Under review as a conference paper at ICLR 2026

TYPE-COMPLIANT ADAPTATION CASCADES: ADAPTING PRO-
GRAMMATIC LM WORKFLOWS TO DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliably composing Large Language Models (LLMs) for complex, multi-step workflows
remains a significant challenge. The dominant paradigm — optimizing discrete prompts in a
pipeline — is notoriously brittle and struggles to enforce the formal compliance required for
structured tasks. We introduce Type-Compliant Adaptation Cascades (TACs), a framework that
recasts workflow adaptation as learning typed probabilistic programs. TACs treat the entire
workflow, which is composed of parameter-efficiently adapted LLMs and deterministic logic, as
an unnormalized joint distribution. This enables principled, gradient-based training even with
latent intermediate structures. We provide theoretical justification for our tractable optimization
objective, proving that the optimization bias vanishes as the model learns type compliance.
Empirically, TACs significantly outperform state-of-the-art prompt-optimization baselines.
Gains are particularly pronounced on structured tasks, improving FinQA from 12.0% to 24.7%
for a Qwen 3 8B model, MGSM-SymPy from 57.1% to 75.9% for a Gemma 2 27B model,
MGSM from 1.6% to 27.3%, and MuSR from 36.5% to 62.6% for a Gemma 7B model. TACs
offer a robust and theoretically grounded paradigm for developing reliable, task-compliant
LLM systems.

1 INTRODUCTION

The expressive power of Large Language Models (LLMs) has catalyzed the rapid development of programmatically
composed workflows and agentic systems (Khattab et al.,2022; |Chase}, [2022; [Yao et al.| [2023} Wu et al., 2024).
By chaining model calls and integrating deterministic logic, practitioners construct complex systems capable of
multi-step reasoning and interaction. However, the dominant paradigm for adapting these systems — optimizing
discrete prompts within the pipeline —is notoriously brittle (Cao et al.| 2024) and struggles to enforce the formal
compliance required for structured tasks. Optimization often devolves into a difficult discrete search problem
(Pryzant et al., [2023}; |Yuksekgonul et al.| [2025), relying on heuristics that are computationally expensive and
difficult to scale.

In this paper, we propose a fundamental shift in perspective: we recast the entire LLM workflow as a typed
probabilistic program. Instead of optimizing the inputs (prompts) to a fixed system, we optimize the program
parameters. We treat the workflow as a parametric latent variable model where each step is a probabilistic
transformation backed by a parameter-efficient fine-tuning (PEFT) adaptor. This transforms workflow adaptation
from an ad-hoc, discrete search problem into a principled, gradient-based optimization task focused on maximizing
data likelihood.

While probabilistic programming languages (PPLs) (Bingham et al., 2019; [Tran et al., 2017)) offer powerful tools
for modeling complex distributions, they are generally designed to capture and conditionalize normalized models.
LLM workflows present a unique challenge. Enforcing type constraints means restricting the support of an LLM —
which naturally generates arbitrary strings — to only those strings representing valid typed objects. This restriction

Under review as a conference paper at ICLR 2026

..How many
computers are now
i the server room?

z
&
ol

\type: T”»'\:'
(Tirs To, 04)
£ole:|
*
29 e

(a) cot-cascade-structure (b) expression-cascade-structure

Figure 1: Two TAC workflow patterns experimented in this paper. We illustrate the more complicated Fig. with example
node values (we also explore additional patterns in §B). Dashed-boundary nodes indicate variables whose values are not
available in annotated data, and solid-boundary nodes indicate nodes with training time observable values. A main message
of this work is that we can treat an entire typed workflow as a single probabilistic program, whose parameters are
lightweight PEFT modules, allowing end-to-end training with latent variables, instead of defining workflows imperatively
as fixed-parameter systems.

renders the resulting (unconditional) distribution inherently unnormalized (Zg # 1), making the partition function
required for standard maximum likelihood estimation intractable.

We introduce Type-Compliant Adaptation Cascades (TACs), a framework designed specifically for learning
these typed, unnormalized probabilistic programs. TACs treat the entire workflow, composed of adapted LLMs
and deterministic logic, as a joint unnormalized distribution. To enable tractable optimization, we propose the
TACSTaR algorithm, a generalization of the Self-Taught Reasoner (STaR) (Zelikman et al.l 2022) formalized
within an MC-EM framework.

Crucially, we provide theoretical justification for optimizing the tractable unnormalized likelihood directly.
We prove that the bias introduced by ignoring the partition function gradient is bounded by the degree of type
violation. As the model learns to comply with the workflow’s type constraints during training, the bias vanishes,
and the optimization converges to the true maximum likelihood solution (Theorems[T]and [2). Furthermore,
this probabilistic framing allows us to decouple inference from training, enabling advanced techniques such as
amortized inference to improve the E-step during optimization.

Our primary contributions are:

Framework. We formalize typed LM workflows as unnormalized probabilistic programs, where type contracts
restrict the support of learned transformations.

Theory. We propose TACSTaR, a tractable optimization algorithm, and prove that its optimization bias vanishes as
the model learns type compliance during training.

Practice. Across reasoning-heavy tasks (MGSM, MGSM-SymPy, FinQA, MuSR) and model families (Gemma,
Qwen), TACs consistently outperform strong DSPy prompt-optimization baselines. Gains are largest when (1) base
models are smaller and (2) tasks require strict structure. For example, on MGSM-SymPy with a Gemma 27B
model, TACs achieve 75.9 vs. 57.1; on FinQA, 34.0 vs. 12.7 (Gemma 27B) and 24.7 vs. 12.0 (Qwen 3 8§B).
With a Gemma 7B model, MGSM improves from 1.6 to 27.3, and MuSR from 36.5 to 62.6.

Under review as a conference paper at ICLR 2026

Summary of results. (1) Gradient-based adaptation of typed probabilistic programs is markedly more effective
and compute-efficient than discrete prompt search for structured tasks. (2) Flexible posterior inference, such as
amortization, improves training stability and performance. (3) Empirically, the estimated type compliance mass
Zg rises rapidly during training, supporting our theoretical justification for the unnormalized objective.

2 TYPE-COMPLIANT ADAPTOR CASCADES

The core idea of TACs is to decompose a task into a hypergraph of interconnected transformations. Formally, a TAC
is represented as a directed acyclic hypergraph (DAH) C = (Z, E)E]The acyclic constraint ensures that the
workflow has a well-defined topological order for execution and guarantees termination of the generative process.

Nodes. The nodes Z = {z1,22,...,2s} in a TAC act as containers for typed data. Each node z,,, is associated
with a specific data type 7 € T, and holds string representations € %.* for 7-typed objects. Special nodes are
designated as the input node z; and the output node z, (e.g., holding the initial question of type Q_en and the
final answer of type A in Fig. [Tb] respectively).

Hyperedges. Hyperedges E = {e1, e,..., ek} define the transformations between nodes. A hyperedge ey,
connects a set of source nodes S C Z (its inputs) to a set of target nodes T}, C Z (its outputs). Transformations
in TACs can be either learnable (LM adaptors) or fixed (deterministic algorithms):

LM adaptor hyperedges. These are stochastic transformations implemented by PEFT-adapted LMs. An adaptor
(74, To, 0) defines an unnormalized distribution over y € ¥* given input string @

Py | @;0) = pru(y | @;0)l(z; € valid(r,)), (1

where pr, s (- | @; 0) is a normalized distribution over strings, conditioned on 7;-typed string representation ,
and parametrized by adaptor parameters @, and valid(7,) C X* is the set of strings that represent valid 7,-typed
objects (we will further discuss them in §2.1)).

Deterministic algorithm hyperedges. These are fixed, non-learnable transformations, such as a self-contained
Python function. A deterministic algorithm f maps an input object of type 7; to an output object of type 7,. Under
the probabilistic view, we represent them as § distributions:

ﬁ(y | T3 f) = 5canon(f(parse(.’t,n)))(y) (2

where canon (see §2.1) produces a canonicalized string for an object, and parse converts strings back to typed
objects.

2.1 INTERFACING LLMS WITH TYPED DATA: PARSING AND CANONICALIZATION

To integrate LLMs, which operate on strings (3*), into a typed workflow, TACs require mechanisms to bridge the
gap between strings and typed objects (O). This bridge is typically handled by data validation libraries such as

'We use a reasoning workflow that generates domain-specific code, illustrated in Fig.|1b} as a running example. The task is
to take a math question in English (input type Q_en), generate a step-by-step rationale (intermediate type R), convert the
rationale into a formal arithmetic expression (intermediate type E), and finally, have a deterministic function evaluate this
expression to produce the answer (output type 2). This section formalizes how such an intuitive sketch is realized within the
TAC framework.

“This distribution may be unnormalized because while pr, s is a distribution over all strings, Eq. (1) restricts the support to
only strings that are valid instances of 7,. Thus, the total probability mass may sum to less than 1 if the LM assigns probability
to invalid strings.

Under review as a conference paper at ICLR 2026

PydanticE] and PyGlove (Peng et al. 2020)E] We formalize this conversion using two essential operations: parse
and canon.

Parsing (parse). When an LM adaptor produces an output string y intended to represent an object of type 7,
this string is validated and converted into a usable typed object by the algorithm parse : ¥* x T — OU{error}
The expressivity of the TAC type system is determined by the implementation of parse and canon. In this
work, we leverage LangFun, which supports primitive types, compound types (e.g., Python classes), and recursive
data types (an example is listed in Listing 7).

For example, in Fig. z5 has the deterministic function e4 as an outgoing edge. During execution of the
probabilistic program, parse(zs, E) attempts to convert zs5 into a SymPy expression object (typed E). If the
conversion fails, an error is signaled. For convenience, we use valid(7) = {parse(y,) # error | y € £*} to
denote valid string representations of 7.

Canonicalization (canon). Conversely, inputs of LM adaptor hyperedges must be converted into a consistent
string format that the adaptor expects. The canon : O — ¥* operation maps a typed object to a unique string
representation — we call such strings canonicalized. The invertibility of canon (i.e.,, parse(canon(0),7,) =
0) in turn ensures that deterministic hyperedges have support over only one string given a valid input, eliminating
spurious ambiguity (Cohen et al.| 2012).

2.2 TACS AS PROGRAMS AND DISTRIBUTIONS

TACs admit both a program view, and also a probabilistic ViGWE]Z

TACs are probabilistic programs. From an operational perspective, executing a TAC in the forward direction
involves processing data through the hypergraph, respecting the topological order of nodes and hyperedges. Using
our running example from Fig. [Tb} the process traverses the hypergraph, starting at the input variable z; (typed
Q_en), and ending at the output variable z, (typed A). A general process is described in Algorithm I}

TACs are also probability distributions. From a statistical perspective, TACs define unnormalized joint probability
distributions over all node assignments Z* = (z},z3, ..., z%,). This score reflects the plausibility of a complete
execution trace according to the model’s components:

logpo(Z*) = > _log fo({z; hrer, | {25} sesisi er); €)
B

where 6 represent all adaptor parameters used in the TAC, and pg(-|; ex) is the conditional probability defined by
the LM adaptor (Eq. (I))) or deterministic algorithm (Eq. (2)) associated with e;,. The unnormalized distribution
view connects TACs to the broader family of language model cascades (Dohan et al., 2022), but with the key
distinction that TACs are designed for end-to-end adaptation.

*https://github.com/pydantic/pydantic

“Examples of type-specifying prompts generated by LangFun (which leverages PyGlove) are listed in @ LangFun
supports primitive types, compound types (e.g., Pyglove/Pydantic objects), and recursive types (e.g., Expressions in Listing 7).

>We note that while primitive data types (e.g., Python types st r and 1ist) appear in common workflows, parse can
be any computable function, and can be leveraged by a practitioner to implement complex business logic. For example,
one can define a Python custom type CoherentDialog where valid objects are strings deemed coherent by an external
LLM-backed classifier, and adapt LM adaptors in a TAC to generate and work with such objects. Implementation details are
further discussed in §E}

These two views are also summarized in Table

https://github.com/pydantic/pydantic

Under review as a conference paper at ICLR 2026

3 ADAPTING TACS

The goal of adapting a TAC is to maximize the marginalized likelihood of the training data. Since TACs generally
define distributions over unobserved (latent) intermediate variables, Monte Carlo Expectation-Maximization
(MC-EM) algorithms (Wei & Tanner, |1990) provide a suitable training paradigm[]

However, adapting TACs presents a challenge. As TACs are generally unnormalized models, proper Maximum
Likelihood Estimation (MLE) updates in the M-step require computing partition function gradients. Denoting the
partition function summing all possible assignments as Zg = >, po(Z'), the gradient of the log-likelihood
L(0) =logp(Z*) is:

VoL = Vglogpg(Z*) — Velog Zg. ()]

Estimation of the log partition function’s gradients Vg log Zg is typically intractable, expensive, and can have
high variance (Goodfellow et al., 2016).

