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ABSTRACT

Reliably composing Large Language Models (LLMs) for complex, multi-step workflows
remains a significant challenge. The dominant paradigm — optimizing discrete prompts in a
pipeline — is notoriously brittle and struggles to enforce the formal compliance required for
structured tasks. We introduce Type-Compliant Adaptation Cascades (TACs), a framework that
recasts workflow adaptation as learning typed probabilistic programs. TACs treat the entire
workflow, which is composed of parameter-efficiently adapted LLMs and deterministic logic, as
an unnormalized joint distribution. This enables principled, gradient-based training even with
latent intermediate structures. We provide theoretical justification for our tractable optimization
objective, proving that the optimization bias vanishes as the model learns type compliance.
Empirically, TACs significantly outperform state-of-the-art prompt-optimization baselines.
Gains are particularly pronounced on structured tasks, improving FinQA from 12.0% to 24.7%
for a Qwen 3 8B model, MGSM-SymPy from 57.1% to 75.9% for a Gemma 2 27B model,
MGSM from 1.6% to 27.3%, and MuSR from 36.5% to 62.6% for a Gemma 7B model. TACs
offer a robust and theoretically grounded paradigm for developing reliable, task-compliant
LLM systems.

1 INTRODUCTION

The expressive power of Large Language Models (LLMs) has catalyzed the rapid development of programmatically
composed workflows and agentic systems (Khattab et al., 2022; Chase, 2022; Yao et al., 2023; Wu et al., 2024).
By chaining model calls and integrating deterministic logic, practitioners construct complex systems capable of
multi-step reasoning and interaction. However, the dominant paradigm for adapting these systems — optimizing
discrete prompts within the pipeline — is notoriously brittle (Cao et al., 2024) and struggles to enforce the formal
compliance required for structured tasks. Optimization often devolves into a difficult discrete search problem
(Pryzant et al., 2023; Yuksekgonul et al., 2025), relying on heuristics that are computationally expensive and
difficult to scale.

In this paper, we propose a fundamental shift in perspective: we recast the entire LLM workflow as a typed
probabilistic program. Instead of optimizing the inputs (prompts) to a fixed system, we optimize the program
parameters. We treat the workflow as a parametric latent variable model where each step is a probabilistic
transformation backed by a parameter-efficient fine-tuning (PEFT) adaptor. This transforms workflow adaptation
from an ad-hoc, discrete search problem into a principled, gradient-based optimization task focused on maximizing
data likelihood.

While probabilistic programming languages (PPLs) (Bingham et al., 2019; Tran et al., 2017) offer powerful tools
for modeling complex distributions, they are generally designed to capture and conditionalize normalized models.
LLM workflows present a unique challenge. Enforcing type constraints means restricting the support of an LLM —
which naturally generates arbitrary strings — to only those strings representing valid typed objects. This restriction

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

z1
type: τi

z3
type: τr

z4
type: τir

z2
type: τo

(τi, τr,θ3)

combine ir : τi × τr → τir

(τir, τo,θ4)

(a) cot-cascade-structure

…How many 
computers are now 
in the server room?

Q-en

29
A

1. … 
2. … 
3. …

R

z3

9
+

E

z54 5
x

1. … 
2. … 
3. …

(Q-en, R)

There were 
nine 

computers 
in the server 

room….

z4

e1

e3

e2

e4

z1

z2

!

!

⚙

⚙

(b) expression-cascade-structure

Figure 1: Two TAC workflow patterns experimented in this paper. We illustrate the more complicated Fig. 1b with example
node values (we also explore additional patterns in §B). Dashed-boundary nodes indicate variables whose values are not
available in annotated data, and solid-boundary nodes indicate nodes with training time observable values. A main message
of this work is that we can treat an entire typed workflow as a single probabilistic program, whose parameters are
lightweight PEFT modules, allowing end-to-end training with latent variables, instead of defining workflows imperatively
as fixed-parameter systems.

renders the resulting (unconditional) distribution inherently unnormalized (Zθ ̸= 1), making the partition function
required for standard maximum likelihood estimation intractable.

We introduce Type-Compliant Adaptation Cascades (TACs), a framework designed specifically for learning
these typed, unnormalized probabilistic programs. TACs treat the entire workflow, composed of adapted LLMs
and deterministic logic, as a joint unnormalized distribution. To enable tractable optimization, we propose the
TACSTaR algorithm, a generalization of the Self-Taught Reasoner (STaR) (Zelikman et al., 2022) formalized
within an MC-EM framework.

Crucially, we provide theoretical justification for optimizing the tractable unnormalized likelihood directly.
We prove that the bias introduced by ignoring the partition function gradient is bounded by the degree of type
violation. As the model learns to comply with the workflow’s type constraints during training, the bias vanishes,
and the optimization converges to the true maximum likelihood solution (Theorems 1 and 2). Furthermore,
this probabilistic framing allows us to decouple inference from training, enabling advanced techniques such as
amortized inference to improve the E-step during optimization.

Our primary contributions are:

• Framework. We formalize typed LM workflows as unnormalized probabilistic programs, where type contracts
restrict the support of learned transformations.

• Theory. We propose TACSTaR, a tractable optimization algorithm, and prove that its optimization bias vanishes as
the model learns type compliance during training.

• Practice. Across reasoning-heavy tasks (MGSM, MGSM-SymPy, FinQA, MuSR) and model families (Gemma,
Qwen), TACs consistently outperform strong DSPy prompt-optimization baselines. Gains are largest when (1) base
models are smaller and (2) tasks require strict structure. For example, on MGSM-SymPy with a Gemma 27B
model, TACs achieve 75.9 vs. 57.1; on FinQA, 34.0 vs. 12.7 (Gemma 27B) and 24.7 vs. 12.0 (Qwen 3 8B).
With a Gemma 7B model, MGSM improves from 1.6 to 27.3, and MuSR from 36.5 to 62.6.
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Summary of results. (1) Gradient-based adaptation of typed probabilistic programs is markedly more effective
and compute-efficient than discrete prompt search for structured tasks. (2) Flexible posterior inference, such as
amortization, improves training stability and performance. (3) Empirically, the estimated type compliance mass
Zθ rises rapidly during training, supporting our theoretical justification for the unnormalized objective.

2 TYPE-COMPLIANT ADAPTOR CASCADES

The core idea of TACs is to decompose a task into a hypergraph of interconnected transformations. Formally, a TAC
is represented as a directed acyclic hypergraph (DAH) C = (Z,E).1 The acyclic constraint ensures that the
workflow has a well-defined topological order for execution and guarantees termination of the generative process.

Nodes. The nodes Z = {z1, z2, . . . , zM} in a TAC act as containers for typed data. Each node zm is associated
with a specific data type τ ∈ T , and holds string representations ∈ Σ∗ for τ -typed objects. Special nodes are
designated as the input node z1 and the output node z2 (e.g., holding the initial question of type Q en and the
final answer of type A in Fig. 1b, respectively).

Hyperedges. Hyperedges E = {e1, e2, . . . , eK} define the transformations between nodes. A hyperedge ek
connects a set of source nodes Sk ⊆ Z (its inputs) to a set of target nodes Tk ⊆ Z (its outputs). Transformations
in TACs can be either learnable (LM adaptors) or fixed (deterministic algorithms):

• LM adaptor hyperedges. These are stochastic transformations implemented by PEFT-adapted LMs. An adaptor
(τi, τo,θ) defines an unnormalized distribution over y ∈ Σ∗ given input string x:2

p̃(y | x;θ) = pLM (y | x;θ)I(zt ∈ valid(τo)), (1)

where pLM (· | x;θ) is a normalized distribution over strings, conditioned on τi-typed string representation x,
and parametrized by adaptor parameters θ, and valid(τo) ⊆ Σ∗ is the set of strings that represent valid τo-typed
objects (we will further discuss them in §2.1).

• Deterministic algorithm hyperedges. These are fixed, non-learnable transformations, such as a self-contained
Python function. A deterministic algorithm f maps an input object of type τi to an output object of type τo. Under
the probabilistic view, we represent them as δ distributions:

p̃(y | x; f) = δcanon(f(parse(x,τi)))(y) (2)

where canon (see §2.1) produces a canonicalized string for an object, and parse converts strings back to typed
objects.

2.1 INTERFACING LLMS WITH TYPED DATA: PARSING AND CANONICALIZATION

To integrate LLMs, which operate on strings (Σ∗), into a typed workflow, TACs require mechanisms to bridge the
gap between strings and typed objects (O). This bridge is typically handled by data validation libraries such as

1We use a reasoning workflow that generates domain-specific code, illustrated in Fig. 1b, as a running example. The task is
to take a math question in English (input type Q en), generate a step-by-step rationale (intermediate type R), convert the
rationale into a formal arithmetic expression (intermediate type E), and finally, have a deterministic function evaluate this
expression to produce the answer (output type A). This section formalizes how such an intuitive sketch is realized within the
TAC framework.

2This distribution may be unnormalized because while pLM is a distribution over all strings, Eq. (1) restricts the support to
only strings that are valid instances of τo. Thus, the total probability mass may sum to less than 1 if the LM assigns probability
to invalid strings.
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Pydantic3 and PyGlove (Peng et al., 2020).4 We formalize this conversion using two essential operations: parse
and canon.

Parsing (parse). When an LM adaptor produces an output string y intended to represent an object of type τo,
this string is validated and converted into a usable typed object by the algorithm parse : Σ∗×T → O∪{error}.5
The expressivity of the TAC type system is determined by the implementation of parse and canon. In this
work, we leverage LangFun, which supports primitive types, compound types (e.g., Python classes), and recursive
data types (an example is listed in Listing 7).

For example, in Fig. 1b, z5 has the deterministic function e4 as an outgoing edge. During execution of the
probabilistic program, parse(z5,E) attempts to convert z5 into a SymPy expression object (typed E). If the
conversion fails, an error is signaled. For convenience, we use valid(τ) = {parse(y, τ) ̸= error | y ∈ Σ∗} to
denote valid string representations of τ .

Canonicalization (canon). Conversely, inputs of LM adaptor hyperedges must be converted into a consistent
string format that the adaptor expects. The canon : O → Σ∗ operation maps a typed object to a unique string
representation — we call such strings canonicalized. The invertibility of canon (i.e., parse(canon(o), τo) =
o) in turn ensures that deterministic hyperedges have support over only one string given a valid input, eliminating
spurious ambiguity (Cohen et al., 2012).

2.2 TACS AS PROGRAMS AND DISTRIBUTIONS

TACs admit both a program view, and also a probabilistic view6:

• TACs are probabilistic programs. From an operational perspective, executing a TAC in the forward direction
involves processing data through the hypergraph, respecting the topological order of nodes and hyperedges. Using
our running example from Fig. 1b: the process traverses the hypergraph, starting at the input variable z1 (typed
Q en), and ending at the output variable z2 (typed A). A general process is described in Algorithm 1.

• TACs are also probability distributions. From a statistical perspective, TACs define unnormalized joint probability
distributions over all node assignments Z∗ = (z∗1, z

∗
2, . . . , z

∗
M ). This score reflects the plausibility of a complete

execution trace according to the model’s components:

log p̃θ(Z
∗) =

∑
k

log p̃θ({z∗t }t∈Tk
| {z∗s}s∈Sk

; ek), (3)

where θ represent all adaptor parameters used in the TAC, and p̃θ(·|·; ek) is the conditional probability defined by
the LM adaptor (Eq. (1)) or deterministic algorithm (Eq. (2)) associated with ek. The unnormalized distribution
view connects TACs to the broader family of language model cascades (Dohan et al., 2022), but with the key
distinction that TACs are designed for end-to-end adaptation.

3https://github.com/pydantic/pydantic
4Examples of type-specifying prompts generated by LangFun (which leverages PyGlove) are listed in §N. LangFun

supports primitive types, compound types (e.g., Pyglove/Pydantic objects), and recursive types (e.g., Expressions in Listing 7).
5We note that while primitive data types (e.g., Python types str and list) appear in common workflows, parse can

be any computable function, and can be leveraged by a practitioner to implement complex business logic. For example,
one can define a Python custom type CoherentDialog where valid objects are strings deemed coherent by an external
LLM-backed classifier, and adapt LM adaptors in a TAC to generate and work with such objects. Implementation details are
further discussed in §E.

