 class 5 class 6 class 7
82.05% 88.02% 82.54% 78.12% 78.17% 83.56% 76.11%

Table 2: The fraction of discriminative nodes in each class of Cora

class 1 class 2 class 3
82.18% 93.34% 80.48%

Table 3: The fraction of discriminative nodes in each class of PubMed

14

Under review as a conference paper at ICLR 2024

Figure 10: Eigenvalues of the covariance matrix of the feature matrix of all classes of Cora

Figure 11: Eigenvalues of the covariance matrix of the feature matrix of all classes of PubMed

A.2 EXPERIMENTS ON SYNTHETIC DATASET

This section compares the required number of iterations for Graph Transformer and GCN by their
orders in γd. The experiment setup follows Section 5.1. We set the number of known labels to be
800. For Graph Transformer, ϵS = 0.05. For GCN, ϵS = 0.2. Figure 15 (a) shows that the required
number of iterations is independent of γd. In contrast, Figure 15 (b), which is exactly Figure 7
indicates the number of iterations is linear in γ−2

d .

A.3 EXPERIMENTS ON REAL-WORLD DATASETS

We first add an introduction to the dataset PascalVOC-SP-1G we evaluate. This belongs to the
Long Range Graph Benchmark, PascalVOC-SP (Dwivedi et al., 2022), which is a computer vision
dataset for node classification containing 11, 355 graphs, 5, 443, 545 nodes, and 30, 777, 444 edges
in total. Since this dataset is large, we pick the 2nd graph from the whole dataset and name this
graph PascalVOC-SP-1G, which contains 479 nodes and 2, 718 edges for node classification. The
dimension of the node feature is 14. The number of classes is 3. Note that the size of the graph is not
small compared with WebKB datasets (Pei et al., 2020), including Cornell, Texas, and Wisconsin,
which contain 183, 183, and 251 nodes in each dataset, respectively.

Meanwhile, to verify the scalability of our conclusion, we conduct the experiments on the large-scale
graph dataset Ogbn-Arxiv (Hu et al., 2020a), which is a citation network with for node classification.
The detailed statistics of these four datasets can be found in Table A.3.

We show the results of the Ogbn-Arxiv in Figure 17 and 18, where the dimension of b(T) is set to
be 5. We still plot b(T)

z with blue-circled lines for these datasets. Red dashed curves denote the
test accuracy of the models learned with nodes all sampled from the distance-z neighborhood for

class 1 class 2 class 3 class 4 class 5
42.09% 53.33% 57.85% 60.93% 64.79%

Table 4: The fraction of discriminative nodes in each class of Actor

15

Under review as a conference paper at ICLR 2024

Figure 12: Eigenvalues of the covariance matrix of the feature matrix of all classes of Actor

Figure 13: Eigenvalues of the covariance matrix of the feature matrix of all classes of PascalVOC-SP-
1G

z ∈ {1, 2, · · · , 5}. The result of Ogbn-Arxiv shows a large b(T)
z when z is around 1. One can also

observe that the testing accuracy using only distance-z nodes has a similar trend as b(T)
z with the

largest accuracy around z = 1. This is consistent with our conclusions on PubMed from Figure 17 in
Section 5.2 since Ogbn-Arxiv and PubMed are both citation networks that are homophilous.

Figure 18 showcases that for Ogbn-Arxiv, GT with PE has a better performance than that without PE
and GCN. The conclusion is consistent with Figure 9

B PRELIMINARIES

We first formally state the Algorithm 1. The notations used in the Appendix is summarized in Table 8.

The loss function of a single data is defined in the following.

Loss(xl, yl) = max{1− yl · F (xl), 0}. (14)

The formal algorithm is as follows. At each iteration t, the gradient is computed using a mini-batch
Bt with |Bt| = B and step size η. We first pre-train WO for T0 steps and then implement a full
training with all parameters in ψ except a for T (≥ T0) steps. At iteration t, we uniformly sample a
subset Sn,t of nodes from the whole graph for aggregation of each node n. We set that W (0)

V , W (0)
Q ,

and W
(0)
K come from an initial model. Every entry of W (0)

O is generated from N (0, ξ2). Every entry

class 1 class 2 class 3
98.62% 100% 100%

Table 5: The fraction of discriminative nodes in each class of PascalVOC-SP-1G

16

Under review as a conference paper at ICLR 2024

Figure 14: Normalized ∆̄(z) for Cora, PubMed, Actor, and PascalVOC-SP-1G.

Cora PubMed 2 Actor PascalVOC-SP-1G
95.68% 85.73% 86.31% 98.54%

Table 6: The fraction of nodes satisfying ∆n(zm) > 0

(a) (b)

Figure 15: The required number of iterations against γ−2
d (a) Graph Transformer (b) GCN.

Table 7: The statistics of datasets.
Dataset #Nodes #Edges #Classes #Features Type
PubMed 19, 717 44, 324 3 500 Citation network
Actor 7, 600 26, 659 5 932 Actors in movies
PascalVOC-SP-1G 479 2, 718 3 14 Computer vision
Ogbn-Arxiv 169, 343 1, 166, 243 40 128 Citation network

17

Under review as a conference paper at ICLR 2024

Figure 17: The values of entries of b and
the test accuracy of PE-based sampling
for Ogbn-Arxiv.

()

Figure 18: Test accuracy of GT
with/without PE and GCN when the
number of label nodes varies for Ogbn-
Arxiv.

()

Figure 18: The required number of iterations against γ−2
d (a) Graph Transformer (b) GCN.

Table 8: Summary of notations
F (xl), Loss(xl, yl) The network output for the node xl and the loss function of a single node.
pj(t), qj(t), rj(t) The features in value, key, and query vectors at the iteration t for pattern j,

respectively. We have pj(0) = pj , qj(0) = qj , and rj(0) = rj .
zj(t), nj(t), oj(t) The error terms in the value, key, and query vectors of the j-th node

compared to their features at iteration t.
Wl(0), Ul(0) The set of lucky neurons for node l.
ϕn(t), νn(t), pn(t), λ Approximate value of some attention weights at iteration t. λ is the

threshold between inner products of tokens from the same pattern and
different patterns.

Sn,t
j Sn,tj is the set of sampled nodes of pattern j at iteration t to compute the

aggregation of node n.
δz The maximum number of nodes in distance-z neighborhood for all nodes,

which is no larger than
√
N .

of a(0) is sampled from {+1/
√
m,−1/

√
m} with equal probability. b(0) = 0. a does not update

during the training.

Assumption 2. Li et al. (2023a) Define P = (p1,p2, · · · ,pM) ∈ Rma×M , Q =
(q1, q2, · · · , qM) ∈ Rmb×M and R = (r1, r2, · · · , rM) ∈ Rmb×M as three feature matrices,
where P = {p1,p2, · · · ,pM}, Q = {q1, q2, · · · , qM} and R = {r1, r2, · · · , rM} are three sets
of orthonormal bases. Define the noise terms zj(t), nj(t) and oj(t) with ∥zj(0)∥ ≤ σ + τ and
∥nj(0)∥, ∥oj(0)∥ ≤ δ+τ for j ∈ [L]. q1 = r1, q2 = r2. Suppose ∥W (0)

V ∥, ∥W (0)
K ∥, ∥W (0)

Q ∥ ≤ 1,
σ, τ < O(1/M) and δ < 1/2. Then, for xl ∈ Snj

1. W
(0)
V xl = pj + zj(0).

2. W
(0)
K xl = qj + nj(0).

3. W
(0)
Q xl = rj + oj(0).

average # of each class 10
√
N largest gap to the average

Cora 386.86 520.38 431.14
Actor 1520 667 871.78

Table 9: The fraction of discriminative nodes in each class of Actor

18

Under review as a conference paper at ICLR 2024

Algorithm 1 Training with Stochastic Gradient Descent (SGD)
1: Input: Training data {(X, yn)}n∈L, the step size η, the number of iterations T , batch size B.
2: Initialization: Each entry of W (0)

O and a(0) from N (0, ξ2) and Uniform({+1/
√
m,−1/

√
m}),

respectively. W (0)
V , W (0)

K and W
(0)
Q are initialized from a fair model. b(0) = 0.

3: Node sampling: At each iteration t, sample Sn,t for each node n to replace T n in (1) when
computing the ℓ(·) function in (3).

4: Training by SGD: For t = 0, 1, · · · , T − 1 and W (t) ∈ {W (t)
O ,W

(t)
V ,W

(t)
K ,W

(t)
Q , b(t)}

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(xn, yn;a
(0),W

(t)
O ,W

(t)
V ,W

(t)
K ,W

(t)
Q , b(t)) (15)

5: Output: W
(T)
O , W (T)

V , W (T)
K , W (T)

Q , b(T).

Assumption 2 is a straightforward combination of Assumption 1 in (Li et al., 2023a) and the equation
minj∈[M] ∥xn − µj∥ ≤ τ,∀n ∈ V by applying the triangle inequality to bound the error terms for
tokens. We then provide a condition which is equivalent to the equation minj∈[M] ∥xn − µj∥ ≤
τ,∀n ∈ V since τ < O(1/M), i.e., if nodes i and j correspond to the same pattern k ∈ [M], i.e.,
i ∈ Dk and j ∈ Dk, we have xi

⊤xj ≥ 1. If nodes i and j correspond to the different feature
k, l ∈ [M], k ̸= l i.e., i ∈ Dk and j ∈ Dl, k ̸= l, we have xi

⊤xj ≤ λ < 1. Here, we scale up all
nodes a bit to make the threshold of linear separability 1 for the simplicity of presentation.
Definition 3. Define

Vn(t) = W
(t)
V

∑
s∈T n

xnsoftmaxn(xs
⊤W

(t)
K

⊤
W

(t)
Q xn + u⊤

(s,n)b
(t)). (16)

for the node n. Define Wn(0), Un(0) as the sets of lucky neurons such that

Wn(0) = {i : W (0)
O(i,·)

Vn(0) > 0, l ∈ Sn,t1 }, (17)

Un(0) = {i : W (0)
O(i,·)

Vn(0) > 0, l ∈ Sn,t2 }. (18)

Definition 4. When n ∈ D1 ∪ D2, we have

1. ϕn(t) = (
∑
z∈Z |Nn

z ∩ Sn,t∗ |e∥q1(t)∥2+(σ+τ)∥q1(t)∥+b(t)z +
∑
z∈Z |(Nn

z ∩ Sn,t) −
Sn,t1 |eb(t)z)−1.

2. νn(t) = (
∑
z∈Z |Nn

z ∩ Sn,t∗ |e∥q1(t)∥2−(σ+τ)∥q1(t)∥+b(t)z +
∑
z∈Z |(Nn

z ∩ Sn,t) −
Sn,t1 |eb(t)z)−1.

3. pn(t) =
∑
z∈Z |Nn

z ∩ Sn,t∗ |e∥q1(t)∥2−(σ+τ)∥q1(T)∥+b(t)z νn(t).

When n /∈ D1 ∪ D2, we have

1. ϕn(t) = (
∑
z∈Z(|Nn

z ∩ Sn,t∗ |+ |Nn
z ∩ Sn,t# |)e∥q1(t)∥2+(σ+τ)∥q1(t)∥+b(t)z +

∑
z∈Z |(Nn

z ∪
Sn,t)/(Sn,t1 ∪ Sn,T2)|eb(t)z)−1.

2. νn(t) = (
∑
z∈Z(|Nn

z ∩ Sn,t∗ |+ |Nn
z ∩ Sn,t# |)e∥q1(t)∥2−(σ+τ)∥q1(t)∥+b(t)z +

∑
z∈Z |(Nn

z ∪
Sn,t)/(Sn,t1 ∪ Sn,t2)|eb(t)z)−1.

3. pn(t) =
∑
z∈Z |Nn

z ∩ Sn,t∗ |e∥q1(t)∥2−(σ+τ)∥q1(t)∥+b(t)z νn(t).

We then cite useful results of the concentration bounds on sub-gaussian variables.
Definition 5. (Vershynin, 2010) We say X is a sub-Gaussian random variable with sub-Gaussian
norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted

∥X∥ψ2 , is defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .

19

Under review as a conference paper at ICLR 2024

Lemma 3. (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality) Let X1, X2, · · · , XN be
independent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2

. Then for every
a = (a1, · · · , aN) ∈ RN and every t ≥ 0, we have

P
{∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
}
≤ e · exp(− ct2

K2∥a∥2
). (19)

where c > 0 is an absolute constant.

C KEY LEMMAS AND PROOF OF THE MAIN THEOREMS

We first present our key lemmas, followed by the proof of the main theorems.

