

000 001 CRYSTALSEG: AUTOMATING SYNCHROTRON TO- 002 MOGRAPHIC RECONSTRUCTION SEGMENTATION FOR 003 CRYSTALLOGRAPHY WITH PHYSICALLY GUIDED SIM- 004 ULATION 005 006 007

008 **Anonymous authors**

009 Paper under double-blind review

010 ABSTRACT

011
012
013
014 Automated 3D segmentation of tomographic volumes is a critical bottleneck in
015 long-wavelength X-ray crystallography, a technique crucial for drug development
016 and validating structural models from systems like AlphaFold3. This segmenta-
017 tion is a prerequisite for ray-tracing absorption correction, which is necessary for
018 data processing in X-ray crystallography experiments. However, it is currently
019 performed manually by experts, which is a process that is slow, costly, and pre-
020 vents full automation of the scientific pipeline. The primary barrier to automa-
021 tion is the prohibitive expense and difficulty of collecting annotated segmenta-
022 tion data. To address this data scarcity problem, we present **CrystalSeg**, a novel,
023 GPU-accelerated simulation and segmentation pipeline. It generates vast amounts
024 of annotated data by simulating synchrotron X-ray tomography images and their
025 corresponding reconstructed 3D volumes. We demonstrate that segmentation net-
026 works trained on CrystalSeg’s synthetic data achieve dramatic performance gains
027 over models trained on limited real data, with **improvements of 29.2% in Re-**
028 **call, 30.5% in IoU, and 24.9% in F1 score** for finding the crystal. CrystalSeg
029 effectively reduces the expert labor required for segmentation from hours to min-
030 utes. More importantly, it enables, for the first time, a fully automated solution for
031 ray-tracing absorption correction in long-wavelength crystallography, making this
032 advanced structural biology technique more scalable and accessible.

033 1 INTRODUCTION

034
035 Long-wavelength X-ray crystallography plays
036 a crucial role in experimentally determining
037 protein structures, and localizing and identify-
038 ing target atoms through anomalous scattering
039 (El Omari et al., 2024). AlphaFold3 (AF3)
040 (Abramson et al., 2024) can provide excellent ge-
041 ometric priors of the protein structure but cannot
042 measure the identity of target atoms, or the prop-
043 erties of the redox state inside the protein. Com-
044 bining AF3 with X-ray crystallography data al-
045 lows for validating the predictions from AF3, de-
046 signing fragment-based drugs (Ma et al., 2024),
047 and solving the structure of previously unseen
048 proteins.

049 However, this powerful combination is hindered
050 by a critical data processing bottleneck: **ray-**
051 **tracing absorption correction**. This physical
052 correction step is mandatory for processing long-
053 wavelength data, as the crystal sample itself can
introduce non-linear errors in the measured X-

054
055 Figure 1: A typical sample’s tomography recon-
056 struction (top) and its segmentation (bottom). The
057 segmentation highlights the crystal (in light
058 purple), the surrounding mother liquor (in semi-
059 transparent black), and the mounting loop (in
060 coral red) (Kazantsev et al., 2021). Best viewed
061 in colour.

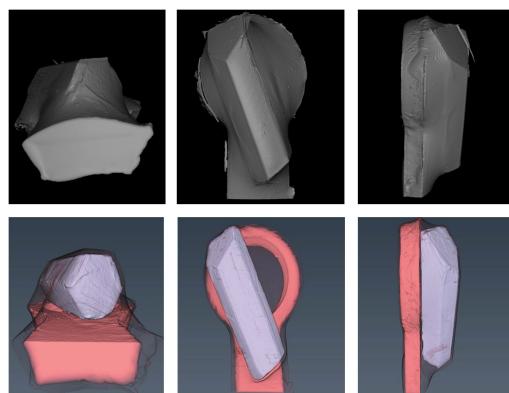
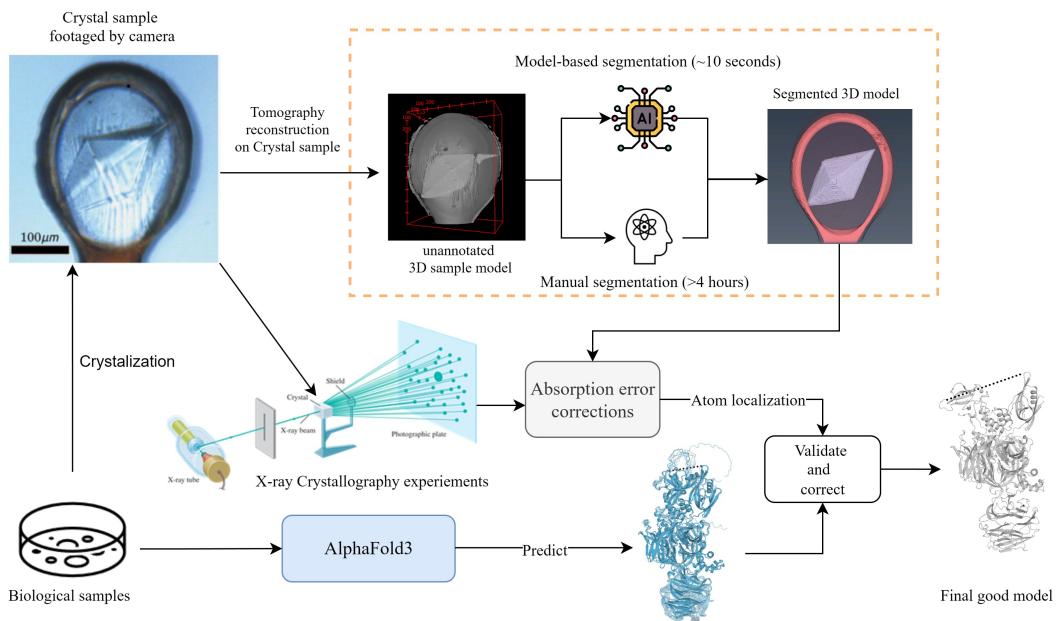