6These two views are also summarized in Table 1.
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3 ADAPTING TACS

The goal of adapting a TAC is to maximize the marginalized likelihood of the training data. Since TACs generally
define distributions over unobserved (latent) intermediate variables, Monte Carlo Expectation-Maximization
(MC-EM) algorithms (Wei & Tanner, 1990) provide a suitable training paradigm.7

However, adapting TACs presents a challenge. As TACs are generally unnormalized models, proper Maximum
Likelihood Estimation (MLE) updates in the M-step require computing partition function gradients. Denoting the
partition function summing all possible assignments as Zθ =

∑
Z′ p̃θ(Z

′), the gradient of the log-likelihood
L(θ) = log p(Z∗) is:

∇θL = ∇θ log p̃θ(Z
∗)−∇θ logZθ. (4)

Estimation of the log partition function’s gradients ∇θ logZθ is typically intractable, expensive, and can have
high variance (Goodfellow et al., 2016).

3.1 TRACTABLE OPTIMIZATION VIA COMPLIANCE

To overcome the intractable partition function gradient, we propose optimizing for the unnormalized log-likelihood
L′(θ) = log p̃θ(Z

∗) instead, effectively dropping the ∇θ logZθ term from Eq. (4).

While ignoring the partition function gradient generally leads to biased estimation, the TAC formalism ensures this
strategy is both tractable and robust. This becomes evident as we rewrite L′(θ) = L(θ) + logZθ: optimizing
the unnormalized likelihood L′(θ) is equivalent to jointly maximizing the normalized likelihood L(θ) and the
model’s type compliance (the partition function logZθ is maximized at logZθ = 0 when θ is well-specified).
We now provide theoretical justification for this approach, under the assumption that the adapted models can
perfectly model type-valid outputs (i.e., the model family is well-specified):8

Theorem 1. Let Θ be the entire parameter space and let Θ′ ⊆ Θ be the subset of well-specified param-
eters. Assume θ∗ uniquely maximizes the normalized likelihood pθ(z2..M |z1) and resides ∈ Θ′. Then,
θ̂ = argmaxθ∈Θ p̃θ(z2..M |z1) =⇒ θ̂ = θ∗.

Moreover, while optimizing L′(θ) introduces a bias by ignoring the gradient term∇θ logZθ , this bias is bounded
below a constant multiplicative factor of (1−Zθ) under the common assumption that ∥∇θpLM (· | x;θ)∥ is
uniformly bounded:

Theorem 2. Let θ = {θ1 . . .θK} be the union of a K-adaptor TAC’s LM adaptor parameters . If ∀zk,1 ∈
Σ∗, zk,2 ∈ Σ∗, ∥∇θ (

∑
log pLM (zk,2 | zk,1;θ)) ∥∞ ≤ G, then ∇θ logZθ ≤ 2G(1−Zθ).

Theorems 1 and 2 provide theoretical assurance that if the model achieves high type compliance as we optimize for
L′(θ), the optimization bias vanishes, and the update approaches the true MLE update. Empirically, we observe
that training rapidly drives Zθ towards 1 (§4.4).

3.2 TACSTAR

We introduce the TACSTaR algorithm (Algorithm 3), which generalizes the Self-Taught Reasoner (STaR) algorithm
(Zelikman et al., 2022) to the TAC framework. TACSTaR employs an iterative MC-EM approach to optimize the
tractable objective L′(θ) (§3.1). It alternates between E- and M-steps:

7We acknowledge that another reasonable approach for training TACs is reinforcement learning, and note the connection
between TACSTaR and RL in §A.

8We refer the reader to §D for proofs of formal statements in this section.
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• E-step: Sampling Latent Variables. The E-step aims to sample complete, valid execution traces Z∗ consistent
with the training data. We first try to execute the TAC C as a probabilistic program under the forward algorithm
(Algorithm 1). If forward succeeds, we have a complete assignment of values Z∗ = (z∗1, z

∗
2, . . . , z

∗
M ) and

can proceed to M-step. Otherwise, we attempt a rationalization heuristic step. Inspired by the original STaR
algorithm which conditions on the correct answer in the second attempt, we construct a ‘fallback’ TAC, whose input
node takes (x∗, y∗) as input, with the rest of the workflow unchanged. This essentially asks ‘what intermediate
steps would lead from x∗ to y∗?’, analogous to the inverse rendering problem (Ritchie et al., 2023). A forward
pass is then executed on this new TAC to sample (z2, . . . , zM ), now conditioned on both the original input x∗ and
the desired output y∗. This encourages the generation of latent intermediate steps that are consistent with the
correct final answer.

• M-step: Parameter Optimization. In the M-step, we update the adaptor parameters θ by maximizing the
unnormalized likelihood L′(θ) of the samples collected in the E-step. 9

3.3 AMORTIZED TACSTAR

The basic TACSTaR algorithm relies on a fixed ‘fallback’ heuristic during the E-step, which may be inefficient.
Amortized TACSTaR (Algorithm 4) addresses this by generalizing the heuristic using parametric inference
networks (Kingma & Welling, 2014; Mnih & Gregor, 2014), jointly trained to approximate the true posterior given
observed input and outputs. By learning to propose better, task-adapted latent variable configurations, Amortized
TACSTaR can lead to more efficient training and potentially better performance.

For model TAC C with nodes z1 . . . zM , we construct an inference network TAC C ′ with nodes z′1 . . . z
′
M , which

is trained alongside with C . In this work, we construct z′2 . . . z
′
M to have the same types as z2 . . . zM , except for

its input node z′1, which has a type to represent the input-output pair (x∗, y∗). Moreover, we construct C ′ so that
every adaptor hyperedge ek in C has a counterpart e′k in C ′ that is additionally conditioned on z′1. We train C ′

alternately with C, with the goal of making the unnormalized distribution of C ′ approximate the posterior over
C’s intermediate nodes, conditioning on (x∗, y∗) observations. Denoting the unnormalized distribution of C ′ as
q̃ϕ parametrized by adaptors’ parameters ϕ, we hope to learn ϕ such that q̃ϕ(z′m | z′1 = canon((x∗, y∗))) ≈
pθ(zm | z1 = x∗

c , z2 = y∗c ), where x∗
c = canon(x∗), y∗c = canon(y∗), ∀m ∈ [2..M ]. Approximating

the posterior pθ(zm | z1 = canon(x∗), z2 = canon(y∗)) as p̂ using self-normalized multiple importance
sampling (Veach & Guibas, 1995), we optimize ϕ to minimize KL[p̂||qϕ] following Bornschein & Bengio (2014);
Lin & Eisner (2018). Empirically, we verify that the learned inference network C ′ significantly reduces the KL
divergence to the true posterior compared to the fixed fallback, confirming it provides a better approximation for
training (§P).

4 EXPERIMENTS

To empirically validate TAC models, we conduct QA, code-like structured generation, and classification experiments
on subsets of MGSM (Shi et al., 2023), FinQA (Chen et al., 2021), and MuSR (Sprague et al., 2024b) datasets,10

adapting both instruction-tuned Gemma 7B and Gemma 2 27B (referred to as gemma-1.1-7b-it and
gemma-2-27b-it) (Team et al., 2024), and Qwen 3 8B models (Qwen3-8B) (Yang et al., 2025). We aim to
answer the following research questions:

9Remark on efficiency. Since gradients of the log unnormalized probability decompose linearly as ∇θ (log p̃θ(Z
∗)) =∑

k ∇θ log p̃θ({z∗t }t∈Tk | {z∗s}s∈Sk ; ek), computation of adaptors’ gradients can be parallelized easily. This embarrassingly
parallel structure ensures computational scalability, allowing the M-step to be efficiently distributed across available compute
resources. Algorithm 2 computes log p̃θ(Z∗) and its gradients ∇θ log p̃θ(Z

∗). These gradients are then used in a standard
gradient-based optimization algorithm to update θ.

10We defer the study of how different TAC patterns affect performance to §B, where we expand our experiments to include
HotPotQA tasks (Yang et al., 2018).
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• (§4.2) Are TACs competitive against existing approaches? TACs differ from existing LM adaptation approaches
in two major ways: 1) TACs support gradient-based learning in a unified probabilistic programming framework
(when compared against prior prompt optimization-focused LM programming frameworks such as DSPy); and 2)
TACs support structured workflows by design (when compared to the original STaR algorithm). We hypothesize
that such difference translates into meaningful performance improvements.

• (§4.3) Is exploiting TACs’ probabilistic flexibility effective? Probability models (such as TACs) benefit from the
decoupling of probabilistic modeling and inference procedures, allowing conditioning on additional observations a
posteriori. We evaluate whether exploiting this flexibility is effective in two scenarios: 1) We compare Amortized
TACSTaR (§3.3), which conditions on the output variable to learn a better proposal distribution for training,
against the standard (unconditioned) TACSTaR; and 2) We evaluate TACs on a classification task, comparing the
performance of unconstrained generation against a renormalized classifier that evaluates and normalizes the
conditional probability of each possible output.

• (§4.4) Does the model achieve high type compliance? A key theoretical result (§3.2) is that the soundness and
near-optimality of the TACSTaR optimization strategy rely on the model learning to comply with the workflow’s
type constraints (i.e., driving the partition function Zθ → 1). As type compliance increases, the gap between the
tractable unnormalized likelihood and the true normalized likelihood (logZθ) closes. We estimate how Zθ over
TACSTaR epochs to verify that this gap is negligible after training.

4.1 EXPERIMENT SETUP

We provide an overview of our TAC and baseline DSPy setups below:

• TACs. We parametrize TAC adaptors to take the form of rank-1 LoRA models (Hu et al., 2022) on the
attention weights, with 573, 440; 1, 413, 120; and 958, 464 parameters per adaptor for gemma-1.1-7b-it,
gemma-2-27b-it and Qwen3-8B respectively. For parse and canon implementations (§2.1), we leverage
the LangFun library, which prompts LLMs to generate Python classes and objects, and parses their responses.
LoRA weights are initialized (‘zero-init’) following Hu et al. (2022).

• DSPy. We conduct prompt-optimizing baseline experiments under DSPy, with base models served on vLLM. We
subclass dspy.Signature to represent training examples, with property names and types identical to their
TAC counterparts (some examples are listed in §G.2). We employ XGrammar (Dong et al., 2024) for schema-based
constrained decoding for all experiments. We implement two types of reasoning workflows for all tasks: 1) the
native dspy.ChainOfThought module, and 2) an explicitly two-step composite module that resembles
cot-cascade-structure patterns under TACs. We experiment with various prompt optimization configurations un-
der dspy.MIPROv2 (Opsahl-Ong et al., 2024) and dspy.BootstrapFewShotWithRandomSearch
(Khattab et al., 2024).

We conduct experiments of 5 reasoning-heavy tasks, on subsets from datasets MGSM11 (Shi et al., 2023), FinQA
(Yang et al., 2018), HotPotQA (Yang et al., 2018) and MuSR (Sprague et al., 2024b) respectively. Details of
experiment setup are described in §G.

4.2 COMPARISON AGAINST PROMPT-OPTIMIZING AND UNTYPED STAR BASELINES.

Figure 2 lists MGSM, MGSM-SymPy, FinQA, and MuSR results from best-performing TACs and DSPy models.
In addition, we compare the untyped (original) STaR against typed TAC results on MGSM on Gemma models.