3.1 TRACTABLE OPTIMIZATION VIA COMPLIANCE

To overcome the intractable partition function gradient, we propose optimizing for the unnormalized log-likelihood
L'(0) = log pe(Z*) instead, effectively dropping the Vg log Zg term from Eq. ().

While ignoring the partition function gradient generally leads to biased estimation, the TAC formalism ensures this
strategy is both tractable and robust. This becomes evident as we rewrite £'(0) = £(0) + log Zg: optimizing
the unnormalized likelihood L'(6) is equivalent to jointly maximizing the normalized likelihood £(€) and the
model’s type compliance (the partition function log Zg is maximized at log Zg = 0 when 0 is well-specified).
We now provide theoretical justification for this approach, under the assumption that the adapted models can
perfectly model type-valid outputs (i.e., the model family is well-speciﬁed)ﬂ

Theorem 1. Let © be the entire parameter space and let ®' C © be the subset of well-specified param-
eters. Assume 0* uniquely maximizes the normalized likelihood pg(za. nr|21) and resides € ©'. Then,

0 = argmaxgycg Po(22.1m|21) = 0= 06"

Moreover, while optimizing £'(8) introduces a bias by ignoring the gradient term Vg log Zg, this bias is bounded
below a constant multiplicative factor of (1 — Zg) under the common assumption that |Vepras(- | ;0)]| is
uniformly bounded:

Theorem 2. Let 6 = {0, ...60x} be the union of a K -adaptor TAC’s LM adaptor parameters . If Vzy 1 €
E*, ZE 2 S E*, ||V0 (Z logpLM(zkg | ZE 15 0)) ||oo S G, then VQ lOg Zg § 2G(1 - Zg)

Theorems [T]and 2] provide theoretical assurance that if the model achieves high type compliance as we optimize for
L'(8), the optimization bias vanishes, and the update approaches the true MLE update. Empirically, we observe
that training rapidly drives Zg towards 1 (§4.4).

3.2 TACSTAR

We introduce the TACSTaR algorithm (Algorithm 3, which generalizes the Self-Taught Reasoner (STaR) algorithm
(Zelikman et al.||2022) to the TAC framework. TACSTaR employs an iterative MC-EM approach to optimize the
tractable objective £'(0) (§3.1). It alternates between E- and M-steps:

"We acknowledge that another reasonable approach for training TACs is reinforcement learning, and note the connection
between TACSTaR and RL in §
5We refer the reader to @ for proofs of formal statements in this section.

Under review as a conference paper at ICLR 2026

E-step: Sampling Latent Variables. The E-step aims to sample complete, valid execution traces Z* consistent
with the training data. We first try to execute the TAC C' as a probabilistic program under the forward algorithm
(Algorithm . If forward succeeds, we have a complete assignment of values Z* = (z7,z5,...,2},) and
can proceed to M-step. Otherwise, we attempt a rationalization heuristic step. Inspired by the original STaR
algorithm which conditions on the correct answer in the second attempt, we construct a ‘fallback’ TAC, whose input
node takes (z*, y*) as input, with the rest of the workflow unchanged. This essentially asks ‘what intermediate
steps would lead from x* to y* ?’, analogous to the inverse rendering problem (Ritchie et al.| 2023). A forward
pass is then executed on this new TAC to sample (2o, . . ., Zps), now conditioned on both the original input z* and
the desired output y*. This encourages the generation of latent intermediate steps that are consistent with the
correct final answer.

M-step: Parameter Optimization. In the M-step, we update the adaptor parameters 6 by maximizing the
unnormalized likelihood £'(8) of the samples collected in the E-step.

3.3 AMORTIZED TACSTAR

The basic TACSTaR algorithm relies on a fixed ‘fallback’ heuristic during the E-step, which may be inefficient.
Amortized TACSTaR (Algorithm [4) addresses this by generalizing the heuristic using parametric inference
networks (Kingma & Welling, 2014; [Mnih & Gregor},2014), jointly trained to approximate the true posterior given
observed input and outputs. By learning to propose better, task-adapted latent variable configurations, Amortized
TACSTaR can lead to more efficient training and potentially better performance.

For model TAC C' with nodes z; . . . z)s, we construct an inference network TAC C” with nodes z] . . . z/,;, which
is trained alongside with C'. In this work, we construct z} . . . 2, to have the same types as zs . . . zjs, except for
its input node z}, which has a type to represent the input-output pair (*, y*). Moreover, we construct C’ so that
every adaptor hyperedge e;, in C' has a counterpart e}, in C” that is additionally conditioned on z}. We train C’
alternately with C, with the goal of making the unnormalized distribution of C” approximate the posterior over
C’s intermediate nodes, conditioning on (z*, y*) observations. Denoting the unnormalized distribution of C’ as
do parametrized by adaptors’ parameters ¢, we hope to learn ¢ such that G (2, | 2} = canon((z*,3%))) =
po(zZm | 21 = x,29 = y), where 7 = canon(z*), y> = canon(y*), Ym € [2..M]. Approximating
the posterior pg (2, | z1 = canon(x*),z2 = canon(y*)) as p using self-normalized multiple importance
sampling (Veach & Guibas, [1995), we optimize ¢ to minimize KL[p||g4] following Bornschein & Bengio| (2014);
Lin & Eisner| (2018). Empirically, we verify that the learned inference network C’ significantly reduces the KL
divergence to the true posterior compared to the fixed fallback, confirming it provides a better approximation for

training (§P).

4 EXPERIMENTS

To empirically validate TAC models, we conduct QA, code-like structured generation, and classification experiments
on subsets of MGSM (Shi et al., 2023)), FinQA (Chen et al., [2021), and MuSR (Sprague et al., 2024b) datasetsm
adapting both instruction-tuned Gemma 7B and Gemma 2 27B (referred to as gemma-1.1-7b-it and
gemma—-2-27b-1it) (Team et al.,2024), and Qwen 3 8B models (Qwen3—-8B) (Yang et al.| [2025). We aim to
answer the following research questions:

9Remark on efficiency. Since gradients of the log unnormalized probability decompose linearly as Vo (logpe(Z*)) =
> Velogpe({zi }eer, | {zs}ses, ; ex), computation of adaptors” gradients can be parallelized easily. This embarrassingly
parallel structure ensures computational scalability, allowing the M-step to be efficiently distributed across available compute
resources. Algorithm 2]computes log e (Z*) and its gradients Vg log pe(Z*). These gradients are then used in a standard
gradient-based optimization algorithm to update 6.

"We defer the study of how different TAC patterns affect performance to where we expand our experiments to include
HotPotQA tasks (Yang et al., [2018).

Under review as a conference paper at ICLR 2026

(§4.2) Are TACs competitive against existing approaches? TACs differ from existing LM adaptation approaches
in two major ways: 1) TACs support gradient-based learning in a unified probabilistic programming framework
(when compared against prior prompt optimization-focused LM programming frameworks such as DSPy); and 2)
TACS support structured workflows by design (when compared to the original STaR algorithm). We hypothesize
that such difference translates into meaningful performance improvements.

(§4.3) Is exploiting TACS’ probabilistic flexibility effective? Probability models (such as TACs) benefit from the
decoupling of probabilistic modeling and inference procedures, allowing conditioning on additional observations a
posteriori. We evaluate whether exploiting this flexibility is effective in two scenarios: 1) We compare Amortized
TACSTaR (§3.3), which conditions on the output variable to learn a better proposal distribution for training,
against the standard (unconditioned) TACSTaR; and 2) We evaluate TACs on a classification task, comparing the
performance of unconstrained generation against a renormalized classifier that evaluates and normalizes the
conditional probability of each possible output.

(§4.4) Does the model achieve high type compliance? A key theoretical result (§3.2) is that the soundness and
near-optimality of the TACSTaR optimization strategy rely on the model learning to comply with the workflow’s
type constraints (i.e., driving the partition function Zg — 1). As type compliance increases, the gap between the
tractable unnormalized likelihood and the true normalized likelihood (log Zg) closes. We estimate how Zg over
TACSTaR epochs to verify that this gap is negligible after training.

4.1 EXPERIMENT SETUP

We provide an overview of our TAC and baseline DSPy setups below:

TACs. We parametrize TAC adaptors to take the form of rank-1 LoRA models (Hu et al.l 2022)) on the
attention weights, with 573, 440; 1,413, 120; and 958, 464 parameters per adaptor for gemma-1.1-7b-1it,
gemma-2-27b-1it and Qwen3-8B respectively. For parse and canon implementations (§2.1), we leverage
the LangFun library, which prompts LLMs to generate Python classes and objects, and parses their responses.
LoRA weights are initialized (‘zero-init’) following Hu et al.| (2022).

DSPy. We conduct prompt-optimizing baseline experiments under DSPy, with base models served on vLLM. We
subclass dspy . Signature to represent training examples, with property names and types identical to their
TAC counterparts (some examples are listed in §G.2). We employ XGrammar (Dong et al., [2024) for schema-based
constrained decoding for all experiments. We implement two types of reasoning workflows for all tasks: 1) the
native dspy . ChainOfThought module, and 2) an explicitly two-step composite module that resembles
cot-cascade-structure patterns under TACs. We experiment with various prompt optimization configurations un-
der dspy .MIPROv2 (Opsahl-Ong et al.,[2024) and dspy . BootstrapFewShotWithRandomSearch
(Khattab et al., [2024)).

We conduct experiments of 5 reasoning-heavy tasks, on subsets from datasets MGS(Shi et al.l 2023), FinQA
(Yang et al.} 2018), HotPotQA (Yang et al., 2018) and MuSR (Sprague et al., 2024b) respectively. Details of
experiment setup are described in §G|

4.2 COMPARISON AGAINST PROMPT-OPTIMIZING AND UNTYPED STAR BASELINES.

Figure [2]lists MGSM, MGSM-SymPy, FinQA, and MuSR results from best-performing TACs and DSPy models.
In addition, we compare the untyped (original) STaR against typed TAC results on MGSM on Gemma models.

"The MGSM-SymPy task uses the same problems of MGSM, but additionally restrict the outputs to be rational expressions
under SymPy. This variant was specifically included to test the framework’s ability to generate and comply with highly
structured, code-like output.

Under review as a conference paper at ICLR 2026

TACs are competitive against prompt-optimizing baseline methods. We observe that TACs consistently and
significantly outperform DSPy baselines in every setting. The performance gap is especially wide when 1) the base
model is smaller, and 2) the task involves structured inputs (FinQA) or structured outputs (MGSM-SymPy)

Base Model DSPy TAC Base Model DSPy TAC
gemma-1.1-7b-it 0.7% 9.7% gemma-1.1-7b-it 36.5% 62.6%
gemma-2-27b-it 12.7% 34.0% gemma-2-27b-it 51.5% 65.0%

Qwen3-8B 12.0% 24.7% Qwen3-8B 61.5% 63.7%

(a) FinQA (b) MuSR
Base Model DSPy TAC STaR Base Model DSPy TAC

-1.1-7b-it 1.6% 27.3% 10.5% .

omme—2-270-it 819% 822% 716.9% gemma-2-27b-it 57.1% 75.9%
(c) MGSM (d) MGSM-SymPy

Figure 2: Comparison between best performing prompt-optimizing methods under DSPy and TACs (full results can
be found in Sections [H|to . We report the best DSPy result for each task.

~0.005

-0.010

-0.015

At the end of epoch Failure rate

o o
o o
S B
& S

Average ECPM across languages
)

0030 1 83.0%
2 1.0%
3 1.6%

1 2 3 4 5 6 7 8 9 4 04%

Epoch #

(b) Average MGSM training data parsing
failure rate vs # of epochs of TACSTaR on
gemma-1.1-7b-it. The pattern is cot-
cascade-structure.

(a) Average estimate log Zg over validation
set inputs versus # of TACSTaR epochs over
MGSM languages. Note that later epochs
(as early as epoch 5) do not have samples
from all languages, as some languages early-
stopped.

Figure 3: Type compliance during TAC training.

TACSTaR compares favorably against the original STaR algorithm on unstructured data. On the MGSM
task (Fig. [2c), the original (untyped) STaR algorithm scored an average accuracy of 76.9 and 10.5 (from
gemma—-2-27b—-1it and gemma-1.1-7b-1it respectively), lower than variants of reasoning TAC patterns on
the same dataset. This demonstrates that the structured, typed approach of TACs improves performance over the
untyped STaR baseline.

4.3 FLEXIBLE POSTERIOR INFERENCE HELPS TAC PERFORMANCE.

Amortized inference at training time is effective. The Amortized TACSTaR algorithm (§3.3) brings consistent
improvement over vanilla TACSTaR on 3 tasks (Fig. ffa)). Notably, the gains are most substantial on FinQA (+5.7

2We also compare between TACSTaR-adapted and un-adapted models on the same LangFun prompts in and find that
TACSTaR consistently outperforms the un-adapted counterparts.