Figure 2: Illustration of how synchrotron tomography segmentation helps long-wavelength X-ray crystallography to validate and correct the predictive models from AlphaFold3 (Abramson et al., 2024). By using model-based segmentation, the whole data processing can be automated and the runtime for data annotation can be reduced from 4+ hours to around 10 seconds. The visual image, tomography reconstruction, and segmentation of the crystal sample are shown (Kazantsev et al., 2021).



ray intensities (as shown in Figure 2, further details in Section §S1). Accurately performing this correction requires a precisely annotated 3D model of the sample, which is typically acquired via X-ray synchrotron tomography. The problem is that this tomographic volume must be **manually segmented** to label the crystal, its surrounding solution (mother liquor), and the mounting loop (Figure 1) (Lu et al., 2024b;a). This manual, multi-class segmentation task is extremely time-consuming, which often **takes hours per sample**, and prevents the entire scientific pipeline from being fully automated.

Intuitively, this 3D segmentation task can be automated with standard deep learning techniques based on recent progress in other fields for 3D segmentation (Isensee et al., 2021; Yu et al., 2024; Azad et al., 2024; Lin et al., 2022). However, this is highly challenging due to significant data-related hurdles. Protein crystal samples are often expensive and delicate, making the collection and annotation of large-scale, high-quality training datasets practically infeasible. Furthermore, the samples exhibit high variance in their physical properties (e.g., absorption and phase contrast), leading to diverse intensity distributions in the reconstructed volumes. This problem is compounded by inconsistent sample positioning and varied morphologies. Unlike segmentation in medical imaging, which often targets well-defined organs, segmentation in crystallography must handle a wide-ranging, sparse, and variable domain, making robust generalization a significant challenge. For example, the crystal in Figure 1 is longitudinal and at the top of the loop, while that in Figure 2 has a diamond-like shape and is in the middle of the loop. These challenges make automatic segmentation significantly more difficult.

To overcome the above data scarcity problem, in this paper, we introduce CrystalSeg, an innovative method to simulate synchrotron tomography reconstructions with physical guidance, for generating synthetic training data to train a segmenter. Physical guidance by simulating X-ray wave propagation can help ensure that the synthetic data accurately reflects the interaction between X-rays and the material properties of the sample, including factors such as absorption, scattering, and phase shifts. This guidance introduces a level of realism that allows DNNs trained on synthetic data to generalize better to segment real-world synchrotron tomography datasets. We demonstrate that our

108 simulation method can be accelerated by NVIDIA GPUs. By incorporating hyperparameters, such
 109 as refractive indices of the materials, and randomising the positions of the crystal, CrystalSeg can
 110 provide high-quality, high-volume, synthetic data for training Deep Neural Networks (DNNs) to
 111 achieve automatic synchrotron tomography segmentation.

112 Our results demonstrate that our method not only gains accurate simulated outcomes but also sig-
 113 nificantly improves DNN training efficiency. CrystalSeg is **the first fully automated approach**
 114 for efficiently generating large volumes of annotated training data, enabling the training of a 3D
 115 segmentation model for synchrotron tomography reconstruction data. This advancement facilitates
 116 the first fully automated ray-racing absorption correction in long-wavelength crystallography. Tasks
 117 that once required over four hours of manual intervention and annotation can now be completed in
 118 only seconds through automated segmentation.