11The MGSM-SymPy task uses the same problems of MGSM, but additionally restrict the outputs to be rational expressions
under SymPy. This variant was specifically included to test the framework’s ability to generate and comply with highly
structured, code-like output.
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TACs are competitive against prompt-optimizing baseline methods. We observe that TACs consistently and
significantly outperform DSPy baselines in every setting. The performance gap is especially wide when 1) the base
model is smaller, and 2) the task involves structured inputs (FinQA) or structured outputs (MGSM-SymPy).12

Base Model DSPy TAC

gemma-1.1-7b-it 0.7% 9.7%
gemma-2-27b-it 12.7% 34.0%

Qwen3-8B 12.0% 24.7%

(a) FinQA

Base Model DSPy TAC

gemma-1.1-7b-it 36.5% 62.6%
gemma-2-27b-it 51.5% 65.0%

Qwen3-8B 61.5% 63.7%

(b) MuSR

Base Model DSPy TAC STaR

gemma-1.1-7b-it 1.6% 27.3% 10.5%
gemma-2-27b-it 81.9% 82.2% 76.9%

(c) MGSM

Base Model DSPy TAC

gemma-2-27b-it 57.1% 75.9%

(d) MGSM-SymPy

Figure 2: Comparison between best performing prompt-optimizing methods under DSPy and TACs (full results can
be found in Sections H to L). We report the best DSPy result for each task.
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(b) Average MGSM training data parsing
failure rate vs # of epochs of TACSTaR on
gemma-1.1-7b-it. The pattern is cot-
cascade-structure.

Figure 3: Type compliance during TAC training.

TACSTaR compares favorably against the original STaR algorithm on unstructured data. On the MGSM
task (Fig. 2c), the original (untyped) STaR algorithm scored an average accuracy of 76.9 and 10.5 (from
gemma-2-27b-it and gemma-1.1-7b-it respectively), lower than variants of reasoning TAC patterns on
the same dataset. This demonstrates that the structured, typed approach of TACs improves performance over the
untyped STaR baseline.

4.3 FLEXIBLE POSTERIOR INFERENCE HELPS TAC PERFORMANCE.

Amortized inference at training time is effective. The Amortized TACSTaR algorithm (§3.3) brings consistent
improvement over vanilla TACSTaR on 3 tasks (Fig. 4a). Notably, the gains are most substantial on FinQA (+5.7

12We also compare between TACSTaR-adapted and un-adapted models on the same LangFun prompts in §B.2, and find that
TACSTaR consistently outperforms the un-adapted counterparts.
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Task TACSTaR Amortized TACSTaR

MGSM 82.2 82.4
FinQA 36.0 41.7
HotPotQA 32.0 34.0

(a) Comparison between TACSTaR and Amortized TACSTaR
on cot-cascade-structure / gemma-2-27b-it.

Base Model Cla. Gen.

gemma-1.1-7b-it 62.6 62.1
gemma-2-27b-it 65.0 51.6

(b) Comparison between classification and uncon-
strained generation results on MuSR.

Figure 4: Comparison between ‘default’ and more informative inference methods.

points). This suggests that amortized inference is particularly valuable for complex tasks where the initial sampling
or fixed rationalization heuristics struggle to find valid latent traces, allowing the model to learn a more effective
inference strategy.

Classification with renormalized posterior at inference time is effective. We leverage the probabilistic nature
of TACs to estimate the output label posterior pθ(z2 | z1) for the MuSR classification task. We achieve this by first
estimating the unnormalized probability p̃ for each label using importance sampling, and then renormalizing these
estimates over the finite label space (Self-Normalized Importance Sampling). The detailed formulation is described
in §R. We output the label with the highest estimated probability. Figure 4b shows that the renormalized-posterior
classifier outperforms unconstrained generation on both gemma-1.1-7b-it and gemma-2-27b-it.

4.4 TAC MODELS RAPIDLY ACHIEVE HIGH TYPE COMPLIANCE.

We argued in §3.2 that optimizing the unnormalized likelihood drives the model towards structural compliance. The
average MGSM parsing error rate during training (Fig. 3b) suggests that TACs learn compliance fast. We further
empirically verify this by estimating the partition function Zθ — which represents the total probability mass the
model assigns to type-compliant outputs (the Estimated Compliant Probability Mass, ECPM) — throughout training.
We estimate logZθ on the validation sets of the MGSM benchmark during training of the cot-cascade-structure
pattern on gemma-1.1-7b-it. We sample 100 generations of entire traces without type-compliant masking
per input with temperature = 1, top-p = 1, and top-k set to the vocabulary size. Figure 3a shows that the
model rapidly learns to comply with the type constraints. The average logZθ approaches −0.005 by epoch 9,
corresponding to an ECPM of exp(−0.005) ≈ 99.5%, and thus confirms that the degree of misspecification
(1−Zθ) is negligible. Since the difference between unnormalized and normalized likelihood gradients is bounded
by a multiplicative factor of (1− Zθ) (Theorem 2), our empirical estimates imply that the difference is indeed
small at the end of training, and TACSTaR M-step (§3.2) approaches the true MLE update. Moreover, since logZθ

is the difference between normalized and unnormalized likelihoods, the small magnitude suggests it is practical to
do model selection with unnormalized likelihood directly, after a few epochs of training.

5 CONCLUSION

We have presented Type-Compliant Adaptation Cascades (TACs), a novel probabilistic programming framework
designed to empower ML practitioners to design trainable workflows that adapt to data. Our findings demonstrate
that TACs’ gradient-based learning paradigm is highly effective, consistently outperforming strong prompt-
optimization baselines. Moreover, we also find flexible posterior inference of TACs at both training and inference
time help with performance. We also find that empirically, the model learns to comply with type constraints fast in
training, justifying the assumptions in our theoretical results. These results underscore the versatility and efficacy
of TACs as a scalable paradigm for adapting to complex, reasoning-heavy tasks.
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APPENDICES

Program View Probabilistic View

τ -typed object Random variable ∈ Σ∗ restricted to strings ∈ valid(τ)
LM adaptor with weights θ, with output restricted to
τ -typed objects

Unnormalized conditional distribution pLM (zt |
zs;θ)I(zt ∈ valid(τ))

Deterministic algorithm f : τi → τo Degenerate distribution δcanon(f(parse(x,τi)))(y)
parse and canon functions that convert typed ob-
jects to/from LM inputs/outputs

Measurable maps between object domain O and string
domain Σ∗

Executing a workflow to obtain z1...M Sampling from joint unnormalized probability
p̃θ(z1...M ) =

∏
k p̃θ(zTk

| zSk
)

Probability that a stochastic workflow succeeds Zθ = Prpθ
(all nodes are valid)

Table 1: Dual semantics: how TAC concepts map between their program and probabilistic views.

A BACKGROUND AND RELATED WORK

TACs sit at the intersection of probabilistic modeling, workflow composition, and LLM adaptation. We organize
the related work thematically.

Formalizing and Executing LM Workflows. We approach LLM workflows from the perspective of probabilistic
programming. Probabilistic programming languages (PPLs) tailored for machine learning, such as Edward (Tran
et al., 2017) and Pyro (Bingham et al., 2019), combine differentiable components with stochastic control flow
to define complex distributions. TACs share this goal but address a distinct challenge inherent to typed LLM
workflows: enforcing type constraints restricts the LLM’s support, rendering the distribution unnormalized
(Zθ ̸= 1). Traditional PPLs typically assume normalized models. TACs draw inspiration from classical structured
prediction (Lafferty et al., 2001; Belanger & McCallum, 2016), which provides tools for handling unnormalized
models. Our formulation connects these threads, treating type compliance itself as the partition function, enabling
a specialized, tractable optimization objective (TACSTaR).

In contrast, programmatic LM frameworks such as DSPy (Khattab et al., 2022; 2024), LMQL (Beurer-Kellner
et al., 2023), and LangChain (Chase, 2022) expose LMs through pipelines with declarative constraints. These
systems typically optimize the inputs (prompts or few-shot exemplars) to a fixed system, rather than casting the
entire workflow as a single probabilistic object with learnable continuous parameters and a likelihood objective.
While some proposals optimize weights within such pipelines (e.g., BetterTogether (Soylu et al., 2024)),
TACs differ fundamentally in their principled probabilistic formulation, enabling theoretically justified training
(§3.2) and advanced inference techniques (§3.3).

Optimizing Composed Systems. The standard approach to optimizing LM workflows involves difficult discrete
optimization over the space of possible prompts, often addressed through heuristic search (Zhou et al., 2023;
Pryzant et al., 2023; Yuksekgonul et al., 2025) or reinforcement learning (Jafari et al., 2024), both of which can
suffer from high variance and computational cost.

TACs instead leverage gradient-based optimization. This builds upon methods that adapt LMs for reasoning,
such as STaR (Zelikman et al., 2022) and ReFT (Trung et al., 2024), which were inspired by techniques like
Chain-of-Thought (CoT) (Wei et al., 2022) and Self-Refine (Madaan et al., 2023). We adopt the spirit of STaR, but
generalize it within a hypergraph framework to propose typed, multi-step rationalizations (§3.2). Furthermore, we
introduce an amortized variant that learns to propose rationalizations, rather than relying solely on heuristics (§3.3).
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Enforcing Structure and Compliance. To improve output reliability, various methods enforce grammar-based
constraints during LLM generation (Poesia et al., 2022; Geng et al., 2023; McCarthy et al., 2023; Beurer-Kellner
et al., 2024; Geng et al., 2025). These methods generally modify local conditional distributions over next tokens at
inference time, masking out continuations incompatible with the grammar. In contrast, our objective learns
parameters so that type-compliant trajectories carry increasing probability mass globally, improving both validity
and task accuracy through training.

Parameter-efficient adaptation. LoRA and related PEFT methods (Houlsby et al., 2019; Hu et al., 2022; Li
& Liang, 2021; Lester et al., 2021; Liu et al., 2022) enable light-weight adaptation. We use small adaptors to
highlight data-efficiency and show that gains stem from typed workflow learning rather than sheer capacity.

Connection to Reinforcement Learning. The TACSTaR training procedure (§3.2) can also be viewed through
the lens of policy optimization. As Zelikman et al. (2022) observed, the STaR objective closely resembles the
REINFORCE algorithm (Williams, 1992). The M-step in TACSTaR can be interpreted as optimizing the workflow
policy under REINFORCE with a binary reward for generating the correct output.

We adopt the MC-EM framing as it provides a principled approach for likelihood maximization in the presence of
annotated output data. While advanced RL techniques (e.g., PPO (Schulman et al., 2017) or actor-critic methods
(Konda & Tsitsiklis, 1999)) might be applicable, they introduce complexity, such as training value functions,
which are difficult to estimate over complex, typed latent spaces. Furthermore, the exploration challenge in sparse
reward settings is significantly mitigated by the rationalization heuristic and the inference network in Amortized
TACSTaR (§3.3), which guide sampling towards successful trajectories using known outputs.

B ADDITIONAL STUDIES ON WORKFLOW PATTERN DESIGN

In this section, we conduct additional experiments that vary the pattern structures, and evaluate how such changes
affect performance. Specifically, we would like to answer the following questions:

• (§B.2) Is adaptation with reasoning workflows effective? The TAC framework gives practitioners great
freedom in designing a workflow that reason in the process. We hypothesize that adapting with such
explicit structures improves performance on tasks that require complex reasoning.

• (§B.3) How do TAC design variations affect performance? We evaluate how such TAC design variations
for the same task affect performance.

B.1 END-TO-END TRAINABLE WORKFLOWS AS TACS.

The declarative and flexible nature of TACs enable practitioners to rapidly implement end-to-end trainable
workflows. We implement some common patterns as TACs:

• Direct adaptation of an LM to the downstream task without any latent structure corresponds to common
supervised PEFT methods surveyed in §A. The direct pattern (Fig. 5a) is a singleton TAC with no latent
nodes.

• Adapting with latent rationales corresponds to patterns that learn to generate rationales for the task at
hand Zelikman et al. (2022). There are several possible TAC structure designs that incorporate rationales:
for example, cot-type-structure (Fig. 5b) maps the input to a rationale-output typed object, from which
the task output is deterministically extracted. Alternatively, cot-cascade-structure (Fig. 1a) introduce
rationales as distinct nodes in the TAC hypergraph, which transforms into the task output under an adaptor.