For l ∈ Sn,t1 for the data with yn = 1, define

Vl(t) =
∑
s∈Sn,t

W
(t)
V xssoftmaxn(xs⊤W

(t)
K

⊤
W

(t)
Q xn + u⊤

(s,n)b
(t)). (20)

We later can show that

Vl(t) =
∑
s∈Sn,t

1

softmaxn(xs⊤W
(t)
K

⊤
W

(t)
Q xn + u⊤

(s,n)b
(t))p1 + z(t) +

∑
j ̸=1

Wj(t)pj

− η

t∑
b=1

(
∑

i∈Wl(b)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈Wl(b)

Vi(b)λW
(b)
O(i,·)

⊤
).

(21)

We have the following Lemmas:
Lemma 4. For the lucky neuron i ∈ Wl(0) and b ∈ [T], we have that the major component of
W

(t)
O(i,·)

is in the direction of p1, i.e.,

W
(t)
O(i,·)

p1 ≳
ξ

aB

∑
n∈Bb

ηt2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t) + ξ, (22)

W
(t)
O(i,·)

p ≲
1√
B
W

(t)
O(i,·)

p1, for p ∈ {p2,p3, · · · ,pM}, (23)

∥W (t)
O(i,·)

∥2 ≥ (
ξ

aB

∑
n∈Bb

ηt2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t) + ξ)2, (24)

and for the noise zl(t),
∥W (t)

O(i,·)
zl(t)∥ ≤ (σ + τ)∥W (t)

O(i,·)
∥. (25)

For i ∈ Ul(0), we also have equations as in (22) to (25), including

W
(t)
O(i,·)

p2 ≳
ξ

aB

∑
n∈Bb

ηt2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t) + ξ, (26)

W
(t)
O(i,·)

p ≲
1√
B
W

(t)
O(i,·)

p1, for p ∈ {p1,p3,p4, · · · ,pM}, (27)

∥W (t)
O(i,·)

∥2 ≥ (
ξ

aB

∑
n∈Bb

ηt2
ηt2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t) + ξ)2. (28)

For the noise zl(t),
∥W (t)

O(i,·)
zl(t)∥ ≤ (σ + τ)∥W (t)

O(i,·)
∥. (29)

For unlucky neurons i and j ∈ Wl(0), k ∈ Ul(0), p ∈ P , we have

W
(t)
O(i,·)

p ≤ 1√
B

min{W (t)
O(j,·)

p1,W
(t)
O(k,·)

p2}, (30)

∥W (t)
O(i,·)

zl(t)∥ ≤ (σ + τ)∥W (t)
O(j,·)

∥, (31)

∥W (t)
O(i,·)

∥2 ≤ 1

B
min{∥W (t)

O(j,·)
∥2, ∥W (t)

O(k,·)
∥2}. (32)

20

Under review as a conference paper at ICLR 2024

Lemma 5. There exists K(t), Q(t) > 0, t = 0, 1, · · · , T − 1 such that for r ∈ Sn,t∗ , if u(r,l)z0 = 1,
defining

qi(t) =

√√√√t−1∏
l=0

(1 +K(l))qi, (33)

ri(t) =

√√√√t−1∏
l=0

(1 +Q(l))ri, (34)

where i = 1, 2. Then, we have

softmaxl(xr
⊤W

(t+1)
K W

(t+1)
Q xl + u⊤

(r,l)b
(t+1))

≳
e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥+b(t)z0∑

z∈Z |Nn
z ∩ Sn,T∗ |e(1+K(t))∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

.

(35)
Similarly, for r /∈ Sl,t∗ , we have

softmaxl(xr
⊤W

(t+1)
K

⊤
W

(t+1)
Q xl + u⊤

(r,l)b
(t))

≲
eb

(t)
z0∑

z∈Z |Nn
z ∩ Sn,T∗ |e(1+K(t))∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

.

(36)

Lemma 6. During the training, we fix b(t)0 = b
(0)
0 = Ω(1). For z ≥ 1,

b(t)zm − b(t)z

≳η
1

B

t∑
b=1

∑
n∈Bb

η
(1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m
2

a2
(
ξηt2m

a2
)2∥p1∥2 ·

γd
2

· (
|Sl,t∗ ∩N l

zm | − |Sl,t# ∩N l
zm |

K|Sl,t|
−

|Sl,t∗ ∩N l
z| − |Sl,t# ∩N l

z|
K|Sl,t|

).

(37)

b(t)z ≥ η
1

B

t∑
b=1

∑
n∈Bb

η
(1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m
2

a2
(
ξηt2m

a2
)2∥p1∥2 ·

γd
2

|Sl,t∗ ∩N l
z| − |Sl,t# ∩N l

z|
K|Sl,t|

.

(38)

Lemma 7. For the update of W (t)
V , there exists λ ≤ Θ(1) such that

W
(t)
V xj = p1−η

t∑
b=1

(
∑

i∈Wn(0)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈Wn(0)

λVi(b)W
(b)
O(i,·)

⊤
)+zj(t), j ∈ Sn,t1 , (39)

W
(t)
V xnj = p2 − η

t∑
b=1

(
∑
i∈U(0)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈U(0)

λVi(b)W
(b)
O(i,·)

⊤
) + zj(t), j ∈ Sn,t2 , (40)

W
(t+1)
V xnj = pl − η

t∑
b=1

m∑
i=1

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t), j ∈ Sn,t\(Sn,t1 ∪ Sn,t2), (41)

∥zj(t)∥ ≤ (σ + τ), (42)
with

Wl(t) ≤ νn(t)|Snj |, l ∈ Snj , (43)

Vi(t) ≲
1− 2p

2B

∑
n∈Bb+

−1

a
pn(t), i ∈ Wl(0), (44)

Vi(t) ≳
1− 2p

2B

∑
n∈Bb−

1

a
pn(t), i ∈ Ul(0), (45)

Vi(t) ≥ − 1√
Ba

, if i is an unlucky neuron. (46)

21

Under review as a conference paper at ICLR 2024

Lemma 8. (Li et al., 2023a) If the number of neurons m is larger enough such that

m ≥M2 logN, (47)

the number of lucky neurons at the initialization |Wl(0)|, |Ul(0)| satisfies

|Wl(0)|, |U + l(0)| ≥ Ω(m). (48)

Lemma 9. Under the condition that m ≳M2 logN , we have the following result.
For i ∈ Wl(0) and l ∈ D1, we have

1[W
(t)
O(i,·)

Vl(t)] = 1; (49)

For i ∈ Ul(0) and l ∈ D2, we have

1[W
(t)
O(i,·)

Vl(t)] = 1; (50)

Proof of Theorem 4.1:
Denote the set of neurons with positive ai as K+ and the set of neurons with negative ai as K−. For
yn = 1, recall from (10) and Definition 4, we have

F (xn) =
∑

i∈Wn(0)

1

a
Relu(W (t)

O(i)
Vn(t)) +

∑
i∈K+/Wn(0)

1

a
Relu(W (t)

O(i)
Vn(t))

−
∑
i∈K−

1

a
Relu(W (t)

O(i)
Vn(t)).

(51)

Therefore,∑
i∈Wn(0)

1

a
Relu(W (t)

O(i)
Vn(t))

=
∑

i∈Wn(0)

1

a
Relu(W (t)

O(i)
Vn(t)) +

∑
i∈Wn(t)

1

a
Relu(W (t)

O(i)
Vn(t))

≳
1

a
·W (t)

O(i,·)

(∑
s∈Sn,t

1

pssoftmaxn(xs⊤W
(t)
K

⊤
W

(t)
Q xn) + z(t) +

∑
l ̸=s

Wl(u)pl

− ηt(
∑

j∈Wn(0)

Vj(t)W
(t)
O(j,·)

⊤
+

∑
j /∈Wn(0)

Vj(t)λW
(t)
O(j,·)

⊤
)
)
|Wn(0)|+ 0

≳
m

a

(1

B

∑
n∈Bb

ξηt2m

a2
(
1− 2p

4B

∑
n∈Bb

pn(b)− σ − τ)pn(t) + ηm
1− 2p

2B

t∑
b=1

∑
n∈Bb+

1

a
pn(b)

· (ξ
aB

∑
n∈Bb

ηt2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t))

2
)
,

(52)

where the second step results from the formulation of Vn(t) in (21) and the last step is by (140).
Meanwhile, we have ∑

i∈K+/Wn(0)

1

a
Relu(W (t)

O(i)
Vn(t)) ≥ 0. (53)

To deal with the upper bound of the third term in (51), we have∣∣∣ ∑
i∈K−

1

a
Relu(W (t)

O(i)
Vn(t))

∣∣∣ ≲ ∑
i∈K+

1

a
Relu(W (t)

O(i)
Vn(t)). (54)

22

Under review as a conference paper at ICLR 2024

Note that at the t-th iteration,

K(t)

≳η
1

B

∑
n∈Bb

m

a

(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a

· (1− (σ + τ))(
ξ

aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pn(t))

2
)
ϕn(t)(|Sl,t| − |Sl,t1 |)∥q1(t)∥2

≳
1

e∥q1(t)∥2−(δ+τ)∥q1(t)∥
.

(55)
Since that

q1(T) ≳ (1 + min
l=0,1,··· ,T−1

{K(l)})T

≳ (1 +
1

e∥q1(T)∥2−(δ+τ)∥q1(T)∥)
T .

(56)

To find the order-wise lower bound of q1(T), we need to check the equation

q1(T) ≲ (1 +
1

e∥q1(T)∥2−(δ+τ)∥q1(T)∥)
T . (57)

One can obtain
Θ(

√
log T (1− δ − τ)) = q1(T) ≤ Θ(T). (58)

We require that

m

a

(1

B

∑
n∈Bb

ξηT 2m

a2
(
1− 2p

4B

∑
n∈Bb

pn(b)− σ − τ)pn(T) + ηm
1− 2p

2B

T∑
b=1

∑
n∈Bb+

1

a
pn(b)

· (ξ
aB

∑
n∈Bb

ηT 2(1− 2p)

4B

∑
n∈Bb

m

a
pn(T))

2
)

:=a0η
3T 5 + a1ηT

2,

>1,

(59)

where the first step is by letting a =
√
m and m ≳M2 logN . We replace pn(b) with pn(T) because

when b achieves the level of T , bo1pn(b)o2 is the same order as bo1 for o1, o2 ≥ 0. Thus,

T∑
b=1

bo1pn(b)
o2 ≳ T o1+1pn(Θ(1) · T)o2 ≳ T o1+1pn(T)

o2 . (60)

We also require
B ≳ Θ(1), (61)

Note that pn(t) is dependent on other
∑
z∈Z δz nodes. Hence, we know that each pn(T) is dependent

on other 1+
∑
z∈Z δ

2
z variables of pj(T) for j, n ∈ V . It is easy to find that pn(T) is a 1-sub-gaussian

random variable because its absolute value is upper bounded by 1. By Lemma 7 in (Zhang et al.,
2020b), we can obtain

ED[e
s(
∑

n∈L pn(T)−|L|ED[pn(T)])] ≤ e|L|(1+
∑

z∈Z δ2z)s
2

. (62)

When ηT = Θ(1), we have |bz(T)| = Θ(1) and |bz(T) − bz′(T)| ≤ Θ(1). Therefore, when
n ∈ D1 ∪ D2, we have

pn(T)

=

∑
z∈Z |Nn

z ∩ Sn,T∗ |e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)
z∑

z∈Z |Nn
z ∩ Sn,T∗ |e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

≥1− ηC .

(63)

23

Under review as a conference paper at ICLR 2024

When n /∈ D1 ∪ D2, we have

pn(T)

=
∑
z∈Z

|Nn
z ∩ Sn,T∗ |e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z (
∑
z∈Z

(|Nn
z ∩ Sn,T∗ |+ |Nn

z ∩ Sn,T# |)

· e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)
z +

∑
z∈Z

|(Nn
z ∪ Sn,T)/(Sn,T1 ∪ Sn,T2)|eb

(T)
z)−1

≥
∑
z∈Z

|Nn
z ∩ Sn,T∗ |(T (1− δ − τ))Ceb

(T)
z −b(T)

zm (
∑
z∈Z

(|Nn
z ∩ Sn,T∗ |+ |Nn

z ∩ Sn,T# |)

· (T (1− δ − τ))Ceb
(T)
z −b(T)

zm +
∑
z∈Z

|(Nn
z ∪ Sn,T)/(Sn,T1 ∪ Sn,T2)|eb

(T)
z −b(T)

zm)−1

≥
|Nn

zm ∩ Sn,T# |
(|Nn

zm ∩ Sn,T∗ |+ |Nn
zm ∩ Sn,T# |)

− (T (1− δ − τ))−Ce−bz(T).

