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ABSTRACT

As the parameters of Large Language Models (LLMs) increase, quantization has
emerged as a potent strategy for model compression and acceleration. Concur-
rently, Low-Rank Adaptation (LoRA) has been recognized as an effective method
for enhancing LLM performance. However, integrating LoRA with quantization
presents significant challenges, particularly in preserving the quantization format
after model optimization. In this paper, we introduce Low rank Quantization
Adaptation (LoQA) for LLM, a novel approach that effectively fine-tunes holis-
tic quantization parameters. Specifically, we first propose Holistic Quantization
Low-Rank Adaptation (HQ-LoRA), a new perspective on the quantization opera-
tor that is compatible with LoRA. This approach enables simultaneous fine-tuning
of all parameters (scale and zero point), yielding notable improvements in model
performance. Thanks to the expanded optimization landscape, LoQA is broadly
applicable to various Post-Training Quantization (PTQ) techniques, ensuring bet-
ter generalizability in practical deployments. To address the varying magnitudes
of integer weights under different bit-widths, we further propose Quantized Bit-
Aware Scaling (QBAS), a strategy that adjusts the LoRA scaling factor based on
the current bit-width. This approach normalizes the influence of integer weights
across different quantization levels, enhancing the efficiency and stability of the
fine-tuning process. Compared to existing methods, LoQA consistently achieves
performance gains across a wide range of models, proving its effectiveness and
adaptability. Code is available in the supplementary materials.

1 INTRODUCTION

In recent years, large language models (Zhang et al., 2022; Le Scao et al., 2023; Touvron et al.,
2023a;b; Bubeck et al., 2023) have demonstrated remarkable performance across various fields,
attracting significant attention. However, the increasing number of parameters in these models has
made training and fine-tuning progressively more challenging. This has led to a research focus on
efficiently enhancing model performance on diverse tasks using massive datasets, thereby facilitating
the deployment and utilization of LLMs by researchers and the general public.

Parameter-efficient fine-tuning (Xu et al., 2023; Hu et al., 2021; Kopiczko et al., 2023; Liu et al.,
2024a) and quantization (Xiao et al., 2023; Lin et al., 2023; Frantar et al., 2022; Shao et al., 2023; Ma
et al., 2024) have emerged as prominent methods for improving training efficiency and compress-
ing models. Parameter-efficient fine-tuning techniques aim to minimize the number of fine-tuning
parameters and computational complexity. These techniques enhance model performance while re-
ducing fine-tuning costs, time, and computational resource consumption. For example, QLORA
efficiently fine-tunes a 65B parameter model on a 48GB GPU using Low Rank Adapters and inno-
vative 4-bit quantization (Dettmers et al., 2023). The low-rank adaptation (LoRA) (Hu et al., 2021)
method reduces the number of fine-tuning parameters through low-rank matrix multiplications. This
approach decreases memory usage during gradient updates and accelerates training speed. Addition-
ally, freezing parameters in the backbone network during optimization allows for the integration of
quantization methods. Mapping backbone network parameters to low-bit representations further im-
proves training efficiency. A series of post-training quantization methods (Frantar et al., 2022; Xiao
et al., 2023; Lin et al., 2023; Frantar et al., 2022; Shao et al., 2023; Ma et al., 2024) can quickly
produce high-performance low-bit quantized models for the backbone network. The integration of
quantization and parameter-efficient fine-tuning presents substantial challenges within neural net-
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work optimization. Notably, maintaining the quantized format of the backbone network proves
difficult following the integration of fine-tuned parameters. Initially, QLoRA (Dettmers et al., 2024)
addresses this issue by employing post-training quantization to preserve the structure post-fusion.
However, this method partially compromises the precision of fine-tuned parameters, impacting the
overall accuracy of the model. To tackle this, QA-LoRA (Xu et al., 2023) constrains the dimensions
of low-rank matrices, allowing the fine-tuning parameters to be incorporated directly into the zero
points of the quantized backbone network. This ensures the stability of the quantization fixed points
during parameter fusion, although it restricts the optimization space for fine-tuned parameters, thus
capping potential performance gains for the language model.

In response, this paper introduces a novel approach named Low-Rank Quantization Adaptation
(LoQA). This method enhances all quantized parameters with an efficient fine-tuning module
through two key components: Holistic Quantization Low-Rank Adaptation (HQ-LoRA) and Quan-
tized Bit-Aware Scaling (QBAS). HQ-LoRA provides a new perspective on the quantization oper-
ator, making it compatible with LoRA while maintaining mathematical equivalence to the original
operator. Conceptually, if the quantization zero points in the backbone network are viewed as trans-
lational operations on intra-group weight parameters, the scale parameters then serve as scaling
transformations that adapt these parameters to the quantization range. HQ-LoRA enables the simul-
taneous fine-tuning of all quantization parameters (scale and zero point), significantly expanding
the optimization space. Concurrently, it preserves the quantized structure of the backbone network,
ensuring that the quantization fixed points remain stable. To address the varying magnitudes of inte-
ger weights under different bit-widths, QBAS adjusts the LoRA scaling factor based on the current
bit-width, normalizing the influence of integer weights across different quantization levels. This
approach enhances the efficiency and stability of the fine-tuning process. LoQA comprehensively
optimizes both sets of quantization parameters through gradient-based methods, thereby broadening
the optimization space. The fine-tuning of the two sets of quantization parameters under this low-
rank framework minimizes both time and computational expenses, yielding an optimized quantized
model efficiently.

In summary, our contributions are as follows:

• A novel perspective on quantization: We introduce Holistic Quantization Low-Rank
Adaptation (HQ-LoRA), which expands the optimization space for fine-tuning all quan-
tized parameters. Through a comprehensive analysis of the dequantization process, HQ-
LoRA efficiently fine-tunes all quantized parameters, significantly enhancing the model’s
capacity.