• Trainable self-refinement refers to an end-to-end trainable variant of self-refine (Madaan et al., 2023),
where the model first sketches a task output, and iteratively refine it. Without TAC, a practitioner would
have to resort to manually writing tedious postprocessing functions for the intermediate results. On the
other hand, the TAC counterpart refine-structure (Fig. 6 in §F) is straightforward.
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z1
type: τi

z2
type: τo

(τi, τo,θ1)

(a) direct

z1
type: τi

z3
type: τro

z2
type: τo

(τi, τro,θ2)

extract: τro → τo

(b) cot-type-structure

Figure 5: Workflow patterns experimented in this paper, with increasing structural complexity from left to right. In
the most complicated pattern expression-cascade-structure we illustrate the workflow with example node values.
Dashed-boundary nodes indicate variables that are not observed at training time. And solid-boundary nodes
indicate nodes with training time observable values. A main message of this work is that instead of defining
workflows imperatively as fixed-parameter systems, we treat an entire typed workflow as a single probabilistic
program, whose parameters are lightweight PEFT modules, allowing end-to-end training with latent
variables.

For the MGSM-SymPy task, we experiment with the expression-cascade-structure pattern (Fig. 1b), which
additionally imposes the constraint that the output must be a rational number represented by an arithmetic
expression tree. Such type constraints often reflect business logic (for example, we expect the MGSM dataset to
have rational number answers), and may be necessary when the TAC forms a component in a larger system.

B.2 EFFECTIVENESS OF ADAPTATION WITH REASONING WORKFLOWS

To evaluate whether adaptation with reasoning workflows is effective, we compare cot-cascade-structure,
and refine-structure TACs against direct on the 3 tasks MGSM, FinQA and HotPotQA, on base models
gemma-2-27b-it and gemma-1.1-7b-it. Table 2 shows that both cot-cascade-structure significantly
outperforms direct on MGSM and FinQA on both gemma-2-27b-it and gemma-1.1-7b-it. But
cot-cascade-structure slightly underperforms direct on HotPotQA. These results largely agree with the meta
study done by Sprague et al. (2024a), which also reported that tasks that require arithmetic and symbolic reasoning,
such as MGSM and FinQA, benefit the most from CoT, while a huge portion of previous work saw that CoT
degrades performance for multihop QA. However, we note that the refine-structure TAC (Fig. 6) consistently

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

outperform the direct baseline in all 3 tasks on gemma-2-27b-it, showcasing the effectiveness of the adaptive
refinement paradigm.

gemma-2-27b-it gemma-1.1-7b-it

Dataset direct cot-cascade-structure refine-structure direct cot-cascade-structure

MGSM 24.7 82.2 78.6 5.1 27.3
FinQA 17.3 36.0 23.7 3.0 9.7
HotPotQA 34.0 32.0 39.0 — —

Table 2: Comparison between direct and reasoning workflows. For the MGSM dataset, we report per-language
accuracies in Table 5. The difference between best performing runs and direct are statistically significant/marginally
significant: for MGSM and FinQA p < 0.05 (both gemma-2-27b-it and gemma-1.1-7b-it), and for
HotPotQA p = 0.07 under paired permutation tests. Per-language accuracy numbers of the MGSM dataset are in
§H.

Task adaptation with TACSTaR is effective. To evaluate whether the efficacy of TACs can be attributed to our
proposed TACSTaR method, we also compare adapted TAC workflows against those with the same hypergraph
structure, but with un-adapted weights (i.e., all adaptors in the TAC use base model weights). Both TACSTaR trained
and un-adapted models use the same structured LangFun prompts that are similar to examples listed in §N. The
significant gap between adapted and un-adapted results in Table 3 indicate that the TACSTaR algorithm is effective.
Notably, un-adapted models still outperform direct workflows (listed in Table 2), indicating that LangFun’s
type-inducing prompts can invoke somewhat effective test-time computation over the TAC hypergraph structure.

Task Structure TACSTaR Un-adapted

MGSM cot-cascade-structure 82.2 45.4
MGSM cot-type-structure 80.4 74.7
MGSM-SymPy expression-cascade-structure 75.9 69.5
FinQA cot-cascade-structure 36.0 13.0
HotPotQA refine-structure 39.0 24.0

Table 3: Comparison between TACSTaR-adapted and un-adapted gemma-2-27b-it. The differences are all
statistically significant (p < 0.05) under paired permutation tests.

B.3 EFFECTS OF DIFFERENT TAC DESIGNS

Decoupling rationale and output modeling helps performance. cot-cascade-structure (Fig. 1a) achieves a
higher score than cot-type-structure (Fig. 5b) on the MGSM task (Table 4), suggesting that modeling the rationale
and task output generation with distinct adaptors helps performance. By using distinct adaptors, the workflow
allows specialization: the first adaptor focuses on reasoning, while the second specializes in synthesis, reducing the
complexity burden on a single monolithic step. The positive result again highlights how the TAC formalism can
help practitioners iterate and experiment with different multi-adaptor cascade designs, which would be tedious
otherwise.

Robustness to Semantic Constraints. Comparing performance on MGSM and the more constrained MGSM-
SymPy task reveals a key advantage of the TAC framework’s robustness. As shown in Table 4, the best-performing
TAC model sees a modest performance drop, from 82.2% on MGSM to 75.9% on MGSM-SymPy, when required
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to generate a valid symbolic expression.13 This contrasts sharply with the prompt-optimizing baseline (Fig. 2). The
best DSPy configuration experiences a much more significant degradation, plummeting from 81.9% on MGSM to
just 57.1% on MGSM-SymPy. The substantially smaller performance drop for TACs underscores the brittleness of
discrete prompt optimization when faced with strict structural requirements. The TAC framework’s gradient-based
adaptation within a typed system proves to be significantly more resilient, making it a more reliable paradigm for
tasks demanding structural compliance.

MGSM MGSM-SymPy

cot-type-structure cot-cascade-structure expression-cascade-structure
80.4 82.2 75.9

Table 4: Effects of different TAC designs on the MGSM dataset, demonstrating the impact of workflow structure
on performance. The cot-cascade-structure (which decouples rationale generation from the final answer
synthesis) outperforms the monolithic cot-type-structure. The expression-cascade-structure result shows strong
performance on the more constrained MGSM-SymPy task.

C ALGORITHMS

C.1 FORWARD AND BACKWARD

Algorithm 1 (forward) executes the probabilistic program represented by a TAC C = (Z,E). Starting from a
given input node value z∗1, the algorithm traverses the hypergraph following a topological order, and terminates
when all edges ∈ Z have been visited. forward takes C and z∗1 as input arguments. forward also takes the
following as arguments:

• sampler configuration κ for different sampling techniques, e.g., varying temperature, nucleus, and top-k
sampling

• maximum number of sampling attempts

Algorithm 2 (backward) takes as input (C,Z∗), where C = (Z,E) where E = (e1 . . . eK) is a TAC, and
Z∗ are value assignments of Z. We assume the log probability pLM (y | x;θk) is auto-differentiable with
regard to all adaptor hyperedges in a TAC. Algorithm 2 returns unnormalized log joint probabilities of Z∗

under C: log p̃θ(Z∗), the per-node generation log probabilities (log pθ(z2 | ·) . . . log pθ(zM | ·)), and also
gradients of LM adaptors: ∇θk

log p̃θ(Z
∗) for adaptor hyperedges’ indices k. We note that backward is easily

parallelizable: all adaptor edges can be processed at the same time.

C.2 TACSTAR

The TACSTaR algorithm (Algorithm 3) takes as input (C, {x∗
i , y

∗
i | i ∈ [1..Dtrain]}), where C is the TAC to train,

and {(x∗
i , y

∗
i ) | i ∈ [1..Dtrain]} is the training dataset. As we described in §3.2, TACSTaR uses a ‘fallback TAC’

heuristics in hope to obtain a sample when the forward algorithm fails.

Building Fallback TAC. Given a TAC C = (Z,E) with input node and output node typed τi and τo respectively,
we build its fallback TAC Cfallback = (Z′,E′) (denoted as the function build fallback in Algorithm 3) as
follows:

13Sample expressions generated under expression-cascade-structure are listed in §M.
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Algorithm 1 TAC Forward Algorithm (forward)

Input: TAC cascade C = (Z,E) where Z = {z1 . . . zM} and E = {e1 . . . eK}, input object: z∗1, sampler
configuration κ, Nmax for maximum number of sampling attempts.

Output: Sampled values (z∗2, . . . , z
∗
M ).

1: Determine a topological ordering of edges in E. Let the sorted hyperedges be e′1 . . . e
′
K .

2: Z∗
already sampled ← {z∗1}.

3: for k ∈ [1..K] do
4: Assert the source nodes of e′k is a subset of zalready sampled.
5: if e′k = (τi, τo,θ) is a type-constrained LM adaptor then
6: # type-constrained LM adaptors have a single source node and a single target node.
7: x← canonicalized representation of e′k’s source node.
8: while number of attempts ≤ Nmax do
9: Try draw y ∼ pLM (· | x;θ, κ)

10: if parse(y, τo) ̸= error then
11: t← index of e′k’s target node.
12: z∗t ← y
13: Z∗

already sampled ← Zalready sampled ∪ {z∗t }
14: break
15: end if
16: end while
17: else if e′k is a deterministic algorithm f then
18: # In this work we assume f ’s inputs and outputs are sorted by node index in C.
19: Of input ← parsed objects of e′k’s source nodes, sorted by node index.
20: Ofoutput ← f(Of input)
21: Z∗

foutput ← canonicalized representations of objects ∈ Ofoutput, sorted by node index.
22: Zalready sampled ← Z∗

already sampled ∪ Z∗
foutput

23: end if
24: end for
25: return Zalready sampled − {z∗1}.

• The input node of Cfallback: z′1 is of the product type τio = τi × τo, representing a data container that
holds one object of type τi and another object of type τo.

• All other nodes ∈ Z have their counterpart nodes in Z ′ (with the same types and indices).

• We copy each hyperedge e ∈ E over to E′, connecting nodes with the same indices. In the case that e is
a deterministic algorithm hyperedge, and has z1 as one of its source nodes, we modify the counterpart
hyperedge e′ to have a deterministic algorithm that first extracts the original object parse(z1) from
parse(z′1), and then pass parse(z1) to the original algorithm as input.

Adaptors in Cfallback use no-op weights, falling back to the behavior of the base model. We denote such no-op
weights as θ0. For example, Fig. 7 is the Cfallback for Fig. 5b.

C.3 AMORTIZED TACSTAR

The Amortized TACSTaR algorithm (Algorithm 4) builds upon Algorithm 3 to introduce an inference network TAC.
While Cfallback used fixed no-op weights that behave identical to the base language model, Amortized TACSTaR
leverages an inference network TAC C ′ with trainable parameters.
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Algorithm 2 TAC Backward Algorithm (backward)

Input: C = (Z,E) and sample Z∗ = {z∗1, z∗2, . . . , z∗M}
Output: (log p̃θ(Z

∗), (log pθ(z2 | ·) . . . log pθ(zM | ·)), {∇θk
log p̃θ(Z

∗) | ek ∈
E is an adaptor hyperedge})

1: Initialize log-probability accumulator L ← 0.
2: for each LM adaptor hyperedge ek = (τi, τo,θk) do
3: Let z∗i ∈ Z∗, z∗o ∈ Z∗ be the sample value of ek’s input and output nodes zi (typed τi) and zo

respectively.
4: (ℓ,gk)← peft backward(log pLM (z∗o | canon(parse(z∗i , τi));θ).
5: L ← L+ ℓ
6: keep track of ℓ by its node index.
7: end for
8: # For nodes from deterministic hyperedges, set log prob to 0 as they have no learnable parameters.
9: return (L, (log pθ(z2 | ·) . . . log pθ(zM | ·)), {gk | ek ∈ E is an adaptor hyperedge}).

