
Out of the Ordinary:
Spectrally Adapting Regression for Covariate Shift

Benjamin Eyre 1 2 Elliot Creager 1 2 David Madras 3 Vardan Papyan 1 2 Richard Zemel 4

Abstract
Designing deep neural network classifiers that
perform robustly on distributions differing from
the available training data is an active area of
machine learning research. However, out-of-
distribution generalization for regression—the
analogous problem for modeling continuous
targets—remains relatively unexplored. To tackle
this problem, we return to first principles and
analyze how the closed-form solution for Ordi-
nary Least Squares (OLS) regression is sensitive
to covariate shift. We characterize the out-of-
distribution risk of the OLS model in terms of
the eigenspectrum decomposition of the source
and target data. We then use this insight to pro-
pose a method for adapting the weights of the
last layer of a pre-trained neural regression model
to perform better on input data originating from
a different distribution. We demonstrate how
this lightweight spectral adaptation procedure can
improve out-of-distribution performance for syn-
thetic and real-world datasets.

1. Introduction
Despite their groundbreaking benchmark performance on
many tasks—from image recognition and natural language
understanding to disease detection (Balagopalan et al., 2020;
Krizhevsky et al., 2017; Devlin et al., 2018)—deep neural
networks (DNNs) tend to underperform when confronted
with data that is dissimilar to their training data (Geirhos
et al., 2020; D’Amour et al., 2020; Arjovsky et al., 2019;
Koh et al., 2021). Understanding and addressing distribution
shift is critical for the real-world deployment of machine
learning (ML) systems. For instance, DeGrave et al. (2021)
demonstrated that models trained to detect COVID-19 from

1University of Toronto 2Vector Institute 3Google Research
4Columbia University. Correspondence to: Benjamin Eyre <ben-
jamin.eyre@mail.utoronto.ca>.

Published at the ICML 2023 Workshop on Spurious Correlations,
Invariance, and Stability. Honolulu, Hawaii, USA. Copyright 2023
by the author(s).

chest X-Rays performed worse when evaluated on data gath-
ered from hospitals that were not represented in the training
distribution. Unfortunately, poor out-of-distribution (OOD)
generalization remains a key obstacle to broadly deploying
ML models in a safe and reliable way. We provide further
discussion of work related to this problem in Section 4.

While work towards remedying these OOD performance
issues has been focused on classification, predicting con-
tinuous targets under distribution shift has received less
attention. In this paper, we present a lightweight method for
updating the weights of a pre-trained regression model (typ-
ically a neural network, in which case only the final layer is
updated). This method is motivated by a theoretical analysis
that yields a concrete reason for why regressors may fail
under covariate shift, a specific form of distribution shift
where the relationship between the sample and the label is
the same both in and out of distribution (Sugiyama et al.,
2007; Gretton et al., 2009; Ruan et al., 2021). We take on
a transductive learning setting for domain adaptation, and
by assuming access to unlabelled evaluation data (Sun et al.,
2020; Bau et al., 2020; Shocher et al., 2018) we are able to
improve the performance of regression models in a synthetic
experiment and three real-world datasets.

2. Robust Regression by Spectral Adaptation
Least-squares regression has a known closed-form solution
that minimizes the training loss, and yet this solution is not
robust to covariate shift. In this section we show why this
is the case by characterizing the OOD risk in terms of the
eigenspectrum of the source and (distribution-shifted) target
data. We then use insights from our theoretical analysis
to derive a practical post-processing algorithm that uses
unlabeled target data to adapt the weights of a regressor pre-
viously pre-trained on labeled source data. The adaptation
is done in the spectral domain by first identifying subspaces
of the target and source data that are misaligned, then pro-
jecting out the pre-trained regressor’s components along
these subspaces. We call our method Spectral Adapted
Regressor (SpAR).

Out of the Ordinary

Figure 1. Ordinary Least Squares Regression under Covariate Shift. (a) Points are 2D input samples in the training set X and test
set Z. The in-distribution (ID) training data demonstrates nearly zero vertical variance, while the out-of-distribution (OOD) test data
varies significantly in this direction. (b) Samples in Z colored according to their true, noiseless labels Zw∗. (c) Samples in Z colored
according to their OLS predictions Zŵ. Crucially, to minimize training risk, OLS learns to weigh the vertical component highly causing
erroneous predictions OOD. (e) SpAR identifies a spectral subspace S where train/test variance differ the most, and projects it out. Thus,
the regressor created by SpAR ignores the direction with high variance and nearly recovers w∗.

2.1. Analyzing OLS Regression Under Covariate Shift

We begin with the standard Ordinary Least Squares (OLS)
data generating process (Murphy, 2022). Rows of the input
data matrix, X ∈ RN×D, are i.i.d. samples from an un-
known distribution P over RD; these can be any representa-
tion, including one learned by a DNN from training samples.
The rows of the evaluation input data, Z ∈ RM×D, are gen-
erated using a different distribution Q over RD. Analyzing
final layer representations is useful as DNN architectures
typically apply linear models to these to make predictions.
Targets depend on X and w∗, a labelling vector in RD, and
a noise term ϵ. The targets associated with the test data Z
use the same true labelling vector w∗ but do not include a
noise term as it introduces irreducible error:

X ∼ PN , YX = Xw∗ + ϵ, ϵ ∼ N (0, σ2I), (1)

Z ∼ QM , YZ = Zw∗.

The estimated regressor ŵ that minimizes the expected
squared error loss has the following form (Murphy, 2022),
using X†, the Moore-Penrose Pseudoinverse of X , and its
singular value decomposition, X† = VXD†

XU⊤
X :

argmin
w
E[∥YX−Xw∥22] = ŵ = X†YX = VXD†

XU⊤
XYX .

(2)

We refer to ŵ as the “OLS regressor” or “pseudoinverse so-
lution”. We will analyze the expected loss of ŵ under covari-

ate shift, which is the squared error between the true labels
YZ and the values predicted by our estimator ŵ. Specifically,
we will analyze the expression:

RiskOLS−OOD(ŵ) = E[∥YZ − Zŵ∥22]. (3)

In addition to using the singular value decomposition X =
UXSXV ⊤

X , we can also use the singular value decomposi-
tion of the target data Z = UZSZV

⊤
Z . We define λx,i, λz,i

to be the ith singular values of X and Z, respectively, and
ex,i, ez,i their corresponding unit-length right singular vec-
tors. We will also refer to λ2

x,i, λ
2
z,i and ex,i, ez,i as eigenval-

ues/eigenvectors, as they comprise the eigenspectrum of the
matrices X⊤X and Z⊤Z. We represent the set containing
the rows of a matrix with the operator Rows(). The OOD
risk of ŵ is presented in the following theorem in terms of
interaction between the eigenspectra of X and Z:
Theorem 2.1. Assuming the data generative procedure de-
fined in Equations 1, and that w∗ ∈ Span(Rows(X)) and
Rows(Z) ⊂ Span(Rows(X)), the OOD squared error loss
of the estimator ŵ = X†Y is equal to:

E[∥YZ−Zŵ∥22] = σ2
D∑
i=1

D∑
j=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0].