Under review as a conference paper at ICLR 2026

Task TACSTaR Amortized TACSTaR

MGSM 822 824 Base Model Cla. Gen.
FinQA 36.0 41.7 gemma-1.1-7b-it 62.6 62.1
HotPotQA 32.0 34.0 gemma—-2-27b-1it 65.0 51.6

(a) Comparison between TACSTaR and Amortized TACSTaR (b) Comparison between classification and uncon-
on cot-cascade-structure / gemma-2-27b-1it. strained generation results on MuSR.

Figure 4: Comparison between ‘default’ and more informative inference methods.

points). This suggests that amortized inference is particularly valuable for complex tasks where the initial sampling
or fixed rationalization heuristics struggle to find valid latent traces, allowing the model to learn a more effective
inference strategy.

Classification with renormalized posterior at inference time is effective. We leverage the probabilistic nature
of TACs to estimate the output label posterior pg(z2 | z1) for the MuSR classification task. We achieve this by first
estimating the unnormalized probability p for each label using importance sampling, and then renormalizing these
estimates over the finite label space (Self-Normalized Importance Sampling). The detailed formulation is described
in §Rl We output the label with the highest estimated probability. Figure [4b]shows that the renormalized-posterior
classifier outperforms unconstrained generation on both gemma-1.1-7b-it and gemma-2-27b-1it.

4.4 TACMODELS RAPIDLY ACHIEVE HIGH TYPE COMPLIANCE.

We argued in §3.2]that optimizing the unnormalized likelihood drives the model towards structural compliance. The
average MGSM parsing error rate during training (Fig. [3b) suggests that TACs learn compliance fast. We further
empirically verify this by estimating the partition function Zg — which represents the total probability mass the
model assigns to type-compliant outputs (the Estimated Compliant Probability Mass, ECPM) — throughout training.
We estimate log Zg on the validation sets of the MGSM benchmark during training of the cot-cascade-structure
pattern on gemma-1.1-7b-it. We sample 100 generations of entire traces without type-compliant masking
per input with temperature = 1, top-p = 1, and top-k set to the vocabulary size. Figure [3a]shows that the
model rapidly learns to comply with the type constraints. The average log Zg approaches —0.005 by epoch 9,
corresponding to an ECPM of exp(—0.005) = 99.5%, and thus confirms that the degree of misspecification
(1 — Zg) is negligible. Since the difference between unnormalized and normalized likelihood gradients is bounded
by a multiplicative factor of (1 — Zg) (Theorem [2), our empirical estimates imply that the difference is indeed
small at the end of training, and TACSTaR M-step (§3.2) approaches the true MLE update. Moreover, since log Zg
is the difference between normalized and unnormalized likelihoods, the small magnitude suggests it is practical to
do model selection with unnormalized likelihood directly, after a few epochs of training.

5 CONCLUSION

We have presented Type-Compliant Adaptation Cascades (TACs), a novel probabilistic programming framework
designed to empower ML practitioners to design trainable workflows that adapt to data. Our findings demonstrate
that TACs’ gradient-based learning paradigm is highly effective, consistently outperforming strong prompt-
optimization baselines. Moreover, we also find flexible posterior inference of TACs at both training and inference
time help with performance. We also find that empirically, the model learns to comply with type constraints fast in
training, justifying the assumptions in our theoretical results. These results underscore the versatility and efficacy
of TACs as a scalable paradigm for adapting to complex, reasoning-heavy tasks.

Under review as a conference paper at ICLR 2026

REFERENCES

David Belanger and Andrew McCallum. Structured prediction energy networks. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48, ICML’ 16, pp.
983-992. JMLR.org, 2016.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query language for
large language models. Proc. ACM Program. Lang., 7(PLDI), June 2023. doi: 10.1145/3591300. URL
https://doi.org/10.1145/3591300!

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: fast, non-invasive constrained
generation. In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep universal probabilistic programming.
J. Mach. Learn. Res., 20:28:1-28:6,2019. URL http://Jjmlr.org/papers/v20/18-403.html.

Jorg Bornschein and Yoshua Bengio. Reweighted wake-sleep. CoRR, abs/1406.2751, 2014. URL https:
//api.semanticscholar.org/CorpusID:10872458.

Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou, and Wai Lam. On the worst prompt performance of large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=Mi853QaJx6.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/
langchain.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, lana Borova, Dylan Langdon, Reema Moussa, Matt
Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. FinQA: A dataset of numerical reasoning
over financial data. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3697-3711,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.300. URL https://aclanthology.org/2021.emnlp-main.
300.

Shay B. Cohen, Carlos Gémez-Rodriguez, and G. Satta. Elimination of spurious ambiguity in transition-based
dependency parsing. ArXiv, abs/1206.6735, 2012. URL |https://api.semanticscholar.org/
CorpusID:15438603.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes, Yuhuai Wu,
Henryk Michalewski, Rif A. Saurous, Jascha Sohl-dickstein, Kevin Murphy, and Charles Sutton. Language
model cascades, 2022. URL https://arxiv.org/abs/2207.10342.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqgi Chen. Xgrammar:
Flexible and efficient structured generation engine for large language models. Proceedings of Machine Learning
and Systems 7, 2024.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding for structured
NLP tasks without finetuning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 10932-10952, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.674. URL
https://aclanthology.org/2023.emnlp-main.674/.

10

https://doi.org/10.1145/3591300
http://jmlr.org/papers/v20/18-403.html
https://api.semanticscholar.org/CorpusID:10872458
https://api.semanticscholar.org/CorpusID:10872458
https://openreview.net/forum?id=Mi853QaJx6
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://aclanthology.org/2021.emnlp-main.300
https://aclanthology.org/2021.emnlp-main.300
https://api.semanticscholar.org/CorpusID:15438603
https://api.semanticscholar.org/CorpusID:15438603
https://arxiv.org/abs/2207.10342
https://aclanthology.org/2023.emnlp-main.674/

Under review as a conference paper at ICLR 2026

Saibo Geng, Hudson Cooper, Michat Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin, Robert West, Eric
Horvitz, and Harsha Nori. Generating structured outputs from language models: Benchmark and studies, 2025.
URL https://arxiv.org/abs/2501.10868!.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 18. MIT Press, 2016.
http://www.deeplearningbook.org.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In
ICLR. OpenReview.net, 2020. URL http://dblp.uni-trier.de/db/conf/iclr/iclr2020.
html#HoltzmanBDEC20.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 2790-2799. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/houlsbyl9a.htmll

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022. URL https
//openreview.net/forum?id=nZeVKeeFYf9l

Yasaman Jafari, Dheeraj Mekala, Rose Yu, and Taylor Berg-Kirkpatrick. MORL-prompt: An empirical analysis of
multi-objective reinforcement learning for discrete prompt optimization. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 9878-
9889, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024 findings-emnlp.577. URL https://aclanthology.org/2024.findings—emnlp.577/.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts, and Matei Zaharia.
Demonstrate-search-predict: Composing retrieval and language models for knowledge-intensive NLP. arXiv
preprint arXiv:2212.14024, 2022.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful
Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts.
Dspy: Compiling declarative language model calls into self-improving pipelines. 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Miiller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/
6449f44a102fde848669%0bdd9%ebob76fa-Paper.pdf.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML 01, pp. 282-289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc. ISBN 1558607781.

11

https://arxiv.org/abs/2501.10868
http://www.deeplearningbook.org
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2024.findings-emnlp.577/
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

Under review as a conference paper at ICLR 2026

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 3045-3059, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243/.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 4582-4597, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-1long.353/l

Chu-Cheng Lin and Jason Eisner. Neural particle smoothing for sampling from conditional sequence models. In
Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume I (Long
Papers), pp. 929-941, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1085. URL https://aclanthology.org/N18-1085/.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt tuning
can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 61-68, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.acl-short.8/.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 46534-46594. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91edff07232fb1b55a505a9%9e9fo6cO0ff3-Paper-Conference.pdfl

Arya McCarthy, Hao Zhang, Shankar Kumar, Felix Stahlberg, and Ke Wu. Long-form speech translation through
segmentation with finite-state decoding constraints on large language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 247-257,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
19. URLhttps://aclanthology.org/2023.findings—emnlp.19/.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In Eric P. Xing and
Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pp. 1791-1799, Bejing, China, 22-24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/mnihl4.htmll

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia, and
Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model programs.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 9340-9366, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.525. URL https:
//aclanthology.org/2024.emnlp-main.525/.

Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender, Hanxiao Liu, Adam Kraft,
Chen Liang, and Quoc Le. Pyglove: Symbolic programming for automated machine learning. In Advances in
Neural Information Processing Systems (NeurIPS), volume 33, pp. 96-108, 2020.

12

https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/N18-1085/
https://aclanthology.org/2022.acl-short.8/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://aclanthology.org/2023.findings-emnlp.19/
https://proceedings.mlr.press/v32/mnih14.html
https://aclanthology.org/2024.emnlp-main.525/
https://aclanthology.org/2024.emnlp-main.525/

Under review as a conference paper at ICLR 2026

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani.
Synchromesh: Reliable code generation from pre-trained language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=KmtVD97J43el

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt optimization
with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 7957-7968, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.494. URL
https://aclanthology.org/2023.emnlp—-main.494/.

Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J. Mitra, Adriana Schulz, Karl D. D. Willis, and Jiajun
Wu. Neurosymbolic models for computer graphics. Computer Graphics Forum, 42(2):545-568, 2023. doi:
https://doi.org/10.1111/cgf.14775. URL https://onlinelibrary.wiley.com/doi/abs/10.
1111/cgf.14775.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Language models are multilingual
chain-of-thought reasoners. In /CLR, 2023.

Dilara Soylu, Christopher Potts, and Omar Khattab. Fine-tuning and prompt optimization: Two great steps that
work better together. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 1069610710, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.597. URL
https://aclanthology.org/2024.emnlp—-main.597/.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu
Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-thought helps mainly on math
and symbolic reasoning, 2024a. URL https://arxiv.org/abs/2409.12183.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Testing the limits
of chain-of-thought with multistep soft reasoning. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=jenyYQzuel.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton
Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor,
Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya
Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony
Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple
Vijaykumar, Dominika Rogoziniska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus Martins,
Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack
Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn
Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem
Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly McNealus,
Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark
Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew

13

https://openreview.net/forum?id=KmtVD97J43e
https://aclanthology.org/2023.emnlp-main.494/
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14775
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14775
https://arxiv.org/abs/1707.06347
https://aclanthology.org/2024.emnlp-main.597/
https://arxiv.org/abs/2409.12183
https://openreview.net/forum?id=jenyYQzue1

Under review as a conference paper at ICLR 2026

Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi
Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan,
Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev,
Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R.
Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy
Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon,
Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang,
Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley,
Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu,
Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118!.

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. Deep
probabilistic programming. In International Conference on Learning Representations, 2017.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT: Reasoning with reinforced
fine-tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7601-7614, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.410. URL
https://aclanthology.org/2024.acl-long.410/l

Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
'95, pp. 419-428, New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014. doi:
10.1145/218380.218498. URL https://doi.org/10.1145/218380.218498,

Greg C. G. Wei and Martin A. Tanner. A monte carlo implementation of the em algorithm and the poor man’s
data augmentation algorithms. Journal of the American Statistical Association, 85:699-704, 1990. URL
https://api.semanticscholar.org/CorpusID:123027134.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022. URL
https://api.semanticscholar.org/CorpusID:246411621.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn., 8(3-4):229-256, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696!

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun
Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and Chi Wang. Autogen: Enabling
next-gen LLM applications via multi-agent conversations. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=BAakY1hNKS.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan
Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou,
Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li,
Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang,
Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yugiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

14

https://arxiv.org/abs/2408.00118
https://aclanthology.org/2024.acl-long.410/
https://doi.org/10.1145/218380.218498
https://api.semanticscholar.org/CorpusID:123027134
https://api.semanticscholar.org/CorpusID:246411621
https://doi.org/10.1007/BF00992696
https://openreview.net/forum?id=BAakY1hNKS

Under review as a conference paper at ICLR 2026

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D.
Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2369-2380, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.
org/D18-1259/.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. ReAct:
Synergizing reasoning and acting in language models. In International Conference on Learning Representations
(ICLR), 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin, and James
Zou. Optimizing generative ai by backpropagating language model feedback. Nature, 639:609-616, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with rea-
soning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 15476-15488. Curran Associates,
Inc,, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=92gvk82DE—.

15

https://aclanthology.org/D18-1259/
https://aclanthology.org/D18-1259/
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://openreview.net/forum?id=92gvk82DE-

Under review as a conference paper at ICLR 2026

APPENDICES

Program View

Probabilistic View

T-typed object

LM adaptor with weights 8, with output restricted to
T-typed objects

Deterministic algorithm f : 7; — 7,

parse and canon functions that convert typed ob-
jects to/from LM inputs/outputs

Executing a workflow to obtain z; s

Probability that a stochastic workflow succeeds

Random variable € ¥* restricted to strings € valid(r)
Unnormalized conditional distribution pras(z: |
z,;0)l(z; € valid(r))

Degenerate distribution 6.anon(f(parse(az,))) (%)
Measurable maps between object domain O and string
domain ¥*

Sampling from joint unnormalized probability
po(z1..m) = [Po(zr, | 25,)

Zg = Prp, (all nodes are valid)

Table 1: Dual semantics: how TAC concepts map between their program and probabilistic views.