(64)

ζ = ED[pn(T)]

≥ (1− γd) · ED

[∑
z∈Z(T (1− δ − τ))C |Sn,T∗ ∩Nn

z |ebz(T)∑
z∈Z(T (1− δ − τ))C |(Sn,T1 ∪ Sn,T2) ∩Nn

z |ebz(T) +Θ(1)

]
+ γd ·

(T (1− δ − τ))C

(T (1− δ − τ))C +Θ(1)

≥ (1− γd)(1− ϵS − (T (1− δ − τ))−Ce−bz(T)) + γd(1− ηC)

≳ 1− ϵS(1− γd)− ηC .

(65)

Hence, define

pn(T) ≥ p′n(T) :=

1, if n ∈ D1 ∪ D2

|Nn
zm

∩Sn,T
|

(|Nn
zm

∩Sn,T
∗ |+|Nn

zm
∩Sn,T

|)
, if n /∈ D1 ∪ D2.

(66)

Therefore,

|Et≥0,n∈V [p
′
n(T)]− 1| ≤ (1− γd)En/∈(D1∪D2)

[|Nn
zm ∩ Sn,T# |

(|Nn
zm ∩ Sn,T∗ |+ |Nn

zm ∩ Sn,T# |)

]
= (1− γd)ϵS .

(67)
We can also derive

En∈L

[
(1− p′n(T)

2)
]
≤ 2ED

[
1− p′n(T)

]
≤ 2(1− γd)ϵS , (68)

where the first inequality is by 1− (p′n(T))
2 ≤ (1− p′n(T))(1 + p′n(T)) ≤ 2(1− p′n(T)). We have∣∣∣ 1

|L|
∑
n∈L

(p′n(T)− (σ + τ))p′n(T)− 1
∣∣∣

≤
∣∣∣ 1

|L|
∑
n∈L

(p′n(T)− (σ + τ))p′n(T)− En∈L[(p
′
n(T)− (σ + τ))p′n(T)]

∣∣∣
+ En∈L[|1− p′n(T)

2|] + En∈L[(σ + τ)p′n(T)]

≲

√
(1 + δ2zm) · logN

|L|
+ 2(1− γd)ϵS + (σ + τ),

(69)

∣∣∣ 1

|L|
∑
n∈L

pn(T)
2 − 1

∣∣∣ ≲
√

(1 + δ2zm) · logN
|L|

+ 2(1− γd)ϵS , (70)

∣∣∣ 1

|L|
∑
n∈L

pn(T)− 1
∣∣∣ ≲

√
(1 + δ2zm) · logN

|L|
+ (1− γd)ϵS . (71)

24

Under review as a conference paper at ICLR 2024

We can then have

T =
η−

1
2 (1− δ − τ)−

1
2

√
a1

=
η−

1
2 (1− δ − τ)−

1
2

(1− 2p)
1
2

. (72)

As long as

|L| ≥ max{Ω(
(1 + δ2zm) · logN

(1− 2(1− γd)ϵS − (σ + τ))2
), BT}. (73)

we can obtain
F (xn) > 1. (74)

Similarly, we can derive that for yn = −1,

F (xn) < −1. (75)

Hence, for all n ∈ V ,
Loss(xn, yn) = 0. (76)

We also have
E(xn,yn)∼D[Loss(xn, yn)] = 0, (77)

with the conditions of sample complexity and the number of iterations.

Proof of Lemma 1:
This Lemma is proved by (63) and (64).

Proof of Theorem 4.2:
The main proof idea is similar to the proof of Theorem 4.1. A major difference is that the aggregation
matrix does not update, i.e., pn(t) stays at t = 0. Since that a given core neighborhood and a
γd = Θ(1) fraction of discriminative nodes still ensures non-trivial attention weights correlated with
class-relevant nodes along the training, the updates of WO and WV are order-wise the same as
Lemmas 4 and 7.
Since that

pn(0) =


∑

z∈Z |Sn,t
∗ ∩Nn

z |∑
z∈Z |Sn,t

∗ ∩Nn
z |+

∑
z∈Z(|Nn

z |−|Sn,t
∗ ∩Nn

z |)e−1
, if n ∈ Sn,t1 ∪ Sn,t2∑

z∈Z |Sn,t
∗ ∩Nn

z |∑
z∈Z(|Sn,t|−|Sn,t∩Nn

z |)+
∑

z∈Z |Nn
z ∩Sn,t

l |e , if n /∈ (Sn,t1 ∪ Sn,t2)

= Θ(1),

(78)

there exists cγ > 0, such that

E[pn(0)] = γd ·Θ(γd) + (1− γd)Θ(
γd
2
) = cγγd, (79)

E[|pn(0)± cγγd|2] ≤ γd ·Θ(γ2d) + (1− γd) ·Θ(|γd ±
1

2
|2γ2d) ≤ Θ(γ2d). (80)

Therefore, ∣∣∣ 1

|L|

N∑
n=1

pn(T)(pn(T)− (σ + τ))− c2γγ
2
d

∣∣∣
≤
∣∣∣ 1

|L|

N∑
n=1

pn(0)(pn(0)− (σ + τ))− E
[
pn(0)(pn(0)− (σ + τ))

]∣∣∣
+
∣∣∣E[|pn(0)2 − (σ + τ)pn(0)− c2γγ

2
d |
]∣∣∣

≲

√
logN

|L|
+ (σ + τ) +

√
E
[
|pn(0) + cγγd|2

]
· E

[
|pn(0)− cγγd|2

]
≲

√
logN

|L|
+ (σ + τ) + Θ(γ2d),

(81)

25

Under review as a conference paper at ICLR 2024

where the first step is because pn(T) does not update since W
(t)
K and W

(t)
Q are fixed at initialization

W
(0)
K and W

(0)
Q , and the second step is by Cauchy-Schwarz inequality. Since that√

logN

N
+ (σ + τ) ≤ Θ(γ2d), (82)

we have

|L| ≥ Ω(
(1 + δ2zm) logN

(γ2d − (σ + τ))2
), (83)

and

T =
η−

1
2

(1− 2p)
1
2 (1− δ − τ)

1
2 γ2d

. (84)

Proof of Lemma 2:
When t = T , we have ηT ≥ Θ(1). Since that∣∣∣ T∑

b=1

∑
n∈Bb

|Sn,T∗ ∩Nn
z |

|Sn,T |
−

T∑
b=1

∑
n∈Bb

|Dn
∗ ∩Nn

z |
N

∣∣∣ ≤ ϵ0, (85)

with high probability for some 1 > ϵ0 > 0, we can derive (13).

Proof of Theorem 4.3:
When b = 0 is fixed during the training, but Sn,t and T n are subsets of Nn

zm , the bound for pn(T) is
still the same as in (63) and (64). Given a known core neighborhood in Theorem 4.3, the remaining
parameters follow the same order-wise update as Lemmas 4, 5 and 7. The remaining proof steps just
follow the remaining contents in the proof of Theorem 4.1.

D USEFUL LEMMAS

We prove Lemma 4, 5, 7, and 6 jointly by induction. Lemma 4 first studies the gradient update
of lucky neurons in Wl(t) in directions of p1, p2, and other p. We divide the updates into several
terms and solve each of them. By applying a known result of PDE, we bound the component in the
direction of p1, which is the most important one. The updates of other neurons follow the above
procedure. Lemma 5 computes the gradient update of WQ and WK in different directions of xl. By
controlling the gradient update to be positive in the directions of discriminative nodes, we get a lower
bound of B. Meanwhile, we obtain the update of key and query embeddings. Lemma 7 is derived by
considering different components of WO(i,·) in the gradient. In proving Lemma 6, we characterize
the update of different distance z in terms of components from different neighborhoods. Combining
concentration bounds, we remove the influence on unimportant terms and only retain one part, which
represents the update of the average winning margin of the majority vote, i.e., the update of ∆̄(z).
For Lemma 9, We characterize the updates of the lucky neurons to the desired directions to show
lucky neurons can activate the self-attention output of discriminative nodes along the training.
Proof of Lemma 4:
At the t-th iteration, if s ∈ Sn,t1 , we can obtain

Vn(t) =
∑
s∈Sl,t

W
(t)
V xssoftmaxn(xs⊤W

(t)
K

⊤
W

(t)
Q xn + u⊤

(s,n)b
(t))

=
∑
s∈S1

softmaxn(xs⊤W
(t)
K

⊤
W

(t)
Q xn + u⊤

(s,n)b
(t))p1 + z(t) +

∑
j ̸=1

W l
j(t)pj

− η

t∑
b=1

(
∑

i∈Wn(0)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈Wl(b)

Vi(b)λW
(b)
O(i,·)

⊤
),

(86)

l ∈ [M], where the last step comes from Lemma 7. Then we can derive that for k ∈ Sn,tj ,

Wn
k (t) ≤

∑
z∈Z |Sn,tj ∩Nn

z |eδ∥q1(t)∥+b(t)z∑
z∈Z |Sn,tj ∩Nn

z |e∥q1(t)∥2−(σ+δ)∥q1(t)∥+b(t)z

pn(t), (87)

26

Under review as a conference paper at ICLR 2024

which is much smaller than Θ(1) when t is large. This is the reason why we ignore the impact of

Wl(t) on η
∑t−1
b=0(

∑
i∈Wl(0)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈Wl(0)

Vi(b)λW
(b)
O(i,·)

⊤
). Hence,

1

B

∑
n∈Bb

∂Loss(xn, yn)
∂WO(i)

⊤ = − 1

B

∑
n∈Bb

yn
∑
l∈Sn,t

ai1[WO(i)
Vl(t) ≥ 0]Vl(t)

⊤
. (88)

Denote that for j ∈ [M],

H4 =
1

B

∑
n∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0](−η)
t∑

b=1

∑
k∈Wl(b)

Vk(b)W
(b)
O(k,·)

pj , (89)

H4 =
1

B

∑
n∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0](−η)
t∑

b=1

∑
k/∈Wl(b)

Vk(b)W
(b)
O(k,·)

pj , (90)

and we can then derive〈
W

(t+1)
O(i)

⊤
,pj

〉
−
〈
W

(t)
O(i)

⊤
,pj

〉
=

1

B

∑
l∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]Vl(t)
⊤
pj

=
1

B

∑
l∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]zl(t)
⊤pj

+
1

B

∑
l∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]
∑
s∈Sl

softmaxl(x⊤
s W

(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))p⊤

l pj

+
1

B

∑
l∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]
∑
k ̸=l

Wl(t)p
⊤
k pj +H4 +H4

:=H1 +H2 +H3 +H4 +H4,

(91)

where
H1 =

1

B

∑
n∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]zl(t)
⊤pj , (92)

H2 =
1

B

∑
n∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]
∑
s∈Sl

softmaxl(x⊤
s W

(t)
K

⊤
W

(t)
Q xl+u⊤

(s,l)b
(t))p⊤

l pj , (93)

H3 =
1

B

∑
n∈Bb

ηynai1[W
(t)
O(i)

Vl(t) ≥ 0]
∑
j ̸=l

Wl(t)p
⊤
j pj . (94)

We then show the statements in different cases.
(1) When j = 1, since that Pr(yn = 1) = Pr(yn = −1) = 1/2, by Hoeffding’s inequality in (19),
one can obtain

Pr
(∣∣∣ 1
B

∑
n∈Bb

yn

∣∣∣ ≥ √
logB

B

)
≤ B−c, (95)

Pr
(∣∣∣zl(t)⊤p1

∣∣∣ ≥ √
((σ + τ))2 logm

)
≤ m−c. (96)

Hence, with a high probability, we have

|H1| ≤
η((σ + τ))

a

√
logm logB

B
. (97)

For i ∈ Wl(0), by the reasoning in (139) later, we can obtain

W
(t)
O(i,·)

∑
s∈Sl,t

W
(t)
V xssoftmaxl(xs⊤W

(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t)) > 0. (98)

27

Under review as a conference paper at ICLR 2024

Denote pn(t) = |Sn,t1 |νn(t)e∥q1(t)∥2−2δ∥q1(t)∥. Hence, for k /∈ Wl(0),

H2 ≳ η · 1

B

∑
n∈Bb

1

a
∥p1∥2 · pn(t)(1− 2p), (99)

H3 = 0, (100)

H4 ≳
1

B

t∑
b=1

∑
n∈Bb

η2

a

1

2B

∑
n∈Bb

m

a
pn(t)(1− 2p)∥p1∥2(1− ϵm − (σ + τ)M

π
)WO(i,·)p1,

(101)

|H4| ≲
1

B

t∑
b=1

∑
n∈Bb

η2

a
(1− ϵm − (σ + τ)

π
)
1

2B

∑
n∈Bb

m

aM
pn(t)∥p1∥2WO(i,·)p2

+
η2tm√
Ba2

WO(k,·)p1.