(4)

This theorem indicates that if the samples in Z present a
large amount of variance along the vector ez,j , resulting in

Out of the Ordinary

a large eigenvalue λ2
z,j , but the training set X displays very

little variance along vectors at very similar angles, ŵ will
incur high loss. We refer to this scenario, when an eigen-
vector demonstrates this spike in variance at test time, as
Spectral Inflation. An illustration of Spectral Inflation and
its consequences are depicted in Figure 1, and we present
evidence of Spectral Inflation occurring in DNN represen-
tations in a real-world dataset in Section J. The analysis
follows from the cyclic property of the trace operator, which
allows us to isolate the noise term ϵ. This, in turn, enables a
decomposition of the remaining expression in terms of the
two eigenspectra of Z⊤Z and X⊤X . A full derivation of
this decomposition is available in Appendix D.

2.2. Spectral Adaptation Through Projection

We now focus on identifying the eigenvectors occupying
the rows of V ⊤

Z that contribute significantly to the expected
loss described in Equation 4, and use them to construct a
subset S ⊆ Rows(V ⊤

Z). We then use S to construct a new
regressor wproj, by projecting ŵ onto the subspace spanned
by the eigenvectors in Sc, the complement of S:

wproj = ŵ −
∑
e∈S

⟨ŵ, e⟩e. (5)

This regressor is not influenced by the Spectral Inflation
displayed along each eigenvector in S, as wproj exists in a
subspace orthogonal to the subspace spanned by the vec-
tors in S. Specifically, we can decompose the loss for this
estimator wproj into a sum over each of the eigenvectors
in Rows(V ⊤

Z), where the contribution of the eigenvector
ez,j to the loss is determined by whether that eigenvector is
included in the set S. The following theorem expresses the
expected OOD loss of wproj:

Theorem 2.2. Taking on the same assumptions as The-
orem 2.1, the regressor wproj constructed using a set
S ⊆ Rows(V ⊤

Z) as defined in Equation 5, has the following
expected OOD squared error loss:

E[∥YZ − Zwproj∥22] =
∑

j,ez,j∈S

⟨w∗, ez,j⟩2λ2
z,i.︸ ︷︷ ︸

Biasz,j

(6)

+
∑

j,ez,j∈Sc

σ2
D∑
i=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0]︸ ︷︷ ︸
Varz,j

Similar to the proof of Theorem 2.1, this theorem’s proof
uses the cyclic property of the trace to isolate the noise term.
We then use the fact that each ez,j ∈ S is an eigenvector
of Z⊤Z to further decompose the expression (Appendix
Section E). This motivates our definition of the two different
loss terms a single eigenvector ez,j can contribute to the

Algorithm 1 Spectral Adapted Regressor (SpAR)
Require: Training Data X,YX , Unlabeled Test Data Z,

Rejection Confidence α
ŵ ← X†YX

UX , DX , V ⊤
X ← SVD(X)

UZ , DZ , V
⊤
Z ← SVD(Z)

σ̂2 ← MLE(X,YX)

S ← {} {Initialize the set S as empty}
for ez,j ∈ Rows(V ⊤

Z), λz,j ∈ Diagonal(DZ) do

Varz,j ← σ̂2
∑D

i=1

λ2
z,j

λ2
x,i
⟨ex,i, ez,j⟩21[λx,i > 0]

Biasz,j ← ⟨ŵ, ez,j⟩2λ2
z,j

if (CDF−1
χ2 (α)×Varz,j) ≥ Biasz,j then

S ← S ∪ {ezj} {Include this vector in S}
end if

end for
wproj ← ŵ −

∑
e∈S⟨ŵ, e⟩e

return wproj

overall expected loss. For a given eigenvector ez,j with
associated eigenvalue λ2

z,j , we will incur its variance loss
if ez,j ̸∈ S, and its bias loss if ez,j ∈ S, where the variance
loss Varz,j and bias loss Biasz,j are defined as:

Biasz,j = ⟨w∗, ez,j⟩2λ2
z,j , (7)

Varz,j = σ2
∑D

i=1

λ2
z,j

λ2
x,i
⟨ex,i, ez,j⟩21[λx,i > 0]

Varz,j is closely tied with the Spectral Inflation of an eigen-
vector, as Varz,j will be large if ez,j demonstrates Spectral
Inflation at test time. In this case if ez,j ̸∈ S, wproj will have
higher loss as a consequence of the label noise on the train-
ing examples distributed along this eigenvector. However,
Biasz,j is determined by the cosine similarity between the
true labelling regressor w∗ and ez,j . High cosine similarity
means that this eigenvector makes a large contribution to
determining a sample’s label. If ez,j ∈ S and ez,j has a
large cosine similarity to w∗, wproj will incur a high amount
of loss as it is orthogonal to this important direction.

A regressor that is orthogonal to each eigenvector ez,j such
that Varz,j is greater than Biasz,j could only perform better
out of distribution than ŵ (Theorem B.1). However, we can
not calculate Biasz,j directly, and so we must estimate it
using ŵ and use a probabilistic procedure based on the dis-
tribution of these estimates to determine which eigenvectors
are displaying Spectral Inflation (Sections B,C). Creating
wproj in this way yields SpAR, a regressor tailored for a
specific covariate shift; see Algorithm 1 for pseudocode. In
SpAR, we estimate the variance of the training label noise,
σ2, using a maximum likelihood estimate of this parame-
ter (Murphy, 2022) from the training data.

Out of the Ordinary

Figure 2. Spectral Inflation. We use the PovertyMap-WILDS dataset (Koh et al., 2021) to investigate how input spectra change when a
regressor trained on real-world data generalizes to (perhaps shifted) test data. X and Z are composed of representations from a DNN. Z
represents data either from an in-distribution or out-of-distribution test set. Varz,j , as defined in Equation 7, measures the amount of
Spectral Inflation—small amounts of training set variation becoming large at test time—occurring along a given test eigenvector. Because
each test sample has a different number of examples M , we normalize for a fair comparison. We see that when Z is an out-of-distribution
sample, much more spectral inflation occurs than when we generalize to an in-distribution sample.

3. Experiments
In this section, we apply SpAR to a suite of real-world
datasets to demonstrate its efficacy. Throughout this section,
we use models that are optimized using gradient-based pro-
cedures. This contrasts with the main target of our analysis,
the OLS solution (Equation 2), as ŵ is not found using an
iterative procedure. Despite these differences, our analysis
remains relevant as the optimality conditions of minimizing
the squared error loss on the training data mean that gradient
descent will converge to the OLS solution. We also provide
a proof-of-concept synthetic experiment in Appendix K.

3.1. Tabular Datasets

To test the efficacy of SpAR on real-world distribution
shifts, we first experiment with two tabular datasets. Com-
munitiesAndCrime provides a task where crime rates per
capita must be predicted for different communities across
the United States, with some states held out of the train-
ing data and used to form an OOD test set (Redmond and
Baveja, 2009; Yao et al., 2022). Skillcraft defines a task
where one predicts the latency, in milliseconds, between
professional video game players perceiving an action and
making their own action (Blair et al., 2013). An OOD test
set is created by stratifying players based on skill.

