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Abstract

While vision-and-language models perform well on tasks such as visual question
answering, they struggle when it comes to basic human commonsense reasoning
skills. In this work, we introduce WinoGAViL: an online game of vision-and-
language associations (e.g., between werewolves and a full moon), used as a
dynamic evaluation benchmark. Inspired by the popular card game Codenames,
a “spymaster” gives a textual cue related to several visual candidates, and another
player tries to identify them. Human players are rewarded for creating associations
that are challenging for a rival AI model but still solvable by other human players.
We use the game to collect 3.5K instances, finding that they are intuitive for humans
(>90% Jaccard index) but challenging for state-of-the-art AI models, where the
best model (ViLT) achieves a score of 52%, succeeding mostly where the cue
is visually salient. Our analysis as well as the feedback we collect from players
indicate that the collected associations require diverse reasoning skills, including
general knowledge, common sense, abstraction, and more. We release the dataset,
the code and the interactive game, allowing future data collection that can be used
to develop models with better association abilities.1

1 Introduction

Humans can intuitively reason about how a cue is associated with an image [1, 2, 3]. For example, in
Figure 1, the word werewolf may be intuitively associated with images of a puppy and a full moon.
These reasoning skills go beyond object detection and similarity and require rich cultural and world
knowledge. Cognitive studies suggest that this kind of associative thinking involves connecting distant
concepts in the human memory, organized as a network of interconnected ideas [4, 5, 6, 7, 8]. On the
other hand, vision-and-language models often fail when faced with tasks that require commonsense
reasoning and cultural knowledge [9, 10, 11, 12], motivating the construction of a challenging high
quality vision-and-language benchmark.

In this work, we introduce a Gamified Association benchmark to challenge Vision-and-Language
models (WinoGAViL). Inspired by Winograd Schema Challenge [13], we suggest WinoGAViL as a
benchmark for multimodal machine commonsense reasoning and association abilities. Similar to the
Codenames game,2 each instance in WinoGAViL is composed of a textual cue, a number k, and a set
of candidate images. The task is to select the k images most associated with the cue. We refer to the

∗Equal contribution.
1https://winogavil.github.io/
2https://en.wikipedia.org/wiki/Codenames_(board_game)
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Figure 1: Top: An association instance from the WinoGAViL benchmark. The task is to choose the
top k images that suit the cue word. In this example, the top k=2 images that suit the cue werewolf
are surrounded by red bounding boxes. Bottom: Game Setup—a new association instance generation.
A spymaster (Alice) composes a new association given a set of images that is challenging for the rival
AI model but easy for other human players. (a) Alice generates a cue word for a subset of the images;
(b) A rival AI model makes a prediction based on the given cue, and Alice is rewarded inversely
to the model performance; (c) Three human solvers also try to solve the task and the spymaster is
rewarded according to their performance.

cue and the associated images as an association instance. For example, in Figure 1, the pictures of a
puppy and a moon are (arguably) the ones most associated with the cue werewolf out of the given
candidates.

Figure 2: The spymaster screen for an example
collected via the WinoGAViL benchmark. The spy-
master submitted the cue ‘pogonophile’ (a lover
of beards), and associated it with the three images
surrounded by red bounding boxes. Model pre-
dictions are marked with V for success and X for
failure. In this example the spymaster has managed
to partially fool the AI model, while three other
humans are able to solve it perfectly.

We develop an online game to collect novel and
challenging associations. The game is used to
collect data for this work, but more importantly—
to serve as a dynamic source for additional data
in the future. As exemplified in Figure 1, a “spy-
master” first composes a new association cue
given a set of images. A rival AI model (CLIP
RN50 [14]) then predicts the given association,
and the spymaster is rewarded inversely to its
performance, motivating the spymaster to make
the cue challenging. Lastly, three human play-
ers attempt to solve the association task. The
spymaster is rewarded according to their perfor-
mance, motivating the spymaster to compose as-
sociations that are solvable by humans and, thus,
ideally more natural than examples designed to
fool a model. We use crowdworkers to collect
3.5K test instances. See Figure 2 for a collected
example.

