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Abstract

There has been significant progress in improving the performance of graph neural net-
works (GNNs) through enhancements in graph data, model architecture design, and training
strategies. For fairness in graphs, recent studies achieve fair representations and predictions
through either graph data pre-processing (e.g., node feature masking, and topology rewiring)
or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive
learning). How to achieve fairness in graphs from the model architecture perspective is less
explored. More importantly, GNNs exhibit worse fairness performance compared to multi-
layer perception since their model architecture (i.e., neighbor aggregation) amplifies biases.
To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message
Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP
explicitly rendering sensitive attribute usage in forward propagation for node classification
task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first
adopted to utilize neighbors’ information and then the bias mitigation step explicitly pushes
demographic group node presentation centers together. In this way, FMP scheme can aggre-
gate useful information from neighbors and mitigate bias to achieve better fairness and pre-
diction tradeoff performance. Experiments on node classification tasks demonstrate that the
proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-
world datasets. The code is available in https://anonymous.4open.science/r/FMP-AD84.

1 Introduction

Graph neural networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018; Wu et al., 2019; Han et al.,
2022a;b) are widely adopted in various domains, such as social media mining (Hamilton et al., 2017), knowl-
edge graph (Hamaguchi et al., 2017) and recommender system (Ying et al., 2018), due to remarkable per-
formance in learning representations. Graph learning, a topic with growing popularity, aims to learn node
representation containing both topological and attribute information in a given graph. Despite the out-
standing performance in various tasks, GNNs often inherit or even amplify societal bias from input graph
data (Dai & Wang, 2021). The biased node representation largely limits the application of GNNs in many
high-stake tasks, such as job hunting (Mehrabi et al., 2021) and crime ratio prediction (Suresh & Guttag,
2019). Hence, bias mitigation that facilitates the research on fair GNNs is in urgent need and we aim to
achieve fair prediction for GNNs.

Data, model architecture, and training strategy are the most popular aspects to improve deep learning
performance. For fairness in graphs, many existing works achieving fair prediction in graphs either rely on
graph pre-processing (e.g., node feature masking(Köse & Shen, 2021), and topology rewiring (Dong et al.,
2022)) or fair training strategies (e.g., regularization (Jiang et al., 2022), adversarial debiasing (Dai & Wang,
2021), or contrastive learning (Zhu et al., 2020; 2021b; Agarwal et al., 2021; Ling et al., 2023)). The GNNs
architecture perspective to improve fairness in graphs is less explored. More importantly, GNNs are notorious
in terms of fairness since GNN aggregation amplifies bias compared to multilayer perception (MLP) (Dai &
Wang, 2021). From the GNNs architecture perspective, message passing is a critical component to improve
fairness in graphs. Therefore, a natural question is raised:
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Can we achieve fairness via fair message passing using vanilla training loss 1 without graph pre-processing?

In this work, we provide a positive answer by designing a fair message-passing scheme guided by a unified
optimization framework 2 for GNNs. The key idea of achieving fair message passing is aggregation first and
then conducting bias mitigation via explicitly chasing consistent demographic group representation centers.
Specifically, we first formulate an optimization problem that integrates fairness and smoothness objectives for
graph data. Then, we solve the formulated problem via Fenchel conjugate and gradient descent to generate
fair and informative representations, where the property of softmax function is adopted to accelerate the
gradient calculation over primal variables. We also interpret the optimization problem solver as two main
steps (e.g., aggregation first and then debiasing). Finally, we integrate FMP in graph neural networks to
achieve fair and accurate prediction for node classification tasks. We demonstrate the superiority of FMP
by examining its effectiveness and efficiency on various real-world datasets.

In short, the contributions can be summarized as follows:

• We demonstrate proof-of-concept that a meticulously crafted GNN architecture can achieve fairness for
graph data. Our work offers a fresh outlook in comparison to conventional approaches that focus on
data pre-processing and fair training strategy design.

• We propose FMP to achieve fairness via explicitly incorporating sensitive attribute information in mes-
sage passing, guided by a unified optimization framework. Additionally, we introduce an acceleration
method based on softmax property to reduce gradient computational complexity.

• The effectiveness and efficiency of FMP are experimentally evaluated on three real-world datasets. The
results show that compared to the state-of-the-art, our FMP exhibits a comparable or superior trade-off
between prediction performance and fairness with negligibly computation overhead.

2 Preliminaries

2.1 Notations

We adopt bold upper-case letters to denote matrix such as X, bold lower-case letters such as x to denote
vectors, and calligraphic font such as X to denote sets. Given a matrix X ∈ Rn×d, the i-th row and j-th
column are denoted as Xi and X·,j , and the element in i-th row and j-th column is Xi,j . We use the
Frobenius norm, l1 norm of matrix X as ||X||F =

√∑
i,j X2

i,j and ||X||1 =
∑

ij |Xij |, respectively. Given
two matrices X, Y ∈ Rn×d, the inner product is defined as ⟨X, Y⟩ = tr(X⊤Y), where tr(·) is the trace
of a square matrix. SF (X) represents softmax function with a default normalized column dimension. Let
G = {V, E} be a graph with the node set V = {v1, · · · , vn} and the undirected edge set E = {e1, · · · , em},
where n, m represent the number of node and edge, respectively. The graph structure G can be represented
as an adjacent matrix A ∈ Rn×n, where Aij = 1 if existing edge between node vi and node vj . N (i) denotes
the neighbors of node vi and Ñ (i) = N (i) ∪ {vi} denotes the self-inclusive neighbors. Suppose that each
node is associated with a d-dimensional feature vector and a (binary) sensitive attribute, the feature for all
nodes and sensitive attribute is denoted as Xori = Rn×d and s ∈ {−1, 1}n 3. Define the sensitive attribute
incident vector as ∆s = 1>0(s)

||1>0(s)||1
− 1>0(−s)

||1>0(−s)||1
to normalize each sensitive attribute group, where 1>0(s) is

an element-wise indicator function.

2.2 GNNs as Graph Signal Denoising

A GNN model is usually composed of several stacking GNN layers. Given a graph G with N nodes,
a GNN layer typically contains feature transformation Xtrans = ftrans(Xori) and aggregation Xagg =
fagg(Xtrans|G), where Xori ∈ Rn×din , Xtrans, Xagg ∈ Rn×dout represent the input and output features. The

1The sensitive attributes are not adopted in vanilla training loss. We only consider node classification tasks and vanilla loss
is cross-entropy loss in this paper.

2Many aggregations in popular GNNs can be interpreted as gradient descent step for specific optimization problem with
specific step size and initialization (Ma et al., 2021b; Zhu et al., 2021b).

3The sensitive attribute s is not included in node features matrix Xori.
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feature transformation operation transforms the node feature dimension, and feature aggregation, updates
node features based on neighbors’ features and graph topology. Recent works (Ma et al., 2021b; Zhu et al.,
2021a) have established the connections between many feature aggregation operations AGG(·) in repre-
sentative GNNs and a graph signal denoising problem with Laplacian regularization. Here, we introduce
several popular GNN architectures, including GCN/SGC, GAT, and PPNP/APPNP, as examples to show
the connection from the perspective of graph signal denoising.