A BACKGROUND AND RELATED WORK

TACs sit at the intersection of probabilistic modeling, workflow composition, and LLM adaptation. We organize
the related work thematically.

Formalizing and Executing LM Workflows. We approach LLM workflows from the perspective of probabilistic
programming. Probabilistic programming languages (PPLs) tailored for machine learning, such as Edward (Tran:
et al.,[2017) and Pyro (Bingham et al.l 2019), combine differentiable components with stochastic control flow
to define complex distributions. TACs share this goal but address a distinct challenge inherent to typed LLM
workflows: enforcing type constraints restricts the LLM’s support, rendering the distribution unnormalized
(Ze # 1). Traditional PPLs typically assume normalized models. TACs draw inspiration from classical structured
prediction (Lafferty et al.l 2001; Belanger & McCallum, [2016)), which provides tools for handling unnormalized
models. Our formulation connects these threads, treating type compliance itself as the partition function, enabling
a specialized, tractable optimization objective (TACSTaR).

In contrast, programmatic LM frameworks such as DSPy (Khattab et al., 2022} 2024), LMQL (Beurer-Kellner
et al., [2023)), and LangChain (Chase, |2022)) expose LMs through pipelines with declarative constraints. These
systems typically optimize the inputs (prompts or few-shot exemplars) to a fixed system, rather than casting the
entire workflow as a single probabilistic object with learnable continuous parameters and a likelihood objective.
While some proposals optimize weights within such pipelines (e.g., BetterTogether (Soylu et al.,[2024)),
TACs differ fundamentally in their principled probabilistic formulation, enabling theoretically justified training
(§3.2) and advanced inference techniques (§3.3).

Optimizing Composed Systems. The standard approach to optimizing LM workflows involves difficult discrete
optimization over the space of possible prompts, often addressed through heuristic search (Zhou et al., 2023}
Pryzant et al., 2023} Yuksekgonul et al.||2025) or reinforcement learning (Jafar1 et al., |2024)), both of which can
suffer from high variance and computational cost.

TACs instead leverage gradient-based optimization. This builds upon methods that adapt LMs for reasoning,
such as STaR (Zelikman et al., [2022)) and ReFT (Trung et al.,[2024)), which were inspired by techniques like
Chain-of-Thought (CoT) (Wei et al.| [2022)) and Self-Refine (Madaan et al.,[2023). We adopt the spirit of STaR, but
generalize it within a hypergraph framework to propose typed, multi-step rationalizations (§3.2). Furthermore, we
introduce an amortized variant that learns to propose rationalizations, rather than relying solely on heuristics (§3.3).

16

Under review as a conference paper at ICLR 2026

Enforcing Structure and Compliance. To improve output reliability, various methods enforce grammar-based
constraints during LLM generation (Poesia et al., {2022} Geng et al.| 2023} [McCarthy et al., 2023} |Beurer-Kellner
et al.| [2024} \Geng et al.|[2025). These methods generally modify local conditional distributions over next tokens at
inference time, masking out continuations incompatible with the grammar. In contrast, our objective learns
parameters so that type-compliant trajectories carry increasing probability mass globally, improving both validity
and task accuracy through training.

Parameter-efficient adaptation. LoRA and related PEFT methods (Houlsby et al., 2019} |[Hu et al.,|2022; [Li
& Liang, [2021} |Lester et al., 2021} |Liu et al.,|2022)) enable light-weight adaptation. We use small adaptors to
highlight data-efficiency and show that gains stem from typed workflow learning rather than sheer capacity.

Connection to Reinforcement Learning. The TACSTaR training procedure (§3.2) can also be viewed through
the lens of policy optimization. As|Zelikman et al.|(2022) observed, the STaR objective closely resembles the
REINFORCE algorithm (Williams|, |1992)). The M-step in TACSTaR can be interpreted as optimizing the workflow
policy under REINFORCE with a binary reward for generating the correct output.

We adopt the MC-EM framing as it provides a principled approach for likelihood maximization in the presence of
annotated output data. While advanced RL techniques (e.g., PPO (Schulman et al.;[2017)) or actor-critic methods
(Konda & Tsitsiklis, |1999)) might be applicable, they introduce complexity, such as training value functions,
which are difficult to estimate over complex, typed latent spaces. Furthermore, the exploration challenge in sparse
reward settings is significantly mitigated by the rationalization heuristic and the inference network in Amortized
TACSTaR (§3.3)), which guide sampling towards successful trajectories using known outputs.

B ADDITIONAL STUDIES ON WORKFLOW PATTERN DESIGN

In this section, we conduct additional experiments that vary the pattern structures, and evaluate how such changes
affect performance. Specifically, we would like to answer the following questions:

* (§B.2) Is adaptation with reasoning workflows effective? The TAC framework gives practitioners great
freedom in designing a workflow that reason in the process. We hypothesize that adapting with such
explicit structures improves performance on tasks that require complex reasoning.

* (§B.3) How do TAC design variations affect performance? We evaluate how such TAC design variations
for the same task affect performance.

B.1 END-TO-END TRAINABLE WORKFLOWS AS TACS.

The declarative and flexible nature of TACs enable practitioners to rapidly implement end-to-end trainable
workflows. We implement some common patterns as TACS:

* Direct adaptation of an LM to the downstream task without any latent structure corresponds to common
supervised PEFT methods surveyed in §A| The direct pattern (Fig.[5d) is a singleton TAC with no latent
nodes.

» Adapting with latent rationales corresponds to patterns that learn to generate rationales for the task at
hand [Zelikman et al.| (2022). There are several possible TAC structure designs that incorporate rationales:
for example, cot-type-structure (Fig. [5b) maps the input to a rationale-output typed object, from which
the task output is deterministically extracted. Alternatively, cot-cascade-structure (Fig. [Ta) introduce
rationales as distinct nodes in the TAC hypergraph, which transforms into the task output under an adaptor.

¢ Trainable self-refinement refers to an end-to-end trainable variant of self-refine (Madaan et al., [2023)),
where the model first sketches a task output, and iteratively refine it. Without TAC, a practitioner would
have to resort to manually writing tedious postprocessing functions for the intermediate results. On the
other hand, the TAC counterpart refine-structure (Fig. [6]in is straightforward.

17

Under review as a conference paper at ICLR 2026

[Z3 ‘l
1
\type: Tro,
\ 7’
~

’

~__-

(74, b, 01) extract: (Tro — To

(a) direct (b) cot-type-structure

Figure 5: Workflow patterns experimented in this paper, with increasing structural complexity from left to right. In
the most complicated pattern expression-cascade-structure we illustrate the workflow with example node values.
Dashed-boundary nodes indicate variables that are not observed at training time. And solid-boundary nodes
indicate nodes with training time observable values. A main message of this work is that instead of defining
workflows imperatively as fixed-parameter systems, we treat an entire typed workflow as a single probabilistic
program, whose parameters are lightweight PEFT modules, allowing end-to-end training with latent
variables.

For the MGSM-SymPy task, we experiment with the expression-cascade-structure pattern (Fig. [Tb), which
additionally imposes the constraint that the output must be a rational number represented by an arithmetic
expression tree. Such type constraints often reflect business logic (for example, we expect the MGSM dataset to
have rational number answers), and may be necessary when the TAC forms a component in a larger system.

B.2 EFFECTIVENESS OF ADAPTATION WITH REASONING WORKFLOWS

To evaluate whether adaptation with reasoning workflows is effective, we compare cot-cascade-structure,
and refine-structure TACs against direct on the 3 tasks MGSM, FinQA and HotPotQA, on base models
gemma-2-27b-it and gemma-1.1-7b-it. Table[2]shows that both cot-cascade-structure significantly
outperforms direct on MGSM and FinQA on both gemma-2-27b-it and gemma—-1.1-7b-it. But
cot-cascade-structure slightly underperforms direct on HotPotQA. These results largely agree with the meta
study done by [Sprague et al.| (2024a)), which also reported that tasks that require arithmetic and symbolic reasoning,
such as MGSM and FinQA, benefit the most from CoT, while a huge portion of previous work saw that CoT
degrades performance for multihop QA. However, we note that the refine-structure TAC (Fig.[6) consistently

18

Under review as a conference paper at ICLR 2026

outperform the direct baseline in all 3 tasks on gemma—2-27b—1t, showcasing the effectiveness of the adaptive
refinement paradigm.

gemma-2-27b-it gemma-1.1-7b-it
Dataset direct cot-cascade-structure refine-structure direct cot-cascade-structure
MGSM 24.7 82.2 78.6 5.1 273
FinQA 17.3 36.0 23.7 3.0 9.7
HotPotQA 34.0 32.0 39.0 — —

Table 2: Comparison between direct and reasoning workflows. For the MGSM dataset, we report per-language
accuracies in Table[5} The difference between best performing runs and direct are statistically significant/marginally
significant: for MGSM and FinQA p < 0.05 (both gemma-2-27b-1it and gemma-1.1-7b-1it), and for
HotPotQA p = 0.07 under paired permutation tests. Per-language accuracy numbers of the MGSM dataset are in

Task adaptation with TACSTaR is effective. To evaluate whether the efficacy of TACs can be attributed to our
proposed TACSTaR method, we also compare adapted TAC workflows against those with the same hypergraph
structure, but with un-adapted weights (i.e., all adaptors in the TAC use base model weights). Both TACSTaR trained
and un-adapted models use the same structured LangFun prompts that are similar to examples listed in §N| The
significant gap between adapted and un-adapted results in Table [3|indicate that the TACSTaR algorithm is effective.
Notably, un-adapted models still outperform direct workflows (listed in Table [2), indicating that LangFun’s
type-inducing prompts can invoke somewhat effective test-time computation over the TAC hypergraph structure.

Task Structure TACSTaR Un-adapted
MGSM cot-cascade-structure 82.2 45.4
MGSM cot-type-structure 80.4 74.7
MGSM-SymPy expression-cascade-structure 75.9 69.5
FinQA cot-cascade-structure 36.0 13.0
HotPotQA refine-structure 39.0 24.0

Table 3: Comparison between TACSTaR-adapted and un-adapted gemma-2-27b-1it. The differences are all
statistically significant (p < 0.05) under paired permutation tests.

B.3 EFFECTS OF DIFFERENT TAC DESIGNS

Decoupling rationale and output modeling helps performance. cot-cascade-structure (Fig. [Ia) achieves a
higher score than cot-type-structure (Fig. [5b) on the MGSM task (Table d), suggesting that modeling the rationale
and task output generation with distinct adaptors helps performance. By using distinct adaptors, the workflow
allows specialization: the first adaptor focuses on reasoning, while the second specializes in synthesis, reducing the
complexity burden on a single monolithic step. The positive result again highlights how the TAC formalism can
help practitioners iterate and experiment with different multi-adaptor cascade designs, which would be tedious
otherwise.

Robustness to Semantic Constraints. Comparing performance on MGSM and the more constrained MGSM-
SymPy task reveals a key advantage of the TAC framework’s robustness. As shown in Table[d] the best-performing
TAC model sees a modest performance drop, from 82.2% on MGSM to 75.9% on MGSM-SymPy, when required

19

Under review as a conference paper at ICLR 2026

to generate a valid symbolic expressionE] This contrasts sharply with the prompt-optimizing baseline (Fig. . The
best DSPy configuration experiences a much more significant degradation, plummeting from 81.9% on MGSM to
just 57.1% on MGSM-SymPy. The substantially smaller performance drop for TACs underscores the brittleness of
discrete prompt optimization when faced with strict structural requirements. The TAC framework’s gradient-based
adaptation within a typed system proves to be significantly more resilient, making it a more reliable paradigm for
tasks demanding structural compliance.

MGSM MGSM-SymPy
cot-type-structure cot-cascade-structure expression-cascade-structure
80.4 82.2 75.9

Table 4: Effects of different TAC designs on the MGSM dataset, demonstrating the impact of workflow structure
on performance. The cot-cascade-structure (which decouples rationale generation from the final answer
synthesis) outperforms the monolithic cot-type-structure. The expression-cascade-structure result shows strong
performance on the more constrained MGSM-SymPy task.

