
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

TYPE-COMPLIANT ADAPTATION CASCADES: ADAPTING PRO-
GRAMMATIC LM WORKFLOWS TO DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliably composing Large Language Models (LLMs) for complex, multi-step workflows
remains a significant challenge. The dominant paradigm — optimizing discrete prompts in a
pipeline — is notoriously brittle and struggles to enforce the formal compliance required for
structured tasks. We introduce Type-Compliant Adaptation Cascades (TACs), a framework that
recasts workflow adaptation as learning typed probabilistic programs. TACs treat the entire
workflow, which is composed of parameter-efficiently adapted LLMs and deterministic logic, as
an unnormalized joint distribution. This enables principled, gradient-based training even with
latent intermediate structures. We provide theoretical justification for our tractable optimization
objective, proving that the optimization bias vanishes as the model learns type compliance.
Empirically, TACs significantly outperform state-of-the-art prompt-optimization baselines.
Gains are particularly pronounced on structured tasks, improving FinQA from 12.0% to 24.7%
for a Qwen 3 8B model, MGSM-SymPy from 57.1% to 75.9% for a Gemma 2 27B model,
MGSM from 1.6% to 27.3%, and MuSR from 36.5% to 62.6% for a Gemma 7B model. TACs
offer a robust and theoretically grounded paradigm for developing reliable, task-compliant
LLM systems.

1 INTRODUCTION

Language modeling (Rosenfeld, 2018) refers to fitting a parametric probability distribution over strings (a
language model) pθ to observed data. Large Language Models (LLMs) (Brown et al., 2020) scale both the model
and training datasets to massive sizes. LLMs have an extraordinary emergent capability: once trained, these
distributions can be effectively manipulated simply by asking — conditioning the distribution on different natural
language instruction prefixes (Wei et al., 2022a) — a practice widely known as prompting.

The expressive power and accessibility of this natural language interface have catalyzed the rapid development of
programmatically composed workflows and agentic systems (Khattab et al., 2022; Chase, 2022; Yao et al., 2023;
Wu et al., 2024). By structuring inputs and chaining model calls, practitioners can construct complex systems
capable of multi-step reasoning and interaction. However, the success of these systems is inherently subject to the
pretrained LLM’s capabilities in instruction following. Moreover, prompt engineering remains brittle: minor
textual variations can lead to drastic performance degradation (Cao et al., 2024). This brittleness can also cause
type violations in a programmatic workflow: while inference-time constrained decoding methods mitigate type
violation problems, full compliance remains theoretically impossible for complex types (Lin et al., 2021) on
autoregressive models. Optimizing these composed systems therefore often devolves into a difficult discrete
optimization problem over the space of possible prompts — a challenge often addressed through heuristic search
(Zhou et al., 2023; Pryzant et al., 2023; Yuksekgonul et al., 2025) and reinforcement learning (Jafari et al., 2024),
both of which suffer from variance issues.

In this paper, we propose a return to the foundational perspective: fitting composed LLM distributions to
downstream tasks as parametric probability models. Instead of tackling the inherent difficulties of optimizing

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

z1
type: τi

z3
type: τr

z4
type: τir

z2
type: τo

(τi, τr,θ3)

combine ir : τi × τr → τir

(τir, τo,θ4)

(a) cot-cascade-structure

…How many
computers are now
in the server room?

Q-en

29
A

1. …
2. …
3. …

R

z3

9
+

E

z54 5
x

1. …
2. …
3. …

(Q-en, R)

There were
nine

computers
in the server

room….

z4

e1

e3

e2

e4

z1

z2

!

!

⚙

⚙

(b) expression-cascade-structure

Figure 1: Two TAC workflow patterns experimented in this paper. We illustrate the more complicated Fig. 1b with example
node values (we also explore additional patterns in §B). Dashed-boundary nodes indicate variables whose values are not
available in annotated data, and solid-boundary nodes indicate nodes with training time observable values. A main message
of this work is that we can treat an entire typed workflow as a single probabilistic program, whose parameters are
lightweight PEFT modules, allowing end-to-end training with latent variables, instead of defining workflows imperatively
as fixed-parameter systems.

discrete verbal instructions, we adapt a composed workflow (such as ones shown in Fig. 1), as a parametric latent
variable model, to maximize data likelihood. Each step in the workflow is a probabilistic typed transformation
backed by a parameter-efficient fine-tuning (PEFT) adaptor, with valid typed objects as its support. Different
workflows are declaratively defined as different generative stories that sequentially transform objects with either
learned adaptors or deterministic algorithms. Thus, we transform the problem of workflow adaptation from an
ad-hoc, discrete optimization search problem to training and inference of latent variable models. This allows us to
leverage well-established machine learning techniques to optimize the entire system directly, while keeping
training and inference manageable, thanks to the adaptors’ parameter and computational efficiency.

This approach, which we term Type-Compliant Adaptation Cascades (TACs), is an end-to-end trainable probabilistic
programming framework. As parametric latent variable models, TACs can be optimized using gradient descent
methods. Moreover, as unnormalized distributions over typed objects, Posterior inference of TACs is decoupled
from training, enabling techniques such as amortized inference and classification by ranking.

Our primary contributions are:

• Framework. We formalize typed LM workflows as probabilistic programs: each learned hyperedge is an
unnormalized conditional distribution that assigns zero mass to outputs violating type contracts.

• Theory. We propose a tractable and theoretically-grounded training algorithm, TACSTaR. We prove that our
optimization objective, while computationally efficient, correctly converges to the ideal solution as the model
learns to become type-compliant. Specifically, we show that the bias in our gradient approximation vanishes as the
model’s adherence to type constraints increases during training (Theorems 1 and 2).

• Practice. Across QA, structured generation, and classification tasks that require heavy reasoning (MGSM,
MGSM-SymPy, FinQA, MuSR) and model families (Gemma, Qwen), TACs consistently outperform strong DSPy
prompt-optimization baselines. Gains are largest when (1) base models are smaller and (2) tasks require strict
structure. For example, on MGSM-SymPy with a Gemma 27B model, TACs achieve 75.9 vs. 57.1; on FinQA,
34.0 vs. 12.7 (Gemma 27B) and 24.7 vs. 12.0 (Qwen 3 8B). With a Gemma 7B model, MGSM improves from
1.6 to 27.3, FinQA from 0.7 to 9.7, and MuSR from 36.5 to 62.6.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Summary of results. (1) Gradient-based adaptation within typed workflows is markedly more effective than
discrete prompt search for structured tasks. (2) Flexible training- and test-time posterior inference help performance.
(3) Empirically, estimated type compliance mass Zθ rises rapidly during training and correlates with accuracy,
supporting our theoretical justification for the unnormalized objective.

2 TYPE-COMPLIANT ADAPTOR CASCADES

The core idea of TACs is to decompose a task into a hypergraph of interconnected transformations. Formally, a TAC
is represented as a directed acyclic hypergraph (DAH) C = (Z,E).1 The acyclic constraint ensures that the
workflow has a well-defined topological order for execution and guarantees termination of the generative process.

Nodes. The nodes Z = {z1, z2, . . . , zM} in a TAC act as containers for typed data. Each node zm is associated
with a specific data type τ ∈ T , and holds string representations ∈ Σ∗ for τ -typed objects. Special nodes are
designated as the input node z1 and the output node z2 (e.g., holding the initial question of type Q en and the
final answer of type A in Fig. 1b, respectively).

Hyperedges. Hyperedges E = {e1, e2, . . . , eK} define the transformations between nodes. A hyperedge ek
connects a set of source nodes Sk ⊆ Z (its inputs) to a set of target nodes Tk ⊆ Z (its outputs). Transformations
in TACs can be either learnable (LM adaptors) or fixed (deterministic algorithms):

• LM adaptor hyperedges. These are stochastic transformations implemented by PEFT-adapted LMs. An adaptor
(τi, τo,θ) defines an unnormalized distribution over y ∈ Σ∗ given input string x:2

p̃(y | x;θ) = pLM (y | x;θ)I(zt ∈ valid(τo)), (1)

where pLM (· | x;θ) is a normalized distribution over strings, conditioned on τi-typed string representation x,
and parametrized by adaptor parameters θ, and valid(τo) ⊆ Σ∗ is the set of strings that represent valid τo-typed
objects (we will further discuss them in §2.1).

• Deterministic algorithm hyperedges. These are fixed, non-learnable transformations, such as a self-contained
Python function. A deterministic algorithm f maps an input object of type τi to an output object of type τo. Under
the probabilistic view, we represent them as δ distributions:

p̃(y | x; f) = δcanon(f(parse(x,τi)))(y) (2)

where canon (see §2.1) produces a canonicalized string for an object, and parse converts strings back to typed
objects.

2.1 INTERFACING LLMS WITH TYPED DATA: PARSING AND CANONICALIZATION

A crucial subtlety in integrating LLMs into typed workflows is bridging their native string-based operation with
typed data, which is typically handled by data validation libraries such as Pydantic3 and LangFun.4 Here we
formalize the conversion under the TAC formalism as two operations parse and canon:

1We use a reasoning workflow that generates domain-specific code, illustrated in Fig. 1b, as a running example. The task is
to take a math question in English (input type Q en), generate a step-by-step rationale (intermediate type R), convert the
rationale into a formal arithmetic expression (intermediate type E), and finally, have a deterministic function evaluate this
expression to produce the answer (output type A). This section formalizes how such an intuitive sketch is realized within the
TAC framework.

2This distribution may be unnormalized because while pLM is a distribution over all strings, Eq. (1) restricts the support to
only strings that are valid instances of τo. Thus, the total probability mass may sum to less than 1 if the LM assigns probability
to invalid strings.

3https://github.com/pydantic/pydantic
4https://github.com/google/langfun. Examples of generated prompts are listed in §N.

3

https://github.com/pydantic/pydantic
https://github.com/google/langfun

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Parsing (parse). When an LM adaptor produces an output string y intended to represent an object of type τo,
this string is validated and converted into a usable typed object by the algorithm parse : Σ∗×T → O∪{error}.5
For example, in Fig. 1b, z5 has the deterministic function e4 as an outgoing edge. During execution of the
probabilistic program, parse(z5,E) attempts to convert z5 into a SymPy expression object (typed E). If the
conversion fails, an error is signaled. For convenience, we use valid(τ) = {parse(y, τ) ̸= error | y ∈ Σ∗} to
denote valid string representations of τ .

Canonicalization (canon). Conversely, inputs of LM adaptor hyperedges must be converted into a consistent
string format that the adaptor expects. The canon : O → Σ∗ operation maps a typed object to a unique string
representation — we call such strings canonicalized. The invertibility of canon (i.e., parse(canon(o), τo) =
o) in turn ensures that deterministic hyperedges have support over only one string given a valid input, eliminating
spurious ambiguity (Cohen et al., 2012).

2.2 TACS AS PROGRAMS AND DISTRIBUTIONS

TACs admit both a program view, and also a probabilistic view6:

• TACs are probabilistic programs. Executing a TAC in the forward direction involves processing data through the
hypergraph, respecting the topological order of nodes and hyperedges. Using our running example from Fig. 1b:
the process traverses the hypergraph, starting at the input variable z1 (typed Q en), and ending at the output
variable z2 (typed A). A general process is described in Algorithm 1.

• TACs are also probability distributions. TACs also define unnormalized joint probability distributions over all
node assignments Z∗ = (z∗1, z

∗
2, . . . , z

∗
M). This score reflects the plausibility of a complete execution trace

according to the model’s components:

log p̃θ(Z
∗) =

∑
k

log p̃θ({z∗t }t∈Tk
| {z∗s}s∈Sk

; ek), (3)

where θ represent all adaptor parameters used in the TAC, and p̃θ(·|·; ek) is the conditional probability defined by
the LM adaptor (Eq. (1)) or deterministic algorithm (Eq. (2)) associated with ek. The unnormalized distribution
view connects TACs to the broader family of language model cascades (Dohan et al., 2022), but with the key
distinction that TACs are designed for end-to-end adaptation.