GCN/SGC. Feature aggregation in Graph Convolutional Network (GCN) or Simplifying Graph Convo-
lutional Network (SGC) is given by Xagg = ÃXtrans, where Ã = D̃− 1

2 ÂD̃− 1
2 is a normalized self-loop

adjacency matrix Â = A + I, and D̃ is degree matrix of Ã. Recent works (Ma et al., 2021b; Zhu et al.,
2021a) provably demonstrate that such feature aggregation can be interpreted as one-step gradient descent
to minimize tr(F⊤(

I − Ã)F
)

with initialization F = Xtrans.

GAT. Feature aggregation in GAT applies the normalized attention coefficient to compute a linear
combination of neighbor’s features as Xagg,i =

∑
j∈N (i) αijXtrans,j , where αij = softmaxj(eij), eij =

LeakyReLU(X⊤
trans,iwi + X⊤

trans,jwj), and wi and wj are learnable column vectors. Prior study Ma et al.
(2021b) demonstrates that one-step gradient descent with adaptive stepsize 1∑

j∈Ñ (i)
(ci+cj)

for the following

objective problem:

min
F

∑
i∈V

||Fi − Xtrans,i||2F + 1
2

∑
i∈V

ci

∑
j∈Ñ (i)

||Fi − Fj ||2F .

is actually an attention-based feature aggregation, which is equivalent to GAT if ci + cj is equivalent to eij ,
where ci is a node-dependent coefficient that measures the local smoothness.

PPNP / APPNP. Feature aggregation in PPNP and APPNP adopt the aggregation rules as Xagg =

α
(

I − (1 − α)Ã
)−1

Xtrans and Xk+1
agg = (1 − α)ÃXk

agg + αXtrans. It is shown that they are equivalent to the
exact solution and one gradient descent step with stepsize α

2 to minimize the following objective problem:

min
F

||F − Xtrans||2F + ( 1
α

− 1)tr
(

F⊤(I − Ã)F
)

.

3 Fair Message Passing

In this section, we propose a new fair message-passing scheme to aggregate useful information from neigh-
bors while debiasing representation bias. In this way, fair prediction can be achieved from a model backbone
perspective. Specifically, we formulate fair message passing as an optimization problem to pursue smooth-
ness and fair node representation simultaneously 4. Together with an effective and efficient optimization
algorithm, we derive the closed-form fair message passing. Finally, the proposed FMP is shown to be inte-
grated into fair GNNs at three stages, including transformation, aggregation, and debiasing step, as shown
in Figure 1. These three stages adopted node feature, graph topology, and sensitive attributes respectively.

3.1 The Optimization Framework

In previous work (Ma et al., 2021b), a general and universal framework is developed to understand aggre-
gation operations in GNNs. Building on top of this framework, we formulate an optimization problem to
achieve fair message passing operation (replace aggregation operations in GNNs). To achieve graph smooth-
ness prior and fairness in the same process, a reasonable message passing should be a good solution for the
following optimization problem:

min
F

λs

2 tr(FT L̃F) + 1
2 ||F − Xtrans||2F︸ ︷︷ ︸

hs(F)

+ λf ||∆sSF (F)||1︸ ︷︷ ︸
hf

(
∆sSF (F)

) . (1)

4Fair message passing is an alternative operation to replace GNNs aggregations.
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where L̃ represents normalized Laplacian matrix, hs(·) and hf (·) denotes the smoothness and fairness
objectives 5, respectively, and Xtrans ∈ Rn×dout is the transformed dout-dimensional node features and
F ∈ Rn×dout is the aggregated node features of the same matrix size. The first two terms preserve the simi-
larity of connected node representation and thus enforce graph smoothness. The last term enforces fair node
representation so that the average predicted probability between groups of different sensitive attributes can
remain constant. The regularization coefficients λs and λf adaptively control the trade-off between graph
smoothness and fairness.

Smoothness Objective hs(·). The adjacent matrix in existing graph message passing schemes is normal-
ized for improving numerical stability and achieving superior performance. Similarly, the graph smoothness
term requires normalized Laplacian matrix, i.e., L̃ = I − Ã, Ã = D̂− 1

2 ÂD̂− 1
2 , and Â = A + I. From an

edge-centric view, the smoothness objective enforces connected node representation to be similar since

tr(FT L̃F) =
∑

(vi,vj)∈E

|| Fi√
di + 1

− Fj√
dj + 1

||2F , (2)

where di =
∑

k Aik represents the degree of node vi.

Fairness Objective hf (·). The fairness objective measures the bias for node representation after aggre-
gation. Recall sensitive attribute incident vector ∆s indicates the sensitive attribute group and group size
via the sign and absolute value summation. Recall that the sensitive attribute incident vector as

∆s = 1>0(s)
||1>0(s)||1

− 1>0(−s)
||1>0(−s)||1

, (3)

and SF (F) represents the predicted probability for node classification task, where SF (F)ij = P̂ (yi = j|X).
Furthermore, we can show that our fairness objective is actually equivalent to demographic parity, i.e.,(

∆sSF (F)
))

j
= P̂ (yi = j|si = 1, X) − P̂ (yi = j|si = −1, X). Please see proof in Appendix B. In other

words, our fairness objective, l1 norm of ∆sSF (F) characterizes the predicted probability difference between
two groups with different sensitive attributes. Therefore, our proposed optimization framework can pursue
graph smoothness and fairness simultaneously.

3.2 Optimization Problem Solver

For smoothness objective, many existing popular message passing schemes can be derived based on gradient
descent with appropriate step size choice (Ma et al., 2021b; Zhu et al., 2021a). In this paper, we consider
smoothness objective hs(F) and fairness objective hf (∆SF (F)) simultaneously for chasing fair and accurate
prediction. However, directly solving the optimization problem (1) is much more challenging due to the
nonsmoothness of the fairness objective, and the non-separability of smoothness objective hs(F) and fairness
objective hf (∆SF (F)) due to incident vector ∆s.