• An innovative LoRA scaling strategy: We propose the Quantized Bit-Aware Scaling
(QBAS) technique, which dynamically adjusts the LoRA scaling factor based on the cur-
rent bit-width. This approach normalizes the influence of integer weights across differ-
ent quantization levels, thereby enhancing the efficiency and stability of the fine-tuning
process. QBAS is particularly effective when dealing with varying magnitudes of integer
weights under different bit-widths, ensuring consistent performance across diverse quanti-
zation settings.

• Empirical validation of significant performance improvements: Extensive experiments
demonstrate that LoQA consistently outperforms previous fine-tuning methods that main-
tain quantized formats, and in many cases, matches the performance of state-of-the-art
4+16 bit methods. Notably, in ultra-low bit-width scenarios, LoQA’s effectiveness is even
more pronounced, with its 2-bit version surpassing the current 2+16-bit state-of-the-art
method by 4.7% and even outperforming the original 16-bit model.

2 RELATED WORK

Parameter-efficient fine-tuning (PEFT). Parameter-efficient fine-tuning techniques aim to mini-
mize the number of trainable parameters and computational complexity during model adaptation.
For instance, methods like Low-Rank Adaptation (Hu et al., 2021) reduce the number of tunable pa-
rameters by learning low-rank matrices, which has proven to be an effective strategy for fine-tuning
large language models. Recent research on Parameter-Efficient Fine-Tuning focuses on enhancing
the performance of LoRA with the same parameter budget (Liu et al., 2024a), while proposing new
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(a) Accuracy variation across model sizes. (b) Accuracy variation with different bit-widths.

Figure 1: Performance analysis of LoQA across various configurations. (a) Demonstrates the scala-
bility of LoQA across different model sizes. (b) Illustrates the robustness of LoQA under different
quantization bit-widths. LoQA exhibits significant improvements over previous best methods that
maintain the quantized format when combining LoRA and quantization methods. Notably, LoQA
achieves performance comparable to state-of-the-art N+16 bit approaches that combine LoRA and
quantization. These results underscore the efficacy and versatility of LoQA in enhancing model
performance while maintaining low bit-width quantization.

fine-tuning methods that further reduce the number of tunable parameters while maintaining or im-
proving efficiency (Ren et al., 2024; Gao et al., 2024; Azizi et al., 2024; Jiang et al., 2024; Meng
et al., 2024; Kopiczko et al., 2023).

Quantization of LLMs. As LLMs scale up in parameter size, quantization has emerged as a power-
ful technique for model compression and acceleration, broadly classified into Post-Training Quanti-
zation (PTQ) and Quantization-Aware Training (QAT). PTQ is a key technology for speeding up and
deploying LLMs. Recent work has focused on addressing outliers in both parameters and activations
to improve the robustness and performance of quantized models (Xiao et al., 2023; Lin et al., 2023;
Frantar et al., 2023; Shao et al., 2023; Ma et al., 2024; Ashkboos et al., 2024; Liu et al., 2024b).
While QAT can enhance the performance of quantized models, its use in LLMs is limited due to
the high cost of training. Vector quantization methods have also been introduced recently (Tseng
et al., 2024; Egiazarian et al., 2024), which offer good precision but come with significant compu-
tational overhead. Our research mainly focuses on uniform quantization, which is more suitable for
hardware implementation and offers faster inference speeds.

Fine-Tuning of Quantized Parameters. Techniques such as QLoRA(Dettmers et al., 2023), IR-
QLoRA(Qin et al., 2024), LQ-LoRA(Guo et al., 2023), and LoftQ(Li et al., 2023) quantize model
parameters into low-bit representations, followed by the addition of LoRA modules for fine-tuning.
However, these approaches require the integration of floating-point LoRA modules with the quan-
tized weights, leading to the restoration of model weights to floating-point format, preventing direct
use of the quantized weights. In contrast, PEQA (Kim et al., 2024) employs a simple round-to-
nearest (RTN) method for low-bit quantization and fine-tunes the quantized model’s step size to
adapt to downstream tasks, allowing the quantized model to be directly utilized post-fine-tuning.
EfficientQAT (Chen et al., 2024) improves upon PEQA by replacing the simple RTN method to
provide a better starting point for fine-tuning. The closest related method to ours is QA-LoRA (Xu
et al., 2023), which redesigns the LoRA module to seamlessly integrate with zero-points. However,
QA-LoRA requires zero-points to be in floating-point format, limiting its practical applicability. Ad-
ditionally, it can only merge with zero-points, which constrains its overall performance, especially
when fine-tuning on large downstream datasets.

3 LOW-RANK QUANTIZATION ADAPTATION

This section introduces LoQA, a novel two-stage quantization and fine-tuning approach designed to
achieve high-performance quantized models for downstream tasks under resource constraints. The
first stage employs a limited amount of calibration data to perform efficient post-training quanti-
zation (PTQ), yielding initial quantized weights W Int and quantization parameters (step sizes S
and zero points Z). This approach enables fine-tuning of the actual quantized model during the
second stage, significantly reducing memory requirements. In the second stage of fine-tuning for
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Figure 2: LoQA adopts efficient fine-tuning by applying LoRA after weight quantization. Its core in-
novation lies in the HQ-LoRA module, which seamlessly integrates LoRA weights into the original
quantized weights while maintaining the quantization format, thus preserving inference efficiency.
In the ”LoRA-Merge” phase, light blue blocks represent components in floating-point format, while
light gray blocks indicate non-learnable parts in integer format (see Appendix C). HQ-LoRA re-
solves QA-LoRA’s limitation of non-learnable scales by jointly learning both scales and zero points,
achieving superior performance with only half the parameters compared to QA-LoRA (see Table 7).
Furthermore, HQ-LoRA enhances generalization capability by enabling scale learning even without
zero points or with quantized zero points, reducing dependency on specific PTQ methods.

downstream tasks, we address the limitations of QA-LoRA, which solely adjusts LoRA to learn
quantization parameters for zero points Z. Instead, we propose an innovative LoRA module that
integrates quantized weights W Int, enabling LoRA to learn step sizes S. This approach leads to
improvements in both generalization and performance. Furthermore, we introduce enhancements to
LoRA scaling for quantized parameters, which have demonstrated improved performance across a
range of experimental settings.