For these experiments, we train neural networks with one
hidden layer in the style of Yao et al. (2022). We benchmark
two methods: the first is standard training (ERM), in which
both the encoder and the regressor are trained in tandem
to minimize the training objective using a gradient-based
optimizer, in this case ADAM (Kingma and Ba, 2014). The

Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 6.273 ± 0.384 8.933 ± 1.338
ERM + OLS 6.884 ± 0.860 11.156 ± 3.892
ERM + SpAR (Ours) 6.049 ± 0.379 8.317 ± 1.327
CMixup 6.319 ± 0.450 8.713 ± 1.106
CMixup + OLS 7.070 ± 0.898 11.747 ± 3.450
CMixup + SpAR (Ours) 6.038 ± 0.705 8.343 ± 1.563

Table 1. SkillCraft. OOD RMSE averaged across 10 seeds.

other method we benchmark is C-Mixup (Yao et al., 2022),
a data augmentation technique that generalizes the Mixup
algorithm (Zhang et al., 2017) to a regression setting. For
this method, the encoder and regressor are optimized using
ADAM to minimize the error on both the original samples
and the synthetic examples produced by C-Mixup.

We use the hyperparameters reported in the appendix of Yao
et al. (2022) when training both ERM and C-Mixup. After
training, we apply SpAR to create a new regressor using the
representations produced by the ERM model (ERM-SpAR)
or C-Mixup model (C-Mixup-SpAR). We use a fixed hy-
perparameter selection of α = 0.999 when applying SpAR.
These new regressors replace the learned regression weight
in the last layer. We similarly benchmark the performance
of the Pseudoinverse solution by replacing the last layer
weight with ŵ (ERM/C-Mixup + OLS). Results on each of
the tabular datasets can be found in Tables 1 and 2.

As demonstrated in Tables 2 and 1, SpAR always produces
a model with competitive or superior Average and Worst
Group RMSE, regardless of the base model that it is ap-
plied to. This also demonstrates that SpAR can be used in
tandem with other techniques such as C-Mixup to further
improve performance. Furthermore, we experiment with

Out of the Ordinary

Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 0.134 ± 0.006 0.166 ± 0.014
ERM + OLS 0.142 ± 0.004 0.175 ± 0.012
ERM + SpAR (Ours) 0.133 ± 0.002 0.163 ± 0.009
CMixup 0.131 ± 0.005 0.162 ± 0.016
CMixup + OLS 0.140 ± 0.003 0.175 ± 0.010
CMixup + SpAR (Ours) 0.133 ± 0.002 0.161 ± 0.004

Table 2. CommunitiesAndCrime. OOD RMSE (avg. 10 seeds).

Method rall(↑) rwg(↑)
ERM 0.793 ± 0.040 0.497 ± 0.099
ERM + SpAR (Ours) 0.794 ± 0.046 0.512 ± 0.092
CMixup 0.784 ± 0.045 0.489 ± 0.045
CMixup + SpAR (Ours) 0.794 ± 0.043 0.515 ± 0.091

Table 3. PovertyMap-WILDS. Average OOD all-group and worst-
group Spearman r across 5 splits.

models obtained by tuning the hyperparameters for both
ERM and C-Mixup in Appendix N. We find that with no
additional tuning for SpAR specifically, SpAR yields a
model with the best worst-group performance amongst any
of the models presented in this work.

3.2. PovertyMap - WILDS

We next examine the robustness of DNNs under realistic
distribution shifts in a high-dimensional setting. We use the
PovertyMap-WILDS dataset (Koh et al., 2021), where the
task is to regress local satellite images onto a continuous
target representing an asset wealth index for the region.
Figure 2 demonstrates that DNNs attempting to generalize
OOD on this dataset suffer from Spectral Inflation.

Once again, for ERM and C-Mixup we use the hyperparam-
eters suggested by Yao et al. (2022) and for SpAR we use
α = 0.999. Results are presented in Table 3.

We can observe from Table 3 that applying SpAR can signifi-
cantly improve worst-group performance while maintaining
competitive average performance. We further tune the hy-
perparameters for both the ERM and C-Mixup baselines in
Appendix N. With no tuning of SpAR specifically, it is
able to enhance the tuned baseline and yield worst-group
performance superior to any model presented in this work.

4. Related Work
Improving OOD distribution is a critical and dynamic area
of research. Our approach follows in the tradition of Trans-
ductive Learning (Gammerman et al., 1998) (adapting a
model using unlabelled test data) and unsupervised Domain
Adaptation (Ben-David et al., 2006; Farahani et al., 2021)
(using distributional assumptions to model train/test differ-
ences, then adapting using unlabeled test inputs). Regular-
izing statistical moments between P and Q during training
is a popular approach in unsupervised DA (Gretton et al.,
2009) that has also been realized using deep neural net-

works (Ganin et al., 2016; Sun et al., 2016). When trans-
ductive reasoning (adaptation to a test distribution) is not
possible, additional structure in P—such as auxiliary la-
bels indicating the “domain” or “group” that each training
example belongs to—may be exploited to promote OOD
generalization. Noteworthy approaches include Domain
Generalization (Arjovsky et al., 2019; Gulrajani and Lopez-
Paz, 2020) and Distributionally Robust Optimization (Hu
et al., 2018; Sagawa et al., 2019; Levy et al., 2020). Ad-
ditionally, Kirichenko et al. (2022) leverage an additional
dataset containing balanced groups in order to train a new,
robust classification head, similar to how SpAR creates a
new regressor while leaving the encoder unchanged.

Data augmentation is another promising avenue for improv-
ing OOD generalization (Hendrycks and Dietterich, 2019;
Ovadia et al., 2019) that artificially increases the number
and diversity of training set samples. The recently proposed
C-Mixup method is particularly relevant (Yao et al., 2022)
because of its focus on regression under covariate shift.
The authors generalize the Mixup algorithm (Zhang et al.,
2017) to a regression setting by upweighting the convex
combination of training examples whose target values are
similar. We emphasize that this pre-processing approach
complements our post-processing adaptation approach; in
our experiments we find that applying SpAR to a C-Mixup
model often yields the best results.

In this work we investigate covariate shift in a regression
setting by analyzing how the distribution shift affects eigen-
spectra of the source/target data. We are not the first to study
this problem, nor the first to use spectral properties in this
investigation. Pathak et al. (2022) propose a new similar-
ity measure between P and Q that can be used to bound
the performance of non-parameteric regression methods un-
der covariate shift. Wu et al. (2022) analyzes the sample
efficiency of linear regression in terms of an eigendecom-
position of the second moment matrix of individual data
points drawn from P and Q. Our work differs from these in
that we go beyond an OOD theoretical analysis to propose
a practical post-processing algorithm, which we find to be
effective on real-world datasets.

5. Conclusion
Our analysis shows that the Ordinary Least Squares
solution—which minimizes the training risk—can fail dra-
matically when subject to covariate-shift due a phenomenon
we call Spectral Inflation. Our new method, SpAR, combats
Spectral Inflation and leads to improved OOD performance
on several synthetic and real-world datasets.

Out of the Ordinary

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Aparna Balagopalan, Jekaterina Novikova, Matthew BA
Mcdermott, Bret Nestor, Tristan Naumann, and Marzyeh
Ghassemi. Cross-language aphasia detection using opti-
mal transport domain adaptation. In Machine Learning
for Health Workshop, pages 202–219. PMLR, 2020.