3.2.1 Bi-level Optimization Problem Formulation.

In the literature, many optimization algorithms are developed for optimization problems with l1 norm, such
as Alternating Direction Method of Multipliers (ADMM) and Newton type algorithms (Ghadimi et al.,
2014; Varma et al., 2019). However, these algorithms require non-trivial sub-problem solving for each
iteration. Therefore, computation complexity is high and is infeasible to integrate deep learning models.
Fortunately, Fenchel conjugate (a.k.a. convex conjugate) (Rockafellar, 2015) can transform the original
problem as an equivalent saddle point problem using a primal-dual algorithm (Liu et al., 2021). In this way,
the computation complexity can be reduced and compatible with back-propagation training. Similarly, to
solve optimization problem 1 in a more effective and efficient manner, Fenchel conjugate (Rockafellar, 2015)

5Such smoothness objective is the most common-used one in existing methods (Ma et al., 2021b; Belkin & Niyogi, 2001;
Kalofolias, 2016). The various other smoothness objectives could be considered to improve the performance of FMP and we
leave it for future work.
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is introduced to transform the original problem into a bi-level optimization problem. For the general convex
function h(·), its conjugate function is defined as h∗(U) △= sup

X
⟨U, X⟩ − h(X). Based on Fenchel conjugate,

the fairness objective can be transformed as variational representation hf (p) = sup
u

⟨p, u⟩ − h∗
f (u), where

p = ∆sSF (F) ∈ R1×dout is a predicted probability vector for classification. Furthermore, the original
optimization problem is equivalent to

min
F

max
u

hs(F) + ⟨p, u⟩ − h∗
f (u) (4)

where u ∈ R1×dout and h∗
f (·) is the conjugate function of fairness objective hf (·).

3.2.2 Problem Solution

Motivated by Proximal Alternating Predictor-Corrector (PAPC) (Loris & Verhoeven, 2011; Chen et al.,
2013), the min-max optimization problem (4) can be solved by the following fixed-point equations with per
iteration low computation complexity and convergence guarantee{

F = F − ∇hs(F) − ∂⟨p,u⟩
∂F ,

u = proxh∗
f

(
u + ∆sSF (F)

)
.

(5)

where proxh∗
f
(u) = arg min

y
||y − u||2F + h∗

f (y). Fortunately, the proximal operators can be obtained with a
close form, which makes deep learning model integration feasible. Specifically we provide the close form of
the proximal operators in the following proposition:
Proposition 3.1 (Proximal Operators). The proximal operators proxβh∗

f
(u) satisfies

proxβh∗
f
(u)j = sign(u)j min

(
|uj |, λf

)
, (6)

where sign(·) and λf are element-wise sign function and hyperparameter for fairness objective. In other
words, such a proximal operator is an element-wise projection into l∞ ball with radius λf .

Similar to “predictor-corrector" algorithm (Loris & Verhoeven, 2011), we adopt an iterative algorithm to
find the saddle point for the min-max optimization problem. Specifically, starting from (Fk, uk), we adopt a
gradient descent step on the primal variable F to arrive (F̄k+1, uk) and then followed by a proximal ascent
step in the dual variable u. Finally, a gradient descent step on a primal variable in point (F̄k+1, uk) to arrive
at (Fk+1, uk). In short, the iteration can be summarized as

F̄k+1 = Fk − γ∇hs(Fk) − γ ∂⟨p,uk⟩
∂F

∣∣∣
Fk

,

uk+1 = proxβh∗
f

(
uk + β∆sSF (F̄k+1)

)
,

F̄k+1 = Fk − γ∇hs(Fk) − γ ∂⟨p,uk+1⟩
∂F

∣∣∣
Fk

.

(7)

where γ and β are the step size for primal and dual variables. Note that the close-form for ∂⟨p,u⟩
∂F ∈ Rn×dout

and proxβh∗
f
(·) are still not clear, we will provide the solution one by one.

FMP Scheme. Similar to works (Ma et al., 2021b; Liu et al., 2021), choosing γ = 1
1+λs

and β = 1
2γ , we

have

Fk − γ∇hs(Fk) =
(

(1 − γ)I − γλsL̃
)

Fk + γXtrans

= γXtrans + (1 − γ)ÃFk, (8)

Therefore, we can summarize the proposed FMP as two phases, including propagation with skip connection
(Step ❶) and bias mitigation (Steps ❷-❺). For bias mitigation, Step ❷ updates the aggregated node features
for fairness objective; Steps ❸ and ❹ aim to learn and “reshape" perturbation vector in probability space,
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Figure 1: The model pipeline consists of three steps: MLP (feature transformation), propagation with skip
connection, and debiasing via low-rank perturbation in probability space.

respectively. Step ❺ explicitly mitigates the bias of node features based on gradient descent on the primal
variable. The mathematical formulation is given as follows:

Xk+1
agg = γXtrans + (1 − γ)ÃFk, Step ❶

F̄k+1 = Xk+1
agg − γ ∂⟨p,uk⟩

∂F

∣∣∣
Fk

, Step ❷

ūk+1 = uk + β∆sSF (F̄k+1), Step ❸

uk+1 = min
(

|ūk+1|, λf

)
· sign(ūk+1), Step ❹

Fk+1 = Xk+1
agg − γ ∂⟨p,uk+1⟩

∂F

∣∣∣
Fk

. Step ❺

where Xk+1
agg represents the node features with normal aggregation and skip connection with the transformed

input Xtrans.

3.2.3 Gradient Computation Acceleration

The softmax property is also adopted to accelerate the gradient computation. Note that p = ∆sSF (F) and
SF (·) represents softmax over column dimension, directly computing the gradient ∂⟨p,u⟩

∂F based on chain rule
involves the three-dimensional tensor ∂p

∂F with gigantic computation complexity. Instead, we simplify the
gradient computation based on the property of softmax function in the following theorem.
Theorem 3.2 (Gradient Computation). The gradient over primal variable ∂⟨p,u⟩

∂F satisfies

∂⟨p, u⟩
∂F = Us ⊙ SF (F) − Sum1(Us ⊙ SF (F))SF (F). (9)

where Us
△= ∆⊤

s u, ⊙ represents the element-wise product and Sum1(·) represents the summation over column
dimension with preserved matrix shape.

4 Discussion on FMP

In this section, we provide the interpretation and analyze the efficiency, and white-box usage for sensitive
attribute of the proposed FMP scheme. Furthermore, we also discuss how FMP identifies the influence of
sensitive attributes from model forward propagation.
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FMP Interpretation Note that the gradient of fairness objective over node features F satisfies ∂⟨p,u⟩
∂F =

∂⟨p,u⟩
∂SF (F)

∂SF (F)
∂F and ∂⟨p,u⟩

∂SF (F) = ∆⊤
s u, such gradient calculation can be interpreted as three steps: Softmax

transformation, perturbation in probability space, and debiasing in representation space. Specifically, we first
map the node representation into probability space via softmax transformation. Subsequently, we calculate
the gradient of fairness objective in probability space. It is seen that the perturbation ∆⊤

s u actually poses
low-rank debiasing in probability space, where the nodes with different sensitive attributes embrace opposite
perturbations. In other words, the dual variable u represents the perturbation direction in probability space.
Finally, the perturbation in probability space will be transformed into representation space via Jacobian
transformation ∂SF (F)

∂F .