3.1 PRELIMINARY

Low-Rank Adaptation. We adopt the symbolic notation system to elucidate the Low-Rank Adap-
tation (LoRA) methodology (Hu et al., 2021). Let W ∈ RDout×Din represent the pretrained weights
for a specific layer. Given an input feature vector x ∈ RDin , the output vector y ∈ RDout is com-
puted as y = Wx. The LoRA approach introduces two low-rank matrices, A ∈ RDint×Din and
B ∈ RDout×Dint , where Dint ≪ min(Din, Dout). This ensures that the product BA is a low-rank
matrix yet aligns dimensionally with W . During training, the computation is augmented with a
scaling coefficient s:

y = Wx+ s ·BAx (1)

We define W ′ as the final learned weights after fine-tuning, obtained by combining LoRA with the
original weights in floating-point format:
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W ′ = W + s ·BA (2)

This formulation allows W to remain static while A and B are updated, enabling efficient parameter
tuning. Post-training, we employ the reparametrized weight matrix W ′ for inference, computing the
output as y = W ′x, thus facilitating accelerated computation.

Joint Low-Rank Adaptation and Quantization. The integration of quantization and LoRA can
further reduce the resource overhead during fine-tuning. First, we quantize the original model. For
simplicity, we will use the uniform quantization formula to illustrate this process. To ensure clarity
in the following expressions, we will denote the data type in the upper right corner of the different
values, using FP16 to represent floating-point numbers. In this paper, we primarily discuss group
quantization, so the step sizes S and zero points Z are represented as matrices. If group quantization
seems confusing, we provide a detailed explanation of this process using a simple min-max group
quantization and dequantization procedure in Appendix C.

W Int = clamp

(
⌊W

FP16 − f(ZFP16, g)

f(SFP16, g)
⌉, 0, 2N − 1

)
, (3)

where ⌊·⌉ represents the rounding operation. g is the group size for group quantization. N is the final
bit number for quantization. The function f(V, r) is the column duplication operator, which repeats
the matrix V column-wise r times. The detailed definition of f(V, r) is provided in Appendix E.
SFP16 denotes the quantization step size, and ZFP16 serves as the offset or zero point, facilitating the
alignment of real and quantized values. After quantization, dequantization is employed during the
forward pass to simulate the original weights.

W̃ FP16 = W Int ⊙ f(SFP16, g) + f(ZFP16, g), (4)

where W̃ FP16 simulates the original weights, and ⊙ represents the Hadamard product.

QLoRA (we simply treat the QLoRA quantization process as uniform quantization here) first quan-
tizes the model as in equation 3, then fine-tunes using LoRA (equation 1). The forward process is
expressed as:

y′ = W̃ FP16x+ s ·BAx = (W Int ⊙ f(SFP16, g) + f(ZFP16, g))x+ s ·BAx, (5)

where y′ denotes the forward process of the quantized model with LoRA. This fine-tuning process
is highly memory-efficient: quantization reduces model weight memory, while LoRA significantly
decreases memory required for gradient and optimizer parameters. However, floating-point LoRA
cannot be merged into W Int and can only convert original quantized weights back to floating-point
format. QA-LoRA proposes a new LoRA module allowing LoRA weights to be merged into ZFP16,
but this limits tunable parameters and yields average performance. Additionally, it struggles to
handle situations where ZFP16 is further compressed to ZInt, as discussed in Appendix C.

3.2 HOLISTIC QUANTIZATION LOW-RANK ADAPTATION

LoQA retains the prior fine-tuning steps by first quantizing the model and then applying LoRA for
fine-tuning, significantly reducing memory consumption for model weights, gradients, and optimizer
parameters. During the LoRA fine-tuning phase, we introduce a novel module called HQ-LoRA
(Holistic Quantization Low-Rank Adaptation). This module employs two LoRA variants to fine-
tune all floating-point quantized parameters within the quantized model (step sizes S and zero points
Z). This approach allows natural merging of LoRA weights with floating-point parameters from the
quantized model post-fine-tuning, without precision loss, ensuring the quantized model maintains
its properties. The forward process of HQ-LoRA is expressed as:

y′ = W̃ FP16x+ s ·BAx′ + s · (W Int ⊙ f((B′A′), g))x′, (6)

where g is the group size for group quantization, and x′ is obtained from x using a grouping operator
(one-dimensional average pooling). A and A′ are shaped as Dint × Din

g .

HQ-LoRA’s core idea is to align the granularity of all quantization parameters in group quantization
with LoRA parameters, ensuring consistent effects for the same input group. We illustrate this with
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a simplified example using a quantized model with a group size of 1. The dequantization process
becomes W̃FP16 = WInt ⊙ SFP16 + ZFP16, with S and Z shaped Dout ×Din.

The forward formula simplifies to:

y′ = W̃ FP16x+ s ·BAx+ s · (W Int ⊙ (B′A′))x, (7)

In the above equation, B′A′ can be merged into SFP16, while BA can be merged into ZFP16. For
group sizes > 1, we apply one-dimensional average pooling with the corresponding group size to
x, which reduces the input dimension of A and A′ to Din

g . This treatment maintains consistency
between B′A′ and SFP16, and BA and ZFP16 even with group sizes > 1, therefore we can still merge
ZFP16 and BA after fine-tuning 8.

Z′FP16 = ZFP16 + s ·BA, (8)
where Z′ represents fine-tuned quantized weights. Similarly, B′A′ and SFP16 are merged:

S′FP16 = SFP16 + s ·B′A′, (9)

Here, S′ represents fine-tuned quantized weights. This approach maintains the basic quantization
format while incorporating LoRA parameters used during fine-tuning.