We evaluate several state-of-the-art models on
WinoGAViL data. We find that our game allows
the collection of associations that are easy for
humans (>90% Jaccard index) and challenging
for models (∼52%), even those that are orders
of magnitude larger than the model used to create the game. Our analysis shows that models succeed
mostly where the cue is visually salient. Finally, we compare our collected data with data we collected
via an alternative data generation baseline that relies on SWOW [15], a hand-crafted resource of
textual associations. Our results show that while the two approaches are relatively easy for humans,
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data generated by WinoGAViL is much more challenging to machines, highlighting the value of our
gamified data collection framework.

2 The WinoGAViL Benchmark

We start by presenting the game as a framework for collecting challenging associations (§2.1). Second,
we describe how we crowd-source a test set using the game (§2.2). Finally, we analyze the collected
dataset and provide statistics (§2.3).

Throughout this paper we use the Jaccard index, which is the intersection of selected candidates
divided by the union of selected candidates.3 This metric does not reward random guesses highly. The
random expected Jaccard index is 38%, 34%, 24%, 17% with 5/6/10/12 candidates respectively. For
example, in Figure 1c the Jaccard index (‘Human score’) of the solvers is 100%, since the intersection
of the selections is the same as the union. In Figure 1b the AI model selection is 1/3, so the Jaccard
index (‘Model score’) is 33%: there are three images in the union, and one image in the intersection.

2.1 The Game

This section describes the WinoGAViL game environment. Besides collecting the data presented in
this paper, the game can also serve as a dynamic source of new data in the future. The game setup is
described below in sequential order.

1. A spymaster creates a challenging association. A spymaster composes a new association
instance given a random set of images sampled from the web (see details below). We
experiment with sets of 5, 6, 10 or 12 images. The spymaster then submits a single-word cue
and selects the subset of associated images. The goal is for the association to be solvable by
humans but not by the AI model. For example in Figure 1, the spymaster composes the cue
werewolf and associates it with the images of the puppy and the moon.

2. A rival AI model makes a prediction. We then feed the association instance to a rival AI
model, and report the model score. For example, in Figure 2, the model predicts correctly
one candidate (the image of the bison), and the total number of candidates involved is 5 :the
three images the user selected and the two images falsely predicted by the model. Therefore,
the model’s Jaccard index is 1/5=20%. The spymaster is rewarded inversely to the model
performance, so their “fool-the-AI” score is (100 - ‘model score‘) = 80%.

3. Three human players validate the created association. We then give the association
to three human validators, who are rewarded according to their Jaccard index for solving
the association. Importantly, the spymaster’s association “solvable-by-humans” score is
determined by the average score of the three solvers. For example, in Figure 1 all players
solve the created associations perfectly; therefore, the spymaster’s association “solvable-by-
humans” score is 100%.

Each player alternates between spymaster and solver roles. Each new association instance created by
the spymaster is assigned to three solvers. Once the spymaster creates an association instance, their
role changes to a solver responsible for solving other players’ associations. This balanced approach
ensures that all new associations are automatically validated by three other players.

Rival AI model. We use CLIP [14], with a textual prompt of “A/An [cue]”. We intentionally use
a small version of CLIP (RN50), so we could evaluate the generated data with larger models. Our
experiments (§3) show that this data is indeed challenging for orders-of-magnitude larger models.
Future versions of the game will use newer and stronger models, that are likely to further improve the
data quality.

Image extraction. We start with a corpus of English concepts obtained from SWOW [15].4 We
collect an image for each concept from Google Images Download. We filter images of written words

3https://en.wikipedia.org/wiki/Jaccard_index.
4We removed words that are potentially offensive using https://pypi.org/project/

profanity-filter/.
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Figure 3: A screenshot from a spymaster screen in Amazon Mechanical Turk.

using an OCR model [16]. We removed images containing the query text using an OCR model (e.g.,
OCR prediction “brary” for search query “library”). We extract the top image based on google ranking
(∼2% of the images are filtered). We also manually filter and verify that there are no inappropriate
images. The result is a set of 3K images.