(102)

Hence, if we combine (97), (99), (100), (101), and (102), we can derive〈
W

(t+1)
O(i)

⊤
,p1

〉
−
〈
W

(t)
O(i)

⊤
,p1

〉
≳
η

a
· 1

B

∑
n∈Bb

(pn(t)(1− 2p)− (σ + τ) + η

t∑
b=1

1

2B

∑
n∈Bb

m

a
pn(t)(1− ϵm − (σ + τ)M

π
)

·WO(i,·)p1(1− 2p)− η

t∑
b=1

1

2B

∑
n∈Bb

m

a
pn(t)(1− ϵm − (σ + τ)M

π
)

·WO(i,·)p2(1 + (σ + τ))−
ηtmWO(k,·)p1√

Ba
)

≳
η

aB

∑
n∈Bb

(pn(t)(1− 2p)− (σ + τ) +
ηt(1− 2p)

2B

∑
n∈Bb

m

a
pn(t) · (1− ϵm − (σ + τ)M

π
)

·WO(i,·)p1).

(103)

Since that W (0)
O(i,·)

∼ N (0, ξ
2I
ma

), from the property of Gaussian distribution, we have

Pr(∥W (0)
O(i,·)

∥ ≲ ξ) ≲ ξ. (104)

Therefore, with high probability for all i ∈ [m], we can derive

∥W (0)
O(i,·)

∥ ≳ ξ. (105)

When η is very small, given pn(t) as the order of a constant, (103) leads to a PDE on the lower
bound of WO(i,·)p1 since the last step of (103) is always positive. Denote y(t) as a lower bound of
WO(i,·)p1, we have

∂y(t)

∂t

=Θ(
1

aB

∑
n∈Bb

(pn(t)(1− 2p)− (σ + τ)) +
ηt(1− 2p)

2B

∑
n∈Bb

m

a
pn(t)y(t)).

(106)

Therefore, we can derive

y(t) =e
1

aB

∑
n∈Bb

ηt2(1−2p)
4B

∑
n∈Bb

m
a pn(t))(

∫ t

−∞

1

aB

∑
n∈Bb

(pn(t)(1− 2p)− (σ + τ))

·e−
1

aB

∑
n∈Bb

ηu2(1−2p)
4B

∑
n∈Bb

m
a pn(t)du+ C0).

(107)

28

Under review as a conference paper at ICLR 2024

Note that ∫ t

−∞
e
− 1

aB

∑
n∈Bb

ηu2(1−2p)
4B

∑
n∈Bb

m
a pn(t)du

≤
∫ ∞

−∞
e
− 1

aB

∑
n∈Bb

ηu2(1−2p)
4B

∑
n∈Bb

m
a pn(t)du

=
√
2π · (1

aB

∑
n∈Bb

η(1− 2p)

4B

∑
n∈Bb

m

a
pn(t))

−1

=Θ(η−1).

(108)

∫ t

−∞
e
− 1

aB

∑
n∈Bb

ηu2(1−2p)
4B

∑
n∈Bb

m
a pn(t)du

≥
∫ 0

−∞
e
− 1

aB

∑
n∈Bb

ηu2(1−2p)
4B

∑
n∈Bb

m
a pn(t))du

=Θ(η−1).

(109)

Hence,

y(0) =
η−1

aB

∑
n∈Bb

(pn(t)(1− 2p)− (σ + τ)) + C0 = Θ(η−1ξ) + C0 = ξ. (110)

C0 = ξ(1−Θ(η−1)). (111)

W
(t+1)
O(i,·)

p1 ≳y(t)

≳e
1

aB

∑
n∈Bb

η(t+1)2(1−2p)
4B

∑
n∈Bb

m
a pn(t)ξ

≳
ξ

aB

∑
n∈Bb

η(t+ 1)2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t) + ξ.

(112)

(2) When pj ∈ P/p+, we have
H2 = 0, (113)

|H3| ≤
1

B

∑
n∈Bb

νn(t)
η

a

√
logm logB

B
∥p∥2, (114)

|H4| ≤
η2

a

t∑
b=1

√
logm logB

B

1

2B

∑
n∈Bb

m

a
pn(b)W

⊤
O(i,·)

pj . (115)

For k /∈ Wl(0),

|H5| ≲
η2tm√
Ba2

W⊤
O(k,·)

p1 +
η2

a

t∑
b=1

√
logm logB

B

1

2B

∑
n∈Bb

m

a
pn(t)W

⊤
O(i,·)

p2, (116)

with high probability. (115) is from (24). Then, combining (97), (113), (114), (115) and (116), we
have ∣∣∣ 〈W

(t+1)
O(i)

⊤
,pj

〉
−

〈
W

(t)
O(i)

⊤
,pj

〉 ∣∣∣
≲
η

a
· 1

B

∑
n∈Bb

(νn(t) + (σ + τ)

+

t∑
b=1

pn(b)ηm

a
W⊤

O(i,·)
pj)

√
logm logB

B
.

(117)

Comparing (103) and (117), we have

W
(t+1)
O(i,·)

pj ≲
1√
B
W

(t+1)
O(i,·)

p1. (118)

29

Under review as a conference paper at ICLR 2024

(3) If i ∈ Ul(0), from the derivation of (112) and (118), we can obtain

W
(t+1)
O(i,·)

p2 ≳
ξ

aB

∑
n∈Bb

η(t+ 1)2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t) + ξ, (119)

W
(t+1)
O(i,·)

pj ≲
1√
B
W

(t+1)
O(i,·)

p2, for p ∈ P/p2. (120)

(4) If i /∈ (Wl(0) ∪ Ul,n(0)),

|H2 +H3| ≤
η

a

√
logm logB

B
∥p∥2, (121)

Following (115) and (116), we have

|H4| ≤
t∑

b=1

η2

a

√
logm logB

B

1

2B

∑
n∈Bb

m

a
pn(b)W

⊤
O(i,·)

p, (122)

|H5| ≲
η2tm√
Ba2

W
(t)
O(k,·)

p1 +

t∑
b=1

η2

a

√
logm logB

B

1

2B

∑
n∈Bb

m

a
pn(b)W

(t)
O(i,·)

p2. (123)

Thus, combining (121), (122), and (123), we can derive∣∣∣ 〈W
(t+1)
O(i,·)

⊤
,p

〉
−
〈
W

(t)
O(i,·)

⊤
,p

〉 ∣∣∣
≲
η

a
· (∥p∥+ (σ + τ) +

t∑
b=1

1

2B

∑
n∈Bb

pn(b)ηm

a
W⊤

O(i,·)
pj)

√
logm logB

B
,

(124)

Comparing (103) and (124), we can obtain

W
(t+1)
O(i,·)

pj ≲
1√
B
W

(t+1)
O(j,·)

p1, (125)

for j ∈ Wl(0).
(5) In this part, we study the bound of W (t)

O(i,·)
and the product with the noise term according to the

analysis above.
By (42), for the lucky neuron i, since that the update of W (t)

O(i,·)
lies in the subspace spanned by P ,

we can obtain

∥W (t+1)
O(i,·)

∥2 =

M∑
l=1

(W
(t+1)
O(i,·)

pl)
2 ≥ (W

(t+1)
O(i,·)

p1)
2

≳(
ξ

aB

∑
n∈Bb

η(t+ 1)2(1− 2p))

4B

∑
n∈Bb

m

a
pn(t))

2,

(126)

∥W (t+1)
O(i,·)

zl(t)∥ ≤
∣∣∣(σ + τ)∥W (t+1)

O(i,·)
∥
∣∣∣. (127)

For the unlucky neuron i, we can similarly get

∥W (t+1)
O(i,·)

∥2 ≤ 1

B
∥W (t+1)

O(j,·)
∥2, (128)

where j is a lucky neuron. The proof of Lemma 4 finishes here.

Proof of Lemma 5:

30

Under review as a conference paper at ICLR 2024

We first study the gradient of W (t+1)
Q in part (a) and the gradient of W (t+1)

K in part (b).
(a) from (14), we can obtain

η
1

B

∑
l∈Bb

∂Loss(Xn, yn)

∂WQ

=η
1

B

∑
l∈Bb

∂Loss(Xn, yn)

∂F (Xn)

∂F (Xn)

∂WQ

=η
1

B

∑
l∈Bb

(−yn)
m∑
i=1

ai1[WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t)) ≥ 0]

·
(
WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))

·
∑
r∈Sl,t

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))WK(xs − xr)xl

⊤
)

=η
1

B

∑
n∈Bb

(−yl)
m∑
i=1

ai1[WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t)) ≥ 0]

·
(
WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))

· (WKxs −
∑
r∈Sl,t

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))WKxr)xl

⊤
)
.

(129)

(i) If l ∈ Sn,t1 or l ∈ Sn,t2 , say l ∈ Sn,t1 , we have the following derivation.
At the initial point, we can obtain

W
(0)
O(i,·)

∑
s∈Sl,t

W
(0)
V xssoftmaxl((W

(0)
K xs)

⊤
W

(0)
Q xl + u⊤

(s,l)b
(0)) > 0, (130)

and

softmaxl((W
(0)
K xs)

⊤
W

(0)
Q xl+u⊤

(s,l)b
(0)) ≥ Ω(1)·

∑
r∈Sl,t

2

softmaxl((W
(0)
K xr)

⊤
W

(0)
Q xl+u⊤

(s,l)b
(0)),

(131)
for s ∈ Sl,t1 .
For r, l ∈ Sl,t1 , if u(r,l)z0 = 1, by (35) we have

softmaxl(xr⊤W
(t)
K W

(t)
Q xl + u⊤

(r,l)b
(t))

≳
e∥q1(t)∥2−(δ+τ)∥q1(t)∥+b(t)z0∑

z∈Z |Nn
z ∩ Sn,T∗ |e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

,
(132)

Likewise, for r /∈ Sl,t1 and l ∈ Sl,t1 , we have

softmaxl(xr⊤W
(t+1)
K

⊤
W

(t+1)
Q xl + u⊤

(r,l)b
(t))

≲
eb

(t)
z0∑

z∈Z |Nn
z ∩ Sn,T∗ |e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

.
(133)

Therefore, for s, r, l ∈ Sn,t1 , let

W
(t)
K xs−

∑
r∈Sl,t

softmaxl(xr⊤W
(t)
K

⊤
W

(t)
Q xl+u⊤

(r,l)b
(t))W

(t)
K xr := βl1(t)q1(t)+βl2(t), (134)

where

βl1(t) ≳

∑
z∈Z(|Nn

z ∩ Sl,t| − |N l
z ∩ Sl,t1 |)ebz(t)∑

z∈Z |N l
z ∩ Sn,T∗ |e∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

≳ ϕl(t)(|Sl,t| − |Sl,t1 |),
(135)

31

Under review as a conference paper at ICLR 2024

βl1(t) ≲ e2(δ+τ)∥q1(t)∥ϕl(t)(|Sl,t| − |Sl,t1 |) ≤ ϕl(t)(|Sl,t| − |Sl,t1 |). (136)
Meanwhile,

βl2(t) ≈Θ(1) · olj(t) +Qe(t)r2(t) +

M∑
n=3

γ′nrn(t)−
M∑
a=1

∑
r∈Sl,t

softmaxl(x⊤
r W

(t)
K

⊤
W

(t)
Q xl)ra(t)

=Θ(1) · olj(t) +
M∑
n=1

ζ ′nrn(t),

(137)
for some Qe(t) > 0 and γ′l > 0. Here

|ζ ′l | ≤ βn1 (t)
|Sn,tl |

|Sn,t| − |Sn,t1 |
, (138)

for l ≥ 2. Note that |ζ ′l | = 0 if |Sn,t| = |Sn,t1 |, l ≥ 2.
For i ∈ Wl(0), by Lemma 9,

W
(t)
O(i,·)

∑
s∈Sl,t

W
(t)
V xssoftmaxl(xs⊤W

(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t)) > 0. (139)

Then we study how large the coefficient of q1(t) in (129).
If s ∈ Sl,t1 , from basic mathematical computation given (22) to (25),

W
(t)
O(i,·)

W
(t)
V xssoftmaxl(xs⊤W

(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))

≳
pl(t)

|Sn,t1 |

(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ)

·+ηm 1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a
(1− (σ + τ)) · (ξ

aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pl(t))

2
)
.