Estimating unnormalized marginal probabilities. LM adaptors in a TAC can be used as proposal distributions
to get an importance sampling estimate of the unnormalized marginal probability. Let zm be a node coming out of
an LM adaptor, an N -sample estimate of the unnormalized probability that zm equals c: p̃(zm = c;θ) is:

ˆ̃p|z1
(m, c,N) =

N∑
n=1

[
pLM (zm = c;θ)

N · pLM (zm = z
(n)
m ;θ)

]
(4)

where z(n)m is the n-th sample of zm (possibly drawn using Algorithm 1). Equation (4) is an unbiased importance
sampling estimate of the unnormalized probability p̃(zm = c | z1;θ) (since supp(p̃) ⊆ supp(pLM)). In
general, zm has an infinite support, making the normalized probability p(zm = c | z1;θ) intractable. In the
special case that zm has finite support, Eq. (4) can be used to estimate the normalized marginal probability

5We note that while primitive data types (e.g., Python types str and list) appear in common workflows, parse can
be any computable function, and can be leveraged by a practitioner to implement complex business logic. For example,
one can define a Python custom type CoherentDialog where valid objects are strings deemed coherent by an external
LLM-backed classifier, and adapt LM adaptors in a TAC to generate and work with such objects. Implementation details are
further discussed in §E.

6These two views are also summarized in Table 1.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

p̂(zm = c | z1;θ) =
ˆ̃p|z1 (m,c,N)∑
c′

ˆ̃p|z1 (m,c′,N)
. We leverage Eq. (4) to estimate normalized output probabilities

p(z2 | z1;θ), for ranking classification outputs in §4.3.

3 ADAPTING TACS

Since TACs generally define distributions over unobserved (latent) intermediate variables, Monte Carlo Expectation-
Maximization (MC-EM) algorithms (Wei & Tanner, 1990) provide a suitable training paradigm for marginalized
likelihood maximization.7 MC-EM algorithms iteratively refine model parameters by alternating between an
E-step (sampling latent variables) and an M-step (optimizing parameters based on these samples). The Self-Taught
Reasoner (STaR) algorithm (Zelikman et al., 2022) is a notable instance of MC-EM. We generalize STaR to the
TAC framework for workflows with arbitrarily typed inputs and outputs, resulting in the TACSTaR algorithm.

3.1 TACSTAR

The TACSTaR algorithm (Algorithm 3) employs an iterative MC-EM approach to train the parameters θ of the
type-compliant LM adaptors within a TAC C . As with the original STaR algorithm, TACSTaR alternates between E-
and M-steps:

• E-step: Sampling Latent Variables. We first try to execute the TAC C as a probabilistic program under
the forward algorithm (Algorithm 1). If forward succeeds, we have a complete assignment of values
Z∗ = (z∗1, z

∗
2, . . . , z

∗
M) for all nodes in the TAC C. and can proceed to M-step. Otherwise, we attempt a

rationalization heuristic step. Inspired by the original STaR algorithm which conditions on the correct answer in
the second attempt, we construct a ‘fallback’ TAC, whose input node takes (x∗, y∗) as input, with the rest of the
workflow unchanged. This essentially asks ‘what intermediate steps would lead from x∗ to y∗?’, analogous to the
inverse rendering problem (Ritchie et al., 2023). A forward pass is then executed on this new TAC to sample
(z2, . . . , zM), now conditioned on both the original input x∗ and the desired output y∗. This encourages the
generation of latent intermediate steps that are consistent with the correct final answer.

• M-step: Parameter Optimization. EM-style algorithms generally do MLE updates on samples collected in the
E-step. As TACs are generally unnormalized models, proper MLE updates require computing partition function
gradients. Denoting the partition function summing all possible assignments as Zθ =

∑
Z′ p̃θ(Z

′), the gradient
of the log-likelihood L = log p(Z∗) is:

∇θL = ∇θ log p̃θ(Z
∗)−∇θ logZθ. (5)

Estimation of the log partition function’s gradients ∇θ logZθ is typically expensive and can have high
variance (Goodfellow et al., 2016). We thus drop this term, and optimize for the unnormalized log-likelihood
L′(θ) = log p̃θ(Z

∗) instead.8

Tractable optimization via compliance. While ignoring the partition function gradient generally leads to biased
gradient estimation, the TAC formalism ensures this strategy is both tractable and robust. This becomes evident
as we rewrite L′(θ) = L(θ) + logZθ: optimizing the unnormalized likelihood L′(θ) is equivalent to jointly
maximizing the normalized likelihood L(θ) and the model’s type compliance (the partition function logZθ is

7We acknowledge that another reasonable approach for training TACs is reinforcement learning, and note the connection
between TACSTaR and RL in §A.

8Remark on efficiency. Since gradients of the log unnormalized probability decompose linearly as ∇θ (log p̃θ(Z
∗)) =∑

k ∇θ log p̃θ({z∗t }t∈Tk | {z∗s}s∈Sk ; ek), computation of adaptors’ gradients can be parallelized easily. This embarrassingly
parallel structure ensures computational scalability, allowing the M-step to be efficiently distributed across available compute
resources. Algorithm 2 computes log p̃θ(Z∗) and its gradients ∇θ log p̃θ(Z

∗). These gradients are then used in a standard
gradient-based optimization algorithm to update θ.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

maximized at logZθ = 0 when θ is well-specified). This approach is justified theoretically under the assumption
that the adapted models can perfectly model type-valid outputs (i.e., the model family is well-specified):9

Theorem 1. Let Θ be the entire parameter space and let Θ′ ⊆ Θ be the subset of well-specified param-
eters. Assume θ∗ uniquely maximizes the normalized likelihood pθ(z2..M |z1) and resides ∈ Θ′. Then,
θ̂ = argmaxθ∈Θ p̃θ(z2..M |z1) =⇒ θ̂ = θ∗.

Moreover, while optimizing L′(θ) introduces a bias by ignoring the gradient term∇θ logZθ , this bias is bounded
below a constant multiplicative factor of (1−Zθ) under the common assumption that ∥∇θpLM (· | x;θ)∥ is
uniformly bounded:

Theorem 2. Let θ = {θ1 . . .θK} be the union of a K-adaptor TAC’s LM adaptor parameters . If ∀zk,1 ∈
Σ∗, zk,2 ∈ Σ∗, ∥∇θ (

∑
log pLM (zk,2 | zk,1;θ)) ∥∞ ≤ G, then ∇θ logZθ ≤ 2G(1−Zθ).

Theorems 1 and 2 provide theoretical assurance that if the model achieves high type compliance as we optimize for
L′(θ) = L(θ) + logZθ , the TACSTaR M-step update approaches true MLE update. Empirically, we observe
TACSTaR rapidly drives Zθ towards 1 (§4.4).

3.2 AMORTIZED TACSTAR

Amortized TACSTaR (Algorithm 4) generalize the ‘fallback’ rationalization heuristic in TACSTaR as parametric
inference networks (Kingma & Welling, 2014; Mnih & Gregor, 2014), jointly trained to approximate the
true posterior given observed input and outputs. By learning to propose better, task-adapted latent variable
configurations, Amortized TACSTaR can hopefully lead to more efficient training and potentially better performance
of the model TAC. For model TAC C with nodes z1 . . . zM , we construct an inference network TAC C ′ with nodes
z′1 . . . z

′
M , which is trained alongside with C. In this work, we construct z′2 . . . z

′
M to have the same types as

z2 . . . zM , except for its input node z′1, which has a type to represent the input-output pair (x∗, y∗). Moreover, we
construct C ′ so that every adaptor hyperedge ek in C has a counterpart e′k in C ′ that is additionally conditioned
on z′1. We train C ′ alternately with C , with the goal of making the unnormalized distribution of C ′ over its nodes
except for z′1 approximate the posterior over C’s intermediate nodes, conditioning on (x∗, y∗) observations.
Denoting the unnormalized distribution of C ′ as q̃ϕ parametrized by adaptors’ parameters ϕ, we hope to learn
ϕ such that q̃ϕ(z′m | z′1 = canon((x∗, y∗))) ≈ pθ(zm | z1 = x∗

c , z2 = y∗c), where x∗
c = canon(x∗),

y∗c = canon(y∗), ∀m ∈ [2..M]. Approximating the posterior pθ(zm | z1 = canon(x∗), z2 = canon(y∗))
as p̂ using self-normalized multiple importance sampling (Veach & Guibas, 1995), we optimize ϕ to minimize
KL[p̂||q̃ϕ] following Bornschein & Bengio (2014); Lin & Eisner (2018).

4 EXPERIMENTS

To empirically validate TAC models, we conduct QA, code-like structured generation, and classification experiments
on subsets of MGSM (Shi et al., 2023), FinQA (Chen et al., 2021), and MuSR (Sprague et al., 2024b) datasets,10

adapting both instruction-tuned Gemma 7B and Gemma 2 27B (referred to as gemma-1.1-7b-it and
gemma-2-27b-it) (Team et al., 2024), and Qwen 3 8B models (Qwen3-8B) (Yang et al., 2025). We aim to
answer the following research questions:

• (§4.2) Are TACs competitive against existing approaches? TACs differ from existing LM adaptation approaches
in two major ways: 1) TACs support gradient-based learning in a unified probabilistic programming framework
(when compared against prior prompt optimization-focused LM programming frameworks such as DSPy); and 2)

9We refer the reader to §D for proofs of formal statements in this section.
10We defer the study of how different TAC patterns affect performance to §B, where we expand our experiments to include

HotPotQA tasks (Yang et al., 2018).

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

TACs support structured workflows by design (when compared to the original STaR algorithm). We hypothesize
that such difference translates into meaningful performance improvements.

• (§4.3) Is exploiting TACs’ probabilistic flexibility effective? Probability models (such as TACs) benefit from the
decoupling of probabilistic modeling and inference procedures, allowing conditioning on additional observations a
posteriori. We evaluate whether exploiting this flexibility is effective in two scenarios: 1) We compare Amortized
TACSTaR (§3.2), which conditions on the output variable to learn a better proposal distribution for training,
against the standard (unconditioned) TACSTaR; and 2) We evaluate TACs on a classification task, comparing the
performance of unconstrained generation against a renormalized classifier that evaluates and normalizes the
conditional probability of each possible output.

• (§4.4) Does the model achieve high type compliance? A key theoretical result (§3.1) is that the soundness and
near-optimality of the TACSTaR optimization strategy rely on the model learning to comply with the workflow’s
type constraints (i.e., driving the partition function Zθ → 1). As type compliance increases, the gap between the
tractable unnormalized likelihood and the true normalized likelihood (logZθ) closes. We estimate how Zθ over
TACSTaR epochs to verify that this gap is negligible after training.

4.1 EXPERIMENT SETUP

We provide an overview of our TAC and baseline DSPy setups below:

• TACs. We parametrize TAC adaptors to take the form of rank-1 LoRA models (Hu et al., 2022) on the
attention weights, with 573, 440; 1, 413, 120; and 958, 464 parameters per adaptor for gemma-1.1-7b-it,
gemma-2-27b-it and Qwen3-8B respectively. For parse and canon implementations (§2.1), we leverage
the LangFun library, which prompts LLMs to generate Python classes and objects, and parses their responses.
LoRA weights are initialized (‘zero-init’) following Hu et al. (2022).

• DSPy. We conduct prompt-optimizing baseline experiments under DSPy, with base models served on vLLM. We
subclass dspy.Signature to represent training examples, with property names and types identical to their
TAC counterparts (some examples are listed in §G.2). We employ XGrammar (Dong et al., 2024) for schema-based
constrained decoding for all experiments. We implement two types of reasoning workflows for all tasks: 1) the
native dspy.ChainOfThought module, and 2) an explicitly two-step composite module that resembles
cot-cascade-structure patterns under TACs. We experiment with various prompt optimization configurations un-
der dspy.MIPROv2 (Opsahl-Ong et al., 2024) and dspy.BootstrapFewShotWithRandomSearch
(Khattab et al., 2024).

We conduct experiments of 5 reasoning-heavy tasks, on subsets from datasets MGSM11 (Shi et al., 2023), FinQA
(Yang et al., 2018), HotPotQA (Yang et al., 2018) and MuSR (Sprague et al., 2024b) respectively. Details of
experiment setup are described in §G.

4.2 COMPARISON AGAINST PROMPT-OPTIMIZING AND UNTYPED STAR BASELINES.

Figure 2 lists MGSM, MGSM-SymPy, FinQA, and MuSR results from best-performing TACs and DSPy models.
In addition, we compare the untyped (original) STaR against typed TAC results on MGSM on Gemma models.