C ALGORITHMS

C.1 FORWARD AND BACKWARD

Algorithm [I|(forward) executes the probabilistic program represented by a TAC C' = (Z, E). Starting from a
given input node value z7, the algorithm traverses the hypergraph following a topological order, and terminates
when all edges € Z have been visited. forward takes C' and z] as input arguments. forward also takes the
following as arguments:

 sampler configuration « for different sampling techniques, e.g., varying temperature, nucleus, and top-k
sampling

e maximum number of sampling attempts

Algorithm 2| (backward) takes as input (C, Z*), where C' = (Z,E) where E = (e ... ek) is a TAC, and
Z* are value assignments of Z. We assume the log probability pras(y | x; 6y) is auto-differentiable with
regard to all adaptor hyperedges in a TAC. Algorithm [2| returns unnormalized log joint probabilities of Z*
under C': log pg(Z*), the per-node generation log probabilities (logpe(z2 | -)...logpe(zar | -)), and also
gradients of LM adaptors: Vg, log pg(Z*) for adaptor hyperedges’ indices k. We note that backward is easily
parallelizable: all adaptor edges can be processed at the same time.

C.2 TACSTAR

The TACSTaR algorithm (Algorithm 3) takes as input (C, {z},y; | i € [1..Dyain]}), where C' is the TAC to train,
and {(z},y7) | © € [1..Dyain) } is the training dataset. As we described in TACSTaR uses a ‘fallback TAC’
heuristics in hope to obtain a sample when the forward algorithm fails.

Building Fallback TAC. Given a TAC C' = (Z, E) with input node and output node typed 7; and 7, respectively,
we build its fallback TAC Chypack = (Z’, E’) (denoted as the function build_fallback in Algorithm [3) as
follows:

3 Sample expressions generated under expression-cascade-structure are listed in §@

20

Under review as a conference paper at ICLR 2026

Algorithm 1 TAC Forward Algorithm (forward)

Input: TAC cascade C' = (Z,E) where Z = {z, ...z} and E = {e; ... ex}, input object: z}, sampler
configuration , Np,x for maximum number of sampling attempts.

Output: Sampled values (z3,...,z%,).

1: Determine a topological ordering of edges in E. Let the sorted hyperedges be ¢ . . . ¢/,

2 Z:lreudy,sampled — {ZT}

3: for k € [1..K] do

4 Assert the source nodes of e}, is a subset of Zalready_sampled -

5: if e, = (7,7, 0) is a type-constrained LM adaptor then

6: # type-constrained LM adaptors have a single source node and a single target node.

7 x < canonicalized representation of e}.’s source node.

8: while number of attempts < N, do

9: Try draw y ~ pra(- | 230, k)

10: if parse(y, 7,) # error then

11: t < index of e),’s target node.

12: Z; <Y

13: Z:lready,sampled — Zalready,sampled U {Zf }

14: break

15: end if

16: end while

17: else if ¢}, is a deterministic algorithm f then

18: # In this work we assume f’s inputs and outputs are sorted by node index in C.
19: O finput < parsed objects of e;c’s source nodes, sorted by node index.

20: Ofoutpul < f(ofinput)

21: }Oulput < canonicalized representations of objects € O fougpue, sorted by node index.
22: Zalready,sampled — Z:lready,sampled U Z?ompul

23: end if

24: end for

25: return Zalready,sampled - {ZT}

* The input node of Cryback: 2z} is of the product type 7;, = 7; X T,, representing a data container that
holds one object of type 7; and another object of type 7,.

* All other nodes € Z have their counterpart nodes in Z’ (with the same types and indices).

» We copy each hyperedge e € E over to E/, connecting nodes with the same indices. In the case that e is
a deterministic algorithm hyperedge, and has z; as one of its source nodes, we modify the counterpart
hyperedge €’ to have a deterministic algorithm that first extracts the original object parse(z;) from
parse(z)), and then pass parse(z) to the original algorithm as input.

Adaptors in Ciypack Use no-op weights, falling back to the behavior of the base model. We denote such no-op
weights as 0. For example, Fig.[7]is the Crypack for Fig.

C.3 AMORTIZED TACSTAR
The Amortized TACSTaR algorithm (Algorithm [)) builds upon Algorithm 3]to introduce an inference network TAC.

While Chypack used fixed no-op weights that behave identical to the base language model, Amortized TACSTaR
leverages an inference network TAC C’ with trainable parameters.

21

Under review as a conference paper at ICLR 2026

Algorithm 2 TAC Backward Algorithm (backward)

Input: C = (Z,E) and sample Z* = {z},z},...,z%,}
Output: (logpe(Z*), (logpe(z2 | o dogpe(zm | 0). {Ve.logpe(Z*) | e €
E is an adaptor hyperedge})
1: Initialize log-probability accumulator £ < 0.
2: for each LM adaptor hyperedge ex, = (75, 7o, 0x) do

3: Let z7 € Z*, z} € Z* be the sample value of e;’s input and output nodes z; (typed 7;) and z,
respectively.

4: (4,g1) + peft backward(logpra(zk | canon(parse(z}, 7;)); 0).

5: L—LA+Y

6: keep track of ¢ by its node index.

7: end for

8: # For nodes from deterministic hyperedges, set log prob to 0 as they have no learnable parameters.

9: return (L, (logpe(z2 | -)...logpa(zr | -)), {gk | ex € E is an adaptor hyperedge}).

Building the inference network C’. Given a TAC C' = (Z, E) with input node and output node typed 7; and 7,
respectively, we build the adaptive fallback TACC” = (Z’, E’) (denoted as the function build_infer_net in
Algorithm). At a high level, every adaptor hyperedge that generates latent variables in C' is mapped into a
counterpart in C” that also depends on both observed a 7;-typed input and a 7,-typed output, now encoded as z},
typed 7;,. Specifically we build C” with the following procedure:

* The input node of C”: z] is of the product type 7, = 7; X T,, as with build_fallback.
* All nodes € Z have their counterpart nodes in Z’ (with the same types and indices), except for {z1, ZZ}E]
* For each hyperedge e € E,

— In the case that e is a deterministic algorithm hyperedge, and has z; as one of its source nodes,
we add a counterpart hyperedge e’ that connect counterpart nodes in Z’, with its deterministic
algorithm modified to typecheck, as build_-fallback.

— Otherwise, e is an adaptor hyperedge. Denoting its source node as z, and target node as z;:

x If z; = 79, we continue since z; has no counterpart C’.

x If z; = 71 and z; # 22, we add a counterpart hyperedge ¢’ = (7, T+, Onew) connecting
counterpart nodes z/, and z}. 6., indicates the parameter vector of a new LM adaptor.

x Otherwise, z, # z1 and z; # z9. In this case, we create €’ to be an adaptor that is conditioned
on both z/, and z). To achieve this goal, we introduce into C’ a helper node z typed
Tios = Ti X To X Ts, and a helper hyperedge e’ that has source nodes {z/, z’. }, and target node
{z!}. " is a deterministic edge that combines values in z} and z/, into the 3-object container
z!/. Finally, we add ¢’ that connects z”/ to t as the adaptor transformation (7;os, 7¢, Onew)
where 0, again indicates the parameter vector of a new LM adaptor.

Adaptors in C” are new adaptors. And we train C' alternately with C” in Algorithm@ The algorithm to train C” is
listed in Algorithm [5]

C.4 UPDATING '

We train the inference network C’ to better approximate the posterior distribution defined by C' alternately
(§3.3). In other words, we update adaptor parameters in C’ so that sampled latent variables of C* ((Zs, ..., Zs)

"*We arbitrarily designate a node € Z' that does not have an outgoing hyperedge as the output node for syntactic conformity.

22

Under review as a conference paper at ICLR 2026

Algorithm 3 TACSTaR Training Algorithm

Input: Training pairs Diain = {(z7,y}) | ¢ € [1..|Dain|]}, TAC C, sampler configuration .
1: Chaback < bulldiallback(C)
2: for epoch in [1..num_epochs] do

S < {} # Successful samples

4 for training pair (z*, y*) € Diain do

5: z} < canon(z*)

6: # E-step (Sampling Latent Variables):

7.

8

1Y)

(2o ...2p) < Forward(C, z7).
Filtering (Validity Check):

9: Initialize error_flag « false.
10: Set error_flag <« true if errors in E-step or parse(zq) # y*.
11: # Heuristics Fallback (Addressing Forward Failure):
12: if error_flagis true then
13: zF + canon((z*,y*))
14: (2’2 ce i/]\/[) — forward(C'fa"baCk, Z/l*)[O]
15: if no error was raised and parse(z}) = y* then
16: (2221\/[)(—(2/22/1\/[)
17: Set error_flag <« false.
18: end if
19: end if
20: if error_flag is false then
21: S+ SuU{(z],22...2m)}
22: end if

23: end for
24: # M-step (Parameter Update):
25: for (z3,22...2p) € S do

26: G < backward(C, (z],22...2n))[2]
27: optimize(C,G)

28: end for

29: end for

obtained using forward(C’, canon(z*), k)) follow the normalized distributions under C' (obtained using

backward(C, (canon(z*), canon(y*),2s,...,Z)))). To promote diversity of samples, we addition-
ally obtain samples from Crupack (§C.2). Let Z = (z3,...,2z%,) be a sample out of G collected samples
(Z(l), ey Z(G)) from Clypack and C’. We approximate the posterior probability of Z under C, conditioning on

z} = canon(z*), z5 = canon(y*) under the balance heuristic (Veach & Guibas, [1993) as

(N fallback + N; infer)ﬁmodel
b
Nrattback Patiback 1 NinferDinfer

ﬁposterior(z) 08 (5)
~ ~ M b

where Pmodel = PC (ZTa Z;a Z;, ce. 727\4)’ Ptallback = Hm:3 PLm (Z;kn | Z;kn S source node; 00)’ and Dinfer =

H%:S prm(zh, | 2%,’s source node; Oyey). These values are all obtained using the backward algoritthe

denote the number of samples attempted (including errors) on Cyjpack = Nfaiback, the number of samples attempted

(including errors) on C’ = Ninfer. Pposterior 18 Normalized over the mixture so that Z?:l ﬁpmrior(z@)) =1.

Bpackward algorithm as presented in this work computes both gradients and probabilities. In our implementation we do
not compute gradients when they are not needed; but we omit this subtlety in AlgorithmE}

23

Under review as a conference paper at ICLR 2026

Algorithm 4 Amortized TACSTaR Training Algorithm

Input: Training pairs Dyain = {(z7,y}) | ¢ € [1..|Dain|]}, TAC C, sampler configuration .
1: C’ < build_infer_net(C)
2: for epoch in [1..num_epochs] do

S < {} # Successful samples

4 for training pair (z*, y*) € Diain do

5: z} < canon(z*)

6: # E-step (Sampling Latent Variables):

7.

8

1Y)

(2o ...2p) < Forward(C, z7).
Filtering (Validity Check):

9: Initialize error_flag « false.
10: Set error_flag <« true if errors in E-step or parse(zq) # y*.
11: # Heuristics Fallback (Addressing Forward Failure):
12: if error_flagis true then
13: zF + canon((z*,y*))
14: (2’2 ce i/]\/[) — forward(Cfa"baCk, Z/l*)[O]
15: if no error was raised and parse(z}) = y* then
16: (2221\/[)(—(2/22/1\/[)
17: Set error_flag <« false.
18: end if
19: end if
20: if error_flagis true then
21: (z3...2pm) < forward(C’,z7)[0]
22: Set error_flag < false if no errors in previous step.
23: end if
24: if error_flag is false then
25: S(—SU{(Z’LZ;,ZSP..ZM)}
26: end if

27: end for

28: # M-step (Parameter Update):

29: for (z3,z2...2)) € S do

30: G < backward(C, (z},22...2n))[2]
31: optimize(C, Q)

32: end for

33: C' + update inference network C” (§C.4).
34: end for

Algorithm [5| updates adaptors in C” to bring its unnormalized distribution closer to Eq. . Since the self-
normalized approximation of the posterior distribution is consistent but biased, we require minimum numbers of
samples from C’ and Ciyjpack.

D FORMAL STATEMENTS AND PROOFS REGARDING TYPE COMPLIANCE

Well-specifiedness. Let C' = (Z, E). We define well-specifiedness for TAC: we say @ = {07 ... 0k} is well-
specified if for every LM adaptor ey, = (7;, 7o, O%) € E and for every valid canonicalized string « of type 7, the
LM distribution py, s only has support over valid outputs of type 7,. Formally, ¥V valid z, Zy €Dyaria(ro) PLM (y|

x; 0;) = 1iff 6 is well-specified.