3.3 QUANTIZED BIT-AWARE SCALING

LoQA introduces Quantized Bit-Aware Scaling (QBAS), a novel approach to adjusting the LoRA
scaling factor based on quantization bit-width. In traditional LoRA, the scaling factor s in Equation 1
is defined as s = α

r , where α is a hyperparameter and r represents the intermediate dimension size
(Dint in Equation 3.1).

Equation 6 reveals that during fine-tuning, while A and B result in a direct update of s · BA, the
scale-related components A′ and B′ are modulated by Wint, yielding an update of s · Wint ⊙
(B′A′). Since the magnitude of Wint varies with quantization bit-width, it significantly impacts
the scale-related LoRA updates.

To address this, QBAS introduces maxq to redesign the LoRA scaling factor as:

s =
α

r ·maxq
(10)

where maxq = 2N−1 and N is the quantization bit-width. As demonstrated in Appendix D, this ad-
justment effectively normalizes the influence of Wint, ensuring consistent updates across all layers.

4 EXPERIMENTS

4.1 MAIN RESULTS

We conducted extensive experiments to assess LoQA’s performance in comparison to leading LoRA-
finetuning quantization methods, including IR-QLoRA (Qin et al., 2024), QLoRA (Dettmers et al.,
2023), and QA-LoRA (Xu et al., 2023). Additionally, we included PEQA (Kim et al., 2023) without
LoRA, following the methodology of (Xu et al., 2023). Tables 3 and 1 present the 5-shot accuracy
results on the MMLU benchmark (5-shot) after finetuning on the Alpaca (Taori et al., 2023) and
Flan v2 (Longpre et al., 2023) datasets, respectively. To ensure fairness, we reproduced the results
of QA-LoRA under the same environment and on the same machines for direct comparison. Detailed
experimental settings are provided in Appendix B.

LoQA’s performance relative to existing methods: Our comprehensive analysis reveals that
LoQA consistently outperforms comparative quantization methods across various LLaMA model
sizes. When compared to the baseline QA-LoRA method, LoQA demonstrates significant accuracy
improvements on the MMLU benchmark under identical finetuning conditions. As evidenced in
Table 1, the LLaMA-7B model finetuned with LoQA on the Flan v2 dataset achieves an accuracy
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Table 1: Accuracy (%) comparison on MMLU benchmark with different quantization methods.
Models are finetuned on Flan v2 dataset with rank=64 for all adaptation methods.. #Bit denotes bits
for weight quantization, where ”4+16” indicates LoRA parameters in FP16 that are not mergeable
into quantized weights.

Method #Bit MMLU
Hums. STEM Social Other Avg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
NormalFloat 4 33.1 30.6 38.8 38.8 35.1
QLoRA w/ GPTQ 4 33.8 31.3 37.4 42.2 36.0
QA-LoRA 4 41.8 35.6 53.7 50.8 45.2
QLoRA 4+16 41.4 35.0 49.8 52.0 44.3
IR-QLoRA 4+16 44.2 39.3 54.5 52.9 47.4
LoQA 4 43.4 37.5 56.5 53.7 47.4
LLaMA-13B 16 40.6 36.7 48.9 48.0 43.3
NormalFloat 4 43.0 34.5 51.8 51.4 45.0
QLoRA w/ GPTQ 4 48.4 38.3 54.9 55.2 49.2
QA-LoRA 4 49.9 39.6 60.2 56.6 51.5
QLoRA 4+16 49.9 40.1 60.2 57.9 51.9
IR-QLoRA 4+16 49.2 41.2 62.1 59.2 52.6
LoQA 4 49.2 43.3 61.6 58.8 52.9
LLaMA-30B 16 56.2 45.9 67.1 63.9 58.2
NormalFloat 4 55.3 44.7 66.2 63.3 57.3
QLoRA w/ GPTQ 4 55.8 46.4 67.0 64.0 58.1
QA-LoRA 4 55.9 47.4 69.6 65.1 59.2
QLoRA 4+16 57.2 48.6 69.8 65.2 60.0
IR-QLoRA 4+16 58.1 49.4 70.7 65.8 60.8
LoQA 4 58.3 49.3 71.4 65.7 60.9

Table 2: Accuracy (%) comparison of LLaMA under 2-3 bits finetune on the Flan v2 dataset.

Method #Bit MMLU
Hums. STEM Social Other Avg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
NormalFloat 3 30.5 29.9 34.8 34.9 32.3
QLoRA w/ GPTQ 3 32.2 31.7 42.7 42.8 36.9
QA-LoRA 3 40.8 34.7 50.5 49.8 43.7
QLoRA 3+16 41.3 37.1 50.9 49.8 44.5
IR-QLoRA 3+16 43.0 37.7 52.3 51.7 45.9
LoQA 3 43.0 38.0 55.4 51.7 46.7
NormalFloat 2 24.2 28.9 31.1 25.0 26.9
QLoRA w/ GPTQ 2 23.9 25.3 26.2 25.3 25.0
QA-LoRA 2 30.5 29.6 38.0 38.2 33.7
QLoRA 2+16 31.8 28.7 36.7 37.7 33.5
IR-QLoRA 2+16 31.7 29.4 37.8 36.5 33.7
LoQA 2 36.7 32.7 43.3 41.4 38.4

of 47.4%, substantially surpassing the 45.2% accuracy obtained with QA-LoRA. This trend per-
sists in larger models, with LoQA exceeding the baseline by 1.4% and 1.7% for LLaMA-13B and
LLaMA-30B, respectively. Moreover, our experiments indicate that LoQA outperforms QLoRA,
which employs a combination of 4-bit and 16-bit precision. Notably, LoQA often achieves results
comparable to IR-QLoRA, the current SOTA 4+16-bit method, despite operating entirely in a quan-
tized format. This performance parity with higher-precision methods underscores LoQA’s efficacy
in balancing model compression and task performance.
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Table 3: Accuracy (%) comparison of different quantization methods on LLaMA models fine-tuned
with Alpaca dataset and evaluated on MMLU.