TACs are competitive against prompt-optimizing baseline methods. We observe that TACs consistently and
significantly outperform DSPy baselines in every setting. The performance gap is especially wide when 1) the base
model is smaller, and 2) the task involves structured inputs (FinQA) or structured outputs (MGSM-SymPy).12

11The MGSM-SymPy task uses the same problems of MGSM, but additionally restrict the outputs to be rational expressions
under SymPy. This variant was specifically included to test the framework’s ability to generate and comply with highly
structured, code-like output.

12We also compare between TACSTaR-adapted and un-adapted models on the same LangFun prompts in §B.2, and find that
TACSTaR consistently outperforms the un-adapted counterparts.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Base Model DSPy TAC

gemma-1.1-7b-it 0.7% 9.7%
gemma-2-27b-it 12.7% 34.0%

Qwen3-8B 12.0% 24.7%

(a) FinQA

Base Model DSPy TAC

gemma-1.1-7b-it 36.5% 62.6%
gemma-2-27b-it 51.5% 65.0%

Qwen3-8B 61.5% 63.7%

(b) MuSR

Base Model DSPy TAC STaR

gemma-1.1-7b-it 1.6% 27.3% 10.5%
gemma-2-27b-it 81.9% 82.2% 76.9%

(c) MGSM

Base Model DSPy TAC

gemma-2-27b-it 57.1% 75.9%

(d) MGSM-SymPy

Figure 2: Comparison between best performing prompt-optimizing methods under DSPy and TACs (full results can
be found in Sections H to L). We report the best DSPy result for each task.

1 2 3 4 5 6 7 8 9
Epoch #

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

Av
er

ag
e

EC
PM

 a
cr

os
s l

an
gu

ag
es

(a) Average estimate logZθ over validation
set inputs versus # of TACSTaR epochs over
MGSM languages. Note that later epochs
(as early as epoch 5) do not have samples
from all languages, as some languages early-
stopped.

At the end of epoch Failure rate

1 83.0%
2 1.0%
3 1.6%
4 0.4%

(b) Average MGSM training data parsing
failure rate vs # of epochs of TACSTaR on
gemma-1.1-7b-it. The pattern is cot-
cascade-structure.

Figure 3: Type compliance during TAC training.

TACSTaR compares favorably against the original STaR algorithm on unstructured data. On the MGSM
task (Fig. 2c), the original (untyped) STaR algorithm scored an average accuracy of 76.9 and 10.5 (from
gemma-2-27b-it and gemma-1.1-7b-it respectively), lower than variants of reasoning TAC patterns on
the same dataset. This demonstrates that the structured, typed approach of TACs improves performance over the
untyped STaR baseline.

4.3 FLEXIBLE POSTERIOR INFERENCE HELPS TAC PERFORMANCE.

Amortized inference at training time is effective. The Amortized TACSTaR algorithm (§3.2) brings consistent
improvement over vanilla TACSTaR on 3 tasks (Fig. 4a). Notably, the gains are most substantial on FinQA (+5.7
points). This suggests that amortized inference is particularly valuable for complex tasks where the initial sampling
or fixed rationalization heuristics struggle to find valid latent traces, allowing the model to learn a more effective
inference strategy.

Classification with renormalized posterior at inference time is effective. We renormalize importance sampling
estimates (Eq. (4)) to estimate the output label posterior pθ(z2 | z1) for the MuSR classification task, and

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Task TACSTaR Amortized TACSTaR

MGSM 82.2 82.4
FinQA 36.0 41.7
HotPotQA 32.0 34.0

(a) Comparison between TACSTaR and Amortized TACSTaR
on cot-cascade-structure / gemma-2-27b-it.

Base Model Cla. Gen.

gemma-1.1-7b-it 62.6 62.1
gemma-2-27b-it 65.0 51.6

(b) Comparison between classification and uncon-
strained generation results on MuSR.

Figure 4: Comparison between ‘default’ and more informative inference methods.

output the label with highest probability. Figure 4b shows that the renormalized-posterior classifier outperforms
unconstrained generation on both gemma-1.1-7b-it and gemma-2-27b-it base models.

4.4 TAC MODELS RAPIDLY ACHIEVE HIGH TYPE COMPLIANCE.

We argued in §3.1 that optimizing the unnormalized likelihood drives the model towards structural compliance. The
average MGSM parsing error rate during training (Fig. 3b) suggests that TACs learn compliance fast. We further
empirically verify this by estimating the partition function Zθ — which represents the total probability mass the
model assigns to type-compliant outputs (the Estimated Compliant Probability Mass, ECPM) — throughout training.
We estimate logZθ on the validation sets of the MGSM benchmark during training of the cot-cascade-structure
pattern on gemma-1.1-7b-it. We sample 100 generations of entire traces without type-compliant masking
per input with temperature = 1, top-p = 1, and top-k set to the vocabulary size. Figure 3a shows that the
model rapidly learns to comply with the type constraints. The average logZθ approaches −0.005 by epoch 9,
corresponding to an ECPM of exp(−0.005) ≈ 99.5%, and thus confirms that the degree of misspecification
(1−Zθ) is negligible. Since the difference between unnormalized and normalized likelihood gradients is bounded
by a multiplicative factor of (1− Zθ) (Theorem 2), our empirical estimates imply that the difference is indeed
small at the end of training, and TACSTaR M-step (§3.1) approaches the true MLE update. Moreover, since logZθ

is the difference between normalized and unnormalized likelihoods, the small magnitude suggests it is practical to
do model selection with unnormalized likelihood directly, after a few epochs of training.

5 RELATED WORK

The challenge of adapting LLMs to complex problems involving structured workflows and type constraints
intersects with several lines of research, including programmatic LM workflows, probabilistic programming,
parameter-efficient fine-tuning, and constrained decoding. We defer a more extensive survey to §A.

6 CONCLUSION

We have presented Type-Compliant Adaptation Cascades (TACs), a novel probabilistic programming framework
designed to empower ML practitioners to design trainable workflows that adapt to data. Our findings demonstrate
that TACs’ gradient-based learning paradigm is highly effective, consistently outperforming strong prompt-
optimization baselines. Moreover, we also find flexible posterior inference of TACs at both training and inference
time help with performance. We also find that empirically, the model learns to comply with type constraints fast in
training, justifying the assumptions in our theoretical results. These results underscore the versatility and efficacy
of TACs as a scalable paradigm for adapting to complex, reasoning-heavy tasks.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

David Belanger and Andrew McCallum. Structured prediction energy networks. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48, ICML’16, pp.
983–992. JMLR.org, 2016.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query language for
large language models. Proc. ACM Program. Lang., 7(PLDI), June 2023. doi: 10.1145/3591300. URL
https://doi.org/10.1145/3591300.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: fast, non-invasive constrained
generation. In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep universal probabilistic programming.
J. Mach. Learn. Res., 20:28:1–28:6, 2019. URL http://jmlr.org/papers/v20/18-403.html.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. CoRR, abs/1406.2751, 2014. URL https:
//api.semanticscholar.org/CorpusID:10872458.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou, and Wai Lam. On the worst prompt performance of large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=Mi853QaJx6.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/
langchain.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa, Matt
Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. FinQA: A dataset of numerical reasoning
over financial data. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3697–3711,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.300. URL https://aclanthology.org/2021.emnlp-main.
300.

Shay B. Cohen, Carlos Gómez-Rodrı́guez, and G. Satta. Elimination of spurious ambiguity in transition-based
dependency parsing. ArXiv, abs/1206.6735, 2012. URL https://api.semanticscholar.org/
CorpusID:15438603.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes, Yuhuai Wu,
Henryk Michalewski, Rif A. Saurous, Jascha Sohl-dickstein, Kevin Murphy, and Charles Sutton. Language
model cascades, 2022. URL https://arxiv.org/abs/2207.10342.

10

https://doi.org/10.1145/3591300
http://jmlr.org/papers/v20/18-403.html
https://api.semanticscholar.org/CorpusID:10872458
https://api.semanticscholar.org/CorpusID:10872458
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Mi853QaJx6
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://aclanthology.org/2021.emnlp-main.300
https://aclanthology.org/2021.emnlp-main.300
https://api.semanticscholar.org/CorpusID:15438603
https://api.semanticscholar.org/CorpusID:15438603
https://arxiv.org/abs/2207.10342

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen. Xgrammar:
Flexible and efficient structured generation engine for large language models. Proceedings of Machine Learning
and Systems 7, 2024.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding for structured
NLP tasks without finetuning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 10932–10952, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.674. URL
https://aclanthology.org/2023.emnlp-main.674/.

Saibo Geng, Hudson Cooper, Michał Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin, Robert West, Eric
Horvitz, and Harsha Nori. Generating structured outputs from language models: Benchmark and studies, 2025.
URL https://arxiv.org/abs/2501.10868.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 18. MIT Press, 2016.
http://www.deeplearningbook.org.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In
ICLR. OpenReview.net, 2020. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2020.
html#HoltzmanBDFC20.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/houlsby19a.html.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Yasaman Jafari, Dheeraj Mekala, Rose Yu, and Taylor Berg-Kirkpatrick. MORL-prompt: An empirical analysis of
multi-objective reinforcement learning for discrete prompt optimization. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 9878–
9889, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.findings-emnlp.577. URL https://aclanthology.org/2024.findings-emnlp.577/.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts, and Matei Zaharia.
Demonstrate-search-predict: Composing retrieval and language models for knowledge-intensive NLP. arXiv
preprint arXiv:2212.14024, 2022.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful
Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts.
Dspy: Compiling declarative language model calls into self-improving pipelines. 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

11

https://aclanthology.org/2023.emnlp-main.674/
https://arxiv.org/abs/2501.10868
http://www.deeplearningbook.org
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2024.findings-emnlp.577/

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, pp. 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc. ISBN 1558607781.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243/.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353/.

Chu-Cheng Lin and Jason Eisner. Neural particle smoothing for sampling from conditional sequence models. In
Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pp. 929–941, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1085. URL https://aclanthology.org/N18-1085/.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R. Gormley, and Jason Eisner. Limitations of autoregressive
models and their alternatives. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur,
Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 5147–5173, Online, June 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.naacl-main.405. URL https://aclanthology.org/2021.naacl-main.405.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt tuning
can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 61–68, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.acl-short.8/.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 46534–46594. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

Arya McCarthy, Hao Zhang, Shankar Kumar, Felix Stahlberg, and Ke Wu. Long-form speech translation through
segmentation with finite-state decoding constraints on large language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 247–257,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
19. URL https://aclanthology.org/2023.findings-emnlp.19/.

12

https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/N18-1085/
https://aclanthology.org/2021.naacl-main.405
https://aclanthology.org/2022.acl-short.8/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://aclanthology.org/2023.findings-emnlp.19/

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In Eric P. Xing and
Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pp. 1791–1799, Bejing, China, 22–24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/mnih14.html.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia, and
Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model programs.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 9340–9366, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.525. URL https:
//aclanthology.org/2024.emnlp-main.525/.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani.
Synchromesh: Reliable code generation from pre-trained language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=KmtVD97J43e.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt optimization
with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 7957–7968, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.494. URL
https://aclanthology.org/2023.emnlp-main.494/.

Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J. Mitra, Adriana Schulz, Karl D. D. Willis, and Jiajun
Wu. Neurosymbolic models for computer graphics. Computer Graphics Forum, 42(2):545–568, 2023. doi:
https://doi.org/10.1111/cgf.14775. URL https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.14775.

Roni Rosenfeld. Two Decades of Statistical Language Modeling: Where Do We Go From Here? 6
2018. doi: 10.1184/R1/6611138.v1. URL https://kilthub.cmu.edu/articles/journal_
contribution/Two_Decades_of_Statistical_Language_Modeling_Where_Do_We_
Go_From_Here_/6611138.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Language models are multilingual
chain-of-thought reasoners. In ICLR, 2023.

Dilara Soylu, Christopher Potts, and Omar Khattab. Fine-tuning and prompt optimization: Two great steps that
work better together. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 10696–10710, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.597. URL
https://aclanthology.org/2024.emnlp-main.597/.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu
Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-thought helps mainly on math
and symbolic reasoning, 2024a. URL https://arxiv.org/abs/2409.12183.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Testing the limits
of chain-of-thought with multistep soft reasoning. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=jenyYQzue1.