Michelle Bao, Angela Zhou, Samantha Zottola, Brian
Brubach, Sarah Desmarais, Aaron Horowitz, Kristian
Lum, and Suresh Venkatasubramanian. It’s compasli-
cated: The messy relationship between rai datasets
and algorithmic fairness benchmarks. arXiv preprint
arXiv:2106.05498, 2021.

David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff,
Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. Se-
mantic photo manipulation with a generative image prior.
arXiv preprint arXiv:2005.07727, 2020.

Shai Ben-David, John Blitzer, Koby Crammer, and Fer-
nando Pereira. Analysis of representations for domain
adaptation. Advances in neural information processing
systems, 19, 2006.

Mark Blair, Joe Thompson, Andrew Henrey, and Bill Chen.
Skillcraft1 master table dataset. UCI Machine Learning
Repository, 2013.

Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben
Adlam, Babak Alipanahi, Alex Beutel, Christina Chen,
Jonathan Deaton, Jacob Eisenstein, Matthew D Hoff-
man, et al. Underspecification presents challenges for
credibility in modern machine learning. arXiv preprint
arXiv:2011.03395, 2020.

Alex J DeGrave, Joseph D Janizek, and Su-In Lee. Ai
for radiographic covid-19 detection selects shortcuts over
signal. Nature Machine Intelligence, 3(7):610–619, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Frances Ding, Moritz Hardt, John Miller, and Ludwig
Schmidt. Retiring adult: New datasets for fair machine
learning. Advances in neural information processing
systems, 34:6478–6490, 2021.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and
Hamid R Arabnia. A brief review of domain adaptation.
Advances in Data Science and Information Engineering:
Proceedings from ICDATA 2020 and IKE 2020, pages
877–894, 2021.

A Gammerman, V Vapnik, and VI Vovk. Learning by
transduction. 1998.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. The journal of machine
learning research, 17(1):2096–2030, 2016.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard Zemel, Wieland Brendel, Matthias Bethge, and
Felix A Wichmann. Shortcut learning in deep neural
networks. Nature Machine Intelligence, 2(11):665–673,
2020.

Tom Ginsberg, Zhongyuan Liang, and Rahul G Krishnan.
A learning based hypothesis test for harmful covariate
shift. In NeurIPS 2022 Workshop on Distribution Shifts:
Connecting Methods and Applications, 2022.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmit-
tfull, Karsten Borgwardt, and Bernhard Schölkopf. Co-
variate shift by kernel mean matching. Dataset shift in
machine learning, 3(4):5, 2009.

Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking
neural network robustness to common corruptions and
perturbations. In International Conference on Learning
Representations, 2019.

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama.
Does distributionally robust supervised learning give ro-
bust classifiers? In International Conference on Machine
Learning, pages 2029–2037. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wil-
son. Last layer re-training is sufficient for robustness to
spurious correlations. arXiv preprint arXiv:2204.02937,
2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, et al. Wilds: A benchmark of in-the-wild dis-
tribution shifts. In International Conference on Machine
Learning, pages 5637–5664. PMLR, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90,
2017.

Out of the Ordinary

Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sid-
ford. Large-scale methods for distributionally robust op-
timization. Advances in Neural Information Processing
Systems, 33:8847–8860, 2020.

Kevin P Murphy. Probabilistic machine learning: an intro-
duction. MIT press, 2022.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, Sebas-
tian Nowozin, Joshua Dillon, Balaji Lakshminarayanan,
and Jasper Snoek. Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset
shift. Advances in neural information processing systems,
32, 2019.

Reese Pathak, Cong Ma, and Martin Wainwright. A new
similarity measure for covariate shift with applications to
nonparametric regression. In International Conference on
Machine Learning, pages 17517–17530. PMLR, 2022.

Michael Redmond and A Baveja. Communities and crime
data set. UCI Machine Learning Repository, 2009.

Yangjun Ruan, Yann Dubois, and Chris J Maddison. Op-
timal representations for covariate shift. arXiv preprint
arXiv:2201.00057, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto,
and Percy Liang. Distributionally robust neural net-
works for group shifts: On the importance of regular-
ization for worst-case generalization. arXiv preprint
arXiv:1911.08731, 2019.

Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-
shot” super-resolution using deep internal learning. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3118–3126, 2018.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert
Müller. Covariate shift adaptation by importance
weighted cross validation. Journal of Machine Learn-
ing Research, 8(5), 2007.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation
alignment for unsupervised domain adaptation. arXiv
preprint arXiv:1612.01939, 2016.

Yin Sun and Árpád Baricz. Inequalities for the generalized
marcum q-function. Applied Mathematics and Computa-
tion, 203(1):134–141, 2008.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts.
In International conference on machine learning, pages
9229–9248. PMLR, 2020.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan
Gu, and Sham Kakade. The power and limitation of
pretraining-finetuning for linear regression under covari-
ate shift. Advances in Neural Information Processing
Systems, 35:33041–33053, 2022.

Huaxiu Yao, Yiping Wang, Linjun Zhang, James Y Zou,
and Chelsea Finn. C-mixup: Improving generalization in
regression. Advances in Neural Information Processing
Systems, 35:3361–3376, 2022.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk mini-
mization. arXiv preprint arXiv:1710.09412, 2017.

Out of the Ordinary

A. OLS and the Pseudoinverse
Classical statistics (Murphy, 2022) tells us that when X is full rank, the ŵ minimizing this expression—known as the OLS
regressor—has the following form:

ŵOLS = (X⊤X)−1X⊤YX (8)

Of course, if X is not full rank, the product X⊤X cannot be inverted. In this case, the minimum norm solution can be
constructed using the singular value decomposition of X. Specifically, X can be decomposed as X = UXDXV ⊤

X . We can
then construct the pseudoinverse of X by using UX , VX , and the matrix D† which is given by taking the transpose of D, and
replacing the diagonal singular value elements with their reciprocal. In the case that the singular value is zero, the value of
zero is used instead. The pseudoinverse is then constructed as X† = VXD†

XU⊤
X . Using these components, the minimum

norm solution in the case of a degenerate X matrix is given by the following expression:

ŵ = X†YX = VXD†
XU⊤

XYX (9)

B. Projection Reduces Out-of-Distribution Loss
Thus far, we have presented a decomposition for the expected loss of an estimator that is equal to the pseudoinverse solution
ŵ projected into the ortho-complement of the span of the set S ⊆ Rows(V ⊤

Z). In this subsection, we present a means for
constructing the set S to minimize the expected loss by comparing Varz,j and Biasz,j for each test eigenvector ez,j .

The ideal set S∗ ⊆ Rows(V ⊤
Z) would consist solely of the eigenvectors ez,j that have a greater variance loss than bias loss.

Formally, this set would be constructed using the following expression:

S∗ =
{
ez,j : ez,j ∈ Rows(V ⊤

Z),Varz,j ≥ Biasz,j
}
. (10)

The following theorem demonstrates that using the set S∗ would give us a regressor that achieves superior OOD performance
than the pseudoinverse solution.