Efficiency. FMP is an efficient message-passing scheme. The computation complexity for the aggregation
(sparse matrix multiplications) is O(mdout), where m is the number of edges in the graph. For FMP,
the extra computation mainly focuses on the perturbation calculation, as shown in Theorem 3.2, with the
computation complexity O(ndout). The extra computation complexity is negligible in that the number of
nodes n is far less than the number of edges m in the real-world graph. Additionally, if directly adopting
backward propagation to calculate the gradient, we have to calculate the three-dimensional tensor ∂p

∂F with
computation complexity O(n2dout). In other words, thanks to the softmax property, we achieve an efficient
fair message-passing scheme.

White-box Usage for Sensitive Attribute. The proposed FMP explicitly achieves graph smoothness
and fairness objectives via alternative gradient descent. In other words, the usage of sensitive attributes
in propagation to mitigate bias is in a white-box manner. Note that such white-box usage of sensitive
attributes is a promising property to understand how sensitive attribute usage forces fairness, which is not
achieved by previous fairness methods in GNNs. For example, fair training loss utilizes sensitive attributes
to regularize the behavior of model prediction and obtain fairer model parameters via rectifying gradients
w.r.t. model parameters. In other words, the sensitive attribute information is implicitly encoded in the
well-trained model parameters, which makes it hard to understand how sensitive attribute usage helps fair
prediction. Pre-processing fairness methods adopt sensitive attributes to revise data (e.g., node masking and
topology rewiring) either in a learnable way or via pre-defined several operations (e.g., node masking and
edge deletions). Similarly, the sensitive attribute information is implicitly encoded in the processed data.
The understanding of fairness prediction achievement is infeasible. Our FMP can provide a white-box usage
for sensitive attributes since we can directly identify that the usage of sensitive attributes is to force the
demographic group node representation centers together during forward propagation.

To facilitate the understanding of the influence of sensitive attributes, we measure the influence of sensitive
attributes as the difference of final prediction between the well-trained fair model using sensitive attributes
and vanilla models without sensitive attribute usage. The sensitive attribute has a critical influence to
achieve fair prediction and the prediction is highly different for the vanilla model (trained with vanilla loss
and no data preprocessing) and the fair model (trained with fair methods). We visualize the logit layer node
representation for different methods in Appendix H.3.

The proposed FMP explicitly uses the sensitive attribute information in Steps ❷-❺ during forward propa-
gation. In other words, if we aim to identify the influence of sensitive attributes for FMP, it is sufficient to
check the difference between the input and output for the debiasing step since it is disentangled with feature
transformation and aggregation. It is worth mentioning that the required information for identifying the
influence of sensitive attributes is naturally from the forward propagation. However, for the fair model from
existing works (e.g, adding regularization and adversarial debiasing), note that the sensitive attribute infor-
mation is implicitly encoded in the well-trained model weight, the sensitive attribute perturbation inevitably
leads to the variability of well-trained model weight. Therefore, it is required to retrain the model for probing
the influence of sensitive attribute perturbation. The key drawback of these methods is due to encoding
the sensitive attributes information into well-trained model weights. From the auditors’ perspective, it is
quite hard to identify the influence of sensitive attributes only given a well-trained fair model. Instead,
our designed FMP explicitly adopts the sensitive attribute information in the forward propagation process,
which naturally avoid the dilemma that sensitive attributes are encoded into well-trained model weight. In
a nutshell, FMP encompasses higher transparency since (1) the sensitive attribute is explicitly adopted in
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Table 1: Comparative Results with Baselines on Node Classification.

Models
Pokec-z Pokec-n NBA

Acc (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓ Acc (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓ Acc (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓
MLP 70.48 ± 0.77 1.61 ± 1.29 2.22 ± 1.01 72.48 ± 0.26 1.53 ± 0.89 3.39 ± 2.37 65.56 ± 1.62 22.37 ± 1.87 18.00 ± 3.52
GAT 69.76 ± 1.30 2.39 ± 0.62 2.91 ± 0.97 71.00 ± 0.48 3.71 ± 2.15 7.50 ± 2.88 57.78 ± 10.65 20.12 ± 16.18 13.00 ± 13.37
GCN 71.78 ± 0.37 3.25 ± 2.35 2.36 ± 2.09 73.09 ± 0.28 3.48 ± 0.47 5.16 ± 1.38 61.90 ± 1.00 23.70 ± 2.74 17.50 ± 2.63
SGC 71.24 ± 0.46 4.81 ± 0.30 4.79 ± 2.27 71.46 ± 0.41 2.22 ± 0.29 3.85 ± 1.63 63.17 ± 0.63 22.56 ± 3.94 14.33± 2.16

APPNP 66.91 ± 1.46 3.90 ± 0.69 5.71 ± 1.29 69.80 ± 0.89 1.98 ± 1.30 4.01 ± 2.36 63.80 ± 1.19 26.51 ± 3.33 20.00 ± 4.56
JKNet 66.89 ± 3.79 1.28 ±0.96 1.79 ± 0.82 63.59 ± 6.36 1.91 ± 2.14 0.70 ± 0.92 67.94 ± 2.73 27.80 ± 8.41 20.33 ± 7.52
ML1 70.42 ± 0.40 2.35 ± 0.83 2.00 ± 0.50 72.36 ± 0.26 1.47 ± 1.12 3.03 ± 1.77 72.70 ± 1.19 26.46 ± 4.93 25.50 ± 8.38

FMP 70.50 ± 0.50 0.81 ± 0.40 1.73 ± 1.03 72.16 ± 0.33 0.66 ± 0.40 1.47 ± 0.87 73.33 ± 1.85 18.92 ± 2.28 13.33 ± 5.89

forward propagation; (2) It is not necessary to retrain the model for probing the influence of the sensitive
attribute.

5 Experiments

In this section, we conduct experiments to validate the effectiveness and efficiency of the proposed FMP.
We firstly validate that graph data with large sensitive homophily enhances bias in GNNs via synthetic
experiments. Moreover, for experiments on real-world datasets, we introduce the experimental settings and
then evaluate our proposed FMP compared with several baselines in terms of prediction performance and
fairness metrics.

5.1 Experimental Settings

Datasets. We conduct experiments on real-world datasets Pokec-z, Pokec-n, and NBA (Dai & Wang, 2021).
Pokec-z and Pokec-n are sampled, based on province information, from a larger Facebook-like social network
Pokec (Takac & Zabovsky, 2012) in Slovakia, where region information is treated as the sensitive attribute
and the predicted label is the working field of the users. NBA dataset is extended from a Kaggle dataset 6

consisting of around 400 NBA basketball players. The information of players includes age, nationality, and
salary in the 2016-2017 season. The players’ link relationships are from Twitter with the official crawling API.
The binary nationality (U.S. and overseas player) is adopted as the sensitive attribute and the prediction
label is whether the salary is higher than the median.

Evaluation Metrics. We adopt accuracy to evaluate the performance of node classification tasks. As for
fairness metrics, we adopt two quantitative group fairness metrics to measure the prediction bias. According
to works (Louizos et al., 2015; beu), we adopt demographic parity ∆DP = |P(ŷ = 1|s = −1)−P(ŷ = 1|s = 1)|
and equal opportunity ∆EO = |P(ŷ = 1|s = −1, y = 1) − P(ŷ = 1|s = 1, y = 1)|, where y and ŷ represent the
ground-truth label and predicted label, respectively.