13

https://proceedings.mlr.press/v32/mnih14.html
https://aclanthology.org/2024.emnlp-main.525/
https://aclanthology.org/2024.emnlp-main.525/
https://openreview.net/forum?id=KmtVD97J43e
https://aclanthology.org/2023.emnlp-main.494/
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14775
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14775
https://kilthub.cmu.edu/articles/journal_contribution/Two_Decades_of_Statistical_Language_Modeling_Where_Do_We_Go_From_Here_/6611138
https://kilthub.cmu.edu/articles/journal_contribution/Two_Decades_of_Statistical_Language_Modeling_Where_Do_We_Go_From_Here_/6611138
https://kilthub.cmu.edu/articles/journal_contribution/Two_Decades_of_Statistical_Language_Modeling_Where_Do_We_Go_From_Here_/6611138
https://arxiv.org/abs/1707.06347
https://aclanthology.org/2024.emnlp-main.597/
https://arxiv.org/abs/2409.12183
https://openreview.net/forum?id=jenyYQzue1

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton
Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor,
Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya
Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony
Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple
Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus Martins,
Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack
Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn
Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem
Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly McNealus,
Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark
Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew
Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi
Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan,
Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev,
Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R.
Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy
Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon,
Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang,
Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley,
Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu,
Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. Deep
probabilistic programming. In International Conference on Learning Representations, 2017.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT: Reasoning with reinforced
fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7601–7614, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.410. URL
https://aclanthology.org/2024.acl-long.410/.

Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’95, pp. 419–428, New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014. doi:
10.1145/218380.218498. URL https://doi.org/10.1145/218380.218498.

Greg C. G. Wei and Martin A. Tanner. A monte carlo implementation of the em algorithm and the poor man’s
data augmentation algorithms. Journal of the American Statistical Association, 85:699–704, 1990. URL
https://api.semanticscholar.org/CorpusID:123027134.

14

https://arxiv.org/abs/2408.00118
https://aclanthology.org/2024.acl-long.410/
https://doi.org/10.1145/218380.218498
https://api.semanticscholar.org/CorpusID:123027134

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai,
and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=gEZrGCozdqR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022b. URL
https://api.semanticscholar.org/CorpusID:246411621.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn., 8(3–4):229–256, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun
Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and Chi Wang. Autogen: Enabling
next-gen LLM applications via multi-agent conversations. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=BAakY1hNKS.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan
Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou,
Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li,
Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang,
Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D.
Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2369–2380, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.
org/D18-1259/.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. ReAct:
Synergizing reasoning and acting in language models. In International Conference on Learning Representations
(ICLR), 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin, and James
Zou. Optimizing generative ai by backpropagating language model feedback. Nature, 639:609–616, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with rea-
soning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 15476–15488. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=92gvk82DE-.

15

https://openreview.net/forum?id=gEZrGCozdqR
https://api.semanticscholar.org/CorpusID:246411621
https://doi.org/10.1007/BF00992696
https://openreview.net/forum?id=BAakY1hNKS
https://aclanthology.org/D18-1259/
https://aclanthology.org/D18-1259/
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://openreview.net/forum?id=92gvk82DE-

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

APPENDICES

Program View Probabilistic View

τ -typed object Random variable ∈ Σ∗ restricted to strings ∈ valid(τ)
LM adaptor with weights θ, with output restricted to
τ -typed objects

Unnormalized conditional distribution pLM (zt |
zs;θ)I(zt ∈ valid(τ))

Deterministic algorithm f : τi → τo Degenerate distribution δcanon(f(parse(x,τi)))(y)
parse and canon functions that convert typed ob-
jects to/from LM inputs/outputs

Measurable maps between object domain O and string
domain Σ∗

Executing a workflow to obtain z1...M Sampling from joint unnormalized probability
p̃θ(z1...M) =

∏
k p̃θ(zTk

| zSk
)

Probability that a stochastic workflow succeeds Zθ = Prpθ
(all nodes are valid)

Table 1: Dual semantics: how TAC concepts map between their program and probabilistic views.

A BACKGROUND AND RELATED WORK

Programmatic LM workflows. A large body of work exposes LMs through programmed pipelines as typed
or templated modules, with declarative constraints and optimizers, such as DSPy (Khattab et al., 2022; 2024),
LMQL (Beurer-Kellner et al., 2023), and LangChain (Chase, 2022). These systems typically specify structure
and then tune prompts or few-shot exemplars. They do not cast the entire workfrlow as a single probabilistic
object with learnable continuous parameters, and a likelihood objective. While there have been proposals that
optimized weights under such programmatic pipelines (such as BetterTogether (Soylu et al., 2024)), TACs
differs fundamentally in its principled yet optimization-friendly probabilistic formulation, which enables both
theoretically justified training methods (§3.1) and advanced inference techniques (§3.2).

Probabilistic programming and structured prediction. Probabilistic programming languages tailored for
machine learning, such as Edward (Tran et al., 2017) and Pyro (Bingham et al., 2019), combine differentiable
components with stochastic control flow. On the other hand, classical structured prediction (Lafferty et al., 2001;
Belanger & McCallum, 2016) provides tools for handling global constraints in unnormalized models. Our
formulation connects these threads to LM workflows: each typed hyperedge is an unnormalized conditional whose
type compliance functions as a partition function term Zθ ≤ 1. This distinct perspective allows us to train with a
tractable objective, whose bias vanishes as type compliance rises.

Problem-solving strategies and adapting for reasoning. Techniques like Chain-of-Thought (CoT) (Wei et al.,
2022b) and Self-Refine (Madaan et al., 2023) leverage prompting to elicit intermediate problem-solving steps
or iterative improvements from LMs, often boosting performance on complex tasks. Methods such as STaR
(Zelikman et al., 2022) and ReFT (Trung et al., 2024) further adapted the LM to reason. We adopt the spirit of
STaR, but place it inside a hypergraph to propose typed and multi-step rationalizations (§3.1). We also introduce
an amortized variant that learns to propose rationalizations, rather than relying solely on heuristics (§3.2).

Constrained and schema-aware decoding. To improve output reliability, various methods enforce grammar-
based constraints during LLM generation (Poesia et al., 2022; Geng et al., 2023; McCarthy et al., 2023;
Beurer-Kellner et al., 2024; Geng et al., 2025) have been proposed. These methods generally modify local
conditional distributions over next tokens, to mask out continuations that are incompatible with the given input
and grammar. In contrast, our objective learns parameters so that type-compliant trajectories carry increasing
probability mass globally, improving validity and task accuracy.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Parameter-efficient adaptation. LoRA and related PEFT methods (Houlsby et al., 2019; Hu et al., 2022; Li
& Liang, 2021; Lester et al., 2021; Liu et al., 2022) enable light-weight adaptation. We use small adaptors to
highlight data-efficiency and show that gains stem from typed workflow learning rather than sheer capacity.

Connection to Reinforcement Learning. The TACSTaR training procedure (§3.1) can be viewed through
the lens of policy optimization. As Zelikman et al. (2022) observed, the STaR objective closely resembles the
REINFORCE algorithm (Williams, 1992). Similarly, the M-step in the TACSTaR algorithm can be interpreted as
optimizing the TAC workflow policy under REINFORCE, where a binary reward is assigned upon successfully
generating the correct output.

We adopt the MC-EM framing as it provides a principled approach for likelihood maximization in the presence of
annotated output data. While more advanced RL techniques (e.g., PPO (Schulman et al., 2017) or actor-critic
methods (Konda & Tsitsiklis, 1999)) work with non-binary reward functions, they often introduce complexity,
such as training value functions, which are difficult to estimate over complex, typed latent spaces. Furthermore, the
exploration challenge often faced by policy gradient methods in sparse reward settings is significantly mitigated by
both the rationalization heuristic and the inference network in Amortized TACSTaR (§3.2) in the E-step. This
mechanism effectively guides the sampling process towards successful trajectories using the known outputs — a
technique specific to this supervised adaptation context.

B ADDITIONAL STUDIES ON WORKFLOW PATTERN DESIGN

In this section, we conduct additional experiments that vary the pattern structures, and evaluate how such changes
affect performance. Specifically, we would like to answer the following questions:

• (§B.2) Is adaptation with reasoning workflows effective? The TAC framework gives practitioners great
freedom in designing a workflow that reason in the process. We hypothesize that adapting with such
explicit structures improves performance on tasks that require complex reasoning.

• (§B.3) How do TAC design variations affect performance? We evaluate how such TAC design variations
for the same task affect performance.

B.1 END-TO-END TRAINABLE WORKFLOWS AS TACS.

The declarative and flexible nature of TACs enable practitioners to rapidly implement end-to-end trainable
workflows. We implement some common patterns as TACs:

• Direct adaptation of an LM to the downstream task without any latent structure corresponds to common
supervised PEFT methods surveyed in §A. The direct pattern (Fig. 5a) is a singleton TAC with no latent
nodes.

• Adapting with latent rationales corresponds to patterns that learn to generate rationales for the task at
hand Zelikman et al. (2022). There are several possible TAC structure designs that incorporate rationales:
for example, cot-type-structure (Fig. 5b) maps the input to a rationale-output typed object, from which
the task output is deterministically extracted. Alternatively, cot-cascade-structure (Fig. 1a) introduce
rationales as distinct nodes in the TAC hypergraph, which transforms into the task output under an adaptor.

• Trainable self-refinement refers to an end-to-end trainable variant of self-refine (Madaan et al., 2023),
where the model first sketches a task output, and iteratively refine it. Without TAC, a practitioner would
have to resort to manually writing tedious postprocessing functions for the intermediate results. On the
other hand, the TAC counterpart refine-structure (Fig. 6 in §F) is straightforward.

For the MGSM-SymPy task, we experiment with the expression-cascade-structure pattern (Fig. 1b), which
additionally imposes the constraint that the output must be a rational number represented by an arithmetic

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

z1
type: τi

z2
type: τo

(τi, τo,θ1)

(a) direct

z1
type: τi

z3
type: τro

z2
type: τo

(τi, τro,θ2)

extract: τro → τo

(b) cot-type-structure

Figure 5: Workflow patterns experimented in this paper, with increasing structural complexity from left to right. In
the most complicated pattern expression-cascade-structure we illustrate the workflow with example node values.
Dashed-boundary nodes indicate variables that are not observed at training time. And solid-boundary nodes
indicate nodes with training time observable values. A main message of this work is that instead of defining
workflows imperatively as fixed-parameter systems, we treat an entire typed workflow as a single probabilistic
program, whose parameters are lightweight PEFT modules, allowing end-to-end training with latent
variables.

expression tree. Such type constraints often reflect business logic (for example, we expect the MGSM dataset to
have rational number answers), and may be necessary when the TAC forms a component in a larger system.

B.2 EFFECTIVENESS OF ADAPTATION WITH REASONING WORKFLOWS

To evaluate whether adaptation with reasoning workflows is effective, we compare cot-cascade-structure,
and refine-structure TACs against direct on the 3 tasks MGSM, FinQA and HotPotQA, on base models
gemma-2-27b-it and gemma-1.1-7b-it. Table 2 shows that both cot-cascade-structure significantly
outperforms direct on MGSM and FinQA on both gemma-2-27b-it and gemma-1.1-7b-it. But
cot-cascade-structure slightly underperforms direct on HotPotQA. These results largely agree with the meta
study done by Sprague et al. (2024a), which also reported that tasks that require arithmetic and symbolic reasoning,
such as MGSM and FinQA, benefit the most from CoT, while a huge portion of previous work saw that CoT
degrades performance for multihop QA. However, we note that the refine-structure TAC (Fig. 6) consistently
outperform the direct baseline in all 3 tasks on gemma-2-27b-it, showcasing the effectiveness of the adaptive
refinement paradigm.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

gemma-2-27b-it gemma-1.1-7b-it

Dataset direct cot-cascade-structure refine-structure direct cot-cascade-structure

MGSM 24.7 82.2 78.6 5.1 27.3
FinQA 17.3 36.0 23.7 3.0 9.7
HotPotQA 34.0 32.0 39.0 — —

Table 2: Comparison between direct and reasoning workflows. For the MGSM dataset, we report per-language
accuracies in Table 5. The difference between best performing runs and direct are statistically significant/marginally
significant: for MGSM and FinQA p < 0.05 (both gemma-2-27b-it and gemma-1.1-7b-it), and for
HotPotQA p = 0.07 under paired permutation tests. Per-language accuracy numbers of the MGSM dataset are in
§H.