(140)
If s ∈ Sl,t2 and j ∈ Sl,t1 , from (26) to (29), we have

W
(t)
O(i,·)

W
(t)
V xssoftmaxl(xs⊤WK

(t)⊤W
(t)
Q xl + u⊤

(s,l)b
(t))

≲W
(t)
O(i,·)

W
(t)
V xjsoftmaxl(xj⊤WK

(t)⊤W
(t)
Q xl + u⊤

(j,l)b
(t)) · ϕn(t)

|Sn,t1 |
pl(t)

.
(141)

If i ∈ Wl(0), s /∈ (Sl,t1 ∪ Sl,t2), and j ∈ Sl,t1 ,

W
(t)
O(i,·)

W
(t)
V xssoftmaxl(xs⊤WK

(t)⊤W
(t)
Q xl + u⊤

(s,l)b
(t))

≲W
(t)
O(i,·)

W
(t)
V xjsoftmaxl(xj⊤WK

(t)⊤W
(t)
Q xl + u⊤

(j,l)b
(t))ϕl(t) ·

|Sl,t1 |
pl(t)

(142)

by (30) to (32).
Hence, for i ∈ Wl(0), j ∈ Sg,t1 , combining (135) and (140), we can obtain

W
(t)
O(i,·)

∑
s∈Sl,t

W
(t)
V xssoftmaxl(xs⊤WK

(t)⊤W
(t)
Q xl + u⊤

(s,l)b
(t))q1(t)

⊤

·(W (t)
K xs −

∑
r∈Sl,t

softmaxl(xr⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(r,l)b
(t))W

(t)
K xr)xl

⊤xj

≳
(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a
(1− (σ + τ))

· (ξ
aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pl(t))

2
)
ϕl(t)(|Sl,t| − |Sl,t1 |)∥q1(t)∥2.

(143)

32

Under review as a conference paper at ICLR 2024

For i ∈ Ul(t) and l ∈ Sl,t1 , j ∈ Sg,t1 , and k ∈ Wl(0),

W
(t)
O(i,·)

∑
s∈Sl,t

W
(t)
V xssoftmaxl(xs⊤W

(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))q1(t)

⊤

·(W (t)
K xs −

∑
r∈Sn,t

softmaxl(xr⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))W

(t)
K xr)xl

⊤xj

≲
(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a
(1− (σ + τ))

· (ξ
aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pl(t))

2
)
ϕn(t)|Sn,t2 | · β1(t)∥q1(t)∥2.

(144)
For i /∈ (Wl(t) ∪ Ul(t)) and l ∈ Sl,t1 , j ∈ Sg1 ,

W
(t)
O(i,·)

∑
s∈Sl,t

W
(t)
V xssoftmaxl(xs⊤WK

(t)⊤W
(t)
Q xl + u⊤

(s,l)b
(t))q1(t)

⊤

·(W (t)
K xs −

∑
r∈Sl,t

softmaxl(xr⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))xr)xl

⊤xj

≲W
(t)
O(k,·)

∑
s∈Sl,t

W
(t)
V xssoftmaxl(xs⊤WK

(t)⊤W
(t)
Q xl + u⊤

(s,l)b
(t))q1(t)

⊤

·(W (t)
K xs −

∑
r∈Sl,t

softmaxl(xr⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))xr)xl

⊤xj ·
1√
B
.

(145)

Therefore, by the update rule,

W
(t+1)
Q xj = W

(t)
Q xj − η

1

B

∑
n∈Bb

(∂Loss(X, yn)

∂WQ

∣∣∣W (t)
Q

)
xj

= r1(t) +K(t)q1(t) + Θ(1) · nj(t) + |Ke|(t)q2(t) +
M∑
l=3

γ′lql(t)

= (1 +K(t))q1(t) + Θ(1) · nj(t) + |Ke|(t)q2(t) +
M∑
l=3

γ′lql(t),

(146)

where the last step is by

q1(t) = k1(t) · r1(t), (147)

and

q2(t) = k2(t) · r2(t), (148)

for k1(t) > 0 and k2(t) > 0 from induction, i.e., q1(t) and r1(t), q1(t) and r1(t) are from the same
direction, respectively. Define qct(x) = x⊤q1(t)/∥q1(t)∥ and denote

∆(l, i) =ai1[WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b) ≥ 0]

·
(
WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b

· (WKxs −
∑
r∈Sl,t

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b)WKxr)xl
⊤
)
.

(149)

33

Under review as a conference paper at ICLR 2024

We then have

K(t)

≳η
1

B

(∣∣∣ ∑
l∈Bb,l∈Sl,t

1

(−yl)
∑

i∈Wl(0)

qct(∆(l, i))
∣∣∣− ∣∣∣ ∑

l∈Bb,l∈Sl,t
1

(−yl)
∑

i∈Ul,n(0)

qct(∆(l, i))
∣∣∣

−
∣∣∣ ∑
l∈Bb,l∈Sl,t

1

(−yl)
∑

i/∈Wl(0)∪Ul,n(0)

qct(∆(l, i))
∣∣∣− ∣∣∣ ∑

l∈Bb,l∈Sl,t
2

(−yl)
m∑
i=1

qct(∆(l, i))
∣∣∣

−
∣∣∣ ∑
l∈Bb,l∈Sl,t−Sl,t

1 −Sl,t
2

(−yl)
m∑
i=1

qct(∆(l, i))
∣∣∣)

≳η
1

B

∑
n∈Bb

m

a

(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a

· (1− (σ + τ))(
ξ

aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pl(t))

2
)
ϕl(t)(|Sl,t| − |Sl,t1 |)∥q1(t)∥2

>0,
(150)

|γ′l| ≲
1

B

∑
n∈Bb

K(t) ·
|Sn,tl |

|Sn,t| − |Sn,t1 |
, (151)

|Ke(t)| ≲
1

B

∑
n∈Bb

λ ·K(t) · |Sn,t2 |
|Sn,t| − |Sn,t1 |

, (152)

as long as

(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a
(1− (σ + τ))

· (ξ
aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pl(t))

2
)
ϕl(t)(|Sl,t| − |Sl,t1 |)∥q1(t)∥2

≳
(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a
(1− (σ + τ))

· (ξ
aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pl(t))

2
)
ϕl(t)|Sl,t2 | · β1(t)∥q1(t)∥2.

(153)
To find the sufficient condition for (153), we compare the LHS with two terms of RHS in (153). Note
that when |Sn,t| > |Sn,t1 |, by (136),

ϕn(t)(|Sn,t| − |Sn,t1 |) ≳ βn1 (t), (154)

Moreover,

1 ≳ ϕn(t)|Sn,t2 |. (155)

For the second term on RHS, we can derive the bound in the same way.

34

Under review as a conference paper at ICLR 2024

(ii) Then we provide a brief derivation of W (t+1)
Q xj for j /∈ (Sn,t1 ∪ Sn,t2) in the following.

To be specific, for j ∈ Sn/(Sn,t1 ∪ Sn,t2),〈
η
1

B

∑
n∈Bb

∂Loss(X, yn)

∂W
(t)
Q

xnj , q1(t)

〉

≳η
1

B

∑
n∈Bb

m

a

(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

p′n(b)− σ − τ) + ηm
1

2B

t∑
b=1

∑
n∈Bb

p′n(b)

a

· (1− (σ + τ))(
ξ

aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
p′n(t))

2
)
ϕn(t)(|Sl,t| − |Sl,t1 |)∥q1(t)∥2,

(156)
where
p′n(t)

=

∑
z∈Z |Sn,t1 ∩Nn

z |eq1(t)
⊤ ∑t

b=1K(b)q1(0)−(δ+τ)]∥q1(t)∥+b(t)z∑
z∈Z |(Sn,t1 ∪ Sn,t2) ∩Nn

z |eq1(t)⊤
∑t

b=1K(b)q1(b)−(δ+τ)]∥q1(t)∥+b(t)z + |Sn,t| − |Sn,t1 | − |Sn,t2 |
.

(157)
When K(b) is close to 0+, we have

t∏
b=1

√
1 +K(b)∥q(0)∥2 ≳ e

∑t
b=1K(b)∥q1(0)∥2

≥
t∑

b=1

K(b)∥q1(0)∥2, (158)

where the first step comes from log(1 + x) ≈ x when x→ 0+. Therefore, one can derive that〈
η
1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂W
(t)
Q

xnj , q1(t)

〉
≳ Θ(1) ·K(t). (159)

At the same time, the value of p′n(t) will increase to 1 along the training, making the component of
q1(t) the major part in η 1

B

∑
n∈Bb

∂Loss(Xn,yn)

∂W
(t)
Q

xnj . This is also the same for q2(t).

Hence, if j ∈ Sn,tl for l ≥ 3,

W
(t+1)
Q xj = ql(t) + Θ(1) · nj(t) + Θ(1) ·K(t)(q1(t) + q2(t)) +

M∑
l=2

γ′lql(t). (160)

Similarly, for j ∈ Sn,t2 ,

W
(t+1)
Q xj = (1 +K(t)

|Sn,t2 |
|Sn,t1 |

)q2(t) + Θ(1) · nj(t) + Θ(1) ·K(t)q1(t) +

M∑
l=2

γ′lql(t). (161)

(b) For the gradient of WK , we have

1

B

∑
n∈Bb

∂Loss(xn, yn)
∂F (xn)

∂F (xn)

∂WK

=
1

B

∑
n∈Bb

(−yn)
m∑
i=1

ai1[WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t)) ≥ 0]

·
(
WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))W⊤

Q xl

· (xs −
∑
r∈Sl,t

softmaxl(xr⊤W⊤
KWQxl + u⊤

(s,l)b
(t))xr)

⊤
)
.

(162)

Hence, for j ∈ Sn,t1 , we can follow (146) to derive

W
(t+1)
K xj ≈ (1 +Q(t))q1(t) + Θ(1) · oj(t) + |Qe(t)|r2(t) +

M∑
l=3

γ′lrl(t), (163)

35

Under review as a conference paper at ICLR 2024

where
Q(t) ≥K(t)(1− λ) > 0, (164)

for λ < 1, and

|γl| ≲
1

B

∑
n∈Bb

Q(t) ·
|Sn,tl |

|Sn,t| − |Sn,t∗ |
, (165)

|Qe(t)| ≲
1

B

∑
n∈Bb

Q(t) ·
|Sn,t# |

|Sn,t| − |Sn,t∗ |
. (166)

Similarly, for j ∈ Sn,t2 , we can obtain

W
(t+1)
K xj ≈ (1 +Q(t))q2(t) + Θ(1) · oj(t) + |Qe(t)|r1(t) +

M∑
l=3

γ′lrl(t), (167)

For j ∈ Sn,tl , l = 3, 4, · · · ,M , we can obtain

W
(t+1)
K xj ≈ ql(t)+Θ(1) ·oj(t)+Θ(1) · |Qf (t)|r1(t)+Θ(1) ·Qf (t)r2(t)+

M∑
i=3

γ′iri(t), (168)

where
|Qf (t)| ≲ Q(t). (169)

Therefore, for l ∈ Sn,t1 , if j ∈ Sn,t1 ,

xj
⊤W

(t+1)
K

⊤
W

(t+1)
Q xl

≳(1 +K(t))(1 +Q(t))∥q1(t)∥2 − (δ + τ)∥q1(t)∥+Ke(t)Qe(t)∥q2(t)∥∥r2(t)∥

+

M∑
l=3

γlγ
′
l∥ql(t)∥∥rl(t)∥

≳(1 +K(t))(1 +Q(t))∥q1(t)∥2 − (δ + τ)∥q1(t)∥

−

√√√√ M∑
l=2

(
1

B

∑
n∈Bb

Q(t)
|Sn,tl |

|Sn,t| − |Sn,t∗ |
)2∥rl(t)∥2 ·

√√√√ M∑
l=2

(
1

B

∑
n∈Bb

K(t)
|Sn,tl |

|Sn,t| − |Sn,t∗ |
)2∥ql(t)∥2

≳(1 +K(t) +Q(t))∥q1(t)∥2 − (δ + τ)∥q1(t)∥,
(170)

where the second step is from Cauchy-Schwarz inequality.
If j /∈ Sn,t1 ,

xj
⊤W

(t+1)
K

⊤
W

(t+1)
Q xl

≲(1 +K(t))Qf (t)∥q1(t)∥2 +Ke(t)Qf (t)∥q2(t)∥2 + γl∥ql(t)∥2 + (δ + τ)∥q1(t)∥
≲Qf (t)∥q1(t)∥2 + (δ + τ)∥q1(t)∥.

(171)

Therefore, for r, l ∈ Sl,t1 , if u(r,l)z0 = 1, we have

softmaxl(xr⊤W
(t+1)
K W

(t+1)
Q xl + u⊤

(r,l)b
(t+1))

≳
e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥+b(t)z0∑

z∈Z |Nn
z ∩ Sn,T∗ |e(1+K(t))∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

.