Method #Bit MMLU
Hums. STEM Social Other Avg.

LLaMA-7B 16 33.3 29.8 37.8 38.0 34.6
PEQA 4 34.9 28.9 37.5 40.1 34.8
NormalFloat 4 33.1 30.6 38.8 38.8 35.1
QLoRA w/ GPTQ 4 33.8 31.3 37.4 42.2 36.0
QA-LoRA 4 38.2 32.4 43.6 45.2 39.7
QLoRA 4+16 36.1 31.9 42.0 44.5 38.4
IR-QLoRA 4+16 38.6 34.6 45.2 45.5 40.8
LoQA 4 39.0 34.2 46.2 47.5 41.5

Table 4: Accuracy (%) comparison of LLaMA2 on MMLU. #Bit denotes bits for weight quanti-
zation, where ”4+16” indicates LoRA parameters in FP16 that are not mergeable into quantized
weights. The bold and underlined numbers represent the best and second-best results respectively.

Method Dataset #Bit MMLU
Hums. STEM Social Other Avg.

LLaMA2-7B - 16 43.0 36.4 51.4 52.2 45.5
NormalFloat - 4 42.0 35.9 51.0 51.4 44.8
QA-LoRA Alpaca 4 42.1 34.4 49.1 50.3 43.9
IR-QLoRA Alpaca 4+16 43.4 36.8 51.9 53.6 46.2
LoQA Alpaca 4 41.8 38.6 51.9 53.7 46.1
QA-LoRA Flan v2 4 45.1 39.9 58.3 56.4 49.5
IR-QLoRA Flan v2 4+16 49.2 41.6 60.2 58.0 52.0
LoQA Flan v2 4 46.6 41.5 60.7 57.9 51.2

LLaMA2-13B - 16 53.3 44.1 63.3 61.0 55.3
NormalFloat - 4 52.2 44.1 62.3 60.8 54.7
QA-LoRA Alpaca 4 48.0 43.0 59.7 57.4 51.7
IR-QLoRA Alpaca 4+16 51.9 43.9 61.9 60.4 54.4
LoQA Alpaca 4 50.9 43.8 62.9 60.6 54.2
QA-LoRA Flan v2 4 51.2 46.2 66.9 64.3 56.6
IR-QLoRA Flan v2 4+16 53.1 45.6 64.9 63.8 56.5
LoQA Flan v2 4 52.2 46.1 66.5 62.8 56.5

Performance across diverse benchmarks: To further validate LoQA’s effectiveness, we evaluated
the models’ zero-shot commonsense reasoning capabilities across various tasks. Detailed results
of the evaluation, conducted after training on Flan v2 using LLaMA-7B, are presented in Table 5,
providing comprehensive evidence of LoQA’s consistent and superior performance.

Table 5: Accuracy (%) comparison of 4-bit quantized models on Commonsense QA datasets. Mod-
els are evaluated on multiple commonsense reasoning tasks.

Method Dataset CommonsenseQA
HellaSwag PIQA WinoGrande ARC-e ARC-c BoolQ OBQA Avg.

LLaMA-7B - 56.3 78.2 67.1 67.3 38.2 72.9 28.4 58.3
QA-LoRA Alpaca 72.2 78.9 66.3 60.9 45.1 76.9 41.0 62.9
LoQA Alpaca 73.1 78.3 65.1 62.6 45.9 78.9 42.4 63.8
QA-LoRA Flan v2 73.6 77.6 71.4 62.1 43.2 81.7 45.2 65.0
LoQA Flan v2 73.8 78.7 71.1 63.6 44.2 82.1 45.6 65.6

Cross-dataset consistency: Table 3 presents results obtained using Alpaca (Taori et al., 2023) as the
finetuning dataset. Consistent with the Flan v2 dataset results, LoQA consistently achieves optimal
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performance, outperforming SOTA methods. This consistency across different finetuning datasets
demonstrates LoQA’s robustness and generalizability.

Table 6: Impact of HQ-LoRA and QBAS on
MMLU performance.

HQ-LoRA QBAS #Bit MMLU
✗ ✗ 4 45.2
✗ ✓ 4 46.2
✓ ✗ 4 46.8
✓ ✓ 4 47.1
✗ ✗ 3 43.7
✗ ✓ 3 45.3
✓ ✗ 3 44.6
✓ ✓ 3 46.7
✗ ✗ 2 33.2
✗ ✓ 2 35.2
✓ ✗ 2 34.8
✓ ✓ 2 38.4

Cross-model generalization: We extended our
analysis to LLaMA2 and LLaMA3 models
to assess LoQA’s generalization performance
across LLM families. Specifically, we ap-
plied LoQA to the 7B and 13B variants of
LLaMA2 and evaluated their performance on
the MMLU benchmark, where LoQA exhib-
ited excellent results. For LLaMA3, LoQA
achieved lower training and evaluation loss
compared to QA-LoRA, as illustrated in Fig-
ure 3, indicating superior data fitting capabili-
ties. However, this did not translate to improved
performance on MMLU. As reported in the em-
pirical study by (Huang et al., 2024), LLaMA
3, when converted to NF4 without utilizing any
data, achieves a 5-shot accuracy of 62.5 on the
MMLU benchmark. However, when fine-tuned
on the Alpaca dataset using QLoRA based on
the NF4 model, the accuracy decreases to 56.7.
We posit that the existing datasets and train-
ing configurations are insufficient to confer positive MMLU benefits to advanced models such as
LLaMA 3. Consequently, despite our method’s enhanced data fitting capabilities, this advantage
does not translate into improved MMLU performance. We contend that this phenomenon warrants
further investigation into more suitable datasets and optimized training paradigms.