Task adaptation with TACSTaR is effective. To evaluate whether the efficacy of TACs can be attributed to our
proposed TACSTaR method, we also compare adapted TAC workflows against those with the same hypergraph
structure, but with un-adapted weights (i.e., all adaptors in the TAC use base model weights). Both TACSTaR trained
and un-adapted models use the same structured LangFun prompts that are similar to examples listed in §N. The
significant gap between adapted and un-adapted results in Table 3 indicate that the TACSTaR algorithm is effective.
Notably, un-adapted models still outperform direct workflows (listed in Table 2), indicating that LangFun’s
type-inducing prompts can invoke somewhat effective test-time computation over the TAC hypergraph structure.

Task Structure TACSTaR Un-adapted

MGSM cot-cascade-structure 82.2 45.4
MGSM cot-type-structure 80.4 74.7
MGSM-SymPy expression-cascade-structure 75.9 69.5
FinQA cot-cascade-structure 36.0 13.0
HotPotQA refine-structure 39.0 24.0

Table 3: Comparison between TACSTaR-adapted and un-adapted gemma-2-27b-it. The differences are all
statistically significant (p < 0.05) under paired permutation tests.

B.3 EFFECTS OF DIFFERENT TAC DESIGNS

Decoupling rationale and output modeling helps performance. cot-cascade-structure (Fig. 1a) achieves a
higher score than cot-type-structure (Fig. 5b) on the MGSM task (Table 4), suggesting that modeling the rationale
and task output generation with distinct adaptors helps performance. By using distinct adaptors, the workflow
allows specialization: the first adaptor focuses on reasoning, while the second specializes in synthesis, reducing the
complexity burden on a single monolithic step. The positive result again highlights how the TAC formalism can
help practitioners iterate and experiment with different multi-adaptor cascade designs, which would be tedious
otherwise.

Robustness to Semantic Constraints. Comparing performance on MGSM and the more constrained MGSM-
SymPy task reveals a key advantage of the TAC framework’s robustness. As shown in Table 4, the best-performing
TAC model sees a modest performance drop, from 82.2% on MGSM to 75.9% on MGSM-SymPy, when required
to generate a valid symbolic expression.13 This contrasts sharply with the prompt-optimizing baseline (Fig. 2). The
best DSPy configuration experiences a much more significant degradation, plummeting from 81.9% on MGSM to

13Sample expressions generated under expression-cascade-structure are listed in §M.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

just 57.1% on MGSM-SymPy. The substantially smaller performance drop for TACs underscores the brittleness of
discrete prompt optimization when faced with strict structural requirements. The TAC framework’s gradient-based
adaptation within a typed system proves to be significantly more resilient, making it a more reliable paradigm for
tasks demanding structural compliance.

MGSM MGSM-SymPy

cot-type-structure cot-cascade-structure expression-cascade-structure
80.4 82.2 75.9

Table 4: Effects of different TAC designs on the MGSM dataset, demonstrating the impact of workflow structure
on performance. The cot-cascade-structure (which decouples rationale generation from the final answer
synthesis) outperforms the monolithic cot-type-structure. The expression-cascade-structure result shows strong
performance on the more constrained MGSM-SymPy task.

C ALGORITHMS

C.1 FORWARD AND BACKWARD

Algorithm 1 (forward) executes the probabilistic program represented by a TAC C = (Z,E). Starting from a
given input node value z∗1, the algorithm traverses the hypergraph following a topological order, and terminates
when all edges ∈ Z have been visited. forward takes C and z∗1 as input arguments. forward also takes the
following as arguments:

• sampler configuration κ for different sampling techniques, e.g., varying temperature, nucleus, and top-k
sampling

• maximum number of sampling attempts

Algorithm 2 (backward) takes as input (C,Z∗), where C = (Z,E) where E = (e1 . . . eK) is a TAC, and
Z∗ are value assignments of Z. We assume the log probability pLM (y | x;θk) is auto-differentiable with
regard to all adaptor hyperedges in a TAC. Algorithm 2 returns unnormalized log joint probabilities of Z∗

under C: log p̃θ(Z∗), the per-node generation log probabilities (log pθ(z2 | ·) . . . log pθ(zM | ·)), and also
gradients of LM adaptors: ∇θk

log p̃θ(Z
∗) for adaptor hyperedges’ indices k. We note that backward is easily

parallelizable: all adaptor edges can be processed at the same time.

C.2 TACSTAR

The TACSTaR algorithm (Algorithm 3) takes as input (C, {x∗
i , y

∗
i | i ∈ [1..Dtrain]}), where C is the TAC to train,

and {(x∗
i , y

∗
i) | i ∈ [1..Dtrain]} is the training dataset. As we described in §3.1, TACSTaR uses a ‘fallback TAC’

heuristics in hope to obtain a sample when the forward algorithm fails.

Building Fallback TAC. Given a TAC C = (Z,E) with input node and output node typed τi and τo respectively,
we build its fallback TAC Cfallback = (Z′,E′) (denoted as the function build fallback in Algorithm 3) as
follows:

• The input node of Cfallback: z′1 is of the product type τio = τi × τo, representing a data container that
holds one object of type τi and another object of type τo.

• All other nodes ∈ Z have their counterpart nodes in Z ′ (with the same types and indices).

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Algorithm 1 TAC Forward Algorithm (forward)

Input: TAC cascade C = (Z,E) where Z = {z1 . . . zM} and E = {e1 . . . eK}, input object: z∗1, sampler
configuration κ, Nmax for maximum number of sampling attempts.

Output: Sampled values (z∗2, . . . , z
∗
M).

1: Determine a topological ordering of edges in E. Let the sorted hyperedges be e′1 . . . e
′
K .

2: Z∗
already sampled ← {z∗1}.

3: for k ∈ [1..K] do
4: Assert the source nodes of e′k is a subset of zalready sampled.
5: if e′k = (τi, τo,θ) is a type-constrained LM adaptor then
6: # type-constrained LM adaptors have a single source node and a single target node.
7: x← canonicalized representation of e′k’s source node.
8: while number of attempts ≤ Nmax do
9: Try draw y ∼ pLM (· | x;θ, κ)

10: if parse(y, τo) ̸= error then
11: t← index of e′k’s target node.
12: z∗t ← y
13: Z∗

already sampled ← Zalready sampled ∪ {z∗t }
14: break
15: end if
16: end while
17: else if e′k is a deterministic algorithm f then
18: # In this work we assume f ’s inputs and outputs are sorted by node index in C.
19: Of input ← parsed objects of e′k’s source nodes, sorted by node index.
20: Ofoutput ← f(Of input)
21: Z∗

foutput ← canonicalized representations of objects ∈ Ofoutput, sorted by node index.
22: Zalready sampled ← Z∗

already sampled ∪ Z∗
foutput

23: end if
24: end for
25: return Zalready sampled − {z∗1}.

• We copy each hyperedge e ∈ E over to E′, connecting nodes with the same indices. In the case that e is
a deterministic algorithm hyperedge, and has z1 as one of its source nodes, we modify the counterpart
hyperedge e′ to have a deterministic algorithm that first extracts the original object parse(z1) from
parse(z′1), and then pass parse(z1) to the original algorithm as input.

Adaptors in Cfallback use no-op weights, falling back to the behavior of the base model. We denote such no-op
weights as θ0. For example, Fig. 7 is the Cfallback for Fig. 5b.

C.3 AMORTIZED TACSTAR

The Amortized TACSTaR algorithm (Algorithm 4) builds upon Algorithm 3 to introduce an inference network TAC.
While Cfallback used fixed no-op weights that behave identical to the base language model, Amortized TACSTaR
leverages an inference network TAC C ′ with trainable parameters.

Building the inference network C ′. Given a TAC C = (Z,E) with input node and output node typed τi and τo
respectively, we build the adaptive fallback TACC ′ = (Z′,E′) (denoted as the function build infer net in
Algorithm 4). At a high level, every adaptor hyperedge that generates latent variables in C is mapped into a

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Algorithm 2 TAC Backward Algorithm (backward)

Input: C = (Z,E) and sample Z∗ = {z∗1, z∗2, . . . , z∗M}
Output: (log p̃θ(Z

∗), (log pθ(z2 | ·) . . . log pθ(zM | ·)), {∇θk
log p̃θ(Z

∗) | ek ∈
E is an adaptor hyperedge})

1: Initialize log-probability accumulator L ← 0.
2: for each LM adaptor hyperedge ek = (τi, τo,θk) do
3: Let z∗i ∈ Z∗, z∗o ∈ Z∗ be the sample value of ek’s input and output nodes zi (typed τi) and zo

respectively.
4: (ℓ,gk)← peft backward(log pLM (z∗o | canon(parse(z∗i , τi));θ).
5: L ← L+ ℓ
6: keep track of ℓ by its node index.
7: end for
8: # For nodes from deterministic hyperedges, set log prob to 0 as they have no learnable parameters.
9: return (L, (log pθ(z2 | ·) . . . log pθ(zM | ·)), {gk | ek ∈ E is an adaptor hyperedge}).

counterpart in C ′ that also depends on both observed a τi-typed input and a τo-typed output, now encoded as z′1,
typed τio. Specifically we build C ′ with the following procedure:

• The input node of C ′: z′1 is of the product type τio = τi × τo, as with build fallback.

• All nodes ∈ Z have their counterpart nodes in Z ′ (with the same types and indices), except for {z1, z2}.14

• For each hyperedge e ∈ E,

– In the case that e is a deterministic algorithm hyperedge, and has z1 as one of its source nodes,
we add a counterpart hyperedge e′ that connect counterpart nodes in Z′, with its deterministic
algorithm modified to typecheck, as build fallback.

– Otherwise, e is an adaptor hyperedge. Denoting its source node as zs and target node as zt:

* If zt = z2, we continue since zt has no counterpart C ′.
* If zs = z1 and zt ̸= z2, we add a counterpart hyperedge e′ = (τs, τt,θnew) connecting

counterpart nodes z′s and z′t. θnew indicates the parameter vector of a new LM adaptor.
* Otherwise, zs ̸= z1 and zt ̸= z2. In this case, we create e′ to be an adaptor that is conditioned

on both z′s and z′1. To achieve this goal, we introduce into C ′ a helper node z′′s typed
τios = τi× τo× τs, and a helper hyperedge e′′ that has source nodes {z′1, z′s}, and target node
{z′′s}. e′′ is a deterministic edge that combines values in z′1 and z′s into the 3-object container
z′′s . Finally, we add e′ that connects z′′s to t as the adaptor transformation (τios, τt,θnew),
where θnew again indicates the parameter vector of a new LM adaptor.

Adaptors in C ′ are new adaptors. And we train C alternately with C ′ in Algorithm 4. The algorithm to train C ′ is
listed in Algorithm 5.

C.4 UPDATING C ′

We train the inference network C ′ to better approximate the posterior distribution defined by C alternately
(§3.2). In other words, we update adaptor parameters in C ′ so that sampled latent variables of C ′ ((ẑ3, . . . , ẑM)
obtained using forward(C ′,canon(x∗), κ)) follow the normalized distributions under C (obtained using
backward(C, (canon(x∗),canon(y∗), ẑ3, . . . , ẑM)))). To promote diversity of samples, we addition-
ally obtain samples from Cfallback (§C.2). Let Z = (z∗3, . . . , z

∗
M) be a sample out of G collected samples

14We arbitrarily designate a node ∈ Z′ that does not have an outgoing hyperedge as the output node for syntactic conformity.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Algorithm 3 TACSTaR Training Algorithm

Input: Training pairs Dtrain = {(x∗
i , y

∗
i) | i ∈ [1..|Dtrain|]}, TAC C, sampler configuration κ.

1: Cfallback ← build fallback(C)
2: for epoch in [1..num epochs] do
3: S ← {} # Successful samples
4: for training pair (x∗, y∗) ∈ Dtrain do
5: z∗1 ← canon(x∗)
6: # E-step (Sampling Latent Variables):
7: (ẑ2 . . . ẑM)← Forward(C, z∗1).
8: # Filtering (Validity Check):
9: Initialize error flag← false.

10: Set error flag← true if errors in E-step or parse(ẑ2) ̸= y∗.
11: # Heuristics Fallback (Addressing Forward Failure):
12: if error flag is true then
13: z′∗1 ← canon((x∗, y∗))
14: (ẑ′2 . . . ẑ

′
M)← forward(Cfallback, z

′∗
1)[0].