(172)
Similarly, for r /∈ Sl,t1 and l ∈ Sl,t1 , we have

softmaxl(xr⊤W
(t+1)
K

⊤
W

(t+1)
Q xl + u⊤

(r,l)b
(t))

≲
eb

(t)
z0∑

z∈Z |Nn
z ∩ Sn,T∗ |e(1+K(t))∥q1(T)∥2−(σ+τ)∥q1(T)∥+b(T)

z +
∑
z∈Z |(Nn

z ∩ Sn,T)− Sn,T1 |eb(T)
z

.

(173)

36

Under review as a conference paper at ICLR 2024

The same conclusion holds if l /∈ (Sn,t1 ∪ Sn,t2).

Hence

q1(t+ 1) =
√

(1 +K(t))q1(t). (174)

q2(t+ 1) =
√

(1 +K(t))q2(t). (175)

r1(t+ 1) =
√

(1 +Q(t))r1(t). (176)

r2(t+ 1) =
√

(1 +Q(t))r2(t). (177)

It can also be verified that this Lemma holds when t = 1.

Proof of Lemma 6:

η
1

B

∑
n∈Bb

∂Loss(xn, yn)
∂b

=η
1

B

∑
n∈Bb

∂Loss(xn, yn)
∂F (xn)

∂F (xn)

∂b

=η
1

B

∑
l∈Bb

(−yl)
m∑
i=1

ai1[WO(i,·)

∑
s∈Sl,t

WV xlsoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t)) ≥ 0] ·

(
WO(i,·)

·
∑
s∈Sl

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sn,t

softmaxl(xr⊤W⊤
KWQxl + u⊤

(s,l)b
(t))

· (u(s,l) − u(r,l))
)

=η
1

B

∑
l∈Bb

(−yl)
m∑
i=1

ai1[WO(i,·)

∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t)) ≥ 0] ·

(
WO(i,·)

·
∑
s∈Sl

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))(u(s,l) −

∑
r∈Sn,t

softmaxl(xr⊤W⊤
KWQxl

+ u⊤
(s,l)b

(t))u(r,l))
)
.

(178)

37

Under review as a conference paper at ICLR 2024

Therefore, we can derive

WO(i,·) ·
∑
s∈Sl,t

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))(u(s,l)z

−
∑
r∈Sl,t

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))u(r,l)z)

=WO(i,·)

∑
s∈Sl,t∩N z

l

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))(1

−
∑

r∈Sl,t∩N z
l

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))) +WO(i,·)

∑
s∈Sl,t−N z

l

WV xs

· softmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))(−

∑
r∈Sl,t∩N z

l

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)))

=WO(i,·)

∑
s∈Sl,t∩N z

l

WV xssoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sl,t−N z

l

· softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))−WO(i,·)

∑
s∈Sl,t−N z

l

WV xs

· softmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sl,t∩N z

l

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))

=P1 + P2 + P3.
(179)

where the second step is by

(
∑

s∈Sl,t∩N z−1
l

+
∑

s∈Sl,t−N z−1
l

)softmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b) = 1, (180)

Define

P1 =
∑

s∈Sl,t∩N z
l ∩Sl,t

∗

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

·
∑

r∈(Sl,t−N z
l)∩Sl,t

∗

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))−

∑
s∈(Sl,t−N z

l)∩Sl,t
∗

WO(i,·)WV xs

· softmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sl,t∩N z

l ∩Sl,t
∗

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)),

(181)

P2 =
∑

s∈Sl,t∩N z
l −Sl,t

∗

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b)
∑

r∈Sl,t−N l
z

softmaxl(xr⊤W⊤
KWQxl

·+u⊤
(r,l)b

(t))−
∑

s∈(Sl,t−N l
z)−Sl,t

∗

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b)
∑

r∈Sl,t∩N z
l

· softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)),

(182)

P3 =
∑

s∈Sl,t∩N z
l ∩Sl,t

∗

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈(Sl,t−N l

z)−Sl,t
∗

· softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))−

∑
s∈(Sl,t−N l

z)∩Sl,t
∗

WO(i,·)WV xs

· softmaxl(xsW⊤
KWQx+u

⊤
(s,l)b

(t))
∑

r∈Sl,t∩N z
l −Sl,t

∗

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)).

(183)

38

Under review as a conference paper at ICLR 2024

Note that ((Sl,t −N z−1
l) ∩ Sl,t∗) + (Sl,t ∩N z−1

l ∩ Sl,t∗) + (Sl,t − Sl,t∗) = Sl,t. For s, j ∈ Sl,t∗ , by
(223) and (224), we have

∥W (t)
V xs −W

(t)
V xnj ∥ ≤ O(∥zj(t)∥) ≤ τ. (184)

Combining (25), we can obtain

|P1| ≤(σ + τ)∥W (t)
O(i,·)

∥ |S
n,t
1 ∩N l

z|
|Sl,t|

(
|Sn,t1 |
|Sl,t|

− |Sn,t1 ∩N l
z|

|Sl,t|
). (185)

Let

T1 =
∑

s∈Sl,t∩N z
l −Sl,t

∗ −Sl,t
#

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl)

·
∑

r∈Sl,t−N l
z

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))−

∑
s∈(Sl,t−N l

z)−Sl,t
∗ −Sl,t

#

WO(i,·)

·WV xssoftmaxl(xsW⊤
KWQxl)

∑
r∈Sl,t∩N z

l

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)),

(186)

T2 =
∑

s∈Sl,t∩N z
l ∩Sl,t

#

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

·
∑

r∈(Sl,t−N l
z)∩Sl,t

#

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))−

∑
s∈(Sl,t−N l

z)∩Sl,t
#

WO(i,·)WV xs

· softmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sl,t∩N z

l ∩Sl,t
#

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)),

(187)

T3 =
∑

s∈Sl,t∩N z
l ∩Sl,t

#

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sl,t−N l

z−Sl,t
#

· softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))−

∑
s∈(Sl,t−N l

z)∩Sl,t
#

WO(i,·)WV xs

· softmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

∑
r∈Sl,t∩N z

l −Sl,t
#

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)).

(188)
Therefore,

P2 = T1 + T2 + T3, (189)

T1 ≤ (σ + τ)∥W (t)
O(i,·)

∥ ·
|N l

z − Sl,t∗ − Sl,t# |
|Sl,t|

|Sl,t −N l
z|

|Sl,t|
, (190)

T2 ≤ (σ + τ)∥W (t)
O(i,·)

∥ ·
|Sl,t# ∩N l

z|
|Sl,t|

(
|Sl,t# |
|Sl,t|

−
|Sl,t# ∩N l

z|
|Sl,t|

). (191)

39

Under review as a conference paper at ICLR 2024

For yn = 1, s ∈ Sl,t∗ and j ∈ Sl,t# , by (223), (224), and (225), we have

∥W (t)
O(i,·)

(W
(t)
V xs −W

(t)
V xj)∥

=∥W (t)
O(i,·)

(p1 − p2 + z(t)− (η

t∑
b=1

∑
i∈Wm(b)

Vi(b)W
(b)
O(i,·)

⊤
− η

t∑
b=1

∑
i∈U(b)

Vi(b)W
(b)
O(i,·)

⊤
)

− (η

t∑
b=1

∑
i/∈Wn(b)

λVi(b)W
(b)
O(i,·)

⊤
− η

t∑
b=1

∑
i/∈U(b)

λVi(b)W
(b)
O(i,·)

⊤
))∥

≳
(1− 2p

B

∑
n∈Bb

ξη(t+ 1)2m

a2
(
1

4B

∑
n∈Bb

pn(b)− σ − τ)

+ ηm
1

2B

t∑
b=1

∑
n∈Bb

pn(b)

a
(1− (σ + τ)) · (ξ

aB

∑
n∈Bb

(1− 2p)η(t+ 1)2

4B

∑
n∈Bb

m

a
pn(t))

2
)
.

(192)

∥W (t)
O(i,·)

(W
(t)
V xs −W

(t)
V xnj)∥ ≲

ξηt2m

a2
+
ηtm

a
· (ξηt

2m

a2
)2. (193)

Given i ∈ Wl(0), with regard to P2, we first consider the case when t = 0. Then with probability at
least 1− |Sn,t|−C ≥ 1− (MZ)−C

′
for C,C ′ > 0, when z = zm,∣∣∣ 1

|Sl,t|

N∑
j=1

1[j ∈ Di ∩N l
z ∩ Sl,t]− E[

1

|Sl,t|

N∑
j=1

1[j ∈ Di ∩N l
z ∩ Sl,t]]

∣∣∣
=
∣∣∣ |Sl,ti ∩N l

z|
|Sl,t|

− |Di ∩N l
z|

N

∣∣∣ ≤ √
log |Sn,t|
|Sn,t|

≤ 1

poly(Z)
,

(194)

∣∣∣ 1

|Sl,t|

N∑
j=1

1[j ∈ Sl,t ∩N l
z]− E[

1

|Sl,t|

N∑
j=1

1[j ∈ Sl,t ∩N l
z]]

∣∣∣
=
∣∣∣ |Sl,t ∩N l

z|
|Sl,t|

− |N l
z|
N

∣∣∣ ≤ √
log |Sn,t|
|Sn,t|

≤ 1

poly(Z)
.

(195)

For z = zm, if yl = 1
|(D1 ∪ D2) ∩N l

z|
|(D1 ∪ D2)|

=
|N l

z|
N

≤ |D1 ∩N l
z|

|D1|
. (196)

Therefore, we have

|Sl,t∗ ∩N l
z|

|Sl,t∗ |
=

|Sl,t∗ ∩N l
z|

|Sl,t∗ ∩N l
z|+ |Sl,t∗ ∩ (V −N l

z)|
≥ |N l

z|
|N l

z|+ |V − N l
z|

− 1

poly(Z)
. (197)

For i = 3, 4, · · · ,M , when z = zm, we can derive

|Sl,t∗ ∩ (V −N l
z)|

|Sl,t∗ ∩N l
z|

≤ |V − N l
z|

|N l
z|

+
Θ(1)

poly(Z)
≤ |Sl,ti ∩ (V −N l

z)|
|Sl,ti ∩N l

z|
+

Θ(1)

poly(Z)
, (198)

|Sl,ti ∩ (V −N l
z)|

|Sl,ti ∩N l
z|

≤
|Sl,t# ∩ (V −N l

z)|
|Sl,t# ∩N l

z|
+

Θ(1)

poly(Z)
. (199)

Hence, we have

|Sl,t∗ ∩N l
z|

|Sl,t|
|Sl,ti ∩ (V −N l

z)|
|Sl,t|

− |Sl,ti ∩N l
z|

|Sl,t|
|Sl,t∗ ∩ (V −N l

z)|
|Sl,t|

≥ − 1

poly(z)
, (200)

|Sl,ti ∩N l
z|

|Sl,t|
|Sl,t# ∩ (V −N l

z)|
|Sl,t|

−
|Sl,t# ∩N l

z|
|Sl,t|

|Sl,ti ∩ (V −N l
z)|

|Sl,t|
≥ − 1

poly(z)
. (201)

40

Under review as a conference paper at ICLR 2024

Then take the case where µ1 is the class-relevant pattern as an example, we have

P3 + T3 ≳
(
(1− σ)2 · |S

l,t
1 ∩N z

l |
|Sl,t|e

· |(S
l,t −N z

l) ∩ Sl,t2 |
|Sl,t|e

− (1 + σ)2 · |(S
l,t −N l

z) ∩ Sn1 |
|Sl,t|e

· |S
l,t ∩N z

l ∩ Sl,t2 |
|Sl,t|e

)
· η (1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m

a
· (ξηt

2m

a2
)2∥p1∥2 + T4

≳(1− σ)2 · |S
l,t
1 |

|Sl,t|
|Sl,t1 ∩N l

z| − |Sl,t2 ∩N l
z|

|Sl,t|
· η (1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m

a
(
ξηt2m

a2
)2∥p1∥2,

(202)
given that

T4 :=
∑

s∈Sl,t∩N z
l ∩(Sl,t

∪Sl,t
∗)

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

·
∑

r∈Sl,t−N l
z−Sl,t

−Sl,t
∗

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t))

−
∑

s∈(Sl,t−N l
z)∩(Sl,t

∪Sl,t
∗)

WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl + u⊤

(s,l)b
(t))

·
∑

r∈Sl,t∩N z
l −Sl,t

−Sl,t
∗

softmaxl(xr⊤W⊤
KWQxl + u⊤

(r,l)b
(t)),

(203)

and

|T4| ≤ (σ + τ)
η3t5m3ξ2

a5
∥p∥ · 1

poly(Z)
. (204)

One can obtain the opposite conclusion if

|Sl,t∗ ∩ (V −N l
z)|

|Sl,t∗ ∩N l
z|

≥ |V − N l
z|

|N l
z|

+
Θ(1)

poly(Z)
≥ |Sl,ti ∩ (V −N l

z)|
|Sl,ti ∩N l

z|
+

Θ(1)

poly(Z)

≥
|Sl,t# ∩ (V −N l

z)|
|Sl,t# ∩N l

z|
+

Θ(1)

poly(Z)
.