Building the inference network C ′. Given a TAC C = (Z,E) with input node and output node typed τi and τo
respectively, we build the adaptive fallback TACC ′ = (Z′,E′) (denoted as the function build infer net in
Algorithm 4). At a high level, every adaptor hyperedge that generates latent variables in C is mapped into a
counterpart in C ′ that also depends on both observed a τi-typed input and a τo-typed output, now encoded as z′1,
typed τio. Specifically we build C ′ with the following procedure:

• The input node of C ′: z′1 is of the product type τio = τi × τo, as with build fallback.

• All nodes ∈ Z have their counterpart nodes in Z ′ (with the same types and indices), except for {z1, z2}.14

• For each hyperedge e ∈ E,

– In the case that e is a deterministic algorithm hyperedge, and has z1 as one of its source nodes,
we add a counterpart hyperedge e′ that connect counterpart nodes in Z′, with its deterministic
algorithm modified to typecheck, as build fallback.

– Otherwise, e is an adaptor hyperedge. Denoting its source node as zs and target node as zt:

* If zt = z2, we continue since zt has no counterpart C ′.
* If zs = z1 and zt ̸= z2, we add a counterpart hyperedge e′ = (τs, τt,θnew) connecting

counterpart nodes z′s and z′t. θnew indicates the parameter vector of a new LM adaptor.
* Otherwise, zs ̸= z1 and zt ̸= z2. In this case, we create e′ to be an adaptor that is conditioned

on both z′s and z′1. To achieve this goal, we introduce into C ′ a helper node z′′s typed
τios = τi× τo× τs, and a helper hyperedge e′′ that has source nodes {z′1, z′s}, and target node
{z′′s}. e′′ is a deterministic edge that combines values in z′1 and z′s into the 3-object container
z′′s . Finally, we add e′ that connects z′′s to t as the adaptor transformation (τios, τt,θnew),
where θnew again indicates the parameter vector of a new LM adaptor.

Adaptors in C ′ are new adaptors. And we train C alternately with C ′ in Algorithm 4. The algorithm to train C ′ is
listed in Algorithm 5.

C.4 UPDATING C ′

We train the inference network C ′ to better approximate the posterior distribution defined by C alternately
(§3.3). In other words, we update adaptor parameters in C ′ so that sampled latent variables of C ′ ((ẑ3, . . . , ẑM )

14We arbitrarily designate a node ∈ Z′ that does not have an outgoing hyperedge as the output node for syntactic conformity.
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Algorithm 3 TACSTaR Training Algorithm

Input: Training pairs Dtrain = {(x∗
i , y

∗
i ) | i ∈ [1..|Dtrain|]}, TAC C, sampler configuration κ.

1: Cfallback ← build fallback(C)
2: for epoch in [1..num epochs] do
3: S ← {} # Successful samples
4: for training pair (x∗, y∗) ∈ Dtrain do
5: z∗1 ← canon(x∗)
6: # E-step (Sampling Latent Variables):
7: (ẑ2 . . . ẑM )← Forward(C, z∗1).
8: # Filtering (Validity Check):
9: Initialize error flag← false.

10: Set error flag← true if errors in E-step or parse(ẑ2) ̸= y∗.
11: # Heuristics Fallback (Addressing Forward Failure):
12: if error flag is true then
13: z′∗1 ← canon((x∗, y∗))
14: (ẑ′2 . . . ẑ

′
M )← forward(Cfallback, z

′∗
1 )[0].

15: if no error was raised and parse(ẑ′2) = y∗ then
16: (ẑ2 . . . ẑM )← (ẑ′2 . . . ẑ

′
M )

17: Set error flag← false.
18: end if
19: end if
20: if error flag is false then
21: S ← S ∪ {(z∗1, ẑ2 . . . ẑM )}
22: end if
23: end for
24: # M-step (Parameter Update):
25: for (z∗1, ẑ2 . . . ẑM ) ∈ S do
26: G← backward(C, (z∗1, ẑ2 . . . ẑM ))[2]
27: optimize(C,G)
28: end for
29: end for

obtained using forward(C ′,canon(x∗), κ)) follow the normalized distributions under C (obtained using
backward(C, (canon(x∗),canon(y∗), ẑ3, . . . , ẑM )))). To promote diversity of samples, we addition-
ally obtain samples from Cfallback (§C.2). Let Z = (z∗3, . . . , z

∗
M ) be a sample out of G collected samples

(Z(1), . . . ,Z(G)) from Cfallback and C ′. We approximate the posterior probability of Z under C , conditioning on
z∗1 = canon(x∗), z∗2 = canon(y∗) under the balance heuristic (Veach & Guibas, 1995) as

p̂posterior(Z) ∝
(Nfallback +Ninfer)p̃model

Nfallbackpfallback +Ninferpinfer
, (5)

where p̃model = p̃C(z
∗
1, z

∗
2, z

∗
3, . . . , z

∗
M ), pfallback =

∏M
m=3 pLM (z∗m | z∗m’s source node;θ0), and pinfer =∏M

m=3 pLM (z∗m | z∗m’s source node;θnew). These values are all obtained using the backward algorithm.15 We
denote the number of samples attempted (including errors) on Cfallback = Nfallback, the number of samples attempted
(including errors) on C ′ = Ninfer. p̂posterior is normalized over the mixture so that

∑G
g=1 p̂posterior(Z

(g)) = 1.

15backward algorithm as presented in this work computes both gradients and probabilities. In our implementation we do
not compute gradients when they are not needed; but we omit this subtlety in Algorithm 2.
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Algorithm 4 Amortized TACSTaR Training Algorithm

Input: Training pairs Dtrain = {(x∗
i , y

∗
i ) | i ∈ [1..|Dtrain|]}, TAC C, sampler configuration κ.

1: C ′ ← build infer net(C)
2: for epoch in [1..num epochs] do
3: S ← {} # Successful samples
4: for training pair (x∗, y∗) ∈ Dtrain do
5: z∗1 ← canon(x∗)
6: # E-step (Sampling Latent Variables):
7: (ẑ2 . . . ẑM )← Forward(C, z∗1).
8: # Filtering (Validity Check):
9: Initialize error flag← false.

10: Set error flag← true if errors in E-step or parse(ẑ2) ̸= y∗.
11: # Heuristics Fallback (Addressing Forward Failure):
12: if error flag is true then
13: z′∗1 ← canon((x∗, y∗))
14: (ẑ′2 . . . ẑ

′
M )← forward(Cfallback, z

′∗
1 )[0].

15: if no error was raised and parse(ẑ′2) = y∗ then
16: (ẑ2 . . . ẑM )← (ẑ′2 . . . ẑ

′
M )

17: Set error flag← false.
18: end if
19: end if
20: if error flag is true then
21: (ẑ3 . . . ẑM )← forward(C ′, z∗1)[0]
22: Set error flag← false if no errors in previous step.
23: end if
24: if error flag is false then
25: S ← S ∪ {(z∗1, z∗2, ẑ3, . . . ẑM )}
26: end if
27: end for
28: # M-step (Parameter Update):
29: for (z∗1, ẑ2 . . . ẑM ) ∈ S do
30: G← backward(C, (z∗1, ẑ2 . . . ẑM ))[2]
31: optimize(C,G)
32: end for
33: C ′ ← update inference network C ′ (§C.4).
34: end for

Algorithm 5 updates adaptors in C ′ to bring its unnormalized distribution closer to Eq. (5). Since the self-
normalized approximation of the posterior distribution is consistent but biased, we require minimum numbers of
samples from C ′ and Cfallback.

D FORMAL STATEMENTS AND PROOFS REGARDING TYPE COMPLIANCE

Well-specifiedness. Let C = (Z,E). We define well-specifiedness for TAC: we say θ = {θ1 . . .θK} is well-
specified if for every LM adaptor ek = (τi, τo,θk) ∈ E and for every valid canonicalized string x of type τi, the
LM distribution pLM only has support over valid outputs of type τo. Formally, ∀ valid x,

∑
y∈Dvalid(τo)

pLM (y |
x;θk) = 1 iff θ is well-specified.
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Algorithm 5 update infer net

Input: Training pair (x∗, y∗), model TAC C, sampler configuration κ, inference network C ′, non-adaptive
fallback Cfallback, number of samples from Cfallback: Gfallback, number of samples from C ′: Ginfer .

1: z′
∗
1 ← canon((x∗, y∗)), z∗1 ← canon(x∗), z∗2 ← canon(y∗).

2: Zcollected ← []
3: # In our implementation we give up and raise an error after 30 unsuccessful attempts.
4: while number of successful samples from Cfallback < Gfallback do
5: Try (ẑ2, ẑ3, . . . ẑM )← forward(Cfallback, z

′∗
1, κ, 1)

6: if previous step succeeded then
7: # We discard ẑ2 from Cfallback.
8: Append (ẑ3, . . . , ẑM ) to Zcollected.
9: end if

10: end while
11: Nfallback ← numbers of attempts on Cfallback
12: while number of successful samples from C ′ < Ginfer do
13: Try (ẑ3, . . . ẑM )← forward(C ′, z′

∗
1, κ, 1)

14: if previous step succeeded then
15: Append (ẑ3, . . . , ẑM ) to Zcollected.
16: end if
17: end while
18: Ninfer ← numbers of attempts on C ′

19: G← Gfallback +Ginfer
20: Assert G = |Zcollected|
21: Compute [p̂posterior(Z

(1) . . . p̂posterior(Z
(G))] using Eq. (5).

22: Sample g ∈ [1..G] with probability proportional to p̂posterior(Z
(g).

23: G← backward(C ′,Z(g))[2].
24: optimize(C ′,G)

We first prove that hyperedges are locally normalized (i.e., the partition function is 1) when θ is well-specified:
Lemma 1. If θ is well-specified, then for any hyperedge ek ∈ E and any valid assignment x to its source nodes,
the local partition function Zk = 1.

Proof. ek is either an LM adaptor or a deterministic algorithm:

• If ek is an LM adaptor, Zk =
∑

y p̃θ(y | x; ek) =
∑

y∈valid(τo)
pLM (y | x;θk) = 1.

• If ek is a deterministic algorithm, by Eq. (2) Zk =
∑

y p̃(y | x; ek) = p̃(canon(f(parse(x, τi)))+
0 = 1 + 0 = 1.

We then use induction based on the TAC C’s topological structure.
Lemma 2. Let θ be a well-specified parameter vector for TAC C = (Z,E). The conditional partition function
Zθ(z1) = 1.

Proof. We use induction on the number of nodes k, following the topological sort z1, . . . zM . For clarity, here we
abuse the subscript notation for topological order, and therefore zM (instead of z2) is the output.
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Let Ck be the sub-TAC induced by {z1, . . . , zk}. Its partition function is Zk(z1) =
∑

z2...zk

∏k
m=2 p̃θ(zm |

Sm), where Sm denotes the source nodes of zm under its corresponding hyperedge.

Base Case. k = 1. C1 has only z1. Z1(z1) = 1 since the product is empty.

Inductive Step. We assume Zk−1(z1) = 1. First we rewrite Zk(z1) by explicitly summing over zk. Since
z1, . . . zk is a topological order, the source nodes of zk: Sk is a subset of {z1, . . . zk−1}. We thus rewrite Zk(z1)
as

Zk(z1) =
∑

z2...zk

(
k−1∏
m=2

p̃θ(zm | Sm)

)
·

(∑
zk

p̃θ(zk | Sk)

)
. (6)

We discuss the summands by the validity of z2 . . . zk−1:

• If z2 . . . zk−1 is valid: by Lemma 1 the term
∑

zk
p̃θ(zk | Sk) = 1. This summand is therefore∏k−1

m=2 p̃θ(zm | Sm).

• If z2 . . . zk−1 is not valid: by Eqs 1 and 2 this summand is 0.

We can thus rewrite Eq. (6) as

Zk(z1) =
∑

z2,...,zk−1|valid assignments

k−1∏
m=2

p̃θ(zm | Sm). (7)

Equation (7) can be further rewritten to sum over both valid and invalid z2, . . . , zk−1 assignments (since again by
Eqs. (1) and (2), the summand is 0 for invalid assignments):

Zk(z1) =
∑

z2,...,zk−1

k−1∏
m=2

p̃θ(zm | Sm) = Zk−1(z1). (8)

Since by assumption Zk−1(z1) = 1, we thus prove by induction ZM (z1) = Zθ(z1) = 1.