WinoGAViL game properties. WinoGAViL’s main goal is to serve as a dynamic benchmark that
remains relevant as the field advances. To achieve this, we publicly release the WinoGAViL web
game, allowing dynamic data collection. The players who create associations observe the AI model
predictions in real-time. Players switch roles, validating each created association as part of the game.
We use rewards to motivate players to create high-quality data according to our metrics. Players
are rewarded for both fooling the AI model and making the associations solvable by other humans,
preventing the data from becoming unnatural and biased towards only fooling the AI model. The
publicly released game includes a player dashboard and a leaderboard. All of these aim to motivate
the players to compete with the AI model and with each other, leading to enhanced user engagement
and high-quality data.

2.2 Human Annotation

We hire Amazon Mechanical Turk workers to play the WinoGAViL game. We develop qualification
tests to select high-quality annotators and collect the annotators’ demographic information. Spymas-
ters screen example is presented in Figure 3; See Appendix A for more details.5 We have several
options for the total number of candidates: 5, 6, 10 or 12. With more candidates, the task naturally
becomes harder. The spymasters are allowed to select between 2-5 images. Full annotation results
and statistics are presented in Table 1. The scores of both humans and models is the Jaccard index of
between their created associations instances. The annotation task includes three steps, elaborated
below.

First, we create new associations by asking three spymasters to create two different cues and associated
candidates for a given set of images. The created association should fool the AI model but still be
solvable by other humans. To reinforce it, the spymasters receive a bonus payment if their “solvable-
by-humans” score is at least 80%, which grows according to their “fool-the-AI” score, see full details
of the bonus in Appendix A, Section A.4.1. The first row in Table 1 presents the number of generated
associations, and the second row presents the average model score (or 100-“fool-the-AI score”). The
low model scores indicate that the spymasters succeeded in creating data that fools the AI model.

Second, we take the associations created via the game and ask three annotators to solve them. We
compute an average Jaccard index of the three solvers for each instance. The third row in Table 1
presents the average human score (or the spymaster’s “solvable-by-humans” score), indicating that
the spymasters were able to create data that is solvable by other humans.

5We note associations can be subjective and culture-dependent. In Section 3 we show high agreement
between our annotators.
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Table 2: Some of the skills and observed patterns required to solve WinoGAViL associations. Each
association instance may require multiple skills.

Skill Observed
Pattern Description Example %

Non-
Visual

Attribute Cue has attributes of Association iguana has green color 14%
Cue is Association miners are dirty

Use-Of Cue uses the Association miner uses tractor 9%
Association is used in relation to Cue tupperware is used to store food

General
Knowledge

Cue is a name for Association ford is a name of a car 13%
Association is used in a relation to Cue Oats improve horses performance

Visual

Activity Associations perform a Cue in the image deer & snowman looks like they stare
(Figure 6b) 6%

Analogy Cue can look like Association,
despite being from different concept maps

deer & TV antenna looks like a horn
(Figure 6d) 4%

Visual
Similarit Association is visually similar to the Cue The sponge shape is similar to a box

(Figure 6a) 20%

Finally, we select the WinoGAViL test set. To obtain the final test instances, we select associations
solved with a mean Jaccard index of at least 80%. The threshold can be lowered to receive more
data of lower quality or raised to receive less data of higher quality. Note that in order to reduce the
dependence on a specific model, we do not use the model scores in the data selection, i.e., instances
that can be solved by the AI model are not automatically excluded, only the solvable-by-humans
score is considered in the discarding decision. The last row in Table 1 presents the final number of
instances accumulated in the dataset.

Table 1: WinoGAViL collection statistics. Small dif-
ferences exist between 5 and 6 candidates, and be-
tween 10 and 12 candidates, so we analyze these
groups together. Compared to humans, the model
struggles with increased number of candidates.

# Candidates 5 & 6 10 & 12

# Generated Associations 4,482 1,500
% Avg. Model Score 50% 35%
% Avg. Human Score 84% 80%
# ≥80% Avg. Human Score 2,714 854

The annotators were paid an average of 14
USD per hour for the annotation tasks (in-
cluding bonuses). The total project anno-
tation budget was 2,000 USD. The annota-
tors received daily feedback on their perfor-
mances, scores, and the bonuses they won.
We denote the data created by the Wino-
GAViL game by WinoGAViL dataset. In §3
we show that this data is easy for humans and
challenging for state-of-the-art models.