(205)

We can conclude that bz will increase during the updates with the condition (198) and decrease with
the condition (205). When t is large, given that |N l

z| = Θ(|Sl,t|), define

K := max
z∈Z

{b(t)z } −min
z∈Z

{b(t)z }. (206)

Therefore,

P3 + T3

≳
(
(1− σ)2

K|Sl,t1 ∩N z
l | · |(Sl,t −N z

l) ∩ Sl,t2 |
(K|Sl,t ∩N l

z|+ |Sl,t −N l
z|)2

− (1 + σ)2 · |(S
l,t −N l

z) ∩ Sn1 | ·K|Sl,t ∩N z
l ∩ Sl,t2 |

(K|Sl,t ∩N l
z|+ |Sl,t −N l

z|)2
)

· η (1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m

a
(
ξηt2m

a2
)2∥p1∥2

≳(1− σ)2 · K|Sl,t1 | · (|Sl,t1 ∩N l
z| − |Sl,t2 ∩N l

z|)
(K|Sl,t ∩N l

z|+ |Sl,t −N l
z|)2

· η (1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m

a
(
ξηt2m

a2
)2∥p1∥2

≳(1− σ)2 · |S
l,t
1 |

|Sl,t|
|Sl,t1 ∩N l

z| − |Sl,t2 ∩N l
z|

K|Sl,t|
· η (1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m

a
(
ξηt2m

a2
)2∥p1∥2.

(207)

41

Under review as a conference paper at ICLR 2024

By combining (185), (190), (191), and 207, we can derive,

− η
1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂bz

≳η
1

B

∑
n∈Bb

η
(1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m
2

a2
(
ξηt2m

a2
)2∥p1∥2 ·

|Sl,t∗ |
|Sl,t|

|Sl,t∗ ∩N l
z| − |Sl,t# ∩N l

z|
K|Sl,t|

.

(208)
If u(s,l)z∗ = 1,

u⊤
(s,l)(b

(t+1) − b(t)) = −η 1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂bz∗
(209)

u⊤
(s,l)b

(t)

≥η 1

B

t∑
b=1

∑
n∈Bb

η
(1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m
2

a2
(
ξηt2m

a2
)2∥p1∥2 ·

γd
2

|Sl,t∗ ∩N l
z| − |Sl,t# ∩N l

z|
K|Sl,t|

.

(210)

If we want to compute the difference term b
(t)
zm − b

(t)
z , note that we only need to study the differences

in P3 + T3 given the previous analysis. Since that the term WO(i,·)WV xssoftmaxl(xsW⊤
KWQxl +

u⊤
(s,l)b

(t)) is larger when s ∈ N l
zm , we can bound the difference P3 + T3 using terms in (207). To

find the lower bound, we apply the result in (192) and then directly use the fraction of sampled nodes
in different neighborhoods because concentration bounds can control the error. To be more specific,
on the one hand, if N l

z is too small for one z ∈ [Z − 1] and l ∈ V , the left-hand side of (200), (201),
and (202) are close to zero, and these three equations still hold. On the other hand, if we want to
see whether terms (200) and (201) with z = zm are larger them with other z ̸= zm, we have the
following derivation. Take (200) as an example,

|Dl
∗ ∩N l

z||Di ∩ (V −N l
z)| − |Di ∩N l

z||Dl
∗ ∩ (V −N l

z)| = |Dl
∗ ∩N l

z| · |Di| − |Di ∩N l
z| · |Dl

∗|.
(211)

|Dl
∗ ∩N l

zm ||Di ∩ (V −N l
zm)| − |Di ∩N l

zm ||Dl
∗ ∩ (V −N l

zm)|
−(|Dl

∗ ∩N l
z||Di ∩ (V −N l

z)| − |Di ∩N l
z||Dl

∗ ∩ (V −N l
z)|)

=(|Dl
∗ ∩N l

zm | − |Dl
∗ ∩N l

z|) · |Di| − (|Di ∩N l
zm | − |Di ∩N l

z|) · |Dl
∗|

=(|N l
zm | − |N l

z|) ·
γd
2
|Di| − (|Di ∩N l

zm | − |Di ∩N l
z|) · |Dl

∗|

+ (|Dl
∗ ∩N l

zm | − |N l
zm |γd

2
− (|Dl

∗ ∩N l
z| − |N l

z|
γd
2
)) · |Di|

=
1

2
(|Dl

∗ ∩N l
zm | − |Dl

∩N l
zm | − (|Dl

∗ ∩N l
z| − |Dl

∩N l
z|)) · |Di|

≥0,

(212)

where the first step is by (211), the second step comes from mathematical derivation, the third step is
obtained from that µi, i = 2, 3, · · · ,M is uniformly distributed in the whole graph, and the last step
is by the definition of zm in (6). We can derive (201) in the same way. Hence,

b(t)zm − b(t)z

≳η
1

B

t∑
b=1

∑
n∈Bb

η
(1− 2p)3

B

t∑
b=1

∑
n∈Bb

pn(b)m
2

a2
(
ξηt2m

a2
)2∥p1∥2 ·

γd
2

· (
|Sl,t∗ ∩N l

zm | − |Sl,t# ∩N l
zm |

K|Sl,t|
−

|Sl,t∗ ∩N l
z| − |Sl,t# ∩N l

z|
K|Sl,t|

).

(213)

Note that finally ηT = Θ(1). Therefore, K = Θ(1).

42

Under review as a conference paper at ICLR 2024

Proof of Lemma 7:
For the gradient of WV ,

∂Lossb
∂WV

=
1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂F (Xn)

∂F (Xn)

∂WV

=
1

B

∑
n∈Bb

m∑
i=1

(−yl)ai1[WO(i,·)

∑
s∈Sl,t

WV xlsoftmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b) ≥ 0]

·WO(i,·)
⊤

∑
s∈Sl,t

softmaxl(xs⊤W⊤
KWQxl + u⊤

(s,l)b)
⊤xs

⊤.

(214)

Consider a node n where yn = 1. Let l ∈ Sn,t1∑
s∈Sn,t

1

softmaxn(xs⊤W
(t)
K

⊤
W

(t)
Q xn + u⊤

(s,n)b
(t)) ≥ pn(t). (215)

Then for j ∈ Sg,t1 , g ∈ V ,

1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂W
(t)
V

∣∣∣W (t)
V xj

=
1

B

∑
l∈Bb

(−yl)
m∑
i=1

ai1[W
(t)
O(i,·)

∑
s∈Sl,t

softmaxl(xs⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))W

(t)
V xs ≥ 0]

·W (t)
O(i,·)

⊤ ∑
s∈Sn,t

softmaxl(xs⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))xs

⊤xj

=Θ(1) · (
∑

i∈Wl(0)

Vi(t)WO(i,·)
⊤ +

∑
i/∈Wl(0)

λVi(t)WO(i,·)
⊤),

(216)
If i ∈ Wl(0), we have

Vi(t) ≲
1− 2p

2B

∑
n∈Bb+

−1

a
pn(t). (217)

Similarly, if i ∈ Ul(t),
Vi(t) ≳

1− 2p

2B

∑
n∈Bb−

1

a
pn(t), (218)

if i is an unlucky neuron, by Hoeffding’s inequality in (19), we have

|Vi(t)| ≲
1√
B

· 1
a
. (219)

Therefore, we can derive

− η

t∑
b=1

W
(b)
O(i,·)

∑
j∈Wl(0)

Vj(b)W
(b)
O(j,·)

⊤

≳ηm
1− 2p

2B

t∑
b=1

∑
n∈Bb+

1

a
pn(b) · (

ξ

aB

∑
n∈Bb

ηt2(1− 2p)

4B

∑
n∈Bb

m

a
pn(t))

2,

(220)

|η
t∑

b=1

W
(b)
O(i,·)

∑
j∈Ul,n(0)

Vj(b)WO
(b)

(j,·)

⊤|

≲
η

B

t∑
b=1

∑
n∈Bb

pn(b)m

a
∥W (t)

O(i,·)
∥2∥p1∥2,

(221)

43

Under review as a conference paper at ICLR 2024

−ηtWO(i,·)

∑
j /∈(Wl(0)∪Ul,n(0))

Vj(t)WO(j,·)
⊤ ≲

ηtm∥p∥2

Ba
∥W (t)

O(i,·)
∥2. (222)

Hence,
(1) If j ∈ Sn,t1 for one n ∈ V ,

W
(t+1)
V xnj = W

(t)
V xnj − η

(∂Loss(Xn, yn)

∂WV

∣∣∣W (t)
V

)
xnj

= p1 − η

t+1∑
b=1

∑
i∈W(nb)

Vi(b)W
(b)
O(i,·)

⊤
− η

t+1∑
b=1

∑
i/∈Wn(b)

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t).

(223)

(2) If j ∈ Sn,t2 , we have

W
(t+1)
V xj = W

(0)
V xnj − η

(∂Loss(Xn, yn)

∂WV

∣∣∣W (0)
V

)
xnj

= p2 − η

t+1∑
b=1

∑
i∈U(b)

Vi(b)W
(b)
O(i,·)

⊤
− η

t+1∑
b=1

∑
i/∈U(b)

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t).

(224)

(3) If j ∈ Sn,t/(Sn,t1 ∪ Sn,t2), we have

W
(t+1)
V xnj = W

(0)
V xnj − η

(∂Loss(Xn, yn)

∂WV

∣∣∣W (0)
V

)
xnj

= pk − η

t+1∑
b=1

m∑
i=1

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t).

(225)

Here
∥zj(t)∥ ≤ (σ + τ) (226)

for t ≥ 1. Note that this Lemma also holds when t = 1.

Proof of Lemma 9:
We prove this lemma by induction.
When t = 0. For i ∈ Wl(0) and l ∈ D1, we have that

W
(0)
O(i,·)

(
∑
s∈Sl,t

1

softmaxl(xs⊤W
(t)
K

⊤
W

(t)
Q xl+0)p1+z(0)+

∑
j ̸=1

Wn
j (0)pj) ≳ ξ(Θ(1)−σ−τ) > 0.

(227)
Hence, the conclusion holds. When t = 1, we have

W
(t)
O(i,·)

V n
l (t)

=W
(t)
O(i,·)

(∑
s∈Sn

1

softmaxl(xs⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))p1 + z(t) +

∑
j ̸=1

Wn
j (t)pj

− η

t−1∑
b=0

(
∑

i∈Wl(0)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈Wl(0)

Vi(b)λW
(b)
O(i,·)

⊤
)
)
.

(228)

Denote θil as the angle between Vl(0) and W
(0)
O(i,·)

. Since that W (0)
O(j,·)

is initialized uniformed on the
ma − 1-sphere, we have E[θil] = 0. By Hoeffding’s inequality (19), we have∥∥∥ 1

|Wl(0)|
∑

i∈Wl(0)

θil − E[θil]
∥∥∥ =

∥∥∥ 1

|Wl(0)|
∑

i∈Wl(0)

θil

∥∥∥ ≤
√

logN

m
, (229)

with probability of at least 1−N−10. When m ≳M2 logN , we can obtain that∥∥∥ 1

|Wl(0)|
∑

i∈Wl(0)

θil − E[θil]
∥∥∥ ≤ O(

1

M
). (230)

44

Under review as a conference paper at ICLR 2024

Therefore, for i ∈ Wl(0), we have

WO(i,·)

t−1∑
b=0

∑
i∈Wl(0)

W
(b)
O(i,·)

> 0. (231)

Similarly, we have that
∑t−1
b=0

∑
i/∈Wl(0)

W
(b)
O(i,·)

is close to −V n
l (0). Given that λ < 1, we can

approximately acquire that

−W
(0)
O(i,·)

η

t−1∑
b=0

(
∑

i∈Wl(0)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈Wl(0)

Vi(b)λW
(b)
O(i,·)

⊤
) > 0. (232)

After the first iterations, we know that u⊤
(s,l)b

(t) increases the most from u⊤
(s,l)b

(0) by γd fraction
of discriminative nodes if s ∈ N l

zm . Because the softmax is based exponential functions, the most

significance increase in N l
zm enlarges

∑
s∈Sl,t

1
softmaxl(xs⊤W

(t)
K

⊤
W

(t)
Q xl+u⊤

(s,l)b
(t)). Since that

i ∈ Wn(0), we then have

W
(0)
O(i,·)

(
∑
s∈Sn

1

softmaxl(xs⊤W
(t)
K

⊤
W

(t)
Q xl + u⊤

(s,l)b
(t))p1 + z(t) +

∑
j ̸=1

Wn
j (t)pj) > 0. (233)

Therefore, we have
W

(0)
O(i,·)

V n
l (t) > 0. (234)

Meanwhile, the addition from W
(0)
O(i,·)

to W
(1)
O(i,·)

is approximately a summation of multiple Vj(0)

such that W (0)
O(i,·)

Vj(0) > 0 and j ∈ Sn1 . Therefore, Vj(0)
⊤
Vl(0) > 0. Therefore, we can obtain

W
(t)
O(i,·)

Vl(t) > 0. (235)

(2) Suppose that the conclusion holds when t = s. When t = s+ 1, we can follow the derivation
of the case where t = 1. Although the unit vector of W (t)

O(i,·)
no longer follows a uniform distribution,

we know that (229) holds since the angle is bounded and has a mean which is very close to Vl(0).
Then, the conclusion still holds.
One can develop the proof for Ul,n(0) following the above steps.