Baselines. We compare our proposed FMP with representative GNNs, such as GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), SGC (Wu et al., 2019), and APPNP (Klicpera et al., 2019), JKNet
(Xu et al., 2018), and MLP. We also compared with method “ML1" directly using the gradient of Eq. (1)
during model forward propagation. For all models, we train 2 layers of neural networks with 64 hidden units
for 300 epochs. Additionally, We also compare adversarial debiasing and adding demographic regularization
methods to show the effectiveness of the proposed method 7.

Implementation Details. We run the experiments 5 times and report the average performance for each
method. We adopt Adam optimizer with 0.001 learning rate and 10−5 weight decay for all models. For
adversarial debiasing, we adopt the train classifier and adversary with 70 and 30 epochs, respectively. The

6https://www.kaggle.com/noahgift/social-power-nba
7Please see the comparison with Fair Mixup (Chuang & Mroueh, 2021) in Appendix H.2
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Pokec-n Pokec-z NBA

Figure 2: DP and Acc trade-off performance on three real-world datasets compared with adding regularization
(Top) and adversarial debiasing (Bottom). The trade-off curve close to the right bottom corner means better
trade-off performance. The units for x- and y-axis are percentages (%).

hyperparameter for adversary loss is tuned in {0.0, 1.0, 2.0, 5.0, 8.0, 10.0, 20.0, 30.0}. For adding regulariza-
tion, we adopt the hyperparameter set {0.0, 1.0, 2.0, 5.0, 8.0, 10.0, 20.0, 50.0, 80.0, 100.0}.

5.2 Experimental Results

Comparison with Existing GNNs. The accuracy, demographic parity, and equal opportunity metrics
of proposed FMP for Pokec-z, Pokec-n, NBA datasets are shown in Table 1 compared with MLP, GAT,
GCN, SGC, and APPNP. The detailed statistical information for these three datasets is shown in Table 3.
From these results, we can obtain the following observations:

• Many existing GNNs underperform MLP model on all three datasets in terms of fairness metric. For
instance, the demographic parity of MLP is lower than GAT, GCN, SGC and APPNP by 32.64%, 50.46%,
66.53% and 58.72% on Pokec-z dataset. The higher prediction bias comes from the aggregation within the
same sensitive attribute nodes and topology bias in graph data.

• Our proposed FMP consistently achieves the lowest prediction bias in terms of demographic parity and equal
opportunity on all datasets. Specifically, FMP reduces demographic parity by 49.69%, 56.86%, and 5.97%
compared with the lowest bias among all baselines in Pokec-z, Pokec-n, and NBA datasets. Meanwhile,
our proposed FMP achieves the best accuracy in NBA dataset, and comparable accuracy in Pokec-z and
Pokec-n datasets. In a nutshell, the proposed FMP can effectively mitigate prediction bias while preserving
the prediction performance.

Comparison with Adversarial Debiasing and Regularization. To validate the effectiveness of the
proposed FMP, we also show the prediction performance and fairness metric trade-off compared with fairness-
boosting methods, including adversarial debiasing (Fisher et al., 2020) and adding regularization (Chuang
& Mroueh, 2020). Similar to (lou), the output of GNNs is the input of the adversary and the goal of the
adversary is to predict the node sensitive attribute. We also adopt several backbones for these two methods,
including MLP, GCN, GAT, and SGC. We randomly split 50%/25%/25% for training, validation, and test
dataset. Figure 2 shows the Pareto optimality curve for all methods, where the right-bottom corner point
represents the ideal performance (highest accuracy and lowest prediction bias). From the results, we list the
following observations as follows:

9
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• Our proposed FMP can achieve better DP-Acc trade-off compared with adversarial debiasing and adding
regularization for many GNNs and MLP. Such observation validates the effectiveness of the key idea in FMP:
aggregation first and then debiasing. Additionally, FMP can reduce demographic parity with negligible
performance cost due to transparent and efficient debiasing.

• Message passing in GNNs does matter. For adding regularization or adversarial debiasing, different GNNs
embrace huge distinctions, which implies that an appropriate message passing manner potentially leads
to better trade-off performance. Additionally, many GNNs underperforms MLP in low-label homophily
coefficient dataset, such as NBA. The rationale is that aggregation may not always bring benefit in terms
of accuracy when the neighbors have low probability with the same label.

6 Related Works

Graph Neural Networks. GNNs generalizing neural networks for graph data have already shown great
success in various real-world applications. There are two streams in GNNs model design, i.e., spectral-based
and spatial-based. Spectral-based GNNs provide graph convolution definition based on graph theory, which
is utilized in GNN layers together with feature transformation (Bruna et al., 2013; Defferrard et al., 2016;
Henaff et al., 2015). Graph convolutional networks (GCN) (Kipf & Welling, 2017) simplify spectral-based
GNN model into spatial aggregation scheme. Since then, many spatial-based GNNs variant is developed to
update node representation via aggregating its neighbors’ information, including graph attention network
(GAT) (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), SGC (Wu et al., 2019), APPNP
(Klicpera et al., 2019), et al (Gao et al., 2018; Monti et al., 2017). Graph signal denoising is another
perspective to understand GNNs. Recently, there are several works show that GCN is equivalent to the first-
order approximation for graph denoising with Laplacian regularization (Henaff et al., 2015; Zhao & Akoglu,
2019). The unified optimization framework is provided to unify many existing message passing schemes (Ma
et al., 2021b; Zhu et al., 2021a).

Fairness-aware Learning on Graphs. Many works have been developed to achieve fairness in machine
learning community (Jiang et al., 2022; Han et al., 2023; Jiang et al., 2023; Chuang & Mroueh, 2020; Zhang
et al., 2018; Du et al., 2021; Yurochkin & Sun, 2020; Creager et al., 2019; Feldman et al., 2015). A pilot study
on fair node representation learning is developed based on random walk (Rahman et al., 2019). Additionally,
adversarial debiasing is adopted to learn fair prediction or node representation so that the well-trained
adversary can not predict the sensitive attribute based on node representation or prediction (Dai & Wang,
2021; Bose & Hamilton, 2019; Fisher et al., 2020). A Bayesian approach is developed to learn fair node
representation via encoding sensitive information in the prior distribution in (Buyl & De Bie, 2020). Work
(Ma et al., 2021a) develops a PAC-Bayesian analysis to connect subgroup generalization with accuracy parity.
(Laclau et al., 2021; Li et al., 2021) aims to mitigate prediction bias for link prediction. Fairness-aware graph
contrastive learning is proposed in (Agarwal et al., 2021; Köse & Shen, 2021; Ling et al., 2023). Graph data
preprocessing, such as node feature masking and graph topology rewire, are also developed in (Laclau et al.,
2021; Li et al., 2021; Dong et al., 2021; 2023) for node classification and link prediction tasks. However,
the aforementioned works ignore the requirement of transparency in fairness. In this work, we develop an
efficient and transparent fair message passing scheme explicitly rendering sensitive attribute usage.

