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Abstract

The manifold hypothesis states that low-dimensional manifold structure exists in high-
dimensional data, which is strongly supported by the success of deep learning in processing
such data. However, we argue here that the manifold hypothesis is incomplete, as it does not
allow any variation in the intrinsic dimensionality of different sub-regions of the data space.
We thus posit the union of manifold hypothesis, which states that high-dimensional data
of interest comes from a union of disjoint manifolds; this allows intrinsic dimensionality to
vary. We empirically verify this hypothesis on image datasets using a standard estimator of
intrinsic dimensionality, and also demonstrate an improvement in classification performance
derived from this hypothesis. We hope our work will encourage the community to further
explore the benefits of considering the union of manifolds structure in data.

1. Introduction

The manifold hypothesis (Bengio et al., 2013) states that high-dimensional data of interest
often lives in an unknown lower-dimensional manifold embedded in ambient space. Recently,
there has been increased interest both in confirming this hypothesis and understating its
role in deep learning. Pope et al. (2021) conduct a comprehensive study estimating the in-
trinsic dimension of commonly-used image datasets, unambiguously finding low-dimensional
structure, and linking this structure to the performance of classifiers. Ansuini et al. (2019)
conduct a similar study linking the estimated intrinsic dimension of deep-learning-based
representations to classification accuracy. The implications of the manifold hypothesis in
deep learning are not limited to the supervised setting, extending to unsupervised tasks
such as clustering (Elhamifar and Vidal, 2011, 2012, 2013; Abdolali and Gillis, 2021) and
generative modelling (Dai and Wipf, 2019; Brehmer and Cranmer, 2020; Arbel et al., 2021;
Kothari et al., 2021; Caterini et al., 2021; Ross and Cresswell, 2021; Loaiza-Ganem et al.,
2022; Ross et al., 2022). Understanding the symmetries and invariances present in data and
deep learning models is a fundamental problem (Bronstein et al., 2021), and studying the
nature of the low-dimensional structure present in data is directly related.

However, thinking of observed data as lying on a single unknown low-dimensional man-
ifold is quite limiting, as this immediately implies that the intrinsic dimension throughout
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the dataset is constant. If we consider the intrinsic dimensionality to be the number of
factors of variation generating the data, we can see that this formulation prevents distinct
regions of the data’s support from having differing factors of variation. Yet this seems to
be unrealistic: for example, we should not expect the number of factors needed to describe
8s and 1s in the MNIST dataset (LeCun et al., 1998) to be equal. In other words, while
a good first approximation, we should not expect the manifold hypothesis to fully explain
the low-dimensional structure commonly found in data. To accommodate this intuition, we
propose the union of manifolds hypothesis.

We posit that high-dimensional data often lies not on a single manifold, but on a dis-
joint union of manifolds of different intrinsic dimensions. Note that the disjoint union of
d-dimensional manifolds is itself a d-dimensional manifold: the possibility of having differ-
ent intrinsic dimensions differentiates the union of manifolds hypothesis from the manifold
hypothesis. We empirically verify the union of manifolds hypothesis and relate it to classi-
fication accuracy.

2. Background and Related Work

In order to verify the union of manifolds hypothesis, we rely on estimators of intrinsic
dimension. These estimators assume that the support of the data generating distribution
is a d-dimensional manifold – where d < D, and D is the dimension of the ambient space,
RD – and return an estimate of d based on observed data {xi}ni=1. In their empirical study
of intrinsic dimension of commonly-used datasets, Pope et al. (2021) use the Levina and
Bickel (2004) estimator with the MacKay and Ghahramani (2005) extension, given by

d̂k :=

 1

n(k − 1)

n∑
i=1

k−1∑
j=1

log
Tk(xi)

Tj(xi)

−1

, (1)

where Tj(x) is the Euclidean distance from x to its jth-nearest neighbour in {xi}ni=1 \ {x},
and k is a hyperparameter specifying the number of nearest neighbours to consider (this
hyperparameter can be intuitively understood as the scale at which the manifold is probed).
While other estimators have been recently proposed (Block et al., 2021; Lim et al., 2021;
Tempczyk et al., 2022), we stick with (1) throughout this work as it is well-established in
the literature.

We also point out that while the union of manifolds hypothesis has been mentioned
before (Elhamifar and Vidal, 2011, 2012, 2013; Abdolali and Gillis, 2021; Cunningham
et al., 2022), to the best of our knowledge an empirical verification of it analogous to the
one of Pope et al. (2021) (with the manifold hypothesis) has not been carried out before.

3. The Union of Manifolds Hypothesis

3.1. The Hypothesis

In this section we state the union of manifolds hypothesis, which is the main conceptual
contribution of this work:
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Figure 1: Boxplots showing variability of intrinsic dimension estimates across classes. Each
boxplot shows the distribution (minimum, lower quartile, median, upper quartile,
and maximum) over the estimated intrinsic dimension of classes in the given
dataset (x-axis) for the specified k-value (color).

Hypothesis: The support of the data-generating distribution can be written
as

⊔L
ℓ=1Mℓ ⊂ RD, where ⊔ denotes disjoint union, and each Mℓ is a connected

manifold of dimension d(ℓ).

Assuming all d(ℓ) are identical recovers the standard manifold hypothesis.

3.2. Verifying the Hypothesis

In this section we show that commonly-used image datasets are better described by the
union of manifolds hypothesis than just the manifold hypothesis. In order to achieve this,
we first attempt to identify the connected components Mℓ of the data, and then obtain
estimates d̂

(ℓ)
k of the intrinsic dimension of each connected component through (1) for each

ℓ = 1, . . . , L. Observing varying estimates across different ℓs would strongly support the
union of manifolds hypothesis, whereas observing similar estimates would support the man-
ifold hypothesis.