2.3 WinoGAViL Analysis

Reasoning skills. We analyze the differ-
ent skills required to solve the WinoGAViL
dataset. We randomly sample 320 samples
of WinoGAViL dataset and manually annotate these skills, observing the patterns required for humans
to solve each association. Table 2 presents some of the observed patterns, required skills, and
frequencies. Appendix A, Table 8 presents the full table and Figure 6 presents examples of the visual
associations. We see that solving WinoGAViL dataset requires diverse commonsense skills.

Players feedback. We collected qualitative and quantitative feedback from the crowdworkers.
Table 3 presents quantitative questions and ratings, showing our game is recommended as an online
game, is fun and has an intuitive user interface. We also asked the spymasters open questions about
how seeing the AI model prediction and the performance bonus affected them. They mostly responded
that these decisions were effective—“I used the model’s guesses to make my associations better. I
went after associations that the model frequently got wrong.” and “bonus keep motivation up when
it was hard to come up with connections”. Full qualitative responses (open text) are presented in
Section A.4.2 at Appendix A.

Section A.5 in Appendix A includes additional analysis, for example annotator statistics with
demographic information and average performance, and generated cues statistics including richness
ratings of the created cues, ratings for abstract and concrete cues, and more.
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Table 3: Players feedback collected from the crowdworkers players (scale of 1-5)
Rate for the following skills how much you found them required while performing the task

Role Visual Reasoning General Knowledge Associative Thinking Commonsense Abstraction Divergent Thinking

Spymaster 4.4 3.6 4.5 3.9 4.3 4.5
Solver 4.4 4 4.7 4.3 4.1 4.1

Role Interest in play and recommend it as an online game Level of enjoyment while doing the task How clear was the UI

Spymaster 3.8 3.7 4.7
Solver 4.1 4.4 4.9

3 Experiments

In this section, we provide an extensive evaluation of WinoGAViL dataset. First, we show the value
of our game, by comparing it to an alternative data generation baseline based on SWOW [17], an
existing resource of textual associations. We then evaluate human and models performance on both
datasets and provide analysis.

3.1 Extracting the SWOW Baseline Dataset

We describe an alternative data generation baseline based on the SWOW (“Small World of Words”)
dataset.6 SWOW is an ongoing project where participants are presented with a cue word and asked to
respond with the first three words that come to mind. We use a common representation of SWOW as
a graph network.7 We select random distractors that are not associated with the cue in the SWOW
graph. We combine the distractors to the association instances from SWOW and create 1,200 multiple-
choice instances with 5 or 6 candidates. Each concept’s image is obtained from the extracted images
(§2.1). Note that SWOW is based on textual associations, which were provided by humans given a
cue, making it textual and non-adversarial, whereas WinoGAViL is based on visual and adversarial
associations, where humans create a new cue given a set of images. Figure 4 illustrates this difference.
As we did in the WinoGAViL game, we validate with human annotation and only keep instances with
a mean Jaccard score of at least 80%. Human performance is 85%, so most association instances are
retained. The final dataset, denoted SWOW vision baseline dataset, is composed of 1,000 instances.

3.2 Evaluation Setup

We experiment with state-of-the-art models and compare them to humans on the WinoGAViL dataset
and the SWOW vision baseline dataset. On the WinoGAViL dataset we compare cases with 5-6
candidates and cases with 10-12 candidates. We use the Jaccard index as an evaluation metric (§2).

Humans. We sample 10% of the test sets and validate it with new annotators who were not involved
in any previous annotation tasks. We require three different annotators to solve each instance and
report their average Jaccard score as the final human prediction. Annotator agreement is measured two
different ways: by comparing the Jaccard index of the annotators’ selections with the ground-truth
labels, and by comparing the Jaccard index between the three annotators’ selections. The standard
deviations are 6.3, 7.5, and 5, and the Jaccard index is 80, 81, and 89 for the cases with 10-12
candidates, 5-6 candidates, and SWOW, respectively, indicating high agreement.

