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Abstract: Recent success of learning for robotics has spawned much interest and
demand for capable robot platforms that may eventually approach human-level
competence. However, current robot platforms for such research largely fall in
one of two categories: static bimanual setups for manipulation, or mobile bipedal
setups for locomotion – with a significant lack of bimanual mobile manipulators.
We introduce Cone-E: an open-source, low-cost bimanual mobile manipulator de-
signed to be a reliable general-purpose robotics research platform. Following the
best practices in robot platform design for indoor environments, Cone-E integrates
a compact swerve-drive base enabling omnidirectional motion, a telescopic lift
mechanism affording a vertical reach range from the floor to high shelves, and
dual 6-DoF arms to achieve whole-body mobility and manipulation. The design
emphasizes modularity and reproducibility using off-the-shelf components, 3D
printed parts, and open-source software, while remaining affordable with a bill of
materials (BOM) cost of $12K.
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Figure 1: Cone-E is an open-source, bimanual mobile manipulator designed as a general-purpose
research platform.
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1 Introduction

Applications of machine learning in robotics have made tremendous progress in recent years in
robot navigation [1, 2, 3, 4, 5], locomotion [6, 7, 8, 9, 10], and manipulation [11, 12, 13, 14, 15, 16].
Such advances in robotics have been supported by accessible, low cost hardware such as the Unitree
A1 and G1 robots, the Hello Robot: Stretch, or the Mobile Aloha open-source bimanual manipula-
tor [17]. However, there is a noticeable gap in the currently available accessible platforms for mobile
manipulation, in particular for bimanual mobile robots. Currently, such available platforms on the
market tend to be inaccessible, hard to build upon, or have limited functionality due to, respectively,
high-cost, closed source design, and hardware limitations.

In this work, we propose a new mobile manipulator design to accelerate generalizable robotics
research – aiming to provide a reliable platform that will fuel indoor mobile manipulation research.
Our most important considerations for this platform are to make it low-cost, and easy to build and
repair with off-the-shelf parts, and easy to control in various ways. We identify some key needs for
a good mobile manipulation research platform: dexterous bimanual arms, an omnidirectional base,
and a vertically extended workspace that reaches both the floor and overhead. Beyond hardware
capabilities, we identify quality-of-life developments for researchers, like having a long battery life,
a small footprint, and a readable, fully open source software stack.

Our proposed mobile manipulator, Cone-E, is low-cost (with a bill of material cost $12-13K USD)
and fully integrated to provide whole-body manipulation. With the publication of this work, we
will open source the hardware design, including a BOM and an assembly guide, the full controller
software stack, and a suite of our general-purpose “utility” policies. We believe our design will
propel further research into whole-body and mobile manipulation by providing access to a stable
platform with minimal dynamic constraints.

2 Hardware Design

In this section, we discuss how Cone-E achieves the hardware design goals identified in Section 1.

2.1 Mobile Base

Cone-E has an omnidirectional base to allow flexible navigation, intuitive teleoperation, and sim-
plified policy learning. Many current commercial robots, such as the Hello Robot: Stretch [18] or
the Rainbow RB-Y1 [19], use a differential-drive base due to its simplicity and lower cost. While
cheap, this type of drive is non-holonomic, meaning the state of the system is dependent on the path
taken in order to achieve it.

Differential-drive constraint limits arbitrary position control which is important for closed-loop
learned policies. Therefore, we designed our base as a swerve drivetrain with four wheels. We
use readily available components from the FIRST Robotics Competition (FRC) ecosystem [20],
similar to Tidybot++ [21]. A frame made of aluminum extrusions carry the four swerve modules, a
power distribution block and the battery.

Unlike TidyBot++, we do not modify the swerve modules to create caster wheels. Our base is non-
holonomic if modeled at the level of infinitesimally small timesteps. However, an abstraction of the
system with discrete timesteps, longer than the steering duration, still renders a holonomic system.
We find the maneuverability of swerve modules is enough for non-dynamic tasks in household
environment while bypassing additional build complexity from machining caster modules.

We further refine our design to give the base a small footprint (34 x 42 cm) allowing navigation
in household environments similar to humans. We designed this base to be more compact than
TidyBot++ by simplifying the electrical circuitry and running all digital components from a single
24V 20Ah NMC battery. NMC batteries have higher power density compared to SLA and LiFePO4
batteries, providing long runtime in a compact form factor. Our base motors, the lift motor and the
arms all run on 24V and can be directly powered from the power distribution block. The control
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module, an Intel NUC mini PC, runs on 19V and needs a step-down voltage regulator after the
power distribution block. Practical splice connectors like Wago [22] and power distribution panel
with many output channels keep the circuitry easy to build and customizable. In addition to the
circuitry, we use SDS MK4c swerve modules instead of SDS MK4 due to their smaller footprint and
lower chassis mounting.

2.2 Telescoping Lift

A core component to increase the vertical reach of mobile manipulators is a lift mechanism that
provides a vertical degree of freedom. Lift mechanisms allow the robot to raise or lower its torso
consisting of arm and sensors and expands its workspace beyond a fixed mounting height. This
added vertical mobility is essential for household tasks like reaching high shelves, picking objects
from the floor, or achieving optimal sensor viewpoints.