LoQA under Ultra-low Bit-width: We evaluated LoQA’s performance under ultra-low bit-width
conditions and compared it with other SOTA methods. Table 2 demonstrates LoQA’s superior per-
formance in this domain. Notably, the 2-bit LoQA configuration outperforms the current 2+16-bit
SOTA method IR-QLoRA by 4.7%. Furthermore, even in its 2-bit configuration, LoQA surpasses
the original 16-bit model by 3.8%, highlighting its exceptional efficiency in low-bit scenarios.

4.2 ABLATION ANALYSIS

To elucidate the efficacy of the techniques employed in LoQA on both accuracy and efficiency, we
conducted comprehensive ablation studies using the LLaMA-7B model on the Flan v2 dataset.

Accuracy Ablation: We performed ablation experiments on our proposed HQ-LoRA and QBAS
methods to assess their individual contributions. Given that QBAS involves different bit-widths,
we examined 4-bit, 3-bit, and 2-bit configurations, testing various combinations of the two meth-
ods. As illustrated in Table 6, both HQ-LoRA and QBAS prove crucial for performance opti-
mization. The synergistic combination of these methods yields the most superior performance.

Figure 3: Evaluation loss trajectories for LoQA
and QA-LoRA applied to the LLaMA3 model

Trainable Parameters Ablation: LoQA uti-
lizes HQ-LoRA to adjust all tunable parameters
in the quantized model, effectively doubling the
number of learnable parameters compared to
QA-LoRA. We conducted ablation experiments
by varying the rank to investigate the impact
of different quantities of learnable parameters.
We conducted a series of experiments exploring
different ranks of LoRA on the Flan v2 dataset.
Our findings indicate that increasing the rank
by multiples generally did not yield substan-
tial performance improvements. Notably, HQ-
LoRA achieved superior results even with half
the number of parameters, as illustrated in Table 7. This observation suggests that the efficacy of
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our proposed HQ-LoRA method is not solely dependent on the number of trainable parameters, but
rather on its intrinsic ability to more efficiently utilize the parameter space.

4.3 DISCUSSION

Larger Quantization Group Size: To provide a more comprehensive evaluation of our method’s
effectiveness, we conducted experiments using a group size of 128 in the FLAN-v2 dataset. Table
8 presents the results, which demonstrate the robustness and efficacy of our proposed approach
under this larger group size configuration. These findings suggest that our method maintains its
performance advantages even when scaling to larger quantization groups, indicating its potential
applicability across various quantization settings.

Training Cost: As shown in Appendix G, LoQA requires approximately 1.3 times the training time
of QA-LoRA, while LoQA-S demands even less than this 1.3-fold increase. For context, according
to the QA-LoRA study, QLoRA necessitates approximately twice the training time of QA-LoRA.
These results indicate that, under equivalent optimization conditions, LoQA achieves optimal results
with a balanced training cost.

Inference Efficiency: HQ-LoRA’s flexibility in selecting learnable quantized weights and reparam-
eterizing the learned parameters into the original quantized model weights enables us to achieve
inference speeds comparable to other weight-only quantization models. Our approach is compatible
with various acceleration toolboxes, including MLC-LLM (team, 2023), AWQ (Lin et al., 2023),
BitBLAS (Team), and Marlin (Frantar et al., 2024). As shown in Appendix H, we provide inference
speed benchmarks using Marlin on A100 GPU.

Table 7: Accuracy (%) comparison of LLaMA with different parameter scales on MMLU 5-shot
tasks, evaluating the performance between LoQA and QA-LoRA under various rank settings

Method Rank #Bit MMLU
Hums. STEM Social Other Avg.

LLaMA-7B - 16 33.3 29.8 37.8 38.0 34.6
QA-LoRA 64 4 41.8 35.6 53.7 50.8 45.2
QA-LoRA 128 4 42.6 35.8 53.3 51.5 45.5
HQ-LoRA (ours) 32 4 44.0 36.9 56.5 51.3 46.9
HQ-LoRA (ours) 64 4 44.0 37.2 56.1 52.3 47.1
QA-LoRA 64 2 30.5 29.6 38.0 38.2 33.7
QA-LoRA 128 2 29.7 29.3 36.8 35.9 32.6
HQ-LoRA (ours) 32 2 32.2 31.3 41.3 40.2 35.8
HQ-LoRA (ours) 64 2 34.2 28.8 41.0 40.5 36.0

Table 8: Accuracy (%) comparison on MMLU 5-shot benchmark with group size 128.

Method Dataset Humanities STEM Social Sciences Other Avg.
Llama-2-7B - 43.0 36.4 51.4 52.2 45.5
QA-LoRA Alpaca 42.6 36.8 50.0 50.6 44.8
HQ-LoRA (ours) Alpaca 43.3 36.6 51.4 52.6 45.8
QA-LoRA FLAN v2 44.9 39.7 57.9 56.2 49.2
HQ-LoRA (ours) FLAN v2 48.2 40.8 60.7 58.5 51.7

5 CONCLUSION

In this study, we introduce LoQA, a novel approach that incorporates HQ-LoRA for effective fine-
tuning of all quantized parameters. We also developed QBAS, an innovative LoRA scaling strategy
capable of adjusting the scaling size based on the quantization bit-width. This approach demon-
strates flexibility in its application to various uniform quantization methods, offering a robust solu-
tion for efficient model adaptation and deployment.
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A LIMITATIONS

As elucidated in Section 4.1, the base LoRA, datasets, and training methodologies employed in this
study are not reflective of the most current advancements in the field. These components necessitate
further refinement to achieve optimal results. However, due to resource constraints, we are unable
to replicate all previous work using the latest datasets and training paradigms. Consequently, we
present our approach under conditions where extraneous variables are controlled to the greatest
extent possible, ensuring a fair comparison within the constraints of our experimental setup.
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B SETTINGS

Foundation models and quantization detial. We conducted a series of experiments utilizing the
LoQA framework on various models from the LLaMA series, including LLaMA (Touvron et al.,
2023a), LLaMA2 (Touvron et al., 2023b), and LLaMA3. Our experimental setup encompassed base
models such as the 7B, 13B, and 33B configurations from LLaMA, the 7B and 13B models from
LLaMA2, and the 8B model from LLaMA3. In the quantization step, we employed a Post-Training
Quantization method named GPTQ (Frantar et al., 2023) and LoQA extensively supports other Post-
Training Quantization (PTQ). We used the same GPTQ settings for model quantization between
different methods. In our main experiments, we implemented group-wise asymmetric quantization
(with a group size of 32). We set the ’desc act’ variable to false and the ’true-sequential’ variable to
true, and the calibration dataset is wikitext2.