15: if no error was raised and parse(ẑ′2) = y∗ then
16: (ẑ2 . . . ẑM)← (ẑ′2 . . . ẑ

′
M)

17: Set error flag← false.
18: end if
19: end if
20: if error flag is false then
21: S ← S ∪ {(z∗1, ẑ2 . . . ẑM)}
22: end if
23: end for
24: # M-step (Parameter Update):
25: for (z∗1, ẑ2 . . . ẑM) ∈ S do
26: G← backward(C, (z∗1, ẑ2 . . . ẑM))[2]
27: optimize(C,G)
28: end for
29: end for

(Z(1), . . . ,Z(G)) from Cfallback and C ′. We approximate the posterior probability of Z under C , conditioning on
z∗1 = canon(x∗), z∗2 = canon(y∗) under the balance heuristic (Veach & Guibas, 1995) as

p̂posterior(Z) ∝
(Nfallback +Ninfer)p̃model

Nfallbackpfallback +Ninferpinfer
, (6)

where p̃model = p̃C(z
∗
1, z

∗
2, z

∗
3, . . . , z

∗
M), pfallback =

∏M
m=3 pLM (z∗m | z∗m’s source node;θ0), and pinfer =∏M

m=3 pLM (z∗m | z∗m’s source node;θnew). These values are all obtained using the backward algorithm.15 We
denote the number of samples attempted (including errors) on Cfallback = Nfallback, the number of samples attempted
(including errors) on C ′ = Ninfer. p̂posterior is normalized over the mixture so that

∑G
g=1 p̂posterior(Z

(g)) = 1.

Algorithm 5 updates adaptors in C ′ to bring its unnormalized distribution closer to Eq. (6). Since the self-
normalized approximation of the posterior distribution is consistent but biased, we require minimum numbers of
samples from C ′ and Cfallback.

15backward algorithm as presented in this work computes both gradients and probabilities. In our implementation we do
not compute gradients when they are not needed; but we omit this subtlety in Algorithm 2.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Algorithm 4 Amortized TACSTaR Training Algorithm

Input: Training pairs Dtrain = {(x∗
i , y

∗
i) | i ∈ [1..|Dtrain|]}, TAC C, sampler configuration κ.

1: C ′ ← build infer net(C)
2: for epoch in [1..num epochs] do
3: S ← {} # Successful samples
4: for training pair (x∗, y∗) ∈ Dtrain do
5: z∗1 ← canon(x∗)
6: # E-step (Sampling Latent Variables):
7: (ẑ2 . . . ẑM)← Forward(C, z∗1).
8: # Filtering (Validity Check):
9: Initialize error flag← false.

10: Set error flag← true if errors in E-step or parse(ẑ2) ̸= y∗.
11: # Heuristics Fallback (Addressing Forward Failure):
12: if error flag is true then
13: z′∗1 ← canon((x∗, y∗))
14: (ẑ′2 . . . ẑ

′
M)← forward(Cfallback, z

′∗
1)[0].

15: if no error was raised and parse(ẑ′2) = y∗ then
16: (ẑ2 . . . ẑM)← (ẑ′2 . . . ẑ

′
M)

17: Set error flag← false.
18: end if
19: end if
20: if error flag is true then
21: (ẑ3 . . . ẑM)← forward(C ′, z∗1)[0]
22: Set error flag← false if no errors in previous step.
23: end if
24: if error flag is false then
25: S ← S ∪ {(z∗1, z∗2, ẑ3, . . . ẑM)}
26: end if
27: end for
28: # M-step (Parameter Update):
29: for (z∗1, ẑ2 . . . ẑM) ∈ S do
30: G← backward(C, (z∗1, ẑ2 . . . ẑM))[2]
31: optimize(C,G)
32: end for
33: C ′ ← update inference network C ′ (§C.4).
34: end for

D FORMAL STATEMENTS AND PROOFS REGARDING TYPE COMPLIANCE

Well-specifiedness. Let C = (Z,E). We define well-specifiedness for TAC: we say θ = {θ1 . . .θK} is well-
specified if for every LM adaptor ek = (τi, τo,θk) ∈ E and for every valid canonicalized string x of type τi, the
LM distribution pLM only has support over valid outputs of type τo. Formally, ∀ valid x,

∑
y∈Dvalid(τo)

pLM (y |
x;θk) = 1 iff θ is well-specified.

We first prove that hyperedges are locally normalized (i.e., the partition function is 1) when θ is well-specified:

Lemma 1. If θ is well-specified, then for any hyperedge ek ∈ E and any valid assignment x to its source nodes,
the local partition function Zk = 1.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Algorithm 5 update infer net

Input: Training pair (x∗, y∗), model TAC C, sampler configuration κ, inference network C ′, non-adaptive
fallback Cfallback, number of samples from Cfallback: Gfallback, number of samples from C ′: Ginfer .

1: z′
∗
1 ← canon((x∗, y∗)), z∗1 ← canon(x∗), z∗2 ← canon(y∗).

2: Zcollected ← []
3: # In our implementation we give up and raise an error after 30 unsuccessful attempts.
4: while number of successful samples from Cfallback < Gfallback do
5: Try (ẑ2, ẑ3, . . . ẑM)← forward(Cfallback, z

′∗
1, κ, 1)

6: if previous step succeeded then
7: # We discard ẑ2 from Cfallback.
8: Append (ẑ3, . . . , ẑM) to Zcollected.
9: end if

10: end while
11: Nfallback ← numbers of attempts on Cfallback
12: while number of successful samples from C ′ < Ginfer do
13: Try (ẑ3, . . . ẑM)← forward(C ′, z′

∗
1, κ, 1)

14: if previous step succeeded then
15: Append (ẑ3, . . . , ẑM) to Zcollected.
16: end if
17: end while
18: Ninfer ← numbers of attempts on C ′

19: G← Gfallback +Ginfer
20: Assert G = |Zcollected|
21: Compute [p̂posterior(Z

(1) . . . p̂posterior(Z
(G))] using Eq. (6).

22: Sample g ∈ [1..G] with probability proportional to p̂posterior(Z
(g).

23: G← backward(C ′,Z(g))[2].
24: optimize(C ′,G)

Proof. ek is either an LM adaptor or a deterministic algorithm:

• If ek is an LM adaptor, Zk =
∑

y p̃θ(y | x; ek) =
∑

y∈valid(τo)
pLM (y | x;θk) = 1.

• If ek is a deterministic algorithm, by Eq. (2) Zk =
∑

y p̃(y | x; ek) = p̃(canon(f(parse(x, τi)))+
0 = 1 + 0 = 1.

We then use induction based on the TAC C’s topological structure.

Lemma 2. Let θ be a well-specified parameter vector for TAC C = (Z,E). The conditional partition function
Zθ(z1) = 1.

Proof. We use induction on the number of nodes k, following the topological sort z1, . . . zM . For clarity, here we
abuse the subscript notation for topological order, and therefore zM (instead of z2) is the output.

Let Ck be the sub-TAC induced by {z1, . . . , zk}. Its partition function is Zk(z1) =
∑

z2...zk

∏k
m=2 p̃θ(zm |

Sm), where Sm denotes the source nodes of zm under its corresponding hyperedge.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Base Case. k = 1. C1 has only z1. Z1(z1) = 1 since the product is empty.

Inductive Step. We assume Zk−1(z1) = 1. First we rewrite Zk(z1) by explicitly summing over zk. Since
z1, . . . zk is a topological order, the source nodes of zk: Sk is a subset of {z1, . . . zk−1}. We thus rewrite Zk(z1)
as

Zk(z1) =
∑

z2...zk

(
k−1∏
m=2

p̃θ(zm | Sm)

)
·

(∑
zk

p̃θ(zk | Sk)

)
. (7)

We discuss the summands by the validity of z2 . . . zk−1:

• If z2 . . . zk−1 is valid: by Lemma 1 the term
∑

zk
p̃θ(zk | Sk) = 1. This summand is therefore∏k−1

m=2 p̃θ(zm | Sm).

• If z2 . . . zk−1 is not valid: by Eqs 1 and 2 this summand is 0.

We can thus rewrite Eq. (7) as

Zk(z1) =
∑

z2,...,zk−1|valid assignments

k−1∏
m=2

p̃θ(zm | Sm). (8)

Equation (8) can be further rewritten to sum over both valid and invalid z2, . . . , zk−1 assignments (since again by
Eqs. (1) and (2), the summand is 0 for invalid assignments):

Zk(z1) =
∑

z2,...,zk−1

k−1∏
m=2

p̃θ(zm | Sm) = Zk−1(z1). (9)

Since by assumption Zk−1(z1) = 1, we thus prove by induction ZM (z1) = Zθ(z1) = 1.

Finally, we show that Lemma 2 implies the equivalence of maximizing the normalized and unnormalized
likelihoods when the true parameters are well-specified.

Theorem 1. Let Θ be the entire parameter space and let Θ′ ⊆ Θ be the subset of well-specified param-
eters. Assume θ∗ uniquely maximizes the normalized likelihood pθ(z2..M |z1) and resides ∈ Θ′. Then,
θ̂ = argmaxθ∈Θ p̃θ(z2..M |z1) =⇒ θ̂ = θ∗.

Proof. First we note ∀θ ∈ Θ,Zθ(z1) ≤ 1, since for any adaptor
∑

y p̃θ(y | x) ≤ 1 . By Eqs. (1) and (2) the
global partition function must also be ≤ 1.

We rewrite the unnormalized likelihood as a product of normalized likelihood and the partition function:

p̃θ(z2...M | z1) = pθ(z2...M | z1) · Zθ(z1) (10)

Since Zθ(z1) ≤ 1, ∀θ ∈ Θ, p̃θ(z2...M | z1) ≤ pθ(z2...M | z1).
At the well-specified true parameters θ∗ we have Zθ(z1) = 1 by Lemma 2. Therefore p̃θ∗(z2...M | z1) =
pθ∗(z2...M | z1).
By our assumption that θ∗ maximizes normalized likelihood, ∀θ ∈ Θ, pθ∗(z2...M | z1) ≥ pθ(z2...M | z1).

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Combining everything together:

p̃θ∗(z2...M | z1) = pθ∗(z2...M | z1)
≥ pθ(z2...M | z1)
≥ p̃θ(z2...M | z1)

for all θ ∈ Θ. Under the assumption θ∗ is unique, θ∗ = argmaxθ∈Θ p̃θ(z2...M | z1) = θ̂.

Theorem 2. Let θ = {θ1 . . .θK} be the union of a K-adaptor TAC’s LM adaptor parameters . If ∀zk,1 ∈
Σ∗, zk,2 ∈ Σ∗, ∥∇θ (

∑
log pLM (zk,2 | zk,1;θ)) ∥∞ ≤ G, then ∇θ logZθ ≤ 2G(1−Zθ).

Proof. Here we fix z1 = x. We denote z2...M = y. Let p(k)LM (y) be the k-th LM adaptor’s unmasked node
probability, given (x, y) as TAC input and output. We then denote pθ(y) =

∏
k p

(k)
LM as a TAC’s normalized

distribution over node assignments (without masking invalid ones). The partition function Zθ =
∑

y pθ(y |
x)I(y ∈ V) = Prpθ

(V) where V is the set of valid node assignments.

We first rewrite ∇θ logZθ as an expectation under pθ:

∇θ logZθ = Ey∼pθ(·|V) [∇θ log pθ(y)] . (11)

Using the identity
∑

y pθ(y)∇θ log pθ(y) = 0, we rewrite Eq. (11) as

∇θ logZθ = Ey∼pθ(·|V) [∇θ log pθ(y)]− Ey∼pθ
[∇θ log pθ(y)] . (12)

Let f = ∇θ log pθ(y). We can now rewrite ∥∇θ logZθ∥∞ as

∥∇θ logZθ∥∞ = ∥Ep·|V [f]− Epθ
[f] ∥∞

= ∥
∑
y

f · (pθ(y | V)− pθ(y))∥∞

≤
∑
y

∥f∥∞ · |pθ(y | V)− pθ(y)|

≤
∑
y

G · |pθ(y | V)− pθ(y)|. (13)

Noting that
∑

y |pθ(y | V)− pθ(y)| is twice the total variation between pθ and pθ(· | V), and that the total
variation between pθ and pθ(· | V) is (1−Zθ)— the sum of invalid assignments’ probabilities under pθ — we
can rewrite Eq. (13) as ∥∇θ logZθ∥∞ ≤ 2G(1−Zθ).