Zero-shot models. We evaluate several diverse state-of-the-art vision-and-language models. In all
cases described below (except CLIP-ViL), the model encodes the text and the image and produces a
matching score for each (cue, image) pair. We take the k (number of associations) images with the
top scores (For example, the top k=3 model predictions in Figure 2).8

1. CLIP [14] is pre-trained with a contrastive objective that can be used without directly
optimizing for the task. We use four versions of models with different amounts of parameters:
RN50, ViT-B/32, ViT-L/14 and RN50x64/14 with 100M, 150M, 430M and 620M parameters
respectively (RN50 was used during data collection).

6licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
7https://smallworldofwords.org/en/project/explore
8We ran the zero-shot experiments on a MacBook Pro laptop (CPU) in <6 hours.
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(a) An association from WinoGAViL dataset, collected
by our interactive game. Spymaster composes a new
association given a set of images, aiming to fool a rival
AI model. The spymaster has created the cue horn
and selected the two images surrounded by bounding
boxes. This association instance cannot be solved
without the specific image information (TVs usually
don’t have horns). Cues are assigned in a visual and
adversarial manner.

(b) An association from SWOW vision baseline
dataset, which is automatically extracted based on
the SWOW dataset. Annotators receive a cue (e.g.,
stork) and provide three associations. We take the
textual annotations, add distractors and extract images
for each given association. This association could be
solved without the visual information (stork is corre-
lated with the concepts of bird and baby). Cues are
assigned in a textual and non-adversarial manner.

Figure 4: WinoGAViL dataset vs. SWOW vision baseline dataset generation process.

2. CLIP-ViL [18], with 290M parameters, is a pre-trained vision-and-language model that uses
CLIP as a visual backbone, rather than CNN based visual encoders that are trained on a
small set of manually annotated data. We use the image-text matching objective, where
a classification head predicts a score indicating whether the candidate image and the cue
match each other.

3. ViLT [19], with 111M parameters, incorporates text embeddings into a Vision Transformer
(ViT).

4. X-VLM [20], with 216M parameters, is pre-trained with multi-grained vision language
alignments and fine-tuned for image-text retrieval (Flickr30 [21]) tasks, achieving state-of-
the-art results on several benchmarks.

Supervised models. We join a line of benchmarks that introduce a test set, without predefined train
splits [10, 22, 23]. We believe that in order to solve associations, a machine must map knowledge
to new, unknown cases without extensive training [24]. Nonetheless, for completeness, we also
consider fine-tuning models on the associations data. We add a binary classifier on top of the pre-
trained embeddings to classify whether a given (cue, image) pair is associative or not. We use CLIP
(VIT-B/32) model, concatenate the textual cue embedding to the visual image embedding, followed
by a classifier that produces a score in [0, 1], where 1 is labeled ‘associative’. We use the Adam
optimizer [25] with a learning rate of 0.001, batch size of 128, and train for 7 epochs. Since we do
not propose a training/validation/test split, we repeat five experiments with different random seeds
where we sample a unified training set of 9,326 (cue,image) pairs for both the candidates cases. We
then sample a separate test (10%) and validation (10%) sets with non-overlapping images, and report
the average results, comparing the supervised and zero-shot models on the same sampled test sets.9

9Code for reproducing these experiments is available in this link. We ran the supervised experiments with a
single NVIDIA RTX2080 GPU, all experiments ran in <24 hours.
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Figure 5: Examples for different association categories and results for each category

3.3 Results and Model Analysis

Table 4: Zero-shot models performance on the
SWOW vision baseline dataset and the WinoGAViL
dataset. Numbers indicates Jaccard score (0–
100%). Bold numbers indicate best models per-
formances and lowest human performance. The
associations collected via the game are difficult for
all models to solve.

Model Game SWOW

# Candidates 10 & 12 5 & 6 5 & 6

CLIP-RN50x64/14 38 50 70
CLIP-VIT-L/14 40 53 74
CLIP-VIT-B/32 41 53 74
CLIP-RN50 35 50 73

CLIP-ViL 15 47 66
ViLT 52 55 59
X-VLM 46 53 68

Humans 90 92 95

Zero-shot results on WinoGAViL dataset and the
SWOW vision baseline dataset are presented in
Table 4. Table 10 (Appendix A) shows full statis-
tics and performance for the different number of
candidates and created associations.