Evaluation metrics. In alignment with recent methodologies (Xu et al., 2023),(Dettmers et al.,
2023), we evaluated the zero-shot and few-shot performance of these large language models (LLMs)
on the Massively Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2021).
This benchmark encompasses 57 language tasks across fields like humanities, STEM, and social
sciences. We utilized the official MMLU evaluation script and prompts. Furthermore, we assessed
the models’ zero-shot common sense reasoning abilities on tasks such as HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2019), ARC (Clark et al., 2018),
BoolQ (Clark et al., 2019), and OpenBookQA (Mihaylov et al., 2018). The ’lm-eval’ tool (Gao
et al., 2021) was used to generate the Common Sense QA results, and we consistently used the final
checkpoint’s results for evaluation.

Datasets and Training Details. For our fine-tuning datasets, we selected Alpaca (Taori et al., 2023)
and FLAN v2 (Longpre et al., 2023). Alpaca contains 52K instruction-following data generated
from text-davinci-003 (GPT 3.5) (Wang et al., 2022), and was trained for 10k steps. FLAN v2 is a
collection of 1,836 tasks combining CoT, Muffin, T0-SF, and NIV2. In accordance with previous
work, we used a batch size of 16, and FLAN v2 was trained for 20k steps on a randomly selected
320K subset used for training. To ensure a fair comparison, we maintained consistency in training
hyperparameters with previous studies. All our experiments are conducted on Nvidia Tesla A100
GPUs.

Table 9: Key Training Parameters and Values

Parameter Value
Learning Rate 0.0002
Batch Size per GPU 1
Gradient Accumulation Steps 16
Weight Decay 0.0
LoRA Rank 64
LoRA Alpha 16
LoRA Dropout 0.0
Gradient Checkpointing True
Warmup Ratio 0.03
Learning Rate Scheduler Type constant

C QUANTIZATION AND DEQUANTIZATION.

C.1 GROUP-WISE QUANTIZATION

Quantization can be implemented at various levels of granularity, commonly categorized into per-
tensor, per-channel, and group quantization. In the most coarse-grained scenario, per-tensor quan-
tization, the entire weight matrix WFP16 utilizes a single quantization step size (s) and zero point
(z). This section will first introduce per-tensor quantization and dequantization, followed by an
explication of the distinctions between group quantization and per-tensor quantization.
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To elucidate this concept, we will examine the application of a standard min-max quantization
method. Consider a model with weights in FP16 format (denoted as W FP16), which we aim to
quantize to N bits. The quantization process is governed by the following formulation. For consis-
tency, we will uniformly denote floating-point numbers with the superscript FP16.

W Int = clamp

(
⌊W

FP16 − zFP16

sFP16 ⌉, 0, 2N − 1

)
,

zFP16 = W FP16
min ,

sFP16 =
W FP16

max −W FP16
min

2N − 1
.

(11)

Here, ⌊·⌉ denotes the rounding operation, N represents the target bit number, sFP16 is the quantiza-
tion step size, and zFP16 serves as the offset or zero point. The function clamp(z, r1, r2) constrains
the value of z within the range defined by r1 and r2, effectively bounding it by returning r1 if z is
less than r1, and r2 if z exceeds r2.

This quantization procedure involves storing the values of W Int, zFP16, and sFP16. To revert to the
floating-point representation W FP16 during inference, we employ the corresponding dequantization
process:

W̃ FP16 = W IntsFP16 + zFP16, (12)

where W̃ FP16 serves as an approximation of the original weight matrix W FP16. This approximation
facilitates the restoration of floating-point values from their quantized integer form, enabling the use
of lightweight models in high-precision tasks.

C.2 ZERO-POINT COMPRESSION IN PTQ

Recent advancements in Post-Training Quantization (PTQ) have focused on optimizing memory ef-
ficiency for Large Language Model (LLM) inference, which is primarily memory-bounded. Weight-
only quantization methods accelerate computation by reducing memory access, and many widely-
used PTQ methods have introduced innovative approaches to handle zero points. These methods
either compress zero points to integers (as seen in OmniQuant (Shao et al., 2023), AffineQuant (Ma
et al., 2024) or eliminate them entirely (as demonstrated in SmoothQuant (Xiao et al., 2023) and
AWQ (Lin et al., 2023)). This trend is further reinforced by acceleration libraries like Marlin, which
specifically do not support floating-point zero points.

The quantization procedure for methods employing integer zero points typically follows:

W Int = clamp
(

round
(
W FP16

sFP16 − zInt
)
, 0, 2N − 1

)
,

zInt = round
(
W FP16

min

sFP16

)
,

sFP16 =
W FP16

max −W FP16
min

2N − 1
.

(13)

The corresponding dequantization process is described as follows:
W̃ FP16 = (W Int − zInt)sFP16 (14)

In this quantization framework, both WFP16 and WInt matrices are dimensioned as Dout × Din.
The quantization parameters vary in structure depending on the granularity level: for per-tensor
quantization, sFP16 and zInt are scalars, while for per-channel or group quantization, they become
vectors or matrices. In group quantization, parameters within each row are divided into groups of
fixed size, with each group sharing a single s and z. This results in quantization parameters S and
Z with dimensions Dout × Din

groupsize , following the same format as equation 3.