Finally, we show that Lemma 2 implies the equivalence of maximizing the normalized and unnormalized
likelihoods when the true parameters are well-specified.
Theorem 1. Let Θ be the entire parameter space and let Θ′ ⊆ Θ be the subset of well-specified param-
eters. Assume θ∗ uniquely maximizes the normalized likelihood pθ(z2..M |z1) and resides ∈ Θ′. Then,
θ̂ = argmaxθ∈Θ p̃θ(z2..M |z1) =⇒ θ̂ = θ∗.

Proof. First we note ∀θ ∈ Θ,Zθ(z1) ≤ 1, since for any adaptor
∑

y p̃θ(y | x) ≤ 1 . By Eqs. (1) and (2) the
global partition function must also be ≤ 1.

We rewrite the unnormalized likelihood as a product of normalized likelihood and the partition function:

p̃θ(z2...M | z1) = pθ(z2...M | z1) · Zθ(z1) (9)

Since Zθ(z1) ≤ 1, ∀θ ∈ Θ, p̃θ(z2...M | z1) ≤ pθ(z2...M | z1).
At the well-specified true parameters θ∗ we have Zθ(z1) = 1 by Lemma 2. Therefore p̃θ∗(z2...M | z1) =
pθ∗(z2...M | z1).
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By our assumption that θ∗ maximizes normalized likelihood, ∀θ ∈ Θ, pθ∗(z2...M | z1) ≥ pθ(z2...M | z1).
Combining everything together:

p̃θ∗(z2...M | z1) = pθ∗(z2...M | z1)
≥ pθ(z2...M | z1)
≥ p̃θ(z2...M | z1)

for all θ ∈ Θ. Under the assumption θ∗ is unique, θ∗ = argmaxθ∈Θ p̃θ(z2...M | z1) = θ̂.

Theorem 2. Let θ = {θ1 . . .θK} be the union of a K-adaptor TAC’s LM adaptor parameters . If ∀zk,1 ∈
Σ∗, zk,2 ∈ Σ∗, ∥∇θ (

∑
log pLM (zk,2 | zk,1;θ)) ∥∞ ≤ G, then ∇θ logZθ ≤ 2G(1−Zθ).

Proof. Here we fix z1 = x. We denote z2...M = y. Let p(k)LM (y) be the k-th LM adaptor’s unmasked node
probability, given (x, y) as TAC input and output. We then denote pθ(y) =

∏
k p

(k)
LM as a TAC’s normalized

distribution over node assignments (without masking invalid ones). The partition function Zθ =
∑

y pθ(y |
x)I(y ∈ V ) = Prpθ

(V ) where V is the set of valid node assignments.

We first rewrite ∇θ logZθ as an expectation under pθ:

∇θ logZθ = Ey∼pθ(·|V ) [∇θ log pθ(y)] . (10)

Using the identity
∑

y pθ(y)∇θ log pθ(y) = 0, we rewrite Eq. (10) as

∇θ logZθ = Ey∼pθ(·|V ) [∇θ log pθ(y)]− Ey∼pθ
[∇θ log pθ(y)] . (11)

Let f = ∇θ log pθ(y). We can now rewrite ∥∇θ logZθ∥∞ as

∥∇θ logZθ∥∞ = ∥Ep·|V [f ]− Epθ
[f ] ∥∞

= ∥
∑
y

f · (pθ(y | V )− pθ(y))∥∞

≤
∑
y

∥f∥∞ · |pθ(y | V )− pθ(y)|

≤
∑
y

G · |pθ(y | V )− pθ(y)|. (12)

Noting that
∑

y |pθ(y | V )− pθ(y)| is twice the total variation between pθ and pθ(· | V ), and that the total
variation between pθ and pθ(· | V ) is (1−Zθ)— the sum of invalid assignments’ probabilities under pθ — we
can rewrite Eq. (12) as ∥∇θ logZθ∥∞ ≤ 2G(1−Zθ).

E IMPLEMENTATION CONSIDERATIONS

In this section we discuss practical implementation considerations. In particular, we distinguish between one-time
and per-use efforts.

E.1 ONE-TIME EFFORTS

Parsing and canonicalization. There exist multiple libraries that can readily be used to implement parse and
canon for typed data-holding objects in Python. One example is LangFun which we use extensively in the paper.
Another popular library is Pydantic, which is used in DSPy.
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Type validation logic. As we briefly discussed in Footnote 5, the parse function can be used to implement
complex business logic. Such logic can usually be implemented cleanly as part of type definition (e.g., as
init and post init methods in Python).

Algorithms. The core TAC algorithms for execution and training (Algorithms listed in §C) are general and need
only be implemented once. The main computational bottlenecks in these algorithms are:

• Sampling from an LM adaptor pLM (·;θ).
• Evaluating the conditional probability of y given x under an LM adaptor: pLM (y | x;θ).
• Computing gradients of (x,y) with regard to parameters θ: ∇θ log pLM (y | x;θ).

A practical implementation can abstract these bottlenecks away, by offloading these intensive parts to dedicated
inference servers (e.g., vLLM). The core TAC logic remains a lightweight, accelerator-agnostic program.
Furthermore, since TACs use parameter-efficient fine-tuning (PEFT), the adaptor weights and gradients are small
enough to be processed quickly, often without needing dedicated accelerators for the logic itself. This design
significantly reduces the low-level engineering burden.

E.2 PER-USE EFFORTS

Once the core engine is in place, a practitioner’s effort is focused on defining a TAC hypergraph for their specific
task. Since the TAC hypergraph is essentially a data flow graph, it can be represented in a way that is directly
analogous to network architecture definitions in popular neural network frameworks such as PyTorch, where the
Module s represent hyperedges, and their forward methods connect the typed data nodes.

F ADDITIONAL TAC DIAGRAMS OF TRAINABLE WORKFLOWS

z1
type: τi

z3
type: τo

z4
type: τio

z5
type: τr

z2
type: τo

z6
type: τior

(τi, τo,θ5)
combine io : τi × τo → τio

combine ior : τio × τr → τior

(τio, τr,θ6)

(τior, τo,θ7)

Figure 6: refine-structure: refinement through cascade topology engineering. This cascade models a refinement
process where an initial output sketch is iteratively refined based on generated rationales.
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z1
type: τio

z3
type: τro

z2
type: τo

(τio, τro,θ0) extract: τro → τo

Figure 7: Cfallback for cot-type-structure. Notice that the adaptor (τio, τro,θ0) uses ‘fallback’ weights θ0 that
represent no-op weights. Since we conduct experiment on LoRA adaptors in this work, we use the zero-init vectors
as θ0.

z1
type: τio

z3
type: τr

z2
type: τir(τio, τr,θ8)

combine io ir : τio × τr → τir

Figure 8: Inference network TAC C ′ for cot-type-structure.

G FURTHER DETAILS OF EXPERIMENT SETUP

Data splits. We focus on the low-data regime of task adaptation in this work. For MGSM and MGSM-SymPy,
each language has 100/30/120 training/validation/test examples respectively. The splits are 100/30/100 and
100/30/300 for HotPotQA and FinQA respectively. For HotPotQA and FinQA, we use the first entries from the
original dataset files as our training and evaluation subsets. For MGSM experiments, we train and evaluate on each
language separately. For MuSR tasks, the splits are 100/30/120 and 100/30/126 respectively.

Evaluation. We look at exact match accuracy scores of the answers for all 5 tasks. For MGSM-SymPy
experiments, we convert answers from the dataset to integers; as for the model predictions, we evaluate the
expressions as rational numbers under SymPy16, and cast the results as integer numbers. We do not make use of
additional clues from the datasets (e.g., the rationales provided for the 8 examples in MGSM datasets).

G.1 TAC SETUP

Training procedure. We train all workflows that have latent variables with our TACSTaR and Amortized
TACSTaR algorithms, except for the original (untyped) STaR experiments. Since direct experiments do not have
latent variables, we train those models using the ordinary cross entropy loss. In all experiments we use a batch size
of 8. The Adam optimizer (Kingma & Ba, 2014) is used throughout all experiments, with a learning rate of 5e− 5.
We early-stop if no higher validation score is achieved for 4 consecutive epochs. The sampler configuration κ is
set to use a combination of top-K and nucleus sampling (Holtzman et al., 2020), where we first choose the top 40
candidates, and cut off accumulated probability mass at 0.95. To train the inference TACs, we accumulate 32
samples from Cinfer and 16 samples from the fallback model (that is, G = 48 at the end of Algorithm 5).

16https://www.sympy.org/en/index.html
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Decoding procedure for generation tasks. Here we denote the answer type as τo. For
each test input instance, we obtain 32 samples Ẑ(1) . . . Ẑ(32) using forward, bucket their out-
put node values parse(ẑ(1)2 , τo) . . .parse(ẑ

(32)
2 , τo) into B bins, identified by the parsed output

y1 . . . yB . We output the answer with maximum accumulated unnormalized probability mass, namely
argmaxb

∑
s∈[1..32],parse(ẑ2,τo)=yb

p̃θ(Ẑ
(s)).

Decoding procedure for classification tasks. We estimate each label c’s normalized marginal probability using
Eq. (14), with N = 32. We output the label with largest normalized marginal probability as prediction.

Object representation of data. We represent input τi and output τo as Python types. The objects are encoded as
string representations under LangFun. We design the input and output types separately to reflect the original
dataset schemata (Listings 1 to 3). As for the rationales (represented by τr in cot-type-structure and cot-
cascade-structure) we represent them as lists of strings (Listing 4). Product types are represented as new Python
classes (e.g., the product of type Question and Answer, represented as τio in Figs. 7 and 8, is a new class
QuestionAnswer). The object representation can be arbitrarily complex, with LangFun handling all canon
and parse logic (for example, Listing 6 has Answer objects embedded in multiple types; and Listing 7 has
self-referential definitions).

1 class Question:
2 question: str
3

4

5 class Answer:
6 answer: str

Listing 1: Input and output type definitions for MGSM

1 class Paragraph:
2 title: str
3 sentences: list[str]
4

5

6 class Context:
7 paragraphs: list[Paragraph]
8

9

10

11 class Answer:
12 answer: str
13

14

15 class Question:
16 id: str
17 question: str
18 context: Context

Listing 2: Input and output type definitions for HotPotQA

1 class Question:
2 question: str
3 pre_text: list[str]
4 table: list[list[str]]
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5 post_text: list[str]
6

7

8 class Step:
9 op: str

10 arg1: str
11 arg2: str
12 res: str
13

14

15 class Answer:
16 answer: str
17

18

19 class QuestionAnswer:
20 question: Question
21 answer: Answer
22

23

24 class Answer:
25 answer: str

Listing 3: Input and output type definitions for FinQA

1 class Rationale:
2 steps: list[str]

Listing 4: Rationale type definition

1 class QuestionAnswer:
2 question: Question
3 answer: Answer

Listing 5: QuestionAnswer type definition

1 class ThinkingSteps:
2 steps: list[str]
3

4

5 class Paragraph:
6 title: str
7 sentences: list[str]
8

9

10 class Context:
11 paragraphs: list[Paragraph]
12

13

14 class SupportingFact:
15 title: str
16 sentence: str
17

18

19 class RelevantContext:
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20 sentences: list[str]
21

22

23 class Answer:
24 answer: str
25

26

27 class Question:
28 id: str
29 question: str
30 context: Context
31

32

33 class QuestionAnswer:
34 question: Question
35 answer: Answer
36

37

38 class AnswerFirstAttemptThinkingStepsAnswer:
39 answer_first_attempt: Answer
40 thinking_steps: ThinkingSteps
41 answer: Answer
42

43

44 class QuestionAnswerFirstAttempt:
45 question: Question
46 answer_first_attempt: Answer
47

48

49 class QuestionAnswerFirstAttemptThinkingSteps:
50 question: Question
51 answer_first_attempt: Answer
52 thinking_steps: ThinkingSteps

Listing 6: Type definitions for refine-structure on HotPotQA

1 class Expression:
2 operator: Literal['+', '-', '*', '/']
3 left: Union[int, 'Expression']
4 right: Union[int, 'Expression']
5

6 class Answer:
7 answer: Expression

Listing 7: Expression type definitions in MGSM expression-cascade-structure experiments

G.2 DSPY SETUP

We conduct most of the DSPy experiments under v 3.0.1, but report results from DSPy v 2.6.19 for
gemini-1.1-7b-it experiments since both BFSWRS and MIPROv2 struggle to generate valid outputs under
DSPy v 3.0.1. Moreover, the non-optimized MGSM average accuracy is much lower under v 3.0.1 (for Native CoT
it is 0.7% under v 2.6.19, and 0.2% under v 3.0.1). For all other experiments, we report results from DSPy v
3.0.1 which sets up JSON schema-based constrained decoding correctly out-of-the-box. As we noted in §4.2,
constrained decoding significantly improves performance for tasks with structured output.
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We serve base models on vLLM v 0.10.0.