Theorem B.1. Under the same assumptions as Theorem 2.1, the regressor wproj constructed as in Equation 5 using the set
S∗ (cf. Equation 10) can only improve on the OOD squared error loss of the pseudoinverse solution ŵ:

E[∥YZ − Zŵ∥22] ≥ E[∥YZ − Zwproj∥22]. (11)

C. Eigenvector Selection Under Uncertainty
Theorem B.1 shows that a regressor based on the set S∗ works better OOD. Finding S∗ would be easy if we knew both
Varz,j and Biasz,j for each test eigenvector ez,j . While we can calculate Varz,j directly, Biasz,j requires the true weight
vector w∗, and so we can only estimate it using the pseudoinverse solution ŵ:‘Biasz,j = ⟨ŵ, ez,j⟩2λ2

z,j = (w∗T ez,j + ϵ⊤X†⊤ez,j)
2λ2

z,j . (12)

We fortunately have knowledge of some of the distributional properties of the dot product being squared: ⟨ŵ, ez,j⟩. In
particular, w∗⊤ez,j is a fixed but unknown scalar and ϵ⊤X†⊤ez,j is the linear combination of several i.i.d. Gaussian
variables with zero mean and variance σ2.

ϵ⊤X†⊤ez,jλz,j ∼ N (0,Varz,j), (13)

⟨ŵ, ez,j⟩λz,j ∼ N (
√
Biasz,j ,Varz,j).

Out of the Ordinary

The fact that ‘Biasz,j is a random variable makes it difficult to directly compare it with Varz,j . However, we can analyze the
behavior of ‘Biasz,j when Biasz,j is much larger than Varz,j , and vice versa, in order to devise a method for comparing
these two quantities.

(Case 1): Biasz,j ≫ Varz,j

In this case, Biasz,j ≈‘Biasz,j . This is because w∗⊤ez,j will be much greater than ϵ⊤X†⊤ez,j , which causes the
former term to dominate in the RHS of Equation 12. Therefore ‘Biasz,j ≫ Varz,j .

(Case 2): Varz,j ≫ Biasz,j

In this case, ‘Biasz,j ≈ (ϵ⊤X†⊤ez,j)
2λ2

z,j . This is because w∗⊤ez,j will be much smaller than ϵ⊤X†⊤ez,j , which
causes the latter term to dominate in the RHS of Equation 12.

Therefore, since Equation 13 indicates (ϵ⊤X†⊤ez,j)λz,j is a scalar Gaussian random variable, we know the distribution
of its square: ‘Biasz,j ∼ Varz,j × χ2

df=1, (14)

where χ2
df=1 is a chi-squared random variable with one degree of freedom. If CDF−1

χ2
df=1

is the inverse CDF of the
chi-squared random variable, then we have:

Pr(‘Biasz,j ≤ CDF−1
χ2
df=1

(α)×Varz,j) = α. (15)

By applying these two cases, we can construct our set S as follows:

S =
{
ez,j : ‘Biasz,j ≤ CDF−1

χ2
df=1

(α)×Varz,j

}
. (16)

The intuition behind this case-by-case analysis is formalized with the following proposition and lemma:

Proposition C.1. Making the same assumptions as Theorem 2.1, for a given choice of α ∈ [0, 1], the probability that test
eigenvector ez,j is included in our set S as defined in 16:

Pr(ez,j ∈ S) = 1−Q 1
2

Ç
Biasz,j
Varz,j

,
√

CDF−1
χ2
df=1

(α)

å
, (17)

where Q 1
2

is the Marcum Q-function with M = 1
2 .

Lemma C.2. Using the same assumptions as Proposition C.1:

Pr(ez,j ∈ S)

Biasz,j
Varz,j

→∞
−−−−−−−→ 0, Pr(ez,j ∈ S)

Biasz,j
Varz,j

→0

−−−−−−→ α. (18)

Lemma C.2 tells us that if we would incur significantly higher OOD loss from including ez,j in our set S than excluding it,
then this vector will not be included in S. Similarly, if we would incur significantly higher OOD loss from excluding ez,j in
our set S than including it, then this vector will be included in S.

Creating wproj in this way yields SpAR, a regressor tailored for a specific covariate shift; see Algorithm 1 for pseudocode.
The only quantity still needed to perform this procedure is the variance of the training label noise, σ2. We use a maximum
likelihood estimate of this parameter (Murphy, 2022) from the training data.

D. Derivation of Loss of OLS Under Covariate Shift
We are interested in the following expression for the OOD risk of the OLS regressor:

RiskOOD(ŵ) = E[∥YZ − Zŵ∥22] = E[∥Zw∗ − ZX†Y ∥22] (19)

Out of the Ordinary

= E[∥Zw∗ − ZX†(Xw∗ + ϵ)∥22].

If we assume that w∗ exists within the span of the rows of X, then X†X acts as an identity on w∗, giving us:

= E[∥ZX†ϵ∥22] (20)

The euclidean norm is ∥x∥2 =
√
x⊤x, so we can rephrase this expression as a scalar dot product. Scalars can be seen as

1× 1 matrices, and are therefore equal to their trace. Therefore we can express this dot product as a trace in order to later
use the cyclic property of the trace operator:

= E[ϵ⊤X†⊤Z⊤ZX†ϵ] = E[tr(ϵ⊤X†⊤Z⊤ZX†ϵ)] (21)

We can cycle the trace and apply the properties of the trace of the product of two N ×N matrices:

= E[tr(ϵϵ⊤X+TZ⊤ZX†)] = E[
N∑
i=1

N∑
j=1

(ϵϵ⊤)i,j(X
+TZ⊤ZX†)i,j] (22)

Since each entry of ϵ is independent from the other entries, and these entries follow the normal distribution N (0, σ2), by
applying the linearity of expectation we know that every term in this sum such that i ̸= j will be equal to zero, giving us:

=

N∑
i=1

N∑
j=1

E[(ϵϵ⊤)i,j](X
+TZ⊤ZX†)i,j (23)

=

N∑
i=1

σ2(X+TZ⊤ZX†)i,i = σ2tr(X+TZ⊤ZX†)

We will use the singular value decompositions of these two matrices to simplify the expression further after cycling the trace:

= σ2tr(Z⊤ZX†X+T) (24)

= σ2tr(VZD
⊤
ZU

⊤
Z UZDZV

⊤
Z VXD†

XU⊤
XUXD†⊤

X V ⊤
X)

= σ2tr(VZD
2
ZV

⊤
Z VXD†2

X V ⊤
X) = σ2tr(D†2

X V ⊤
X VZD

2
ZV

⊤
Z VX) (25)

where D2
Z , D

†2
X are D ×D diagonal matrices with diagonal values equal to the diagonal values of DZ and D†

X squared,
respectively. The ith diagonal entry of the matrix V ⊤

X VZD
2
ZV

⊤
Z VX is:

[
diag(V ⊤

X VZD
2
ZV

⊤
Z VX)

]
i
=

D∑
j=1

λ2
z,j⟨ex,i, ez,j⟩2 (26)

Meaning that the entire expression will be equal to the value described:

RiskOOD(ŵ) = σ2
D∑
i=1

D∑
j=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0]. (27)

Out of the Ordinary

E. Derivation of Bias-Variance Decomposition
SpAR produces a regressor of the following form:

wproj = ŵ −
∑
e∈S

⟨ŵ, e⟩e (28)

Where we are projecting out a set of eignevectors S from the pseudoinverse solution ŵ. We can substitute this into our
expression for the OOD risk of a regressor to arrive at a bias-variance decomposition.