D ANALYSIS OF LORA MAGNITUDE WITH QBAS

We conducted a statistical analysis of LoRA magnitudes with and without QBAS on LLaMA-7B
(4-bit) fine-tuned on the Flan v2 dataset. Our analysis reveals that QBAS effectively regulates the
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Figure 4: Distribution of LoRA magnitude across layers without QBAS. Experiments conducted on
4-bit quantized LLaMA-7B fine-tuned on Flan v2 dataset.

influence of Wint on the scale-related LoRA parameters. Specifically, QBAS helps maintain rea-
sonable magnitudes of LoRA updates across different layers.

As shown in Figure 4 and 5 , the analysis reveals that without QBAS, the LoRA magnitudes tend
to be excessively large with high inter-layer variance. QBAS significantly reduces both the abso-
lute magnitude and the layer-wise variance of LoRA updates, leading to more controlled parameter
adjustments during the learning process.

Figure 5: Distribution of LoRA magnitude across layers with QBAS. Experiments conducted on
4-bit quantized LLaMA-7B fine-tuned on Flan v2 dataset.

E DEFINITION OF THE COLUMN DUPLICATION OPERATOR

Assume we have a matrix V ∈ Rm×n, where V = [v1,v2, . . . ,vn], and each vi ∈ Rm represents
a column vector. We want to define an operator f that repeats each column vector vi exactly r times
along the second dimension.

The resulting matrix, denoted by f(V, r), will then have dimensions m×(nr) and can be expressed
as:

f(V, r) = [v1, . . . ,v1︸ ︷︷ ︸
r times

,v2, . . . ,v2︸ ︷︷ ︸
r times

, . . . ,vn, . . . ,vn︸ ︷︷ ︸
r times

]
(15)

F ADDITIONAL EXPERIMENTS ON OPT-6.7B

To validate the effectiveness of LoQA beyond the LLaMA family, we conduct experiments on OPT-
6.7B using the Flan v2 dataset. The results demonstrate that LoQA significantly outperforms QA-
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Figure 6: Distribution of LoRA magnitude across layers without QBAS. Experiments conducted on
3-bit quantized LLaMA-7B fine-tuned on Flan v2 dataset.

Figure 7: Distribution of LoRA magnitude across layers with QBAS. Experiments conducted on
3-bit quantized LLaMA-7B fine-tuned on Flan v2 dataset.

Figure 8: Distribution of LoRA magnitude across layers without QBAS. Experiments conducted on
2-bit quantized LLaMA-7B fine-tuned on Flan v2 dataset.

LoRA on the MMLU benchmark with 5-shot prompting, achieving 33.8% accuracy compared to
QA-LoRA’s 29.8%.

G TRAINING SPEED TEST SETTINGS

We evaluated the time and memory consumption of LoQA and QA-LoRA, both implemented with
PyTorch backend, under identical environmental conditions and hardware configurations. We per-
formed measurements of both time and memory usage on the Flan v2 dataset, ensuring consistent
machine and environmental conditions for all experiments. In our notation, LoQA-S represents the
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Figure 9: Distribution of LoRA magnitude across layers with QBAS. Experiments conducted on
2-bit quantized LLaMA-7B fine-tuned on Flan v2 dataset.

Table 10: Accuracy (%) comparison on MMLU 5-shot benchmark using OPT-6.7B. All methods
are trained on Flan v2 dataset.

Method #Bit Humanities STEM Social Sciences Other Avg.
OPT 6.7B 16 - - - - 24.6
QA-LoRA 4 27.2 30.3 33.3 30.1 29.8
LoQA 4 29.4 31.2 40.1 36.6 33.8

scenario where only the quantization parameter is adjusted. And appendix provides the detailed
experimental setup for the training speed tests. The experiments were conducted to compare the
training efficiency of the LLaMA-7B model at different quantization levels (bit precision) on the
Flan v2 dataset. The settings are as follows:

• Model: LLaMA-7B

• Dataset: Flan v2 dataset with a total of 320k examples.

• Quantization Bits: Various bit precisions (e.g., 4-bit, 3-bit, 2-bit) were evaluated to ob-
serve their impact on training speed.

• Hardware: Eight NVIDIA RTX 3090 GPUs were used for all experiments.

• Framework: PyTorch was used as the backend for model training and computation.

• Environment: The experiments were conducted in the same environment as QA-LoRA to
ensure fair comparisons. The setup included the same data preprocessing pipeline, opti-
mizer, and learning rate scheduler as used in QA-LoRA.

The training speed was measured by recording the average number of training steps per second for
each quantization level. This comparison highlights the trade-offs between computational efficiency
and precision during model training.

H INFERENCE SPEED TEST SETTINGS

This appendix provides detailed information about the settings used for the inference speed tests
described in the main text. The results in Table 12 were obtained using the following setup:

• Framework: Marlin (Frantar et al., 2024)

• Hardware: NVIDIA A100 GPU

• Batch size: 16

• Group size: 128

• Quantization: Zero Point quantization was applied.
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Table 11: Comparison of Training Time and Memory Usage across Different Models

llama-7B-w4a16g32 LoQA LoQA-S QA-LoRA
Training Time (h) 21 17 16
Memory (GB) 12.0 11.6 10.8

llama-7B-w3a16g32 LoQA LoQA-S QA-LoRA
Training Time (h) 26 23 21
Memory (GB) 12.0 11.6 10.8

llama-7B-w2a16g32 LoQA LoQA-S QA-LoRA
Training Time (h) 21 18 16
Memory (GB) 10.3 10.0 9.4

The speedup values in the table demonstrate the benefits of Marlin’s optimizations and the efficiency
of Zero Point quantization for large language model inference on high-performance GPUs.

Table 12: Performance comparison of models in terms of TFLOP/s and speedup. The speedup
results were obtained using Marlin on an NVIDIA A100 GPU.

Model TFLOP/s Speedup
Llama7B 63.788 2.71
Llama13B 76.907 3.31
Llama33B 87.907 3.50
Llama65B 92.807 3.61
Falcon180B 104.5 3.81
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