7 Conclusion

In this work, we achieve fairness in graphs from the model architecture perspective. We design a fair message-
passing scheme to achieve fair prediction for node classification using vanilla training loss without data
pre-processing. Specifically, motivated by the unified optimization framework for GNNs, FMP is designed
as aggregation first and then bias mitigation to explicitly chase smoothness and fairness objectives. We
also provide a comprehensive discussion of FMP from model architecture interpretation, efficiency, and the
white-box usage of sensitive attributes aspects. Experimental results on real-world datasets demonstrate the
effectiveness of FMP compared with several baselines in node classification tasks.
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A Notations

Table 2: Table of Notations

Notations Description
|E| The number of edges
n The number of nodes
d The number of node feature dimensions

dout The number of node classes
∆s ∈ R1×n The sensitive attribute incident vector

ϵlabel Label homophily coefficient
ϵsens Sensitive homophily coefficient

Xori ∈ Rn×d The input node attributes matrix
A ∈ Rn×n The adjacency matrix
Â ∈ Rn×n The adjacency matrix with self-loop
Ã ∈ Rn×n The normalized adjacency matrix with self-loop
L ∈ Rn×n The Laplacian matrix

Xtrans ∈ Rn×dout The output node features for feature transformation
Fagg ∈ Rn×dout The aggregated node features after propagation

F ∈ Rn×dout The learned node features considering graph smoothness and fairness
u ∈ R1×dout The permutation direction in feature representation space

h∗(·) Fenchel conjugate function of h(·)
||X||F , ||X||1 The Frobenius norm and l1 norm of matrix X

λf , λs Hyperparameter for fairness and graph smoothness objectives

B Proof on Fairness Objective

The fairness objective can be shown as the average prediction probability difference as follows:(
∆sSF (F)

))
j

=
[

1>0(s)
||1>0(s)||1

− 1>0(−s)
||1>0(−s)||1

](
SF (F)

)
:,j

=
∑

si=1 P̂ (yi = j|X)
||1>0(s)||1

−
∑

si=−1 P̂ (yi = j|X)
||1>0(−s)||1

= P̂ (yi = j|si = 1, X) − P̂ (yi = j|si = −1, X).

C Proof of Theorem 3.2

Before providing in-depth analysis on the gradient computation, we first introduce the softmax function
derivative property in the following lemma:
Lemma C.1. For the softmax function with N -dimensional vector input y = SF (x) : R1×N −→ R1×N ,
where yj = exj∑N

k=1
exk

for ∀j ∈ {1, 2, · · · , N}, the derivative N ×N Jocobian matrix is defined by [ ∂y
∂x ]ij = ∂yi

∂xj
.

Additionally, Jocobian matrix satisfies ∂y
∂x = diag(y) − y⊤y, where IN represents N × N identity matrix and

⊤ denotes the transpose operation for vector or matrix.

Proof. Considering the gradient ∂yi

∂xj
for arbitrary i = j, according to quotient and chain rule of derivatives,

we have

∂yi

∂xj
=

exi
∑N

k=1 exk − exi+xj( ∑N
k=1 exk

)2 = exi∑N
k=1 exk

·
∑N

k=1 exk − exi∑N
k=1 exk

= yi(1 − yj), (10)
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Similarly, for arbitrary i ̸= j, the gradient is given by

∂yi

∂xj
= exi∑N

k=1 exk

· −exi∑N
k=1 exk

= −yiyj . (11)

Combining these two cases, it is easy to verify the Jacobian matrix satisfies ∂y
∂x = diag(y) − y⊤y.

Arming with the derivative property of softmax function, we further investigate the gradient ∂⟨p,u⟩
∂F , where

p = ∆sSF (F) ∈ R1×dout and SF (·) and u ∈ R1×dout is independent with F ∈ Rn×dout .

Considering softmax function SF (x) ∈ Rn×d is row-wise adopted in node representation matrix, the gradient
satisfies ∂SF (F)i

∂Fj
= 0dout×dout

for i ̸= j. Note that the inner product ⟨p, u⟩ =
∑dout

k=1 pkuk, it is easy the
obtain the gradient [ ∂⟨p,u⟩

∂F ]ij =
∑dout

k=1
∂pk

∂Fij
uk.

To simply the current notation, we denote F̃ △= SF (F). According to the chain rule of derivative, we have

∂pk

∂Fij
=

dout∑
t=1

∂pk

∂F̃tk

∂F̃tk

∂Fij
=

dout∑
t=1

∆s,t
∂F̃tk

∂Fij

(a)= ∆s,i
∂F̃ik

∂Fij

(b)= ∆s,iF̃ik[δkj − F̃ij ], (12)

where δkj is Dirac function (equals 1 only if k = j, otherwise 0;), equality (a) holds since softmax function
is row-wise operation, and equality (b) is based on Lemma C.1. Furthermore, we can obtain the gradient of
fairness objective w.r.t. node presentation as follows:

[∂⟨p, u⟩
∂F ]ij =

dout∑
k=1

∂pk

∂Fij
uk =

dout∑
k=1

∆s,iF̃ik[δkj − F̃ij ]uk = ∆s,iF̃ijuj − ∆s,iF̃ij

dout∑
k=1

F̃ikuk. (13)

Therefore, the matrix formulation is given by

∂⟨p, u⟩
∂F = Us ⊙ SF (F) − Sum1(Us ⊙ SF (F))SF (F). (14)

where Us
△= ∆⊤

s u ∈ Rn×dout and Sum1(·) represents the summation over column dimension with preserved
matrix shape. Therefore, the computation complexity for gradient ∂⟨p,u⟩

∂F is O(ndout).

D Proof of Proposition 3.1

As for the proximal operators, we provide the close form in the following proposition:
Proposition D.1 (Proximal Operators). The proximal operators proxβh∗

f
(u) satisfies

proxβh∗
f
(u)j = sign(u)j min

(
|uj |, λf

)
, (15)

where sign(·) and λf are element-wise sign function and hyperparameter for fairness objective. In other
words, such a proximal operator is an element-wise projection into l∞ ball with radius λf .

We firstly show the conjugate function for general norm function f(x) = λ||x||, where x ∈ R1×dout . The
conjugate function of f(x) satisfies

f∗(y) =
{

0, ||x||∗ ≤ λ,
+∞, ||x||∗ > λ.

(16)

where ||x||∗ is dual norm of the original norm ||x||, defined as ||y||∗ = max
||x||≤1

y⊤x. Considering the conjugate

function definition f∗(y) = max
x

y⊤x − λ||x|| the analysis can be divided as the following two cases:
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❶ If ||y||∗ ≤ λ, according to the definition of dual norm, we have y⊤x ≤ ||x||||y||∗ ≤ λ||x|| for ∀||x||, where
the equality holds if and only if ||x|| = 0. Hence, it is easy to obtain f∗(y) = max

x
y⊤x − λ||x|| = 0.