24

Under review as a conference paper at ICLR 2026

Algorithm 5 update_infer_net

Input: Training pair (z*, y*), model TAC C, sampler configuration «, inference network C”, non-adaptive
fallback Chyjpack, number of samples from Chyjpack: Galiback, number of samples from C”: Gigfer -
. 2'] + canon((z*,y*)), 2} < canon(x*), z + canon(y*).
¢ Zicollected H
: # In our implementation we give up and raise an error after 30 unsuccessful attempts.
: while number of successful samples from Ceypack < Gtallback dO
Try (22, 23, . iM) — forward(Cfauback, Z/T, K, 1)
if previous step succeeded then
We discard Z, from Crpack-
Append (237 s >ZM) t0 Zicolected-
end if
: end while
. Niaback <— numbers of attempts on Chypack
: while number of successful samples from C” < Giyfe; do
Try (23,...20m) < forward(C’,z'],k, 1)
if previous step succeeded then
Append (237 cee 72M) t0 Zicollected-
end if
: end while
¢ Ninfer < numbers of attempts on C’
: G < Graack + Ginfer
: Assert G = |Zcollected|
: Compute [ﬁposterior(z(l) <. ~ﬁposterior(Z(G))] USiI’lg Eq '
: Sample g € [1..G] with probability proportional to ﬁposlerior(Z(g).
. G < backward(C’,Z9)[2].
: optimize(C’, G)

e A el S

DO D DD = b e e e et e e e e

[\ 2N\
=0

We first prove that hyperedges are locally normalized (i.e., the partition function is 1) when 0 is well-specified:

Lemma 1. If @ is well-specified, then for any hyperedge ey, € B and any valid assignment x to its source nodes,
the local partition function Zj, = 1.

Proof. ey, is either an LM adaptor or a deterministic algorithm:

* If ey is an LM adaptor, Z, = 3_, Po(y | @i ex) = Do, coatia(r,) PLm (Y | 25 05) = 1.

* If e, is a deterministic algorithm, by Eq. 2) Z), = >_, p(y | @; ex) = p(canon(f(parse(z,7:)))+
0=14+0=1.

O

We then use induction based on the TAC C’s topological structure.

Lemma 2. Let 0 be a well-specified parameter vector for TAC C = (Z, E). The conditional partition function
Zg (Zl) =1

Proof. We use induction on the number of nodes k, following the topological sort z1, . . . zps. For clarity, here we
abuse the subscript notation for topological order, and therefore z), (instead of z5) is the output.

25

Under review as a conference paper at ICLR 2026

Let C, be the sub-TAC induced by {21, ...,z }. Its partition function is Zj(z1) = -, . HZL:Q Do (Zm |
Sm), where S,,, denotes the source nodes of z,, under its corresponding hyperedge.

Base Case. k = 1. Cy has only z1. Z(z1) = 1 since the product is empty.

Inductive Step. We assume Z;_1(z1) = 1. First we rewrite Zj(z1) by explicitly summing over z. Since
Z1,. . .2} is a topological order, the source nodes of z: Sy, is a subset of {z1, . ..z_1}. We thus rewrite Z(z)
as

k—1
Zim) =) <H Po(zm | Sm)) : (Zﬁe(zk | Sk)> : (©)

Z>...Z}
We discuss the summands by the validity of z5 ...z, _1:

e If z5...2;_4 is valid: by Lemmathe term sz po(zr | Sk) = 1. This summand is therefore
k-1 ~
Hm:2 Po(Zm | Sim)-

e Ifz5...2z;_1 is not valid: by Eqgs 1 and 2 this summand is 0.

We can thus rewrite Eq. (€ as

k—1
Zi(z) = > 1 pe(zm | Sm)- (7

Zo,..., Zj,—1|valid assignments m=2

Equation (/) can be further rewritten to sum over both valid and invalid zo, . . . , z,—1 assignments (since again by
Egs. (I) and (2), the summand is O for invalid assignments):

k—1
Zi(z) = Y.][Pe(zm | Sm) = Zk-1(z1). ®)

Z2,...,Z—1 M=2
Since by assumption Zj,_1(z1) = 1, we thus prove by induction Zy;(z1) = Z¢(z1) = 1. O

Finally, we show that Lemma [2] implies the equivalence of maximizing the normalized and unnormalized
likelihoods when the true parameters are well-specified.

Theorem 1. Let © be the entire parameter space and let ®' C © be the subset of well-specified param-
eters. Assume 0* uniquely maximizes the normalized likelihood pg(zo. nr|21) and resides € ©'. Then,

0 = argmaxgcg Po(22..1m|21) = 0 = 6~

Proof. First we note V6 € ©, Zg(z1) < 1, since for any adaptor), pg(y |) < 1. By Eqs. (1) and (2) the

global partition function must also be < 1.

We rewrite the unnormalized likelihood as a product of normalized likelihood and the partition function:
Po(z2.. v | 21) = po(z2..: | 21) - Zo(21) €)

Since Zg(z1) < 1,0 € ©,pg(z2..: | 21) < po(z2..: | 21).

At the well-specified true parameters 0* we have Zg(z;) = 1 by Lemma Therefore po-(z2.. a1 | z1) =
pe*(zz...M | Z1)-

26

Under review as a conference paper at ICLR 2026

By our assumption that 8* maximizes normalized likelihood, VO € ©, pg+(z2.. a1 | Z1) > po(z2.. a1 | Z1)-
Combining everything together:
Po~(z2..: | 21) = pe- (2. | 21)
> po(z2..m | 21)
> po(z2..0 | 21)
for all @ € ©. Under the assumption 6* is unique, 8* = arg maxgycg Po(22..11 | 21) = 0. O

Theorem 2. Let @ = {0; ...60x} be the union of a K -adaptor TAC’s LM adaptor parameters . If ¥z 1 €
Z*, Zf 2 (S E*, ||V0 (Z 10gpLM(Zk-72 | Zg,1; 9)) ||<>o < G, then VG long < 2G(1 — Zg).

Proof. Here we fix z; = x. We denote z2_ 3y = y. Let p(Lk]e/[(y) be the k-th LM adaptor’s unmasked node

probability, given (x,y) as TAC input and output. We then denote pg(y) = [, pé% as a TAC’s normalized
distribution over node assignments (without masking invalid ones). The partition function Zg = Zy po(y |

z)I(y € V) = Prp, (V) where V is the set of valid node assignments.

We first rewrite Vg log Zg as an expectation under pg:

Vg log Zg = Ey~p9(~|V) [VQ 1ngg (y)] . (10)
Using the identity 3, po(y) Ve log pe(y) = 0, we rewrite Eq. as
Volog Zg = Eypy(v) [Valogpe(y)] — Eympe [Ve logpe(y)] - (1D

Let f = Vg logpe(y). We can now rewrite || Vg log Zg||~ as
Ve log Zolloo = Ep.\y, [f] = Epg [f]]l

=D wely |'V) = po()llos
<D Nl - Py | V) = po(y)]

SZG'|P9(Z/\ V) —pe(y)l- (12)

Y

Noting that }, [pe(y | V) — pe(y)| is twice the total variation between pg and pg(- | V), and that the total

variation between pg and pg (- | V) is (1 — Zg) — the sum of invalid assignments’ probabilities under pg — we
can rewrite Eq. as ||Ve log Zg|leo < 2G(1 — Zyp).

O
E IMPLEMENTATION CONSIDERATIONS

In this section we discuss practical implementation considerations. In particular, we distinguish between one-time
and per-use efforts.

E.1 ONE-TIME EFFORTS
Parsing and canonicalization. There exist multiple libraries that can readily be used to implement parse and

canon for typed data-holding objects in Python. One example is LangFun which we use extensively in the paper.
Another popular library is Pydantic, which is used in DSPy.

27

Under review as a conference paper at ICLR 2026

Type validation logic. As we briefly discussed in Footnote [5] the parse function can be used to implement
complex business logic. Such logic can usually be implemented cleanly as part of type definition (e.g., as
_-init__and __post_init__methods in Python).

Algorithms. The core TAC algorithms for execution and training (Algorithms listed in are general and need
only be implemented once. The main computational bottlenecks in these algorithms are:

* Sampling from an LM adaptor pya(+; €).

* Evaluating the conditional probability of y given & under an LM adaptor: py(y | x; 6).
» Computing gradients of (z, y) with regard to parameters 8: Vg logpra(y | x; 0).

A practical implementation can abstract these bottlenecks away, by offloading these intensive parts to dedicated
inference servers (e.g., VLLM). The core TAC logic remains a lightweight, accelerator-agnostic program.
Furthermore, since TACs use parameter-efficient fine-tuning (PEFT), the adaptor weights and gradients are small
enough to be processed quickly, often without needing dedicated accelerators for the logic itself. This design
significantly reduces the low-level engineering burden.

E.2 PER-USE EFFORTS

Once the core engine is in place, a practitioner’s effort is focused on defining a TAC hypergraph for their specific
task. Since the TAC hypergraph is essentially a data flow graph, it can be represented in a way that is directly
analogous to network architecture definitions in popular neural network frameworks such as PyTorch, where the
Module s represent hyperedges, and their forward methods connect the typed data nodes.

F ADDITIONAL TAC DIAGRAMS OF TRAINABLE WORKFLOWS

N S
. . // R (. 0) P R
combineio: 7; X To — Tio (24 > \TiosTryUs) [z5 ‘l
1 . 1 o
(Tis o, 65) ' type: Tio s | type: 7. ,
\\\ /,l \\ /’l

i Z3 ‘l
\ type: T, ,
\ 7

S ’

~o_-

combine_ior : T;, X T, = Tior

Y
I Zg (Tiom To 07)
1 . >
\type- Tior:
\ 7

~ v

~o_-

Figure 6: refine-structure: refinement through cascade topology engineering. This cascade models a refinement
process where an initial output sketch is iteratively refined based on generated rationales.

28

Under review as a conference paper at ICLR 2026

- ~
’ ~

\
(Tio> Tro, 00) /23 v extract: 7o = 7o Zo
\type: Tro) type: 7,
AN 7

(S 4
~__~-

Figure 7: Crypack for cot-type-structure. Notice that the adaptor (74, 70, 8o) uses ‘fallback” weights 6 that
represent no-op weights. Since we conduct experiment on LoRA adaptors in this work, we use the zero-init vectors
as 0.

’ N
. .. ’ A
combine_iodr : T;, X T, —> Tied 22 \
(Tim Tr, 08) \ typei Tir
\ 7
N 7

~_._-

’ Y
Vs Y
1 Z3 ‘l
1
\ type: 7,
N 7
N 7

~__-

Figure 8: Inference network TAC C’ for cot-type-structure.

G FURTHER DETAILS OF EXPERIMENT SETUP

Data splits. We focus on the low-data regime of task adaptation in this work. For MGSM and MGSM-SymPy,
each language has 100/30/120 training/validation/test examples respectively. The splits are 100/30/100 and
100/30/300 for HotPotQA and FinQA respectively. For HotPotQA and FinQA, we use the first entries from the
original dataset files as our training and evaluation subsets. For MGSM experiments, we train and evaluate on each
language separately. For MuSR tasks, the splits are 100/30/120 and 100/30,/126 respectively.

Evaluation. We look at exact match accuracy scores of the answers for all 5 tasks. For MGSM-SymPy
experiments, we convert answers from the dataset to integers; as for the model predictions, we evaluate the
expressions as rational numbers under SymP}E], and cast the results as integer numbers. We do not make use of
additional clues from the datasets (e.g., the rationales provided for the 8 examples in MGSM datasets).

G.1 TACSETUP

Training procedure. We train all workflows that have latent variables with our TACSTaR and Amortized
TACSTaR algorithms, except for the original (untyped) STaR experiments. Since direct experiments do not have
latent variables, we train those models using the ordinary cross entropy loss. In all experiments we use a batch size
of 8. The Adam optimizer (Kingma & Bal [2014) is used throughout all experiments, with a learning rate of 5e — 5.
We early-stop if no higher validation score is achieved for 4 consecutive epochs. The sampler configuration is
set to use a combination of top-K and nucleus sampling (Holtzman et al.| |2020), where we first choose the top 40
candidates, and cut off accumulated probability mass at 0.95. To train the inference TACs, we accumulate 32
samples from Clye; and 16 samples from the fallback model (that is, G = 48 at the end of Algorithm E])

Yhttps://www.sympy.org/en/index.html

29

https://www.sympy.org/en/index.html

[< N I SO VU R SR

© ® N R W N —

w0 =

Under review as a conference paper at ICLR 2026

Decoding procedure for generation tasks. Here we denote the answer type as 7,. For

each test input instance, we obtain 32 samples Z1)...Z32 using forward, bucket their out-

put node values parse(iél),To)...parse(i(;’m,ro) into B bins, identified by the parsed output

y1...yp. We output the answer with maximum accumulated unnormalized probability mass, namely

argmaxy ZSG[1..32],parse(22,7-0):yb Do (Z(S))

Decoding procedure for classification tasks. We estimate each label ¢’s normalized marginal probability using
Eq. ([4), with N = 32. We output the label with largest normalized marginal probability as prediction.