E IMPLEMENTATION CONSIDERATIONS

In this section we discuss practical implementation considerations. In particular, we distinguish between one-time
and per-use efforts.

E.1 ONE-TIME EFFORTS

Parsing and canonicalization. There exist multiple libraries that can readily be used to implement parse and
canon for typed data-holding objects in Python. One example is LangFun which we use extensively in the paper.
Another popular library is Pydantic, which is used in DSPy.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Type validation logic. As we briefly discussed in Footnote 5, the parse function can be used to implement
complex business logic. Such logic can usually be implemented cleanly as part of type definition (e.g., as
init and post init methods in Python).

Algorithms. The core TAC algorithms for execution and training (Algorithms listed in §C) are general and need
only be implemented once. The main computational bottlenecks in these algorithms are:

• Sampling from an LM adaptor pLM (·;θ).
• Evaluating the conditional probability of y given x under an LM adaptor: pLM (y | x;θ).
• Computing gradients of (x,y) with regard to parameters θ: ∇θ log pLM (y | x;θ).

A practical implementation can abstract these bottlenecks away, by offloading these intensive parts to dedicated
inference servers (e.g., vLLM). The core TAC logic remains a lightweight, accelerator-agnostic program.
Furthermore, since TACs use parameter-efficient fine-tuning (PEFT), the adaptor weights and gradients are small
enough to be processed quickly, often without needing dedicated accelerators for the logic itself. This design
significantly reduces the low-level engineering burden.

E.2 PER-USE EFFORTS

Once the core engine is in place, a practitioner’s effort is focused on defining a TAC hypergraph for their specific
task. Since the TAC hypergraph is essentially a data flow graph, it can be represented in a way that is directly
analogous to network architecture definitions in popular neural network frameworks such as PyTorch, where the
Module s represent hyperedges, and their forward methods connect the typed data nodes.

F ADDITIONAL TAC DIAGRAMS OF TRAINABLE WORKFLOWS

z1
type: τi

z3
type: τo

z4
type: τio

z5
type: τr

z2
type: τo

z6
type: τior

(τi, τo,θ5)
combine io : τi × τo → τio

combine ior : τio × τr → τior

(τio, τr,θ6)

(τior, τo,θ7)

Figure 6: refine-structure: refinement through cascade topology engineering. This cascade models a refinement
process where an initial output sketch is iteratively refined based on generated rationales.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

z1
type: τio

z3
type: τro

z2
type: τo

(τio, τro,θ0) extract: τro → τo

Figure 7: Cfallback for cot-type-structure. Notice that the adaptor (τio, τro,θ0) uses ‘fallback’ weights θ0 that
represent no-op weights. Since we conduct experiment on LoRA adaptors in this work, we use the zero-init vectors
as θ0.

z1
type: τio

z3
type: τr

z2
type: τir(τio, τr,θ8)

combine io ir : τio × τr → τir

Figure 8: Inference network TAC C ′ for cot-type-structure.

G FURTHER DETAILS OF EXPERIMENT SETUP

Data splits. We focus on the low-data regime of task adaptation in this work. For MGSM and MGSM-SymPy,
each language has 100/30/120 training/validation/test examples respectively. The splits are 100/30/100 and
100/30/300 for HotPotQA and FinQA respectively. For HotPotQA and FinQA, we use the first entries from the
original dataset files as our training and evaluation subsets. For MGSM experiments, we train and evaluate on each
language separately. For MuSR tasks, the splits are 100/30/120 and 100/30/126 respectively.

Evaluation. We look at exact match accuracy scores of the answers for all 5 tasks. For MGSM-SymPy
experiments, we convert answers from the dataset to integers; as for the model predictions, we evaluate the
expressions as rational numbers under SymPy16, and cast the results as integer numbers. We do not make use of
additional clues from the datasets (e.g., the rationales provided for the 8 examples in MGSM datasets).

G.1 TAC SETUP

Training procedure. We train all workflows that have latent variables with our TACSTaR and Amortized
TACSTaR algorithms, except for the original (untyped) STaR experiments. Since direct experiments do not have
latent variables, we train those models using the ordinary cross entropy loss. In all experiments we use a batch size
of 8. The Adam optimizer (Kingma & Ba, 2014) is used throughout all experiments, with a learning rate of 5e− 5.
We early-stop if no higher validation score is achieved for 4 consecutive epochs. The sampler configuration κ is
set to use a combination of top-K and nucleus sampling (Holtzman et al., 2020), where we first choose the top 40
candidates, and cut off accumulated probability mass at 0.95. To train the inference TACs, we accumulate 32
samples from Cinfer and 16 samples from the fallback model (that is, G = 48 at the end of Algorithm 5).

16https://www.sympy.org/en/index.html

29

https://www.sympy.org/en/index.html

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Decoding procedure for generation tasks. Here we denote the answer type as τo. For
each test input instance, we obtain 32 samples Ẑ(1) . . . Ẑ(32) using forward, bucket their out-
put node values parse(ẑ(1)2 , τo) . . .parse(ẑ

(32)
2 , τo) into B bins, identified by the parsed output

y1 . . . yB . We output the answer with maximum accumulated unnormalized probability mass, namely
argmaxb

∑
s∈[1..32],parse(ẑ2,τo)=yb

p̃θ(Ẑ
(s)).

Decoding procedure for classification tasks. We estimate each label c’s normalized marginal probability using
Eq. (4), with N = 32. We output the label with largest normalized marginal probability as prediction.

Object representation of data. We represent input τi and output τo as Python types. The objects are encoded as
string representations under LangFun. We design the input and output types separately to reflect the original
dataset schemata (Listings 1 to 3). As for the rationales (represented by τr in cot-type-structure and cot-
cascade-structure) we represent them as lists of strings (Listing 4). Product types are represented as new Python
classes (e.g., the product of type Question and Answer, represented as τio in Figs. 7 and 8, is a new class
QuestionAnswer). The object representation can be arbitrarily complex, with LangFun handling all canon
and parse logic (for example, Listing 6 has Answer objects embedded in multiple types; and Listing 7 has
self-referential definitions).

1 class Question:
2 question: str
3

4

5 class Answer:
6 answer: str

Listing 1: Input and output type definitions for MGSM

1 class Paragraph:
2 title: str
3 sentences: list[str]
4

5

6 class Context:
7 paragraphs: list[Paragraph]
8

9

10

11 class Answer:
12 answer: str
13

14

15 class Question:
16 id: str
17 question: str
18 context: Context

Listing 2: Input and output type definitions for HotPotQA

1 class Question:
2 question: str
3 pre_text: list[str]
4 table: list[list[str]]

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

5 post_text: list[str]
6

7

8 class Step:
9 op: str

10 arg1: str
11 arg2: str
12 res: str
13

14

15 class Answer:
16 answer: str
17

18

19 class QuestionAnswer:
20 question: Question
21 answer: Answer
22

23

24 class Answer:
25 answer: str

Listing 3: Input and output type definitions for FinQA

1 class Rationale:
2 steps: list[str]

Listing 4: Rationale type definition

1 class QuestionAnswer:
2 question: Question
3 answer: Answer

Listing 5: QuestionAnswer type definition

1 class ThinkingSteps:
2 steps: list[str]
3

4

5 class Paragraph:
6 title: str
7 sentences: list[str]
8

9

10 class Context:
11 paragraphs: list[Paragraph]
12

13

14 class SupportingFact:
15 title: str
16 sentence: str
17

18

19 class RelevantContext:

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

20 sentences: list[str]
21

22

23 class Answer:
24 answer: str
25

26

27 class Question:
28 id: str
29 question: str
30 context: Context
31

32

33 class QuestionAnswer:
34 question: Question
35 answer: Answer
36

37

38 class AnswerFirstAttemptThinkingStepsAnswer:
39 answer_first_attempt: Answer
40 thinking_steps: ThinkingSteps
41 answer: Answer
42

43

44 class QuestionAnswerFirstAttempt:
45 question: Question
46 answer_first_attempt: Answer
47

48

49 class QuestionAnswerFirstAttemptThinkingSteps:
50 question: Question
51 answer_first_attempt: Answer
52 thinking_steps: ThinkingSteps

Listing 6: Type definitions for refine-structure on HotPotQA

1 class Expression:
2 operator: Literal['+', '-', '*', '/']
3 left: Union[int, 'Expression']
4 right: Union[int, 'Expression']
5

6 class Answer:
7 answer: Expression

Listing 7: Expression type definitions in MGSM expression-cascade-structure experiments

G.2 DSPY SETUP

We conduct most of the DSPy experiments under v 3.0.1, but report results from DSPy v 2.6.19 for
gemini-1.1-7b-it experiments since both BFSWRS and MIPROv2 struggle to generate valid outputs under
DSPy v 3.0.1. Moreover, the non-optimized MGSM average accuracy is much lower under v 3.0.1 (for Native CoT
it is 0.7% under v 2.6.19, and 0.2% under v 3.0.1). For all other experiments, we report results from DSPy v
3.0.1 which sets up JSON schema-based constrained decoding correctly out-of-the-box. As we noted in §4.2,
constrained decoding significantly improves performance for tasks with structured output.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

We serve base models on vLLM v 0.10.0.

Input and output object definitions. For structured input and output tasks, we subclass dspy.Signature
as QASignature to represent examples. The property names and types in a QASignature class are identical
to counterparts in TAC experiments. FinQA and MGSM-SymPy signatures are listed in Listing 8 and Listing 9
respectively.

1 class QASignature(dspy.Signature):
2 pre_text: list[str] = dspy.InputField()
3 table: list[list[str]] = dspy.InputField()
4 post_text: list[str] = dspy.InputField()
5 question: str = dspy.InputField()
6 answer: str = dspy.OutputField()

Listing 8: DSPy object signature for FinQA. Property names and types are identical to their TAC counterparts in
Listing 3

1 class Expression(pydantic.BaseModel):
2 operator: Literal['+', '-', '*', '/']
3 left: Union[int, float, 'Expression']
4 right: Union[int, float, 'Expression']
5

6 class QASignature(dspy.Signature):
7 question: str = dspy.InputField()
8 answer: Expression = dspy.OutputField()

Listing 9: DSPy object signature for MGSM-SymPy. Property names and types are identical to their
TAC counterparts in Listing 7

DSPy models. We conduct reasoning experiments on both the native dspy.ChainOfThought module, and
an explicitly two-step composite module that resembles TAC cot-cascade-structure patterns. Two-step modules
for FinQA and MuSR are listed in Listings 10 and 11 as examples.

1 class QuestionRationale(dspy.Signature):
2 question: str = dspy.InputField()
3 pre_text: list[str] = dspy.InputField()
4 table: list[list[str]] = dspy.InputField()
5 post_text: list[str] = dspy.InputField()
6 question: str = dspy.InputField()
7 rationale: list[str] = dspy.OutputField()
8

9 class RationaleAnswer(dspy.Signature):
10 rationale: list[str] = dspy.InputField()
11 answer: str = dspy.OutputField()
12

13 class TwoStepPredictor(dspy.Module):
14 def __init__(self):
15 self.question_to_rationale = dspy.Predict(QuestionRationale)
16 self.rationale_to_answer = dspy.Predict(RationaleAnswer)
17

18 def forward(self, pre_text: list[str], table: list[list[str]], post_text:
list[str], question: str):

19 r = self.question_to_rationale(question=question, pre_text=pre_text, table=
table, post_text=post_text).rationale

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

20 return dspy.Prediction(answer=self.rationale_to_answer(rationale=r).answer)

Listing 10: DSPy two-step reasoning model definition for FinQA

1 class QuestionRationale(dspy.Signature):
2 context: str = dspy.InputField()
3 question: str = dspy.InputField()
4 choices: list[str] = dspy.InputField()
5 rationale: list[str] = dspy.OutputField()
6

7 class RationaleAnswer(dspy.Signature):
8 rationale: list[str] = dspy.InputField()
9 choices: list[str] = dspy.InputField()

10 answer: str = dspy.OutputField()
11

12 class TwoStepPredictor(dspy.Module):
13 def __init__(self):
14 self.question_to_rationale = dspy.Predict(QuestionRationale)
15 self.rationale_to_answer = dspy.Predict(RationaleAnswer)
16

17 def forward(self, context: str, question: str, choices: list[str]):
18 r = self.question_to_rationale(question=question, context=context, choices=

choices).rationale
19 return dspy.Prediction(answer=self.rationale_to_answer(rationale=r, choices

=choices).answer)

Listing 11: DSPy two-step reasoning model definition for MuSR

Prompt optimization under DSPy. We experiment with optimizers dspy.MIPROv2 and
dspy.BootstrapFewShotWithRandomSearch (listed as BFSWRS below). For MGSM-SymPy and
FinQA experiments we do not report BFSWRS results, as they consistently need more context length than the
model maximum (8192). Moreover, for FinQA experiments we resort to MIPROv2 0-shot due to similar context
length problems.