❷ If ||y||∗ > λ, note that the dual norm ||y||∗ = max
||x||≤1

y⊤x > λ, there exists variables x̂ so that ||x̂|| ≤ 1

and x̂⊤y < λ. Therefore, for any constant t, we have f∗(y) ≥ y⊤(tx) − λ||tx|| = t(y⊤x − λ||x||) t→∞−→ ∞.

Based on the aforementioned two cases, it is easy to get the conjugate function for l1 norm (the dual norm
is l∞), i.e., the conjugate function for hf (x) = λ||x||1 is given by

h∗
f (y) =

{
0, ||x||∞ ≤ λ,
+∞, ||x||∞ > λ.

(17)

Given the conjugate function h∗
f (·), we further investigate the proximal operators proxh∗

f
. Note that

proxh∗
f
(u) = arg min

y
||y−u||2F +h∗

f (y) = arg min
||y||∞≤λf

||y−u||2F = arg min
yj≤λf

∀j∈[dout]

∑dout

j=1 |yj −uj |2, the proximal

operator problem can be decomposed as element-wise sub-problem, i.e.,

proxh∗
f
(u)j = arg min

yj≤λf

|yj − uj |2 = sign(uj) min(|uj |, λf )

which completes the proof.

E More discussion on Transparency in Fairness

We aim to provide a more precise statement on transparency in fairness (TIF) and then point out why
many fair methods can not achieve transparency in fairness. Intuitively, TIF represents that the influence of
sensitive attribute in the inference stage for a fair method can be obtained with only a well-trained fair model
and test data. Although many fair methods relying on sensitive attribute are developed to achieve a fair
model, the process of how the sensitive attribute makes the model to be fair is still black-box. To this end, we
introduce TIF, a general concept beyond graph data. Denote training dataset Dtrain = {Xtrain, strain, ytrain}
and test dataset Dtest = {Xtest, stest, ytest}, where Xtrain (Xtest), strain (stest), and ytrain (ytest) represent
the input attributes, sensitive attributes, and label for model training (test). We first provide a formal
statement on the influence of sensitive attribute and TIF for a specific fair method.

What is the influence of sensitive attributes in the inference stage? The influence of sensitive
attributes can be regarded as the difference between the well-trained fair and vanilla model. The fair
model fθ∗(·) can be obtained using training dataset (including sensitive attribute) and a specific fair method
(e.g., fair regularization, adversarial debiasing) while vanilla model fθ0(·) is obtained without any usage of
sensitive attribute (e.g., vanilla loss and no data pre-processing and post-processing). Define M(fθ, Dtest) as
the measurement (not necessarily scaler) for a well-trained model fθ(·) given test dataset Dtest. For example,
test loss or model prediction can be instantiations as measurements. Then the influence of sensitive attributes
represents the measurement difference between the well-trained fair and vanilla models M(fθ∗ , Dtest) −
M(fθ0 , Dtest).

What is TIF? TIF represents that the influence of sensitive attributes can be obtained via the well-
trained fair model and test data (without access to the training data). To obtain the influence of sensitive
attribute, the fair model and vanilla model are both required to obtain the influence of sensitive attribute.
In other words, for existing fair methods (e.g., pre-processing, in-processing, and post-processing methods),
it is intractable to obtain such influence if only having access to the fair model since the training data or
vanilla model can not be accessed.

Difference with model interpretability. Model interpretability aims to understand and explain the
steps and decisions of the model when making predictions. There are two types of interpretability, named
intrinsical interpretability and post-hoc interpretability. Intrinsically interpretable models (such as deci-
sion trees) can provide human-understandable decision-making from the model itself, while post-hoc inter-
pretability requires external methods to help humans understand how the model makes predictions. Similar
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to intrinsical interpretability, whether the fair model with TIF is essentially binary. The key difference is that
TIF aims to understand how sensitive attribute helps to achieve a fair model for a specific fair method. Such
a fairness-achieving process is essentially dynamic while model interpretability is static for model prediction.

The main idea to achieve TIF. Note that many existing methods, including pre-processing, in-
processing, and post-processing methods, can not achieve TIF, we try to integrate sensitive attribute infor-
mation into the forward propagation for model prediction. In this way, the influence of sensitive attributes
can be obtained through model inference. Thanks to the unified optimization framework for GNNs, we
develop a fair message passing (FMP), which explicitly and separately uses sensitive attributes in the (last)
debiasing stage of forward propagation. which makes it easy to identify the influence. In this way, the
influence of sensitive attribute can be identified using the input and output of the debiasing stage.

F Training Algorithms

We summarize the training algorithm for FMP and provide the pseudo codes in Algorithm 1.

Algorithm 1 FMP Training Algorithm
Input: Graph dataset =(X, A, Y); The total epochs T ; Hyperparameters λs and λf .
Output: The well-trained FMP model.
Initialize model parameters.
for epoch from 1 to T do

Conduct feature transformation using MLP
Conduct propagation and debiasing as steps ❶-❺
Calculate the cross entropy loss for node classification task
Conduct backpropagation step to update model weight

end for

G Dataset Statistics

For a fair comparison with previous work, we perform the node classification task on three real-world datasets,
including Pokec-n, Pokec-z, and NBA. The data statistical information on three real-world datasets is pro-
vided in Table 3. It is seen that the sensitive homophily are even higher than the label homophily coefficient
among three real-world datasets, which validates that the real-world datasets is usually with large topology
bias.

Table 3: Statistical Information on Datasets

Dataset # Nodes # Node Features # Edges # Training Labels # Training Sens
Pokec-n 66569 265 1034094 4398 500
Pokec-z 67796 276 1235916 5131 500
NBA 403 95 21242 156 246

H More Experimental Results

H.1 More Experimental Setting Details

In FMP implementation, we first use 2 layers of MLP with 64 hidden units and the output dimension for
MLP is 2. We also stack 2 layers for propagation and debiasing steps, where there are not any trainable
model parameters. As for the model training, we adopt cross-entropy loss function with 300 epochs. We also
adopt Adam optimizer with 0.001 learning rate and 1×105 weight decay for all models. The hyperprameters
for FMP is λf = {0, 5, 10, 15, 20, 30, 100} and λs = {0, 0.01, 0.1, 0.5, 1.0, 2.0, 3, 5, 10, 15, 20} .
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Figure 3: DP and Acc trade-off performance on three real-world datasets compared with (manifold) Fair
Mixup.