The game allows collection of associations
that are easy for humans and challenging for
models. Performance on the data collected via
the game is 15–52% with 10-12 candidates, and
47–55% with 5-6 candidates. All models’ per-
formances are far below human performance
(90% and 92%, see last row). We highlight that
although our rival AI model is CLIP with RN50,
the created data is still challenging even for mod-
els order-of-magnitude larger. We also see a
significant performance drop with most mod-
els when increasing the number of candidates
without hurting human accuracy, indicating that
humans are robust to the increased difficulty
level while models struggle with it.

The game creates more challenging associa-
tions compared to the SWOW based method.
The highest model performance on the SWOW
vision baseline dataset is 74%, and on the WinoGAViL dataset is 55%, both with the same number of
candidates (5 & 6). CLIP-ViL achieves lower results, especially in the 10 & 12 case. The reason could
be that CLIP-ViL uses the ITM pre-training objective (image-text matching), whereas X-VLM and
ViLT are fine-tuned for image-text retrieval. CLIP is also pre-trained, but with a different contrastive
pre-training objective that may be more useful for this task. The results indicate the value of our
game in collecting associations that are much more challenging than the SWOW-based method.

Table 5: Supervised models perfor-
mance. Results are mean and stan-
dard deviation of the Jaccard index
of five experiments, each time sam-
pling different test set. Training is
effective given more distractors.

# Candidates 10 & 12 5 & 6

Zero-Shot 42 ± 3 53 ± 2
Supervised 49 ± 3 52 ± 1

Training is effective given more distractors. Fine-tuning
results are presented in Table 5. The relatively low performance
indicates that models struggle to capture the information re-
quired to solve challenging associations from supervised data.
Interestingly, we see that training did not change with 5 & 6
candidates, but did improve performance by 7% with 10 & 12
candidates, indicating that the model is only able to exploit
supervised data in particularly hard cases, with lower random
chance of success.

Model performance varies between different association
types. We provide a fine-grained model analysis of different
association types. We hypothesize that models perform better
on association instances that require direct visual detection, as
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these models’ training objectives are similar to these kind of tasks. We sampled ∼1K cue-image
pairs of the instances created via the game with 10-12 candidates for analysis. Three of the authors
identified the following six categories: (a) Visually salient: the cue is the main visually salient item in
the image; (b) Visually non-salient: the cue is visual but non-salient, and specific to the particular
given image; (c) Concept related: the cue is related to the image concept, not necessarily to the
particular given image; (d) Activity: the cue is an activity depicted in the image, e.g., the cue is
jumping, and the image shows people jumping; (e) Counting: the cue is a number or amount of items
depicted in the image (e.g., two with an image of two people); (f) Colors: the cue indicates a color
that is depicted in the image (e.g., white); Examples are presented in Figure 5. Additional details,
annotations guidelines, full examples for each category and screenshots from the annotation task are
provided in Appendix A, Section A.7. We define the final category as the annotators’ majority vote,
that was reached in 98% of the cases, and discarded the other 2%. We evaluate CLIP ViT-B/32 on
the association instances and report the accuracy per category which is the proportion of the model
success in each given category. Results are presented in Figure 5. We find that model performance is
highest in the visually salient and colors category, degrades in concept related, and activities, and is
much worse in the visually non-salient and counting categories. The results suggest a lack of common
sense reasoning capabilities. We release the annotated data in the project website for future research.

Table 6: Results for different association categories and
results for each category. The model (CLIP ViT-B/32) is
stronger when the cue is visually salient in the image (a),
but weaker in the other cases, especially in visually non-
salient associations.

# Items % Model % Humans

Visually salient 67 75 98
Visually non-salient 379 36 93
Concept related 426 65 92
Activity 24 42 96
Counting 25 36 97
Colors 14 79 96

Performance of textual models is close
to vision-and-language models, but
still far from human. Another ap-
proach for tackling WinoGAViL is using
textual models, when transferring the vi-
sual modality to textual modality with
image captions, receiving a full-textual
dataset. We take OFA [26], a state-of-
the-art image captioning model, and ex-
tract image captions for each of the im-
age candidates. We use the three lead-
ing models for semantic search in Sen-
tence Transformers [27], which are Dis-
tilled RoBERTa, [28] and MPNet [29]
(two versions, the original model, and a
model fine-tuned for semantic search).10

Results are presented in Table 7. We see
that the results are better than chance level, a bit lower than the textual cue and visual candidates’
version (ViLT, one line prior to the last), but still far from human performance. These results hint that
WinoGAViL cannot be trivially solved by mapping the images to text.