RiskOOD(wproj) = E[∥Zw∗ − Z(ŵ −
∑

ez,j∈S

⟨ŵ, ez,j⟩ez,j)∥22] (29)

= E[∥ − ZVXD†
XU⊤

X ϵ+ Z
∑

ez,j∈S

(ϵ⊤X†⊤ez,j + w∗⊤ez,j)ez,j∥22] (30)

= E[∥ − ZVXD†
XU⊤

X ϵ+ Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j∥22] (31)

We can further simplify this expression by using the fact that the eigenvectors in Rows(V ⊤
Z) form an orthonormal basis,

and so the sum of their outer products forms an identity matrix. Formally,
∑D

j=1 ez,je
⊤
z,j = I . Using this on the leftmost

term in the sum, we have:

= E[∥ − Z

D∑
j=1

ez,je
⊤
z,jVXD†

XU⊤
X ϵ+ Z

∑
ez,j∈S

⟨w∗, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j∥22] (32)

= E[∥ − Z

D∑
j=1

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j∥22] (33)

We can use the fact that S ∪ Sc form an orthogonal basis, where Sc is the complement set of eigenvectors. We are also
assuming that we are only projecting out vectors from the Z right singular vector basis. This gives us:

E[∥ − Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j∥22] = E[∥V −B∥22] (34)

The euclidean norm ∥x∥2 =
√
x⊤x, and so we can consider the sum of products V ⊤V − 2V ⊤B +B⊤B. If we take the

expectation over the error term ϵ, which has mean 0, we are left with only V ⊤V +B⊤B.

V ⊤V is the error term we are already familiar with (Theorem 2.1), restricted to the eigenvectors that weren’t projected out:

V ⊤V = (Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j)⊤Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j (35)

= (
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j)⊤Z⊤Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j (36)

We note that each vector ez,j ∈ Sc is an eigenvector of Z⊤Z with eigenvalue λ2
z,j .

=
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩e⊤z,j
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩λ2
z,jez,j (37)

=
∑

e′z,j∈Sc

∑
ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, e′z,j⟩⟨VXD†
XU⊤

X ϵ, ez,j⟩λ2
z,je

′⊤
z,jez,j (38)

Out of the Ordinary

Since Sc is a subset of an orthonormal basis, we know that e′⊤z,jez,j = 1 iff e′z,j = ez,j . Otherwise, e′⊤z,jez,j = 0.

=
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩2λ2
z,j =

∑
ez,j∈Sc

ϵ⊤X†⊤ez,je
T
z,jX

†ϵλ2
z,j (39)

In the expected loss, the expectation operator is applied to this expression, giving:

E[V ⊤V] = E[
∑

ez,j∈Sc

ϵ⊤X†⊤ez,je
T
z,jX

†ϵλ2
z,j] (40)

We can use the properties of the trace to isolate the label noise, as in Appendix D:

=
∑

ez,j∈Sc

σ2tr(e⊤z,jX
†X†⊤ez,j)λ

2
z,j (41)

We can analyze the inner product of the vector X†⊤ez,j = UXD†⊤
X V ⊤

X ez,j with itself:

e⊤z,jX
†X†⊤ez,j =

d∑
i=1

d∑
k=1

1

λx,i
⟨ez,j , ex,i⟩

1

λx,k
⟨ez,j , ex,k⟩u⊤

x,iux,k1[λx,i > 0]1[λx,k > 0] (42)

Where ux,i is the ith column of UX , i.e. the ith left singular vector of X . These left singular vectors also create an
orthonormal basis, and so u⊤

x,iux,k = 1 iff ux,i = ux,k. Otherwise, u⊤
x,iux,k = 0. This ultimately gives us:

E[V ⊤V] = σ2
D∑
i=1

∑
j,ez,j∈Sc

λz,j

λx,i
⟨ex,i, ez,j⟩21[λx,i > 0] (43)

We can use similar reasoning to show that bias term B⊤B is a simple expression relying on the true weight vector:

E[BTB] = BTB (44)

=
∑

ez,j∈S

⟨w∗, ez,j⟩e⊤z,jZ⊤Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j =
∑

j,ez,j∈S

⟨w∗, ez,j⟩2λ2
z,i (45)

Therefore, we have the following expression for the expected loss:

E[∥Zw∗ − Z(ŵ −
∑

ez,j∈S

⟨ŵ, ez,j⟩ez,j)∥22] = E[V ⊤V] + E[B⊤B] (46)

= σ2
D∑
i=1

∑
j,ez,j∈Sc

λz,j

λx,i
⟨ex,i, ez,j⟩21[λx,i > 0] +

∑
j,ez,j∈S

⟨w∗, ez,j⟩2λ2
z,j (47)

F. Appendix: Proof of Theorem B.1
In this section, we provide the proof of Theorem B.1.

To start, we note that if Sϕ = {}, then the projected regressor created with this set is the pseudoinverse solution ŵ:

wprojSϕ
= ŵ −

∑
e∈Sϕ

⟨ŵ, e⟩e = ŵ. (48)

Out of the Ordinary

Therefore, by Theorem 2.2, we know that the loss of this regressor will consist entirely of the variance terms associated with
the eigenvectors. This is essentially a recovery of Theorem 2.1:

E[∥YZ − Zŵ∥22] =
D∑

j=1

σ2
D∑
i=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0] =

D∑
j=1

Varz,j . (49)

We now compare this with the loss of the regressor created using the set S∗, which is:

w∗
proj = ŵ −

∑
e∈S∗

⟨ŵ, e⟩e (50)

Again invoking Theorem 2.2, the expected loss of this estimator is:

E[∥YZ − Zw∗
proj∥22] =

∑
ez,j∈S∗c

σ2
D∑
i=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0] +
∑

ez,j∈S∗

⟨w∗, ez,j⟩2λ2
z,i (51)

=
∑

ez,j∈S∗c

Varz,j +
∑

ez,j∈S∗

Biasz,j (52)

We can now compare the two expected losses:

E[∥YZ − Zŵ∥22]− E[∥YZ − Zw∗
proj∥22] =

∑
ez,j∈S∗

Varz,j − Biasz,j (53)

From the definition of S∗, we know that for all ez,j ∈ S∗,Varz,j ≥ Biasz,j . Therefore, for all ez,j ∈ S∗,Varz,j−Biasz,j ≥
0, and the sum of these terms will be greater than zero as well. This gives us:

E[∥YZ − Zŵ∥22]− E[∥YZ − Zw∗
proj∥22] ≥ 0 =⇒ E[∥YZ − Zŵ∥22] ≥ E[∥YZ − Zw∗

proj∥22] (54)

G. Distribution of ‘Bias
In Section C we make statements about the distribution of ‘Bias. In this section, we further explain our reasoning for these
claims. ‘Biasz,j = ⟨ŵ, ez,j⟩2λ2

z,j = (w∗T ez,j + ϵ⊤X†⊤ez,j)
2λ2

z,j . (55)

We know that ϵ is a Gaussian vector with zero mean and spherical covariance. Therefore, ϵ⊤X†⊤ez,jλz,j would also have
zero mean. For its covariance, we need only to multiply this expression by itself to recognize the expression from previous
derivations:

E[e⊤z,jX
†ϵϵ⊤X†⊤ez,jλ

2
z,j] (56)

This expression is seen in the derivation of Theorem 2.2, where we show it is equal to Varz,j . Therefore, the variance
of ϵ⊤X†⊤ez,jλz,j is Varz,j . With this in mind, we can rewrite this expression as a scaling of a standard normal random
variable:

ϵ⊤X†⊤ez,jλz,j =
√

Varz,jβ, β ∼ N (0, 1) (57)

With this in mind, we can also easily describe the distribution of ⟨ŵ, ez,j⟩λz,j :

Out of the Ordinary

⟨ŵ, ez,j⟩λz,j = w∗T ez,jλz,j + ϵ⊤X†⊤ez,jλz,j (58)

Which is a Gaussian random variable plus a constant, which shifts the mean of the Gaussian. This gives us the two
distributions we list in Section C:

ϵ⊤X†⊤ez,jλz,j ∼ N (0,Varz,j), ⟨ŵ, ez,j⟩λz,j ∼ N (
√
Biasz,j ,Varz,j). (59)

We would next like to explain the claims made in Case 2 of Section C. Specifically, we make claims about the distribution of‘Biasz,j when ‘Biasz,j ≈ (ϵ⊤X†⊤ez,j)
2λ2

z,j :‘Biasz,j ≈ (ϵ⊤X†⊤ez,j)
2λ2

z,j = (
√
Varz,jβ)

2 = Varz,jβ
2 (60)

β ∼ N (0, 1), β2 ∼ χ2(df = 1) (61)

We therefore know in this case that ‘Biasz,j is the scaling of a chi-squared random variable. By properties of CDFs, we
know that Pr(Varz,jβ2 ≤ α) = Pr(β2 ≤ α

Varz,j
), and therefore we know that the inverse CDF of Varz,jβ2 will be

CDF−1
χ2
df=1

(α)×Varz,j .

H. Proof of Proposition 1

First, we will restructure ‘Biasz,j as the scaling of a non-central chi-squared random variable. From Equation 59, we know

the distribution of
»‘Biasz,j , which we can write in terms of a Gaussian random variable with non-zero mean:»‘Biasz,j = ⟨ŵ, ez,j⟩λz,j ∼ N (

√
Biasz,j ,Varz,j) (62)

=⇒
»‘Biasz,j = √

Varz,jδ, δ ∼ N (

√
Bias√
Varz,j

, 1) (63)

We therefore know that δ2 is distributed according to a non-central chi-squared distribution:‘Biasz,j = (
√
Varz,jδ)

2 = Varz,jδ
2, δ2 ∼ χ2

λ(df = 1, λ =
Biasz,j
Varz,j

). (64)

Furthermore, we know the CDF of this variable as Pr(Varz,jδ2 ≤ α) = Pr(δ2 ≤ α
Varz,j

).

We include an eigenvector ez,j in our set S if ‘Biasz,j ≤ CDF−1
χ2
df=1

(α)×Varz,j . The probability of this event occurring is

given by the CDF of ‘Biasz,j , which is the following:

Pr(‘Biasz,j ≤ CDF−1
χ2
df=1

(α)×Varz,j) = 1−Q 1
2
(

Biasz,j
Varz,j

,

√
Varz,j

√
CDF−1

χ2
df=1

(α)√
Varz,j

) (65)

= 1−Q 1
2
(

Biasz,j
Varz,j

,
√

CDF−1
χ2
df=1

(α)) (66)

Out of the Ordinary

I. Proof of Lemma C.2
Proposition C.1 gives us an expression for the probability that a given eigenvector is included in the set S. Lemma C.2
will use this proposition to demonstrate the tail behaviour of this expression. We will first note that since the expression in
Proposition C.1 is a CDF, it is continuous. Therefore, in order to find its limits at 0 and∞, we need only be able to evaluate
the expression at these values.

We will first show that:

Pr(ez,j ∈ S)

Biasz,j
Varz,j

→∞
−−−−−−−→ 0 (67)

This is a special value of the Marcum Q function (Sun and Baricz, 2008). Specifically, Q 1
2
(∞, b) = 1 for any b. Therefore:

Pr(ez,j ∈ S) = 1−Q 1
2
(∞,

√
CDF−1

χ2
df=1

(α)) = 1− 1 = 0 (68)

We will next show that:

Pr(ez,j ∈ S)

Biasz,j
Varz,j

→0

−−−−−−→ α (69)

This is another special value of the Marcum Q function (Sun and Baricz, 2008). Specifically:

Q 1
2
(0, b) =

Γ(12 ,
b2

2)

Γ(12)
(70)

For any b. Here, Γ with one argument is the gamma function and Γ with two arguments is the upper incomplete gamma
function. By properties of gamma functions, we know that if γ is the lower incomplete gamma function, then Γ(12 ,

b2

2) +

γ(12 ,
b2

2) = Γ(12). Using this property, and by letting b =
√
CDF−1

χ2
df=1

(α), we have the following:

Pr(ez,j ∈ S) = 1−Q 1
2
(0, b) =

Γ(12 ,
b2

2) + γ(12 ,
b2

2)

Γ(12)
−

Γ(12 ,
b2

2)

Γ(12)
(71)

=
γ(12 ,

b2

2)

Γ(12)
= CDFχ2

df=1
(CDF−1

χ2
df=1

(α)) = α (72)

Where we have used the observation that the leftmost expression in Equation 72 is the CDF for a chi-squared distribution
with one degree of freedom.

J. Spectral Inflation in Real World Datasets
In this work, we have focussed on a phenomenon we have called Spectral Inflation. Our method, SpAR, identifies
eigenvectors presenting Spectral Inflation and produces a regressor orthogonal to these directions. We present evidence of
Spectral Inflation occurring in DNN representations in a real-world dataset in Figure 2.

K. Synthetic Data
We establish a proof of concept by considering a synthetic data setting where we can carefully control the distribution
shift under study. Specifically, we apply our approach to two-dimensional Gaussian data following the data generative
process described in Section 2.1, with the exception that we add normally distributed noise to the test target labels

Out of the Ordinary

YZ = Zw∗ + ϵ, ϵ ∼ N (0, σ2I). Specifically, we sample our train and test data X and Z from origin-centered Gaussians
with covariance matrices ΣX ,ΣZ respectively:

ΣX =

ï
5 0
0 10−5

ò
, ΣZ =

ï
1 0
0 40

ò
.

We refer to the first and second indices of these vectors as the “horizontal” and “vertical” components and plot the vectors
accordingly. The test distribution will demonstrate a significantly greater amount of variance along the vertical component
in comparison to the training distribution. Furthermore, we experiment with three different true labelling vectors:

w∗
1 =

ï
0.01

0.9999995

ò
, w∗

2 =

ï
0.9999995

0.01

ò
, w∗

3 =

ñ
1√
5
2√
5

ô
.

The first two true labelling vectors are meant to represent functions that almost entirely depend on the vertical/horizontal
component of the samples, respectively. w∗

3 depends on both directions, though it depends slightly more on the vertical
component. This labelling vector is shown in Figure 1. For each of the three labelling vectors, we randomly sample Z,X
and ϵ 10 times and calculate the squared error for both the OLS/Pseudoinverse solution ŵ = X†YX (ERM) as well as wproj,
the regressor outputted by SpAR (ERM + SpAR). Results are included in Table 4.