Object representation of data. We represent input 7; and output 7, as Python types. The objects are encoded as
string representations under LangFun. We design the input and output types separately to reflect the original
dataset schemata (Listings [T]to[3). As for the rationales (represented by 7, in cot-type-structure and cot-
cascade-structure) we represent them as lists of strings (Listing [4). Product types are represented as new Python
classes (e.g., the product of type Question and Answer, represented as 7;, in Figs.[7]and[8] is a new class
QuestionAnswer). The object representation can be arbitrarily complex, with LangFun handling all canon
and parse logic (for example, Listing [flhas Answer objects embedded in multiple types; and Listing [7|has
self-referential definitions).

class Question:
question: str

class Answer:
answer: str

Listing 1: Input and output type definitions for MGSM

class Paragraph:
title: str
sentences: list[str]

class Context:
paragraphs: list[Paragraph]

class Answer:
answer: str

class Question:
id: str
question: str
context: Context

Listing 2: Input and output type definitions for HotPotQA

class Question:
question: str
pre_text: list([str]
table: list[list([str]]

30

o - . I N VO R SR

Under review as a conference paper at ICLR 2026

post_text: list([str]

class Step:
op: str
argl: str
arg2: str
res: str

class Answer:
answer: str

class QuestionAnswer:
question: Question
answer: Answer

class Answer:
answer: str

Listing 3: Input and output type definitions for FinQA

class Rationale:
steps: list[str]

Listing 4: Rationale type definition

class QuestionAnswer:
question: Question
answer: Answer

Listing 5: QuestionAnswer type definition

class ThinkingSteps:
steps: list[str]

class Paragraph:
title: str
sentences: list[str]

class Context:
paragraphs: list[Paragraph]

class SupportingFact:
title: str
sentence: str

class RelevantContext:

31

20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

B Y N

Under review as a conference paper at ICLR 2026

sentences: list[str]

class Answer:
answer: str

class Question:
id: str
question: str
context: Context

class QuestionAnswer:
question: Question
answer: Answer

class AnswerFirstAttemptThinkingStepsAnswer:
answer_first_attempt: Answer
thinking_steps: ThinkingSteps
answer: Answer

class QuestionAnswerFirstAttempt:
question: Question
answer_first_attempt: Answer

class QuestionAnswerFirstAttemptThinkingSteps:
question: Question
answer_first_attempt: Answer
thinking_steps: ThinkingSteps

Listing 6: Type definitions for refine-structure on HotPotQA

class Expression:
operator: Literal['+', '=-', 'x', '/']
left: Union[int, 'Expression']
right: Union[int, 'Expression']

class Answer:
answer: Expression

Listing 7: Expression type definitions in MGSM expression-cascade-structure experiments

G.2 DSPyY SETUP

We conduct most of the DSPy experiments under v 3.0.1, but report results from DSPy v 2.6.19 for
gemini-1.1-7b—-1it experiments since both BESWRS and MIPROV2 struggle to generate valid outputs under
DSPy v 3.0.1. Moreover, the non-optimized MGSM average accuracy is much lower under v 3.0.1 (for Native CoT
itis 0.7% under v 2.6.19, and 0.2% under v 3.0.1). For all other experiments, we report results from DSPy v
3.0.1 which sets up JSON schema-based constrained decoding correctly out-of-the-box. As we noted in §4.2]
constrained decoding significantly improves performance for tasks with structured output.

32

[< N I SO VU R SR

® NN A W —

o - . I N VO R SR

Under review as a conference paper at ICLR 2026

We serve base models on vLLM v 0.10.0.

Input and output object definitions. For structured input and output tasks, we subclass dspy . Signature
as QASignature to represent examples. The property names and types in a QASignature class are identical
to counterparts in TAC experiments. FinQA and MGSM-SymPy signatures are listed in Listing [§]and Listing 9]
respectively.

class QASignature (dspy.Signature) :

pre_text: list[str] = dspy.InputField()
table: list[list[str]] = dspy.InputField()
post_text: list[str] = dspy.InputField()

question: str = dspy.InputField()
answer: str = dspy.OutputField()

Listing 8: DSPy object signature for FinQA. Property names and types are identical to their TAC counterparts in
Listing 3]

class Expression (pydantic.BaseModel) :
operator: Literal['+', '=', 'x', '/']
left: Union[int, float, 'Expression']
right: Union[int, float, 'Expression']

class QASignature (dspy.Signature) :
question: str = dspy.InputField()
answer: Expression = dspy.OutputField()

Listing 9: DSPy object signature for MGSM-SymPy. Property names and types are identical to their
TAC counterparts in Listing

DSPy models. We conduct reasoning experiments on both the native dspy . ChainOfThought module, and
an explicitly two-step composite module that resembles TAC cot-cascade-structure patterns. Two-step modules
for FinQA and MuSR are listed in Listings [I0]and [TT]as examples.

class QuestionRationale (dspy.Signature) :
question: str = dspy.InputField()

pre_text: list[str] = dspy.InputField()
table: list[list[str]] = dspy.InputField()
post_text: list[str] = dspy.InputField()
question: str = dspy.InputField()
rationale: list[str] = dspy.OutputField()

class RationaleAnswer (dspy.Signature) :
rationale: list[str] = dspy.InputField()
answer: str = dspy.OutputField()

class TwoStepPredictor (dspy.Module) :
def _ _init_ (self):
self.question_to_rationale = dspy.Predict (QuestionRationale)
self.rationale_to_answer = dspy.Predict (RationaleAnswer)

def forward(self, pre_text: list[str], table: list[list[str]], post_text:
list[str], question: str):
r = self.question_to_rationale (question=question, pre_text=pre_text, table=
table, post_text=post_text).rationale

33

20

© ® N R WD =

Under review as a conference paper at ICLR 2026

return dspy.Prediction (answer=self.rationale_to_answer (rationale=r) .answer)

Listing 10: DSPy two-step reasoning model definition for FinQA

class QuestionRationale (dspy.Signature) :
context: str = dspy.InputField()
question: str = dspy.InputField()
choices: list[str] = dspy.InputField()
rationale: list[str] = dspy.OutputField()

class RationaleAnswer (dspy.Signature) :
rationale: list[str] = dspy.InputField()
choices: list[str] = dspy.InputField()
answer: str = dspy.OutputField()

class TwoStepPredictor (dspy.Module) :
def _ init_ (self):
self.question_to_rationale = dspy.Predict (QuestionRationale)
self.rationale_to_answer = dspy.Predict (RationaleAnswer)

def forward(self, context: str, question: str, choices: list([str]):
r = self.question_to_rationale (question=question, context=context, choices=

choices) .rationale
return dspy.Prediction(answer=self.rationale_to_answer (rationale=r, choices

=choices) .answer)

Listing 11: DSPy two-step reasoning model definition for MuSR

Prompt optimization under DSPy. We experiment with optimizers dspy.MIPROv2 and
dspy.BootstrapFewShotWithRandomSearch (listed as BESWRS below). For MGSM-SymPy and
FinQA experiments we do not report BESWRS results, as they consistently need more context length than the
model maximum (8192). Moreover, for FinQA experiments we resort to MIPROv2 0-shot due to similar context

length problems.

We set max_errors=2 for all optimizers. For MiPROV2 we set aut o="medium’ . For MiPROv2 with 0-shot
settings we additionally set max_bootstrapped.-demos=0, max_labed.demos=0.

34

Under review as a conference paper at ICLR 2026

H PER-LANGUAGE TAC AND ORIGINAL STAR MGSM AND MGSM-SYMPY RESULTS

Per-language TAC and original STaR experimental results on tasks MGSM and MGSM-SymPy are listed in
Tables[3land

Pattern Adaptation Method es en de fr zh ru ja te th Average
direct TACSTaR 275 275 25.0 25.0 233 258 233 183 26.7 24.7
cot-type-structure TACSTaR 80.0 84.2 76.7 833 80.0 8.0 717 79.2 833 80.4
cot-cascade-structure TACSTaR 87.5 875 833 858 80.0 875 742 733 80.8 82.2
refine-structure TACSTaR 86.7 90.0 76.7 775 733 783 69.2 725 833 78.6
expression-cascade-structure TACSTaR 83.3 825 833 758 700 79.2 658 750 758 75.9
cot-cascade-structure un-adapted 42,5 475 46.7 425 45.0 533 31.7 450 54.2 45.4
cot-type-structure un-adapted 775 792 808 76.7 683 79.2 68.3 69.2 733 4.7
expression-cascade-structure un-adapted 76.7 717 69.2 70.8 683 683 633 708 733 69.5
cot-cascade-structure amortized TACSTaR 84.2 91.7 86.7 83.3 825 817 708 77.5 833 82.4
N/A original STaR 742 79.2 758 758 70.0 883 742 758 75.8 76.9

Table 5: gemma—-2-27b-1t MGSM and MGSM-SymPy per-language accuracies (TAC and original STaR
experiments).

Pattern Adaptation Method es en de fr zh ru ja te th Average
direct TACSTaR 5.8 6.7 6.7 83 7.5 2.5 50 17 17 5.1
cot-cascade-structure TACSTaR 40.8 35.8 31.7 29.2 242 31.7 13.3 183 208 27.3
cot-cascade-structure un-adapted 8.0-10=* 0.0 80-10' 00 00 80-100% 00 1.7 00 5.0-107¢
N/A original STaR 15.0 27.5 1.7 58 225 0.0 33 92 92 10.5

Table 6: gemma—-1.1-7b—1it MGSM per-language accuracies (TAC and original STaR experiments).

I PER-TASK TAC MUSR RESULTS

Per-task TAC experimental results on task MuSR are listed in Tables[7]and 8]

Decoding Method Murder Mystery Object Placements Team Allocation — Average

Generation 61.7 51.6 41.7 51.6
Classification 65.0 50.0 80.0 65.0

Table 7: gemma-2-27b-it MuSR per-task accuracies (TAC experiments).

Decoding Method Murder Mystery Object Placements Team Allocation = Average

Generation 60.0 43.7 82.5 62.1
Classification 59.2 42.9 85.8 62.6

Table 8: gemma~—1.1-7b-1it MuSR per-task accuracies (TAC experiments).

J PER-TASK DSPY MUSR RESULTS

Per-task DSPy experimental results on task MuSR are listed in Tables [9]and[10]

35

Under review as a conference paper at ICLR 2026

Model Optimizer Murder Mystery Object Placements Team Allocation Average
Native CoT None 20.8 0.0 0.0 6.9
Native CoT MIPRO 0-shot 40.8 7.9-107! 0.0 13.9
Native CoT MIPRO 51.7 50.8 49.2 50.5

Two-step None 52.5 14.3 22.5 29.8
Two-step ~ MIPRO 0-shot 55.0 27.8 19.2 34.0
Two-step MIPRO 59.2 44.4 50.8 51.5

Table 9: gemma-2-27b—-1it MuSR per-task accuracies (DSPy experiments).

Model Optimizer Murder Mystery ~ Object Placements Team Allocation Average
Native CoT None 10.0 3.2 3.3 5.5
Native CoT MIPRO 0-shot 6.7 3.2 2.5 4.1
Native CoT MIPRO 34.2 254 50.0 36.5

Two-step None 33.3 5.6 16.7 18.5
Two-step ~ MIPRO 0-shot 35.8 1.6 15.0 17.5
Two-step MIPRO 44.2 32.5 26.7 34.5

Table 10: gemma-1.1-7b-it MuSR per-task accuracies (DSPy experiments).

Model Optimizer Murder Mystery Object Placements Team Allocation Average
Native CoT None 0.0 0.0 0.0 0.0
Native CoT MIPRO 0-shot 0.0 0.0 0.0 0.0
Native CoT MIPRO 55.8 50.8 47.5 51.4

Two-step None 4.2 7.9-107! 0.0 1.7
Two-step ~ MIPRO 0-shot 3.3 1.6 0.0 1.6
Two-step MIPRO 65.0 59.5 60.0 61.5

Table 11: Qwen3-8B MuSR per-task accuracies (DSPy experiments).

K PER-LANGUAGE DSPY MGSM AND MGSM-SYMPY RESULTS

Per-language DSPy experimental results on tasks MGSM and MGSM-SymPy are listed in Tables[12]to[I4]

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 55.0 57.5 52,5 51.7 542 59.2 450 39.2 40.0 50.5
Native CoT BFSWRS 84.2 89.2 87.5 81.7 750 875 750 775 792 81.9
Native CoT MIPROv2 82.5 86.7 81.7 76.7 775 842 700 742 758 78.8
Two-step None 17 58 25 17 33 17 17 33 5.0 3.0
Two-step MIPROv2 76.7 83.3 76.7 783 733 792 70.0 675 717 75.2
Two-step BFSWRS 80.8 84.2 76.7 81.7 70.0 81.7 675 642 725 75.5

Table 12: gemma—-2-27b-1it MGSM per-language accuracies (DSPy experiments).