Input and output object definitions. For structured input and output tasks, we subclass dspy.Signature
as QASignature to represent examples. The property names and types in a QASignature class are identical
to counterparts in TAC experiments. FinQA and MGSM-SymPy signatures are listed in Listing 8 and Listing 9
respectively.

1 class QASignature(dspy.Signature):
2 pre_text: list[str] = dspy.InputField()
3 table: list[list[str]] = dspy.InputField()
4 post_text: list[str] = dspy.InputField()
5 question: str = dspy.InputField()
6 answer: str = dspy.OutputField()

Listing 8: DSPy object signature for FinQA. Property names and types are identical to their TAC counterparts in
Listing 3

1 class Expression(pydantic.BaseModel):
2 operator: Literal['+', '-', '*', '/']
3 left: Union[int, float, 'Expression']
4 right: Union[int, float, 'Expression']
5

6 class QASignature(dspy.Signature):
7 question: str = dspy.InputField()
8 answer: Expression = dspy.OutputField()

Listing 9: DSPy object signature for MGSM-SymPy. Property names and types are identical to their
TAC counterparts in Listing 7

DSPy models. We conduct reasoning experiments on both the native dspy.ChainOfThought module, and
an explicitly two-step composite module that resembles TAC cot-cascade-structure patterns. Two-step modules
for FinQA and MuSR are listed in Listings 10 and 11 as examples.

1 class QuestionRationale(dspy.Signature):
2 question: str = dspy.InputField()
3 pre_text: list[str] = dspy.InputField()
4 table: list[list[str]] = dspy.InputField()
5 post_text: list[str] = dspy.InputField()
6 question: str = dspy.InputField()
7 rationale: list[str] = dspy.OutputField()
8

9 class RationaleAnswer(dspy.Signature):
10 rationale: list[str] = dspy.InputField()
11 answer: str = dspy.OutputField()
12

13 class TwoStepPredictor(dspy.Module):
14 def __init__(self):
15 self.question_to_rationale = dspy.Predict(QuestionRationale)
16 self.rationale_to_answer = dspy.Predict(RationaleAnswer)
17

18 def forward(self, pre_text: list[str], table: list[list[str]], post_text:
list[str], question: str):

19 r = self.question_to_rationale(question=question, pre_text=pre_text, table=
table, post_text=post_text).rationale
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20 return dspy.Prediction(answer=self.rationale_to_answer(rationale=r).answer)

Listing 10: DSPy two-step reasoning model definition for FinQA

1 class QuestionRationale(dspy.Signature):
2 context: str = dspy.InputField()
3 question: str = dspy.InputField()
4 choices: list[str] = dspy.InputField()
5 rationale: list[str] = dspy.OutputField()
6

7 class RationaleAnswer(dspy.Signature):
8 rationale: list[str] = dspy.InputField()
9 choices: list[str] = dspy.InputField()

10 answer: str = dspy.OutputField()
11

12 class TwoStepPredictor(dspy.Module):
13 def __init__(self):
14 self.question_to_rationale = dspy.Predict(QuestionRationale)
15 self.rationale_to_answer = dspy.Predict(RationaleAnswer)
16

17 def forward(self, context: str, question: str, choices: list[str]):
18 r = self.question_to_rationale(question=question, context=context, choices=

choices).rationale
19 return dspy.Prediction(answer=self.rationale_to_answer(rationale=r, choices

=choices).answer)

Listing 11: DSPy two-step reasoning model definition for MuSR

Prompt optimization under DSPy. We experiment with optimizers dspy.MIPROv2 and
dspy.BootstrapFewShotWithRandomSearch (listed as BFSWRS below). For MGSM-SymPy and
FinQA experiments we do not report BFSWRS results, as they consistently need more context length than the
model maximum (8192). Moreover, for FinQA experiments we resort to MIPROv2 0-shot due to similar context
length problems.

We set max errors=2 for all optimizers. For MiPROv2 we set auto=’medium’. For MiPROv2 with 0-shot
settings we additionally set max bootstrapped demos=0, max labed demos=0.
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H PER-LANGUAGE TAC AND ORIGINAL STAR MGSM AND MGSM-SYMPY RESULTS

Per-language TAC and original STaR experimental results on tasks MGSM and MGSM-SymPy are listed in
Tables 5 and 6.

Pattern Adaptation Method es en de fr zh ru ja te th Average

direct TACSTaR 27.5 27.5 25.0 25.0 23.3 25.8 23.3 18.3 26.7 24.7
cot-type-structure TACSTaR 80.0 84.2 76.7 83.3 80.0 85.0 71.7 79.2 83.3 80.4

cot-cascade-structure TACSTaR 87.5 87.5 83.3 85.8 80.0 87.5 74.2 73.3 80.8 82.2
refine-structure TACSTaR 86.7 90.0 76.7 77.5 73.3 78.3 69.2 72.5 83.3 78.6

expression-cascade-structure TACSTaR 83.3 82.5 83.3 75.8 70.0 79.2 65.8 75.0 75.8 75.9
cot-cascade-structure un-adapted 42.5 47.5 46.7 42.5 45.0 53.3 31.7 45.0 54.2 45.4

cot-type-structure un-adapted 77.5 79.2 80.8 76.7 68.3 79.2 68.3 69.2 73.3 74.7
expression-cascade-structure un-adapted 76.7 71.7 69.2 70.8 68.3 68.3 63.3 70.8 73.3 69.5

cot-cascade-structure amortized TACSTaR 84.2 91.7 86.7 83.3 82.5 81.7 70.8 77.5 83.3 82.4
N/A original STaR 74.2 79.2 75.8 75.8 70.0 88.3 74.2 75.8 75.8 76.9

Table 5: gemma-2-27b-it MGSM and MGSM-SymPy per-language accuracies (TAC and original STaR
experiments).

Pattern Adaptation Method es en de fr zh ru ja te th Average

direct TACSTaR 5.8 6.7 6.7 8.3 7.5 2.5 5.0 1.7 1.7 5.1
cot-cascade-structure TACSTaR 40.8 35.8 31.7 29.2 24.2 31.7 13.3 18.3 20.8 27.3
cot-cascade-structure un-adapted 8.0 · 10−1 0.0 8.0 · 10−1 0.0 0.0 8.0 · 10−1 0.0 1.7 0.0 5.0 · 10−1

N/A original STaR 15.0 27.5 1.7 5.8 22.5 0.0 3.3 9.2 9.2 10.5

Table 6: gemma-1.1-7b-it MGSM per-language accuracies (TAC and original STaR experiments).

I PER-TASK TAC MUSR RESULTS

Per-task TAC experimental results on task MuSR are listed in Tables 7 and 8.

Decoding Method Murder Mystery Object Placements Team Allocation Average

Generation 61.7 51.6 41.7 51.6
Classification 65.0 50.0 80.0 65.0

Table 7: gemma-2-27b-it MuSR per-task accuracies (TAC experiments).

Decoding Method Murder Mystery Object Placements Team Allocation Average

Generation 60.0 43.7 82.5 62.1
Classification 59.2 42.9 85.8 62.6

Table 8: gemma-1.1-7b-it MuSR per-task accuracies (TAC experiments).

J PER-TASK DSPY MUSR RESULTS

Per-task DSPy experimental results on task MuSR are listed in Tables 9 and 10.
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Model Optimizer Murder Mystery Object Placements Team Allocation Average

Native CoT None 20.8 0.0 0.0 6.9
Native CoT MIPRO 0-shot 40.8 7.9 · 10−1 0.0 13.9
Native CoT MIPRO 51.7 50.8 49.2 50.5
Two-step None 52.5 14.3 22.5 29.8
Two-step MIPRO 0-shot 55.0 27.8 19.2 34.0
Two-step MIPRO 59.2 44.4 50.8 51.5

Table 9: gemma-2-27b-it MuSR per-task accuracies (DSPy experiments).

Model Optimizer Murder Mystery Object Placements Team Allocation Average

Native CoT None 10.0 3.2 3.3 5.5
Native CoT MIPRO 0-shot 6.7 3.2 2.5 4.1
Native CoT MIPRO 34.2 25.4 50.0 36.5
Two-step None 33.3 5.6 16.7 18.5
Two-step MIPRO 0-shot 35.8 1.6 15.0 17.5
Two-step MIPRO 44.2 32.5 26.7 34.5

Table 10: gemma-1.1-7b-it MuSR per-task accuracies (DSPy experiments).

Model Optimizer Murder Mystery Object Placements Team Allocation Average

Native CoT None 0.0 0.0 0.0 0.0
Native CoT MIPRO 0-shot 0.0 0.0 0.0 0.0
Native CoT MIPRO 55.8 50.8 47.5 51.4
Two-step None 4.2 7.9 · 10−1 0.0 1.7
Two-step MIPRO 0-shot 3.3 1.6 0.0 1.6
Two-step MIPRO 65.0 59.5 60.0 61.5

Table 11: Qwen3-8B MuSR per-task accuracies (DSPy experiments).

K PER-LANGUAGE DSPY MGSM AND MGSM-SYMPY RESULTS

Per-language DSPy experimental results on tasks MGSM and MGSM-SymPy are listed in Tables 12 to 14.

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 55.0 57.5 52.5 51.7 54.2 59.2 45.0 39.2 40.0 50.5
Native CoT BFSWRS 84.2 89.2 87.5 81.7 75.0 87.5 75.0 77.5 79.2 81.9
Native CoT MIPROv2 82.5 86.7 81.7 76.7 77.5 84.2 70.0 74.2 75.8 78.8
Two-step None 1.7 5.8 2.5 1.7 3.3 1.7 1.7 3.3 5.0 3.0
Two-step MIPROv2 76.7 83.3 76.7 78.3 73.3 79.2 70.0 67.5 71.7 75.2
Two-step BFSWRS 80.8 84.2 76.7 81.7 70.0 81.7 67.5 64.2 72.5 75.5

Table 12: gemma-2-27b-it MGSM per-language accuracies (DSPy experiments).
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Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 8.0 · 10−1 8.0 · 10−1 8.0 · 10−1 0.0 0.0 2.5 1.7 0.0 0.0 7.0 · 10−1

Native CoT BFSWRS 0.0 8.0 · 10−1 1.7 5.0 8.0 · 10−1 1.7 1.7 2.5 0.0 1.6
Native CoT MIPROv2 8.0 · 10−1 1.7 2.5 2.5 1.7 0.0 1.7 8.0 · 10−1 8.0 · 10−1 1.4
Two-step None 0.0 0.0 8.0 · 10−1 0.0 0.0 0.0 1.7 0.0 0.0 3.0 · 10−1

Two-step MIPROv2 0.0 0.0 0.0 0.0 0.0 8.0 · 10−1 0.0 0.0 8.0 · 10−1 2.0 · 10−1

Two-step BFSWRS 0.0 0.0 0.0 0.0 0.0 8.0 · 10−1 0.0 0.0 8.0 · 10−1 2.0 · 10−1

Table 13: gemma-1.1-7b-it MGSM per-language accuracies (DSPy experiments).