Most image datasets are accompanied by class labels. We argue that class labels are
a natural proxy for identifying the connected components Mℓ, as one can easily conceive
of continuously deforming any natural image from a given class into another image from
the same class without any intermediate image not belonging to the class. For example, on
MNIST we can likely continuously transform any 9 into any other 9 without leaving the
manifold of 9s, whereas attempting to similarly transform a 9 into a 3 would likely result
in intermediate images that are neither 9s nor 3s.
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Figure 2: Class intrinsic dimension versus test accuracy on CIFAR-100, along with a least-
squares regression line. Correlation coefficients for each model are −0.243±0.015,
−0.269±0.012, and −0.274±0.007, respectively (means and standard errors over
5 runs). Corresponding p-values, 0.008± 0.002, 0.019± 0.008, and 0.006± 0.001,
show the relationship is significant.

Figure 1 shows, for different values of the hyperparameter k, boxplots of the values d̂
(ℓ)
k

for class labels ℓ = 1, . . . , L in our considered datasets: MNIST, FMNIST (Xiao et al.,
2017), SVHN (Netzer et al., 2011), CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and
ImageNet (Russakovsky et al., 2015). Two relevant patterns emerge. First, within each
dataset, results are consistent across different choices of k, so that any conclusions we draw
are not caused by a specific choice of this hyperparameter. ImageNet is a partial exception
to this consistency across k, likely since it has fewer datapoints per class, which can result
in (1) underestimating the true intrinsic dimension (Pope et al., 2021). While CIFAR-100
also has fewer datapoints per class than other datasets, consistency across k suggests this is
less of a concern in this case. Second, for all datasets except SVHN, we can observe a wide
range of estimated intrinsic dimensions. We show more granular estimates in Appendix A,
with further choices of k and the intrinsic dimensions of individual classes. These results
empirically verify that the union of manifolds hypothesis is more appropriate for images
than the manifold hypothesis. For completeness, we also include estimates when using the
full dataset in Figure 1, although we point out that these estimates should not be expected
to match the average of class-specific estimates, as is clear by inspecting (1).

3.3. Intrinsic Dimension and Classification Accuracy

We now study how the union of manifold hypothesis relates to the performance of classifiers.
We train 3 classifiers on CIFAR-100: a VGG-19 (Simonyan and Zisserman, 2015), a ResNet-
18, and a ResNet-34 (He et al., 2016). We focused on CIFAR-100 here as the other datasets
considered in this work were either too simple to classify (MNIST, FMNIST, SVHN, CIFAR-
10), or produced less-reliable intrinsic dimension estimates (ImageNet). For each class, we
compute its classification accuracy and plot this against its estimated intrinsic dimension
in Figure 2. We can see that, consistently across classifiers, there is an inverse relationship
between estimated intrinsic dimension and classification accuracy. We also compute the
correlation between these two quantities for a quantitative comparison, and compute a p-
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Table 1: Means and standard errors of ResNet-18 accuracy on CIFAR-100 across 5 runs.

Weights Test accuracy

Standard 61.38% ± 0.0017%
Proportional to intrinsic dimension 61.77% ± 0.0020%

value for independence with a t-test: we find that the negative correlation is significant. In
other words, the higher the intrinsic dimension of a class, the harder it is to classify.

In order to check if this insight can help improve classifiers, we train the ResNet-18 in
two different ways: in the first, we use the standard cross entropy loss, and in the second,
we weight the terms corresponding to each class in the cross entropy loss in a manner
proportional to their intrinsic dimension. The idea behind this reweighting of the loss is
simply to focus more on classes of higher intrinsic dimension, as we have just shown these
are harder to classify. We do not perform commonly-used data augmentation schemes
so as to not change the intrinsic dimension of the data. Results are shown in Table 1,
where we can see that this very simple change to the cross entropy loss marginally (but
significantly, as error bars do not overlap) improves the accuracy of the network, providing
an essentially “free” improvement, given the low computational overhead of estimating
intrinsic dimension.

4. Conclusions

In this work, we have proposed and empirically verified the union of manifolds hypothesis.
We also established that classes of higher intrinsic dimension are harder to classify, which
lead us to suggest a re-weighted cross entropy loss which slightly improves classification
accuracy. We hope our work will encourage the broader deep learning community to further
unlock the potential of the union of manifolds hypothesis for both understanding natural
data and discovering empirical improvements.
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Appendix A. Verifying the union of manifolds hypothesis

We show a more granular breakdown of Figure 1, with intrinsic dimension estimate values
for each class in Figure 3 for MNIST, Figure 4 for FMNIST, Figure 5 for SVHN, and Figure
6 for CIFAR-10. Since CIFAR-100 and ImageNet have too many classes to show, we only
include the top 5 highest and lowest intrinsic dimension classes in Figure 7 for CIFAR-100,
and Figure 8 for ImageNet.
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Figure 3: Intrinsic dimension estimates for classes in the MNIST dataset.

Figure 4: Intrinsic dimension estimates for classes in the FMINST dataset.
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Figure 5: Intrinsic dimension estimates for classes in the SVHN dataset.

Figure 6: Intrinsic dimension estimates for classes in the CIFAR-10 dataset.
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Figure 7: Intrinsic dimension estimates for classes in the CIFAR-100 dataset.

Figure 8: Intrinsic dimension estimates for classes in the ImageNet dataset.
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