Synthetic Data
Regression Method Experiment 1 (w∗

1) Experiment 2 (w∗
2) Experiment 3 (w∗

3)

ERM 2.54e6 ± 3.84e6 2.54e6 ± 3.84e6 2.54e6 ± 3.84e6
ERM + SpAR 1.63e6 ± 3.43e3 3.99e3±1.01e2 1.31e5 ± 2.74e3

Table 4. Mean and standard deviation of the squared error of our estimated regressors against various true labelling vectors. Each
experiment setting is a different true weight vector (see Section K).

We first note that ŵ is expected to have the same error regardless of the true labelling vector. Second, wproj outperforms ŵ
regardless of which true regressor is chosen. Our projection method is most effective when w∗

2 is being used to label the
examples. This is due to the fact that it relies mostly on the horizontal component of the examples, which has a similar
amount of variance at both train and test time. As a result, SpAR is able to project out the vertical component while retaining
the bulk of the true labelling vector’s information. An example showing why this projection method is useful when w∗

2 is
being used to label the examples is depicted in Figure 1. Here, ŵ significantly overestimates the influence of the vertical
component on the samples’ labels. SpAR is able to detect that it will not be able to effectively use the vertical component
due to the large increase in variance as we move from train to test, and so it projects that component out of ŵ. Consequently,
SpAR produces a labelling function nearly identical to the true labelling function.

L. Additional Training Details
For our experiments in Section 3, we adapt the code provided by Yao et al. (2022) in this Github repo: https://github.
com/huaxiuyao/C-Mixup. While training, we perform early stopping on a validation set evaluation metric. For
PovertyMap, this procedure is seen in the original work of Koh et al. (2021). We also use the hyperparameters provided in
the appendix of Yao et al. (2022)’s work, including the following learning rates and bandwidth parameters for C-Mixup:

Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 1e-3 1e-2 1e-3
Bandwidth 1.0 5e-4 0.5

Table 5. Hyperparameters used for training models responsible for the results in Section 3.

We additionally make the modification to train models without a bias term in the final linear layer. This is due to the fact that
SpAR assumes a regressor that does not use a bias.

https://github.com/huaxiuyao/C-Mixup
https://github.com/huaxiuyao/C-Mixup

Out of the Ordinary

Models are trained using Tesla T4 GPUs from NVIDIA. Tabular and synthetic experiments take less than 10 minutes to run
for a single seed and hyperparameter setting. PovertyMap experiments take roughly 3 hours to run when training ERM and
roughly 15 hours to run when training C-Mixup.

M. Hyperparameter Search
For hyperparameter tuning, we perform random search over the learning rate and the bandwidth used in C-Mixup. Specifi-
cally, we search over learning rates using the following formula for the learning rate lr and bandwidth bw:

lr = baselr ∗ 10u, u ∼ Unif(−1, 1) (73)

bw = basebw ∗ 10u, u ∼ Unif(−1, 1) (74)

where baselr and basebw are the values described in Table 5 for each dataset. We test out 10 randomly selected hyper-
parameter settings for both ERM and C-Mixup, and select the settings that yield the best validation performance. Those
hyperparameter settings selected for C-Mixup are presented in Table 6 and hyperparameter settings selected for ERM are
presented in Table 7.

Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 0.003630376073213171 0.023276939100527687 0.003630376073213171
Bandwidth 0.35090148857968506 0.0013316008334250096 0.17545074428984253

Table 6. Tuned hyperparameters used for training C-mixup models. 3.

Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 0.008246671732726021 0.023276939100527687 0.003630376073213171

Table 7. Tuned hyperparameters used for training ERM models.

N. Tuned Baselines
Using the hyperparameters presented in Tables 6 and 7 which were selected hyperparameter search process described in
Section M, we benchmark the performance of ERM and C-Mixup models across 10 seeds for the tabular datasets and the 5
data folds for PovertyMap. We report results for PovertyMap and the tabular datasets in Tables 9 and 8, respectively.

We find that SpAR can achieve superior worst group performance than any other method presented in either Tables 9 or 8,
or in Section 3. For C-Mixup on CommunitiesAndCrime, we see that tuning hyperparameters on the validation set yields
poorer performance (Table 8) than using the hyperparameters presented in Yao et al. (2022)’s work (Table 2). However, we
can see that a SpAR model is able to achieve the best worst-group RMSE of any model on this dataset, 0.161.

O. Limitations and Broader Impacts
SpAR is designed for covariate shift, and its ability to handle other types of distribution shift (such as concept shift) is not
known analytically. To be more specific, we assume that the targets have a the same linear relationship (via the ground truth
weight w∗) with inputs X and Z, and that X and Z are covariate-shifted. A subtle issue here is that when X and Z are
internal representations of some neural net, we require that the difference P and Q is captured in terms of a covariate shift in
the representation space, which may or may not correspond to a covariate shift in the original input space (which could be
some high-dimensional vector, e.g. pixels).

Empirically, however, we successfully apply SpAR to several real-world datasets without assurance that they exhibit only
covariate shift, and find promising results. The spectral inflation property that we observe in real data (Figure 2) may be
relevant to other distribution shifts as well, although this remains to be seen in future studies. Identifying covariate shift
within a datasets is an active area of work (Ginsberg et al., 2022) that complements our efforts in this paper.

Our research seeks to improve OOD generalization with the hopes of ensuring ML benefits are distributed more equitably
across social strata. However, it is worthwhile to be self-reflexive about the methodology we use when working towards this

Out of the Ordinary

SkillCraft
Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 5.917 ± 0.620 8.308 ± 1.915
ERM + OLS 6.548 ± 0.915 10.219 ± 3.123
ERM + SpAR (Ours) 6.083 ± 0.681 8.193 ± 1.212
CMixup 5.816 ± 0.558 8.371 ± 1.611
CMixup + OLS 6.535 ± 0.822 10.297 ± 2.362
CMixup + SpAR (Ours) 5.833 ± 0.580 7.922 ± 1.043

CommunitiesAndCrime
Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 0.133 ± 0.004 0.161 ± 0.010
ERM + OLS 0.149 ± 0.018 0.184 ± 0.032
ERM + SpAR (Ours) 0.134 ± 0.007 0.164 ± 0.013
CMixup 0.133 ± 0.003 0.171 ± 0.012
CMixup + OLS 0.144 ± 0.011 0.177 ± 0.019
CMixup + SpAR (Ours) 0.132 ± 0.004 0.164 ± 0.008

Table 8. Tabular data. OOD RMSE averaged across 10 seeds.

Method rall(↑) rwg(↑)
ERM 0.798 ± 0.052 0.518 ± 0.076
ERM + SpAR (Ours) 0.799 ± 0.045 0.522 ± 0.080
CMixup 0.806 ± 0.031 0.523 ± 0.083
CMixup + SpAR (Ours) 0.803 ± 0.038 0.528 ± 0.087

Table 9. PovertyMap-WILDS. Average OOD all-group and worst-group Spearman r across 5 splits.

goal. For example, for the purposes of comparing against existing methods from the literature, we use the Communities
and Crime dataset, where average crime rates are predicted based on statistics of neighborhoods, which could include
demographic information. This raises a potential fairness concern: even if we have an OOD-robust model, it may not be
fair if it uses demographic information in its predictions. While this is not the focus of our paper, we note that the research
community is in the process of reevaluating tabular datasets used for benchmarking (Ding et al., 2021; Bao et al., 2021).