Most commercial lift designs are custom built per order and expensive, not readily available on the
market. To keep our design low-cost and easy to build with the off-the-shelf parts, we re-purpose an
adjustable height telescoping table (shown in Figure 2) as our robot lift. The table is a telescoping
lead screw mechanism driven manually with a hand crank, which we motorize for our purposes.
Inside, there are three lead screws that nest inside each other. The screws rotate in sequence. This
allows for compact collapsed length and extended height adjustment. The screws are self-locking,
thus, they hold position when unpowered. This makes Cone-E more efficient as the lift does not
need to draw power when stationary. The outside of the lift are three telescoping aluminum columns
that are held together by rubber friction pads. We use the thin steel panels on the top and bottom of
the lift to mount the torso and attach the lift onto the base respectively.

We automate this table by motorizing the hand crank drive shaft. We create a timing belt pulley that
fits on the shaft using nylon or metal 3-D printing. Then, using a timing belt and a BLDC servo
motor, we can control the lift height. The lift is 30.5 cm at its lowest and 72 cm at its highest.
We find the 41.5 cm stroke length to be enough for being able to reach the ground and also doing
tabletop manipulation on high surfaces. In addition to providing extended reach, the lift acts as an
extra degree of freedom that we can utilize in our inverse kinematics solver.

We use the integrated encoders inside the motor as a feedback to compute lift position. The lead
screws inside the lift have a 6mm thread pitch. We use a 60-teeth and 18-teeth pulley on the lift
and motor shaft respectively. To move the lift through its full-range, the motor needs to rotate
approximately 225 rotations. To calibrate, the lift needs to “home” when the robot is turned on.

2.3 Arms and the Gripper

We build Cone-E as a bimanual robot that supports two 6DOF arms and custom grippers as manipu-
lation tools. We choose AgileX Piper arms due to their low-cost (only $2,500) and light weight (4.2
kg). The arms are mounted onto an extruded aluminium torso with 45-degree shoulders. We choose
this shape to balance the arms’ forward and downward reach. The angled shoulders also prevent the
elbows of the arms from colliding with each other even if their mounting points are close.

As the end-effector on the arm, we choose the NYU gripper introduced in [23]. The angular jaw
design allows both precise manipulation and large force application. As an end-effector camera, we
use an iPhone following the same work, and for data collection use the hand-held version of the
NYU gripper with the mounted iPhone and the associated app, AnySense. The app records video,
high-quality SE(3) pose, and any supplementary information streamed over bluetooth, all at 30fps.
We designed this tool to be more ergonomic and compact compared to other similar tool designs
such as [23, 24, 25].

2.3.1 Compliant Controller

A compliant controller is essential to absorb unexpected forces encountered during manipulation and
ensure safety in learned policy deployments. Therefore, we implement a joint stiffness controller
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Figure 2: Cone-E is modular and easily customizable with different arms, end-effectors and sensors.

with two layers. The low-level real time controller runs at 200 Hz, while the policy sets targets for
this controller at much lower frequencies. The typical joint stiffness controller objective is

−τg(q) +Kp(qref − q) +Kd(q̇ref − q̇)

where q is the measured joint positions and qref is the target position set by the upstream controller.
The system acts like a spring-damper around the reference position with stiffness coefficient Kp

and damping coefficient Kd. The feedforward torque gravity compensation allows us to set stiffness
gains lower, resulting in compliant movement.

3 Applications of Cone-E

3.1 Teleoperation

We teleoperate Cone-E using a Quest VR device following [26]. The VR controllers are re-mapped
to robot control in the following way. We re-target the left and right controller poses to the corre-
sponding arm’s end-effector pose. The left and right joysticks on the controllers are used to com-
mand rotational and translational velocities to the base in the planar SE(2) workspace respectively.
The trigger buttons on the joysticks are used to control the lift height. Quest controller commands
are published to the robot mini PC over WiFi. We find 30 Hz to be the ideal VR command frequency
to balance robot responsiveness against network delays.

3.2 Policy Learning

Following Etukuru et al. [23], we used our hand-held data collection tool with an iPhone Pro to
collect demonstrations for a general pick-up task. Our portable hand-held tool enables us to collect
demonstrations in diverse environments. We collected approximately 5,000 demonstrations to train
a general pick-up policy. We use a VQ-BeT [27] model with 30M parameters, which runs entirely
on the CPU of Cone-E’s mini PC. The pick-up model predicts the SE(3) relative action in the
current end-effector frame and the absolute gripper pose. This end-effector pose is then fed to our
arm differential inverse kinematics controller, which calculates the next joint positions for the robot.

The policy takes in camera observations and predicts new actions at 2Hz, predicting the desired
end-effector pose. In contrast, our low-level joint stiffness controller runs at 200Hz. To bridge this
frequency gap and ensure smooth motion, we interpolate the joint commands to reach the target pose
within 1 second. The policy issues a new command when the preceding one is halfway completed
(every 0.5s), thereby enabling continuous and smooth robot control.
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4 Conclusion

In this work, we introduce Cone-E, an open-source bimanual mobile manipulator robot platform.
While we believe it offers a great balance between cost and functionality, there are certain affor-
dances, such as a head camera and twisting neck and torso, that are not present in the current version.
By open sourcing our design, we hope that the community can customize the platform to their needs
while iterating on future such platforms in an open and collaborative way.
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