36

Under review as a conference paper at ICLR 2026

Model Optimizer es en de fr zh ru ja te th Average
Native CoT ~ None 8.0-107' 8.0-107' 8.0-107' 0.0 0.0 2.5 1.7 0.0 0.0 7.0-107!
Native CoT BFSWRS 0.0 8.0-1071 1.7 50 8.0-1071 1.7 1.7 2.5 0.0 1.6
Native CoT MIPROv2 8.0-10~* 1.7 2.5 2.5 1.7 0.0 1.7 8.0-10"' 8.0-107! 1.4

Two-step None 0.0 0.0 8.0-1071 0.0 0.0 0.0 1.7 0.0 0.0 3.0-107!
Two-step ~ MIPROv2 0.0 0.0 0.0 0.0 0.0 8.0-1071 0.0 0.0 8.0-1071 20-107!
Two-step ~ BFSWRS 0.0 0.0 0.0 0.0 0.0 8.0-1071 0.0 0.0 8.0-1071 20-107!

Table 13: gemma-1.1-7b-it MGSM per-language accuracies (DSPy experiments).

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 56.7 66.7 55.0 458 47.5 59.2 45.0 49.2 458 52.3
Native CoT MIPROv2 66.7 64.2 583 60.8 56.7 625 508 425 517 57.1
Two-step None 00 00 00 00 00 00 00 00 00 0.0
Two-step MIPROv2 0.0 00 00 00 00 00 00 0.0 0.0 0.0

Table 14: gemma—-2-27b-1t MGSM-SymPy per-language accuracies (DSPy experiments).

L DSPY FINQA RESULTS

DSPy experimental results on the FinQA task are listed in Table[I5]and Table[16

Model Optimizer Accuracy
Native CoT None 11.7
Native CoT MIPROv2 0-shot 12.7

Two-step None 5.7

Two-step ~ MIPROv2 0-shot 10.7

Table 15: gemma—-2-27b—-1t FinQA accuracy (DSPy experiments).

Model Optimizer Accuracy
Native CoT None 0.0
Native CoT ~ MIPROV2 0-shot 6.7 - 107!

Two-step None 0.0

Two-step ~ MIPROv2 0-shot 3.3 -107!

Table 16: gemma—-1.1-7b-1it FinQA accuracy (DSPy experiments).

Model Optimizer Accuracy
Native CoT None 4.3
Native CoT MIPROV2 0-shot 5.3

Two-step None 1.0

Two-step ~ MIPROv2 0-shot 12.0

Table 17: Qwen3-8B FinQA accuracy (DSPy experiments).

37

© % N L R W

Under review as a conference paper at ICLR 2026

M EXAMPLE EXPRESSIONS FROM expression-cascade-structure UNDER THE
MGSM-SYMPY TASK

See Table[18l
Question Answer Expression
Nissa hires 60 seasonal workers to play elves in her department store’s Santa village. A 20 (60 — (60/3)) — 10

third of the elves quit after children vomit on them, then 10 of the remaining elves quit
after kids kick their shins. How many elves are left?

The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How 940 500 + 440
much was his total expenditure for those two months?

Tom gets 4 car washes a month. If each car wash costs $15 how much does he pay ina 720 (15 x 4) x 12
year?

Table 18: Example arithmetic expressions generated for MGSM questions by expression-cascade-structure.

N EXAMPLE INSTRUCTION PROMPT GENERATED BY LANGFUN

The LangFun library translates requests that transformed a typed object into another typed object into natural
language instructions for LLMs, to facilitate its parse operations. For example, Listing[T2]is a prompt generated
by LangFun for the request that transforms a Que st ion object into an Answer object.

Please respond to the last INPUT_OBJECT with OUTPUT_OBJECT according to
OUTPUT_TYPE.

INPUT_OBJECT:
1+1 =

OUTPUT_TYPE:
Answer

" python

class Answer:
final_answer: int

OUTPUT_OBJECT :
" python
Answer (
final_answer=2

)

INPUT_OBJECT:
T python
Question (
question='How are you?'

)

OUTPUT_TYPE:

38

29
30
31
32
33
34
35
36

Under review as a conference paper at ICLR 2026

Answer

T python

class Answer:
answer: str

OUTPUT_OBJECT:

Listing 12: Example instruction prompt generated by LangFun

O PERFORMANCE-COMPUTATIONAL COST ANALYSIS

We conduct additional experiments on FinQA (Gemma 2 27B) to analyze the cost-benefit trade-off, using token
counts (i.e., tokens used during training, and tokens used for evaluation on the entire test set) as a proxy for cost.
On this task, the TACSTaR run processed ~ 27 M training tokens. The baseline DSPy optimization (MIPROV2,
using the default aut o="medium’ configuration) processed ~ 1.6/ tokens. Decoding the 300 test examples
takes ~ 29M tokens for TAC (using 32 samples for robust estimation as described in §G.T) and ~ 0.5M tokens
for DSPy.

We evaluated whether increasing DSPy’s compute budget closes the performance gap:

* Scaling Training: We increased the num_t rials hyperparameter under MIPRO v2 from 12 (under
the auto='"medium’ default setting) to 32 (~ 3.7M tokens) and 300 (~ 33M tokens).

* Scaling Inference: We used majority voting (with the same T=1.0, top_p=0.95, top_k=40 settings) with
ensemble sizes 100 (~ 55M tokens) and 500 (~ 260M tokens).

Results listed in Table[T9]show that DSPy performance plateaus quickly. Even when significantly increasing
DSPy’s training and test budget (up to 9x TAC’s inference cost), the accuracy (14.3) remains far below TACs
(34.0).

Training Test Training token count Test token count

budget budget Accuracy
Encoded Decoded Total Encoded Decoded Total

12 1 1577489 107297 1684786 489646 35302 524948 12.7
12 100 1362700 98030 1460730 50714928 4695123 55410051 12.7
12 500 1408479 95815 1504294 243050795 18271389 261322184 12.3
32 100 3246101 226967 3473068 50074600 4747957 54822557 12.0
32 500 3429654 240376 3670030 247409788 20255592 267665380 14.3
300 100 31112328 2146258 33258586 48754600 3655251 52409851 12.3
300 500 31216543 2164159 33380702 246926388 23154727 270081115 12.7
TAC 26007546 1349250 27356796 27517698 1476911 28994609 34.0

Table 19: Cost analysis. Training budget corresponds to the num_t rials hyperparameter under MIPRO v2, and
test budget corresponds to ensemble size. Accuracy numbers from the first and last rows are copied from Table
and Fig. [2a]respectively.

39

Under review as a conference paper at ICLR 2026

P ASSESSING SNIS QUALITY UNDER LEARNED PROPOSAL DISTRIBUTIONS

To quantify the effectiveness of self-normalized importance sampling (SNIS) under the trained inference networks
(Amortized TACSTaR), we conducted additional experiments with the cot —~cascade-structure pattern to
estimate reverse KL divergence, KL[{g||ps], which measures how well self-normalized importance samples
from adapted proposal g4 (- | 27, z5) — as the mixture §g — approximates the true posterior pg (- | 27, 23):
KL[G¢||pe] = 0 when G¢ = pg. Since the partition function of 3 pg(23 = 2,22 = 25 | z{) is intractable,
we estimate the difference between KL divergences, comparing against SNIS distributions under the unamortized
TACSTaR fallback.

Specifically, we rewrite KL[Gg||po] — KL [Patback||ps] as:
KL[Q(bHPG] - KL[ﬁfallback”pB] = Ez~q¢(-|zf,z§)[10g (j¢(z ‘ Zikv Z;) - IOgPB(Z | ZT, Z;)]
- Ezw[}fallback(-|zf,z§)[IOgﬁfaHbaCk(z | 27,25) —logpe(2 | 27, 25)]

= Ez~q¢(~|zf,z§)[1og q¢(z ‘ zikaz;) - logpg(z,z2 = z; | ZT)]

call this K "

— Eopranpac(-|27,23) [108 Praback (2 | 27, 25) — log pe(2, 22 = 23 | 27)],

call this K,;fa”back

13)
where we exploit the identity

Eq, [logpe(z | 21, 23)] = Eg, [logpe(z | 21, 23)]

= Eq, [logpe(z, 22 = 23 | z1) — log <ZP9(Z*7Z2 =2z | ZI)>]

=]qu [logpg(z, z2 = Z; | ZT)] - Hga [Inge(z7 Z2 = Z; ‘ Z1)] - Eth [C] + EL]2 [C]

To compute KL[Gg||pe] — KL[ptatiback|[pe], we compute the two expectations Kg, and K, .., in Eq. ,
po(z,22=25|27)

Prallback (2]27,23)
from praiiback. We also construct §o (2 | 27, 25) this way with 16 samples. We report the average difference over
validation datasets on the latest MGSM checkpoints in Table 20| On average, SNIS distribution under the adapted
dg is closer to the true posterior distribution pg (- | 27, z3) than the counterpart under the default peaiback-

constructing the self-normalized distribution peanpack (2 | 27, 25) with 16 samples drawn

Q ASSESSING SAMPLE DIVERSITY

We conducted additional experiments on MGSM (Gemma 7B) to analyze whether diversity collapses as type
compliance increases during training (§4.4). We use Effective Sample Size (ESS) normalized between 0 and 1 as
the evaluation metric. We measure ESS (using 16 samples for each validation example) at the end of each training
epoch on the validation datasets. Results are listed in Fig.[9] We find the average ESS fluctuates between 0.4 to
0.5, implying that the samples did not collapse to the mode (in which case normalized ESS would be around
/16 = 0.625).

40

Under review as a conference paper at ICLR 2026

Language Kti.;b Ktanpacx KL[@#‘ |p9] - KL[ﬁfallbackaB]
es 28.63845406 29.34799745 -0.7095433899

en 4439640467 48.11942965 -3.723024984
de 48.86386756 49.65604005 -0.7921724921

fr 39.33989167 40.95757624 -1.617684578

zh 38.38841294 35.32150839 3.066904549

ja 40.36140304 40.1701377 0.1912653429

ru 30.32379052 31.74457529 -1.420784771

te 49.4455041 52.05616812 -2.610664018

th 39.60001892 39.65173477 -0.05171585152
Average 39.92863861 40.78057419 -0.8519355771

Table 20: Average KL divergence differences from the true posterior, between SNIS distributions under adapted

and un-adapted fallback distributions.

Figure 9: Average ESS at end of epochs. Sample size = 16. ESS value normalized € |

0.48 q

0.46

0.44 4

0.42 1

Average ESS across languages

0.40 1

Epoch #

L
16°

1] in plot.

R ESTIMATING MARGINAL PROBABILITIES VIA IMPORTANCE SAMPLING

A key advantage of the probabilistic framing of TACs is the ability to estimate marginal probabilities, even when the
distribution is unnormalized. LM adaptors in a TAC can be used as proposal distributions for importance sampling.

Let z,,, be a node coming out of an LM adaptor. An [V-sample estimate of the unnormalized probability that z,,,
equals ¢, conditioned on the input z1, p(z,, = ¢ | z1;0), is:

N

S PLMm (Zm =G 0)
p|z (m7 c, N) = n
' ; N - prai(zm =25 6)

(14)

where zgff) is the n-th sample of z,, (drawn using Algorithm . Equation is an unbiased importance

sampling estimate of the unnormalized probability p(z,, = ¢ | z1; @) (since supp(p) C supp(prar))-

41

Under review as a conference paper at ICLR 2026

In the special case that z,,, has finite support (e.g., a classification task), we can estimate the normalized marginal
probability using Self-Normalized Importance Sampling (SNIS) by renormalizing over all possible values ¢’

. ﬁ\zl (m,C, N)
Ec’ f)|Z1 (m’ d, N)

p(zm =c | 21;0) 5)

42

	Introduction
	Type-Compliant Adaptor Cascades
	Interfacing LLMs with Typed Data: Parsing and Canonicalization
	tacs As Programs And Distributions

	Adapting tacs
	Tractable Optimization via Compliance
	tacSTaR
	Amortized tacSTaR

	Experiments
	Experiment Setup
	Comparison against prompt-optimizing and untyped STaR baselines.
	Flexible Posterior Inference Helps tacPerformance.
	tacmodels rapidly achieve high type compliance.

	Conclusion
	Background and Related Work
	Additional Studies on Workflow Pattern Design
	End-to-end trainable workflows as tacs.
	Effectiveness of Adaptation with Reasoning Workflows
	Effects of Different tacDesigns

	Algorithms
	Forward and Backward
	tacSTaR
	Amortized tacSTaR
	Updating C'

	Formal Statements and Proofs Regarding Type Compliance
	Implementation Considerations
	One-Time Efforts
	Per-Use Efforts

	Additional tacDiagrams of Trainable Workflows
	Further Details of Experiment Setup
	tacsetup
	DSPy setup

	Per-Language tac and Original STaR MGSM and MGSM-SymPy results
	Per-Task tac MuSR results
	Per-Task DSPy MuSR results
	Per-Language DSPy MGSM and MGSM-SymPy results
	DSPy FinQA results
	Example Expressions from expression-cascade-structure under the MGSM-SymPy task
	Example instruction prompt generated by LangFun
	Performance-Computational Cost Analysis
	Assessing SNIS Quality under Learned Proposal Distributions
	Assessing Sample Diversity
	Estimating Marginal Probabilities via Importance Sampling