We set max errors=2 for all optimizers. For MiPROv2 we set auto=’medium’. For MiPROv2 with 0-shot
settings we additionally set max bootstrapped demos=0, max labed demos=0.

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

H PER-LANGUAGE TAC AND ORIGINAL STAR MGSM AND MGSM-SYMPY RESULTS

Per-language TAC and original STaR experimental results on tasks MGSM and MGSM-SymPy are listed in
Tables 5 and 6.

Pattern Adaptation Method es en de fr zh ru ja te th Average

direct TACSTaR 27.5 27.5 25.0 25.0 23.3 25.8 23.3 18.3 26.7 24.7
cot-type-structure TACSTaR 80.0 84.2 76.7 83.3 80.0 85.0 71.7 79.2 83.3 80.4

cot-cascade-structure TACSTaR 87.5 87.5 83.3 85.8 80.0 87.5 74.2 73.3 80.8 82.2
refine-structure TACSTaR 86.7 90.0 76.7 77.5 73.3 78.3 69.2 72.5 83.3 78.6

expression-cascade-structure TACSTaR 83.3 82.5 83.3 75.8 70.0 79.2 65.8 75.0 75.8 75.9
cot-cascade-structure un-adapted 42.5 47.5 46.7 42.5 45.0 53.3 31.7 45.0 54.2 45.4

cot-type-structure un-adapted 77.5 79.2 80.8 76.7 68.3 79.2 68.3 69.2 73.3 74.7
expression-cascade-structure un-adapted 76.7 71.7 69.2 70.8 68.3 68.3 63.3 70.8 73.3 69.5

cot-cascade-structure amortized TACSTaR 84.2 91.7 86.7 83.3 82.5 81.7 70.8 77.5 83.3 82.4
N/A original STaR 74.2 79.2 75.8 75.8 70.0 88.3 74.2 75.8 75.8 76.9

Table 5: gemma-2-27b-it MGSM and MGSM-SymPy per-language accuracies (TAC and original STaR
experiments).

Pattern Adaptation Method es en de fr zh ru ja te th Average

direct TACSTaR 5.8 6.7 6.7 8.3 7.5 2.5 5.0 1.7 1.7 5.1
cot-cascade-structure TACSTaR 40.8 35.8 31.7 29.2 24.2 31.7 13.3 18.3 20.8 27.3
cot-cascade-structure un-adapted 8.0 · 10−1 0.0 8.0 · 10−1 0.0 0.0 8.0 · 10−1 0.0 1.7 0.0 5.0 · 10−1

N/A original STaR 15.0 27.5 1.7 5.8 22.5 0.0 3.3 9.2 9.2 10.5

Table 6: gemma-1.1-7b-it MGSM per-language accuracies (TAC and original STaR experiments).

I PER-TASK TAC MUSR RESULTS

Per-task TAC experimental results on task MuSR are listed in Tables 7 and 8.

Decoding Method Murder Mystery Object Placements Team Allocation Average

Generation 61.7 51.6 41.7 51.6
Classification 65.0 50.0 80.0 65.0

Table 7: gemma-2-27b-it MuSR per-task accuracies (TAC experiments).

Decoding Method Murder Mystery Object Placements Team Allocation Average

Generation 60.0 43.7 82.5 62.1
Classification 59.2 42.9 85.8 62.6

Table 8: gemma-1.1-7b-it MuSR per-task accuracies (TAC experiments).

J PER-TASK DSPY MUSR RESULTS

Per-task DSPy experimental results on task MuSR are listed in Tables 9 and 10.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

Model Optimizer Murder Mystery Object Placements Team Allocation Average

Native CoT None 20.8 0.0 0.0 6.9
Native CoT MIPRO 0-shot 40.8 7.9 · 10−1 0.0 13.9
Native CoT MIPRO 51.7 50.8 49.2 50.5
Two-step None 52.5 14.3 22.5 29.8
Two-step MIPRO 0-shot 55.0 27.8 19.2 34.0
Two-step MIPRO 59.2 44.4 50.8 51.5

Table 9: gemma-2-27b-it MuSR per-task accuracies (DSPy experiments).

Model Optimizer Murder Mystery Object Placements Team Allocation Average

Native CoT None 10.0 3.2 3.3 5.5
Native CoT MIPRO 0-shot 6.7 3.2 2.5 4.1
Native CoT MIPRO 34.2 25.4 50.0 36.5
Two-step None 33.3 5.6 16.7 18.5
Two-step MIPRO 0-shot 35.8 1.6 15.0 17.5
Two-step MIPRO 44.2 32.5 26.7 34.5

Table 10: gemma-1.1-7b-it MuSR per-task accuracies (DSPy experiments).

Model Optimizer Murder Mystery Object Placements Team Allocation Average

Native CoT None 0.0 0.0 0.0 0.0
Native CoT MIPRO 0-shot 0.0 0.0 0.0 0.0
Native CoT MIPRO 55.8 50.8 47.5 51.4
Two-step None 4.2 7.9 · 10−1 0.0 1.7
Two-step MIPRO 0-shot 3.3 1.6 0.0 1.6
Two-step MIPRO 65.0 59.5 60.0 61.5

Table 11: Qwen3-8B MuSR per-task accuracies (DSPy experiments).

K PER-LANGUAGE DSPY MGSM AND MGSM-SYMPY RESULTS

Per-language DSPy experimental results on tasks MGSM and MGSM-SymPy are listed in Tables 12 to 14.

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 55.0 57.5 52.5 51.7 54.2 59.2 45.0 39.2 40.0 50.5
Native CoT BFSWRS 84.2 89.2 87.5 81.7 75.0 87.5 75.0 77.5 79.2 81.9
Native CoT MIPROv2 82.5 86.7 81.7 76.7 77.5 84.2 70.0 74.2 75.8 78.8
Two-step None 1.7 5.8 2.5 1.7 3.3 1.7 1.7 3.3 5.0 3.0
Two-step MIPROv2 76.7 83.3 76.7 78.3 73.3 79.2 70.0 67.5 71.7 75.2
Two-step BFSWRS 80.8 84.2 76.7 81.7 70.0 81.7 67.5 64.2 72.5 75.5

Table 12: gemma-2-27b-it MGSM per-language accuracies (DSPy experiments).

36

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 8.0 · 10−1 8.0 · 10−1 8.0 · 10−1 0.0 0.0 2.5 1.7 0.0 0.0 7.0 · 10−1

Native CoT BFSWRS 0.0 8.0 · 10−1 1.7 5.0 8.0 · 10−1 1.7 1.7 2.5 0.0 1.6
Native CoT MIPROv2 8.0 · 10−1 1.7 2.5 2.5 1.7 0.0 1.7 8.0 · 10−1 8.0 · 10−1 1.4
Two-step None 0.0 0.0 8.0 · 10−1 0.0 0.0 0.0 1.7 0.0 0.0 3.0 · 10−1

Two-step MIPROv2 0.0 0.0 0.0 0.0 0.0 8.0 · 10−1 0.0 0.0 8.0 · 10−1 2.0 · 10−1

Two-step BFSWRS 0.0 0.0 0.0 0.0 0.0 8.0 · 10−1 0.0 0.0 8.0 · 10−1 2.0 · 10−1

Table 13: gemma-1.1-7b-it MGSM per-language accuracies (DSPy experiments).

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 56.7 66.7 55.0 45.8 47.5 59.2 45.0 49.2 45.8 52.3
Native CoT MIPROv2 66.7 64.2 58.3 60.8 56.7 62.5 50.8 42.5 51.7 57.1
Two-step None 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Two-step MIPROv2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 14: gemma-2-27b-it MGSM-SymPy per-language accuracies (DSPy experiments).

L DSPY FINQA RESULTS

DSPy experimental results on the FinQA task are listed in Table 15 and Table 16.

Model Optimizer Accuracy

Native CoT None 11.7
Native CoT MIPROv2 0-shot 12.7
Two-step None 5.7
Two-step MIPROv2 0-shot 10.7

Table 15: gemma-2-27b-it FinQA accuracy (DSPy experiments).

Model Optimizer Accuracy

Native CoT None 0.0
Native CoT MIPROv2 0-shot 6.7 · 10−1

Two-step None 0.0
Two-step MIPROv2 0-shot 3.3 · 10−1

Table 16: gemma-1.1-7b-it FinQA accuracy (DSPy experiments).

Model Optimizer Accuracy

Native CoT None 4.3
Native CoT MIPROv2 0-shot 5.3
Two-step None 1.0
Two-step MIPROv2 0-shot 12.0

Table 17: Qwen3-8B FinQA accuracy (DSPy experiments).

37

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

Under review as a conference paper at ICLR 2026

M EXAMPLE EXPRESSIONS FROM expression-cascade-structure UNDER THE
MGSM-SYMPY TASK

See Table 18.

Question Answer Expression

Nissa hires 60 seasonal workers to play elves in her department store’s Santa village. A
third of the elves quit after children vomit on them, then 10 of the remaining elves quit
after kids kick their shins. How many elves are left?

20 (60− (60/3))− 10

The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How
much was his total expenditure for those two months?

940 500 + 440

Tom gets 4 car washes a month. If each car wash costs $15 how much does he pay in a
year?

720 (15× 4)× 12

Table 18: Example arithmetic expressions generated for MGSM questions by expression-cascade-structure.

N EXAMPLE INSTRUCTION PROMPT GENERATED BY LANGFUN

The LangFun library translates requests that transformed a typed object into another typed object into natural
language instructions for LLMs, to facilitate its parse operations. For example, Listing 12 is a prompt generated
by LangFun for the request that transforms a Question object into an Answer object.

1 Please respond to the last INPUT_OBJECT with OUTPUT_OBJECT according to
OUTPUT_TYPE.

2

3 INPUT_OBJECT:
4 1 + 1 =
5

6 OUTPUT_TYPE:
7 Answer
8

9 ```python
10 class Answer:
11 final_answer: int
12 ```
13

14 OUTPUT_OBJECT:
15 ```python
16 Answer(
17 final_answer=2
18)
19 ```
20

21 INPUT_OBJECT:
22 ```python
23 Question(
24 question='How are you?'
25)
26 ```
27

28 OUTPUT_TYPE:

38

1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

Under review as a conference paper at ICLR 2026

29 Answer
30

31 ```python
32 class Answer:
33 answer: str
34 ```
35

36 OUTPUT_OBJECT:

Listing 12: Example instruction prompt generated by LangFun

39

	Introduction
	Type-Compliant Adaptor Cascades
	Interfacing LLMs with Typed Data: Parsing and Canonicalization
	tacs As Programs And Distributions

	Adapting tacs
	tacSTaR
	Amortized tacSTaR

	Experiments
	Experiment Setup
	Comparison against prompt-optimizing and untyped STaR baselines.
	Flexible Posterior Inference Helps tacPerformance.
	tacmodels rapidly achieve high type compliance.

	Related Work
	Conclusion
	Background and Related Work
	Additional Studies on Workflow Pattern Design
	End-to-end trainable workflows as tacs.
	Effectiveness of Adaptation with Reasoning Workflows
	Effects of Different tacDesigns

	Algorithms
	Forward and Backward
	tacSTaR
	Amortized tacSTaR
	Updating C'

	Formal Statements and Proofs Regarding Type Compliance
	Implementation Considerations
	One-Time Efforts
	Per-Use Efforts

	Additional tacDiagrams of Trainable Workflows
	Further Details of Experiment Setup
	tacsetup
	DSPy setup

	Per-Language tac and Original STaR MGSM and MGSM-SymPy results
	Per-Task tac MuSR results
	Per-Task DSPy MuSR results
	Per-Language DSPy MGSM and MGSM-SymPy results
	DSPy FinQA results
	Example Expressions from expression-cascade-structure under the MGSM-SymPy task
	Example instruction prompt generated by LangFun