4 Related Work

Associations and Codenames. Several works have studied the popular Codenames game in the
context of natural language processing [30, 31], which is also related to works on semantic relatedness
[32, 33, 34, 35]. In the context of associations, a recent work have proposed to use the SWOW
resource to evaluate pre-trained word embedding [17], and some works evaluate models with a
CNN-based visual components [1, 2]. We expand these ideas to evaluate state-of-the-art vision-and-
language pre-trained models.

Commonsense. Commonsense reasoning is a topic with increasing interest lately [36]. Many
commonsense reasoning tasks have been proposed, both in NLP [37, 38, 39, 40, 41, 42], and
Computer Vision [43, 44], including works that require understanding social cues [45, 9]. In the text
domain, a number of Winograd Schema Challenge Datasets have been proposed as alternatives for the
Turing test [13, 46, 47, 22, 23]. In the vision-and-language domain Thrush et al. [10] have proposed a
dataset that tests compositional reasoning in vision-and-language models with the task of matching a
caption with its correct image. WinoGAViL also measures vision-and-language reasoning, but focuses
on commonsense-based image-cue associations, and primarily serves as a dynamic benchmark as
playing the game allows future data collection.

10https://www.sbert.net/docs/pretrained_models.html
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Table 7: Results of textual models when using textual
image captions for the candidates. ViLT performance
(textual cue and visual candidates) performance appear
one line prior the the last. Image-to-text might be bene-
ficial, but still far from human performance.

Model Game SWOW

# Candidates 10 & 12 5 & 6 5 & 6

MPNet 39 52 72
MPNet QA 47 55 75
Distil RoBERTa 37 50 65

ViLT (V&L) 52 55 59
Humans 90 92 95

Human-and-model-in-the-loop. Mod-
els are often used in dataset collection
to reduce dataset biases or to create
adversarial instances [38, 39, 48, 49, 50],
which might limit the created instances
to be effected by the used model. For
example, in works that create adversarial
visual question answering instances
[51, 52], human annotators are prompted
to fool the model iteratively for each
instance, receiving online feedback from
the model, and their annotation is allowed
to be submitted only after they succeed or
after a certain number of trails. In contrast,
in our work, the annotators have only one
chance to trick the AI model for a given
instance. They cannot iteratively ‘squeeze’ the model to produce an adversarial example. Thus, the
generated data is less dependent on the particular AI model since the model is only used to motivate
the human player to fool it. In particular, we do not use the models’ predictions to choose the test set
instances.

Gamification. Gamification was previously used for several purposes, such as data collection
[53, 54, 55], education [56, 57], and beat-the-AI tasks for AI model evaluation [58, 59, 60]. Talmor
et al. [12] proposed a gamification framework to collect question answering instances. Kiela et al.
[61] proposed a dynamic benchmark that supports human-and-model-in-the-loop. We propose a game
that serves as a dynamic benchmark of vision-and-language associations, gamifying both human
interactions with an AI model and human interactions with other humans.

5 Limitations and Conclusions

Despite our efforts to filter inappropriate concepts and images, some players may feel harmed when
they are exposed to new generated cues, or when seeing an image that have passed the automatic and
manual filtering. Players are able to mark such cases (with a designated ‘report’ button), leading to
immediate removal until further examination. Additionally, players will agree to a consent form when
they register. When designing the game, we had several choices to make, including the bonus reward
and the AI model interaction. Future work will thoroughly explore the impact of these choices.

We introduced an online game to collect challenging associations. We demonstrated its effectiveness
by collecting a dataset that it is easy for humans and challenging for state-of-the-art models. We
provided an extensive evaluation of the game and collected dataset. We hope the WinoGAViL
benchmark will drive the development of models with better commonsense and association abilities.
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