Model Optimizer es en de fr zh ru ja te th Average

Native CoT None 56.7 66.7 55.0 45.8 47.5 59.2 45.0 49.2 45.8 52.3
Native CoT MIPROv2 66.7 64.2 58.3 60.8 56.7 62.5 50.8 42.5 51.7 57.1
Two-step None 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Two-step MIPROv2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 14: gemma-2-27b-it MGSM-SymPy per-language accuracies (DSPy experiments).

L DSPY FINQA RESULTS

DSPy experimental results on the FinQA task are listed in Table 15 and Table 16.

Model Optimizer Accuracy

Native CoT None 11.7
Native CoT MIPROv2 0-shot 12.7
Two-step None 5.7
Two-step MIPROv2 0-shot 10.7

Table 15: gemma-2-27b-it FinQA accuracy (DSPy experiments).

Model Optimizer Accuracy

Native CoT None 0.0
Native CoT MIPROv2 0-shot 6.7 · 10−1

Two-step None 0.0
Two-step MIPROv2 0-shot 3.3 · 10−1

Table 16: gemma-1.1-7b-it FinQA accuracy (DSPy experiments).

Model Optimizer Accuracy

Native CoT None 4.3
Native CoT MIPROv2 0-shot 5.3
Two-step None 1.0
Two-step MIPROv2 0-shot 12.0

Table 17: Qwen3-8B FinQA accuracy (DSPy experiments).
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M EXAMPLE EXPRESSIONS FROM expression-cascade-structure UNDER THE
MGSM-SYMPY TASK

See Table 18.

Question Answer Expression

Nissa hires 60 seasonal workers to play elves in her department store’s Santa village. A
third of the elves quit after children vomit on them, then 10 of the remaining elves quit
after kids kick their shins. How many elves are left?

20 (60− (60/3))− 10

The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How
much was his total expenditure for those two months?

940 500 + 440

Tom gets 4 car washes a month. If each car wash costs $15 how much does he pay in a
year?

720 (15× 4)× 12

Table 18: Example arithmetic expressions generated for MGSM questions by expression-cascade-structure.

N EXAMPLE INSTRUCTION PROMPT GENERATED BY LANGFUN

The LangFun library translates requests that transformed a typed object into another typed object into natural
language instructions for LLMs, to facilitate its parse operations. For example, Listing 12 is a prompt generated
by LangFun for the request that transforms a Question object into an Answer object.

1 Please respond to the last INPUT_OBJECT with OUTPUT_OBJECT according to
OUTPUT_TYPE.

2

3 INPUT_OBJECT:
4 1 + 1 =
5

6 OUTPUT_TYPE:
7 Answer
8

9 ```python
10 class Answer:
11 final_answer: int
12 ```
13

14 OUTPUT_OBJECT:
15 ```python
16 Answer(
17 final_answer=2
18 )
19 ```
20

21 INPUT_OBJECT:
22 ```python
23 Question(
24 question='How are you?'
25 )
26 ```
27

28 OUTPUT_TYPE:
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29 Answer
30

31 ```python
32 class Answer:
33 answer: str
34 ```
35

36 OUTPUT_OBJECT:

Listing 12: Example instruction prompt generated by LangFun

O PERFORMANCE-COMPUTATIONAL COST ANALYSIS

We conduct additional experiments on FinQA (Gemma 2 27B) to analyze the cost-benefit trade-off, using token
counts (i.e., tokens used during training, and tokens used for evaluation on the entire test set) as a proxy for cost.
On this task, the TACSTaR run processed ∼ 27M training tokens. The baseline DSPy optimization (MIPROv2,
using the default auto=’medium’ configuration) processed ∼ 1.6M tokens. Decoding the 300 test examples
takes ∼ 29M tokens for TAC (using 32 samples for robust estimation as described in §G.1) and ∼ 0.5M tokens
for DSPy.

We evaluated whether increasing DSPy’s compute budget closes the performance gap:

• Scaling Training: We increased the num trials hyperparameter under MIPRO v2 from 12 (under
the auto=’medium’ default setting) to 32 (∼ 3.7M tokens) and 300 (∼ 33M tokens).

• Scaling Inference: We used majority voting (with the same T=1.0, top p=0.95, top k=40 settings) with
ensemble sizes 100 (∼ 55M tokens) and 500 (∼ 260M tokens).

Results listed in Table 19 show that DSPy performance plateaus quickly. Even when significantly increasing
DSPy’s training and test budget (up to 9x TAC’s inference cost), the accuracy (14.3) remains far below TACs
(34.0).

Training
budget

Test
budget

Training token count Test token count Accuracy
Encoded Decoded Total Encoded Decoded Total

12 1 1577489 107297 1684786 489646 35302 524948 12.7
12 100 1362700 98030 1460730 50714928 4695123 55410051 12.7
12 500 1408479 95815 1504294 243050795 18271389 261322184 12.3
32 100 3246101 226967 3473068 50074600 4747957 54822557 12.0
32 500 3429654 240376 3670030 247409788 20255592 267665380 14.3
300 100 31112328 2146258 33258586 48754600 3655251 52409851 12.3
300 500 31216543 2164159 33380702 246926388 23154727 270081115 12.7

TAC 26007546 1349250 27356796 27517698 1476911 28994609 34.0

Table 19: Cost analysis. Training budget corresponds to the num trials hyperparameter under MIPRO v2, and
test budget corresponds to ensemble size. Accuracy numbers from the first and last rows are copied from Table 15
and Fig. 2a respectively.
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P ASSESSING SNIS QUALITY UNDER LEARNED PROPOSAL DISTRIBUTIONS

To quantify the effectiveness of self-normalized importance sampling (SNIS) under the trained inference networks
(Amortized TACSTaR), we conducted additional experiments with the cot-cascade-structure pattern to
estimate reverse KL divergence, KL[q̃ϕ||pθ], which measures how well self-normalized importance samples
from adapted proposal qϕ(· | z∗

1 , z
∗
2)— as the mixture q̃ϕ — approximates the true posterior pθ(· | z∗

1 , z
∗
2):

KL[q̃ϕ||pθ] = 0 when q̃ϕ = pθ. Since the partition function of
∑

z pθ(z3 = z, z2 = z∗
2 | z∗

1) is intractable,
we estimate the difference between KL divergences, comparing against SNIS distributions under the unamortized
TACSTaR fallback.

Specifically, we rewrite KL[q̃ϕ||pθ]−KL[p̃fallback||pθ] as:

KL[q̃ϕ||pθ]−KL[p̃fallback||pθ] = Ez∼q̃ϕ(·|z∗
1 ,z

∗
2 )
[log q̃ϕ(z | z∗

1 , z
∗
2)− log pθ(z | z∗

1 , z
∗
2)]

− Ez∼p̃fallback(·|z∗
1 ,z

∗
2 )
[log p̃fallback(z | z∗

1 , z
∗
2)− log pθ(z | z∗

1 , z
∗
2)]

= Ez∼q̃ϕ(·|z∗
1 ,z

∗
2 )
[log q̃ϕ(z | z∗

1 , z
∗
2)− log pθ(z, z2 = z∗

2 | z∗
1)]︸ ︷︷ ︸

call this Kq̃ϕ

− Ez∼p̃fallback(·|z∗
1 ,z

∗
2 )
[log p̃fallback(z | z∗

1 , z
∗
2)− log pθ(z, z2 = z∗

2 | z∗
1)]︸ ︷︷ ︸

call this Kp̃fallback

,

(13)

where we exploit the identity

Eq1 [log pθ(z | z∗
1 , z

∗
2)]− Eq2 [log pθ(z | z∗

1 , z
∗
2)]

= Eq1 [log pθ(z, z2 = z∗
2 | z∗

1)− log

(∑
z′

pθ(z
∗, z2 = z∗

2 | z∗
1)

)
︸ ︷︷ ︸

=C

]

− Eq2 [log pθ(z | z∗
1 , z

∗
2)− log

(∑
z′

pθ(z
∗, z2 = z∗

2 | z∗
1)

)
]

= Eq1 [log pθ(z, z2 = z∗
2 | z∗

1)]− Eq2 [log pθ(z, z2 = z∗
2 | z∗

1)]− Eq1 [C] + Eq2 [C]

= Eq1 [log pθ(z, z2 = z∗
2 | z∗

1)]− Eq2 [log pθ(z, z2 = z∗
2 | z∗

1)].

To compute KL[q̃ϕ||pθ]−KL[p̃fallback||pθ], we compute the two expectations Kq̃ϕ and Kp̃fallback
in Eq. (13),

constructing the self-normalized distribution p̃fallback(z | z∗
1 , z

∗
2) ∝

pθ(z,z2=z∗
2 |z

∗
1 )

pfallback(z|z∗
1 ,z

∗
2 )

with 16 samples drawn
from pfallback. We also construct q̃ϕ(z | z∗

1 , z
∗
2) this way with 16 samples. We report the average difference over

validation datasets on the latest MGSM checkpoints in Table 20. On average, SNIS distribution under the adapted
q̃ϕ is closer to the true posterior distribution pθ(· | z∗

1 , z
∗
2) than the counterpart under the default pfallback.

Q ASSESSING SAMPLE DIVERSITY

We conducted additional experiments on MGSM (Gemma 7B) to analyze whether diversity collapses as type
compliance increases during training (§4.4). We use Effective Sample Size (ESS) normalized between 0 and 1 as
the evaluation metric. We measure ESS (using 16 samples for each validation example) at the end of each training
epoch on the validation datasets. Results are listed in Fig. 9. We find the average ESS fluctuates between 0.4 to
0.5, implying that the samples did not collapse to the mode (in which case normalized ESS would be around
1/16 = 0.625).
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Language Kq̃ϕ Kp̃fallback
KL[q̃ϕ||pθ]−KL[p̃fallback||pθ]

es 28.63845406 29.34799745 -0.7095433899
en 44.39640467 48.11942965 -3.723024984
de 48.86386756 49.65604005 -0.7921724921
fr 39.33989167 40.95757624 -1.617684578
zh 38.38841294 35.32150839 3.066904549
ja 40.36140304 40.1701377 0.1912653429
ru 30.32379052 31.74457529 -1.420784771
te 49.4455041 52.05616812 -2.610664018
th 39.60001892 39.65173477 -0.05171585152

Average 39.92863861 40.78057419 -0.8519355771

Table 20: Average KL divergence differences from the true posterior, between SNIS distributions under adapted
and un-adapted fallback distributions.
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Figure 9: Average ESS at end of epochs. Sample size = 16. ESS value normalized ∈ [ 1
16 , 1] in plot.

R ESTIMATING MARGINAL PROBABILITIES VIA IMPORTANCE SAMPLING

A key advantage of the probabilistic framing of TACs is the ability to estimate marginal probabilities, even when the
distribution is unnormalized. LM adaptors in a TAC can be used as proposal distributions for importance sampling.

Let zm be a node coming out of an LM adaptor. An N -sample estimate of the unnormalized probability that zm
equals c, conditioned on the input z1, p̃(zm = c | z1;θ), is:

ˆ̃p|z1
(m, c,N) =

N∑
n=1

[
pLM (zm = c;θ)

N · pLM (zm = z
(n)
m ;θ)

]
(14)

where z
(n)
m is the n-th sample of zm (drawn using Algorithm 1). Equation (14) is an unbiased importance

sampling estimate of the unnormalized probability p̃(zm = c | z1;θ) (since supp(p̃) ⊆ supp(pLM )).
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In the special case that zm has finite support (e.g., a classification task), we can estimate the normalized marginal
probability using Self-Normalized Importance Sampling (SNIS) by renormalizing over all possible values c′:

p̂(zm = c | z1;θ) =
ˆ̃p|z1

(m, c,N)∑
c′
ˆ̃p|z1

(m, c′, N)
. (15)
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