H.2 Comparison with Fair Mixup

We also implement Fair mixup (Chuang & Mroueh, 2021) as the additional baseline for different GNN
backbones in Figure 3. Note that input fair mixup requires calculating model prediction for mixed input
batch, it is non-trivial to adopt input fair mixup in our experiments (node classification task) since forward
propagation in GNN aggregates information from neighborhoods while the neighborhood information for
the mixed input batch is missing. Therefore, we adopt manifold fair mixup for the logit layer (the previous
layers contain aggregation step) in our experiments. Experimental results show that our method can still
achieve better accuracy-fairness tradeoff performance on three datasets.

H.3 Sensitive Attribute Influence Probe

As for lending fairness perceptron, it represents the influence of sensitive attributes that could be identified.
For example, our proposed FMP includes three steps, i.e., transformation, aggregation, and debiasing, where
the sensitive attribute is explicitly adopted in debiasing step. If we aim to identify the influence of sensitive
attributes for FMP, it is sufficient to check the difference between the input and output for the debiasing
step. It is worth mentioning that the required information for identifying the influence of sensitive attributes
is naturally from the forward propagation. Additionally, if we aim to identify the influence of sensitive
attributes for existing methods (e.g, adding regularization and adversarial debiasing), the well-trained fair
model is insufficient and we need additional vanilla (unfair) model without using any sensitive attribute
information. In other words, these methods require model retraining with sensitive attribute movement, and
thus much more resources for sensitive attributes influence auditing. The key drawback of these methods
is due to encoding the sensitive attributes information into well-trained model weights. From the auditors’
perspective, it is quite hard to identify the influence of sensitive attributes only given a well-trained fair model.
Instead, our designed FMP explicitly adopts the sensitive attribute information in the forward propagation
process, which naturally avoid the dilemma that sensitive attributes are encoded into well-trained model
weight.

Figure 4 shows the visualization results for training with/without (left/right) sensitive attributes for FMP
and several baselines (with GCN backbones) across three real-world datasets. From the visualization results,
we observe that all methods with sensitive attribute information achieve better fairness since the logit
layer representation for different sensitive attributes is mixed with each other. Therefore, it is hard to
identify the sensitive attribute based on the representation and thus leads to higher fairness results. The key
difference is that the results for training with/without (left/right) sensitive attribute in FMP can both be
obtained through forward propagation, while the other baseline methods require model retraining to probe
the influence of sensitive attributes.
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Figure 4: The visualization of logit layer node representation for training with/without (left/right) sensitive
attribute for FMP and several baselines across three real-world datasets. The data point with different colors
represents different sensitive attributes.

Figure 5: The running time comparison.

H.4 Running Time Comparison

We provide running time comparison in Figure 5 for our proposed FMP and other baselines, including vanilla,
regularization, and adversarial debiasing on many backbones (MLP, GCN, GAT, SGC, and APPNP). To
achieve a fair comparison, we adopt the same Adam optimizer with 200 epochs with 5 running times. We
list several observations as follows:

• The running time of proposed FMP is very efficient for large-scale datasets. Specifically, for the vanilla
method, the running time of FMP is higher than most lighten backbone MLP with 46.97% and 15.03%
time overhead on Pokec-n and Poken-z datasets, respectively. Compared with the most time-consumption
APPNP, the running time of FMP is lower with 64.07% and 41.45% time overhead on Pokec-n and Poken-z
datasets, respectively.

• The regularization method achieves almost the same running time compared with the vanilla method on
all backbones. For example, GCN with regularization encompasses higher running time with 6.41% time
overhead compared with the vanilla method. Adversarial debiasing is extremely time-consuming. For
example, GCN with adversarial debiasing encompasses higher running time with 88.58% time overhead
compared with the vanilla method.
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Figure 6: Hyperparameter study on fairness and smoothness hyperparameter for demographic parity and
Accuracy.

H.5 Hyperparameter Study

We provide hyperparameter study for further investigation on fairness and smoothness hyperparmeter on
prediction and fairness performance on three datasets. Specifically, we tune hyperparameters as λf =
{0.0, 5.0, 10.0, 15.0, 20.0, 30.0, 100.0, 1000.0} and λs = {0.0, 0.1, 0.5, 1.0, 3.0, 5.0, 10.0, 15.0, 20.0}. From the
results in Figure 6, we can make the following observations:

• The accuracy and demographic parity are extremely sensitive to the smoothness hyperparameter. It
is seen that, for Pokec-n and Pokec-z datasets (NBA), a larger smoothness hyperparameter usually
leads to higher (lower) accuracy with higher prediction bias. The rationale is that, only for graph
data with a high label homophily coefficient, GCN-like aggregation with skip connection is beneficial.
Otherwise, the neighbor’s node representation with a different label will mislead the representation
update.

• The appropriate fairness hyperparameter leads to better fairness and prediction performance trade-
off. The reason is that fairness hyperparameter determines the perturbation vector update step size
in probability space. Only appropriate step size can lead to better perturbation vector update.

H.6 Results on Additional Datasets

We also conduct experiments on two new datasets (Recidivism and Credit), where the graph topology is
constructed based on node features. In Recidivism, nodes are defendants released on bail from 1990 to
2009, where the nodes are connected based on the similarity of past criminal records and demographics.
The task is to predict defendant is on bail or not, and the sensitive attribute is selected as “race". In the
Credit dataset, credit card users (nodes) are connected based on the pattern similarity of their purchases
and payments. The sensitive attribute is selected as “age", and the task is to predict whether a user will
default on credit card payment. Figure. ?? demonstrates the tradeoff performance for different fair methods,
including adding regularization, adversarial debiasing, and fair mixup. Experimental results show that our
method can still achieve good accuracy-fairness tradeoff performance on three datasets. We also notice that
MLP can achieve good tradeoff performance since the graph topology is manually constructed based on node
attribute similarity.
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Figure 7: DP and Acc trade-off performance on three real-world datasets compared with adding regulariza-
tion, adversarial debiasing, and (manifold) Fair Mixup in additional datasets.

I Future Work

There are three lines of follow-up research directions. Firstly, achieving transparency can be further devel-
oped. For example, for the intransparent model, how can we develop external methods to probe the influence
of sensitive attributes in the target model? Secondly, given the influence of sensitive attributes, how can we
interpret the influence of sensitive attributes in a human-understandable way? For example, how can we
measure the benefit of such influence toward fairness? Thirdly, it is also interesting to extend FMP into more
general cases, such as continuous sensitive attributes (Jiang et al., 2022), and limited sensitive attributes
(Dai & Wang, 2021).

J Broader Social Impact and Limitations

Transparency in fairness is an advanced property in the fairness domain and poses huge challenges for
research and industry. Many existing works mainly rely on specific fairness metrics to evaluate the prediction
bias. Transparency may stimulate maintainers and auditors of machine learning systems to rethink fairness
evaluation/auditing. Only achieving a fair model with a lower bias for specific fairness metrics is insufficient.
The maintainers should also consider how to leverage the influence of sensitive attributes for auditors.
Transparency may lead maintainers to pay more effects to improve the transparency of the fair model
and could be helpful to convince the auditors. The limitations of this work are that it requests sensitive
information in the inference stage.
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