E EXTENSION OF OUR ANALYSIS AND ADDITIONAL DISCUSSION

E.1 ASSUMPTION ON THE PRE-TRAINED MODEL

For the assumption on the pre-trained model, we provide the following discussion.

We would like to clarify that the training problem of the graph transformer (GT) is very challenging
to analyze due to its significant non-convexity, and some form of assumptions is needed to facilitate
the analysis. In fact, even for the conventional Transformers, the existing state-of-the-art theoretical
optimization and generalization analyses all make some assumptions on the data, embedding or initial
models, or make further simplifications on the Transformer model. For example, (Oymak et al., 2023)
assumes orthogonality on the raw data. Jelassi et al. (2022) simplifies the self-attention layer by only
considering the positional encoding (PE). Tian et al. (2023); Li et al. (2023b) use linear activation in
the MLP layer. About the initialization, (Li et al., 2023a) assumes orthogonality on the initialization
of embeddings. Tarzanagh et al. (2023) requires that the initialization of the query embedding is close
to the optimal solution.

The initialization assumption made in our manuscript is the same as (Li et al., 2023a) but for a
GT. We would like to emphasize that our initialization assumption is at least no stronger than the
existing initialization assumptions in (Li et al., 2023a) and (Tarzanagh et al., 2023). Notably, our
work proposes a novel theoretical framework for the training dynamics and generalization of GT
for the first time, where the number of trainable parameters is more than the above existing works.
Third, although we have assumptions on the initialization for theoretical analysis, our experiments on
real-world datasets in Section 5.2 are implemented from random initialization. The performance is
aligned with our theoretical findings.

45

Under review as a conference paper at ICLR 2024

E.2 EXTENSION TO OTHER POSITIONAL ENCODINGS

Our theoretical analysis is general and can be applied to different positional encodings. Specifically,
Theorem 4.1 is based on proving these two parts, (i) the success of positional encoding, i.e., the
positional encoding can identify the correct structure information (which is the core neighborhood
in our data model), (ii) if structural information is known, analyzing the sample complexity and
convergence rate of Graph Transformer. We next discuss the extension of both parts to other positional
encoding separately.

For part (i), the success of positional encoding, because different types of positional encoding can
learn different types of structure information the best, this analysis needs to be case-by-case for
different positional encoding. However, our technique and insight can be potentially useful with some
modifications to other positional encodings. For example, Laplacian eigenvectors can essentially
divide a graph into several clusters considering its relationship to spectral clustering (Von Luxburg,
2007) and would work best for a data model where data labels depend on clusters. Moreover, Random
Walk PE can encode structural information such as whether the node is part of an m-long circle
(Rampášek et al., 2022). Degree PE (Ying et al., 2021), one of the standard centrality measures,
can capture the local degree information. PE using distance from the centroid of the whole graph
(Rampášek et al., 2022) can represent global distance information. Our techniques in analyzing
the core neighborhood can be useful in analyzing these positional encodings. Similarly to our
framework of the core neighborhood, where a large amount of class-relevant nodes is located, one
can respectively construct data models for these positional encodings where class-relevant nodes
are dominant for nodes within the corresponding structures, such as a cluster, an m-long circle, a
certain degree, and a certain distance to the centroid of the whole graph. The remaining step of the
generalization analysis is to learn this data model by Graph Transformer using positional encoding,
which is elaborated in detail in the next paragraph.

For part (ii), our proof technique can be easily generalized to other positional encodings with some
straightforward transformation. Specifically, positional encoding can be divided into absolute and
relative positional encodings. What we study in this work belongs to relative positional encodings.
Absolute positional encodings can be formulated as a concatenation to the initial node feature, either
by their raw definition (Kreuzer et al., 2021; Rampášek et al., 2022) or by transferring from a bias
term (Gabrielsson et al., 2022) (Wx + a = (W ,W ′)(x⊤, b′

⊤
)⊤, where the trainable positional

encoding a is transferred into a fixed augmented feature b′ and a trainable augmented weight W ′).
The structural information is then incorporated into the node representation (x, b′). Denote the
positional encoding b′ for a query node q as b′q . Denote the PE of one core-neighborhood node c and
one other neighboring node o for this query node as b′c, and b′o, respectively. Suppose all the b′ are
normalized. Then, given that the defined positional encoding b′ can locate the core neighborhood,
i.e., the distance between b′c and b′q is much smaller than the distance between b′o and b′q, we can
deduce that the inner product between b′c and b′q is much larger than the inner product between b′o and
b′q This leads to a dominant attention weight between the query node q and the core-neighborhood
node c based on the definition of self-attention. Then, one could ignore other neighbors and focus
only on core-neighborhood nodes when computing the Graph Transformer output. Then the proof in
Theorem 4.1 for part (ii) applies directly.

E.3 EXTENSION OF THE ANALYSIS ON GAT

From a high-level understanding, a one-layer GAT can be regarded as a Graph Transformer that only
uses distance-1 neighborhood information. Therefore, our Theorem 4.3 can be applied to analyze the
generalization of a one-layer GAT when its self-attention follows the self-attention mechanism in 1
of our manuscript, given the distance-1 neighborhood as the core neighborhood. From a perspective
of training dynamics, GATs also share a common mechanism that computes the aggregation based on
the similarity between node features as Graph Transformer does, although the attention layer of GAT
(Veličković et al., 2018) is different. In this sense, one-layer GAT can generalize as well as Graph
Transformer if the graph satisfies that the latent core neighborhood is the distance-1/distance-small
neighborhood, such as homophilous graphs. The generalization analysis of using GATs on graphs
with a larger distance of core neighborhoods and its comparison with graph transformers needs more
effort, and we will leave it as future work.

46

Under review as a conference paper at ICLR 2024

E.4 EXTENSION TO GRAPH CLASSIFICATION PROBLEMS

Since we aim to make a comparison with GCN, which focuses more on node classification tasks,
our work also mainly studies node classification. However, our analysis is extendable to graph
classification tasks. Consider a supervised-learning binary classification problem on a set of graphs
{Gi}Ni=1. Denote the feature matrix of the graph Gi by Xi. Following (Ying et al., 2021; Kreuzer
et al., 2021), we apply “Mean” or “Sum” as the READOUT function. Hence, we have

F (Xi) = K
∑
n∈T i

a⊤
nRelu(WO

∑
s∈T i

WV xssoftmaxn(xs⊤W⊤
KWQxn + u⊤

(s,n)b)). (236)

where K = 1 if READOUT is“Sum”, and K = 1/|Ti| if READOUT is “Mean”. When we compute
the gradients, the only difference is that we sum up or average over all nodes in each graph.

Data Model The data model follows from Section 4.2. The difference is that the core neighborhood
is defined based on the graph label, i.e., we assume the ground truth graph label is determined by
the summation/mean of the majority vote of µ1, µ2 nodes in the core neighborhood for some nodes
in each graph. This is motivated by graph classification on social networks, where the connections
between the central person and other people in the graph decide the graph label. For example, if
zm = 2 and the distance-zm neighborhood of nodes in Ri determines the label, then for the ground
truth graph label ỹi = 1, |Di

1 ∩ (∪j∈RiN j
zm)| is larger than |Di

2 ∩ (∪j∈RiN j
zm)|, where Di

1 and Di
2

are the set of µ1 nodes and µ2 nodes in Gi. Such a data model ensures that the graph label comes
from the graph structure. Meanwhile, it prevents us from assuming a more trivial model where the
number of µ1 nodes and µ2 nodes in each graph indicates the label and no graph information is used,
which is almost the same as that in the ViT work (Li et al., 2023a). Hence, when we compute the
graph-level output, the distance-zm neighborhood of nodes in Ri still plays a vital role. Then, we
can apply the generalization analysis of node classification based on the core neighborhood to the
graph classification problem.

E.5 EXTENSION TO MULTI-CLASSIFICATION

Consider the classification problem with four classes. We use the label y ∈ {+1,−1}2 to denote
the corresponding class. Similarly to the previous setup, there are four orthogonal discriminative
patterns. We have a = (a1,a2), WO = (WO1

,WO2
), WV = (WV1

,WV2
), WK = (WK1

,WK2
),

WQ = (WQ1
,WQ2

), and b = (b1, b2). Hence, we define

F (xn) = (F1(xn), F2(xn)), (237)

F1(xn) = a⊤
1 Relu(WO1

∑
s∈T n

1

WV1xssoftmaxn(xs⊤W⊤
K1

WQ1xn + u⊤
(s,n)b1)), (238)

F2(xn) = a⊤
2 Relu(WO2

∑
s∈T n

2

WV2xssoftmaxn(xs⊤W⊤
K2

WQ2xn + u⊤
(s,n)b2)). (239)

The dataset D can be divided into four groups as

A1 ={(Xn,yn)|yn = (1, 1)},
A2 ={(Xn,yn)|yn = (1,−1)},
A3 ={(Xn,yn)|yn = (−1, 1)},
A4 ={(Xn,yn)|yn = (−1,−1)}.

(240)

The hinge loss function for data (Xn,yn) will be

Loss(xn,yn) = max{1− yn
⊤F (xn), 0}. (241)

Therefore, when computing the gradient, the problem becomes a binary classification. One can
make derivations following the binary case. One notable difference is that we can assume two core
neighborhoods for this four-classification problem.

47

Under review as a conference paper at ICLR 2024

E.6 COMPARISION WITH OTHER FRAMEWORKS OF ANALYSIS

In this section, we provide a comparison with other frameworks of analysis.

First, we focus on five other frameworks: Rademacher complexity, algorithmic stability, PAC-
Bayesian, model recovery, and neural tangent kernel (NTK). Rademacher complexity (Tolstikhin
et al., 2014; Garg et al., 2020; Esser et al., 2021), algorithmic stability (Verma & Zhang, 2019),
and PAC-Bayesian (Liao et al., 2021) only focus on the generalization gap, which is the difference
between the empirical risk and the population risk function, for a given GCN model with arbitrary
parameters and the number of layers (Liao et al., 2021). They do not discuss how to train a model
to achieve a small training loss. In contrast, our framework involves the convergence analysis of
GCN/Graph Transformers using SGD on a class of target functions and the generalization gap with
the trained model. The zero generalization we achieve is zero population risk, which means the
learned model from the training is guaranteed to have the desired generalization on the testing data.
The model recovery framework (Zhang et al., 2020b) requires a tensor initialization to locate the
initial parameter close to the ground truth weight. For the NTK (Du et al., 2019) framework, they
need an impractical condition of an infinitely wide network to linearize the model around the random
initialization.

Then, we compare existing works on Transformers. As far as we know, the state-of-the-art gen-
eralization analysis on other Transformers (Li et al., 2023a; Tarzanagh et al., 2023; Oymak et al.,
2023; Tian et al., 2023) did not consider any graph-based labelling function and trainable positional
encoding, which are crucial and necessary for node classification tasks. However, we cover these in
the formulation and provide the training dynamics and generalization analysis accordingly.

48

	Introduction
	Related Works
	Problem Formulation and Learning Algorithm
	Theoretical Results
	Theoretical Insights
	Data Model Assumptions
	Main Theoretical Results for Graph Transformer
	What does self-attention improve? A Comparison with GCN
	How does positional encoding guide graph learning process?
	Proof sketch

	Numerical Expriments
	Experiments on Synthetic Data
	Experiments on Real-world Dataset

	Conclusion, Limitation, and Future Work
	Additional Experiments
	Verifying assumptions made on the graph data model
	Experiments on Synthetic Dataset
	Experiments on Real-world Datasets

	Preliminaries
	Key Lemmas and Proof of the Main Theorems
	Useful lemmas
	Extension of our analysis and additional discussion
	Assumption on the pre-trained model
	Extension to other positional encodings
	Extension of the analysis on GAT
	Extension to graph classification problems
	Extension to multi-classification
	Comparision with other frameworks of analysis