119 The main contributions of this paper are as follows:
 120

- 121 • We introduce the first fully automated solution for ray-racing absorption error correction in
 122 long-wavelength crystallography with an automatically annotated 3D model of the crystal
 123 sample. This method enhances efficiency and accessibility for users.
- 124 • To address the challenges of training a DNN for automated 3D model annotation, we pro-
 125 pose CrystalSeg, an innovative and efficient method for simulating synchrotron tomography
 126 reconstructions, accelerated by NVIDIA GPUs for improved speed.
- 127 • Our approach demonstrates accurate simulation results, achieving high SSIM and PSNR
 128 values that closely match those from real experimental data.

130 2 RELATED WORK

131 2.1 TOMOGRAPHY RECONSTRUCTION SEGMENTATION IN SYNCHROTRONS

132 Synchrotron X-ray tomography is a well-established technique, supported by numerous dedicated
 133 beamlines worldwide that provide high-resolution imaging for a range of applications. When applied
 134 to delicate and expensive samples, such as protein crystals, synchrotron tomography reconstruction
 135 reveals challenges with limited annotated data to train a deep neural network (DNN). The compo-
 136 sition and structure of these samples can lead to varying levels of absorption and phase contrast,
 137 influenced by differences in sample size, shape, and material properties. Furthermore, experimental
 138 artefacts, such as beam hardening and ring artefacts, can lead to noisy reconstruction results. Also,
 139 variations in the crystal’s position relative to the surrounding material often require case-specific
 140 adjustments for accurate analysis. These factors make it challenging to develop robust, generalized
 141 models, especially in crystallography.

142 Semi-automatic segmentation techniques can assist in synchrotron tomography experiments. Such
 143 techniques include intensity thresholding, which separates regions based on differences in intensity
 144 (Alvarenga de Moura Meneses et al., 2011); region growing, which expands a region from a “seed”
 145 point to include adjacent points with similar intensities (Kazantsev et al., 2021); and topological wa-
 146 tershed, which separates regions based on gradient differences at the edges (Kornilov et al., 2022).
 147 Although these methods can effectively differentiate between regions, they still require human in-
 148 tervention to assign the correct material to each segmented region.

149 Numerous DNN methods have been developed for segmentation tasks in synchrotron X-ray tomog-
 150 raphy. These methods typically involve training DNNs on annotated real data. Some approaches
 151 focus on segmenting specific materials or biological molecules that exhibit similar absorption
 152 contrasts or shapes after reconstruction Torbati-Sarraf et al. (2021); Davydzenka et al. (2022); Yang et al.
 153 (2021). Alternatively, some methods use publicly available simulation data or simulate a single ma-
 154 terial type to train segmentation networks that distinguish between the foreground and background
 155 regions Moebel et al. (2021); Lin et al. (2022). In synchrotron tomography segmentation, partic-
 156 ularly in crystallography, segmenting components such as the mother liquor, which often shares
 157 absorption characteristics similar to those of the crystal, presents unique challenges. The relative
 158 positions of the mother liquor, crystal, and mounting loop can vary significantly between samples,
 159 complicating segmentation. Furthermore, a primary limitation of DNN-based segmentation on real
 160 data is the extensive effort required for data collection and annotation.

162 2.2 TOMOGRAPHY DATA SIMULATION
163

164 Generative Adversarial Networks (GANs) and diffusion models have been applied to synthetic
165 medical CT generation (Yu et al., 2024; Friedrich et al., 2024). However, these models usually
166 require hundreds of diverse, well-annotated cases, while labeled synchrotron datasets are scarce.
167 Synchrotron tomography also exhibits substantial variability in crystal shape, size, orientation, and
168 position. Training a GAN or diffusion model under this variability is therefore highly challenging.
169 Moreover, most available open-source pre-trained weights are trained on medical images, creating a
170 domain gap that further limits transferability. In contrast, simulation by physical guidance offers an
171 alternative by utilizing experimental equipment parameters, such as the X-ray source and detector
172 type, along with the properties of the experimental sample. By alternating the refractive indices and
173 designing 3D synthetic models of the crystal sample by CAD software, a large amount of synthetic
174 data with physical guidance can be generated.

175 A more accurate approach is to generate synthetic tomography images via physics-based simulation
176 imaging (Ching & Gürsoy, 2017; Kazantsev et al., 2018; Faragó et al., 2017; Unberath et al., 2018;
177 Gopalakrishnan & Golland, 2022). A significant limitation of current tomography simulations by
178 physical guidance is their reliance on physical models that are either overly simplified or computa-
179 tionally prohibitive for large-scale data generation. Many simulators, particularly phantom-based
180 tools, treat objects as generic attenuation maps with simple geometry and pure absorption contrast
181 (Ching & Gürsoy, 2017; Kazantsev et al., 2018). While recent differentiable renderers achieve
182 high anatomical realism, they must also simplify physics for tractability, focusing on absorption
183 and overlooking the crucial phase-contrast phenomena that arise from wave propagation (Unberath
184 et al., 2018; Gopalakrishnan & Golland, 2022). This abstraction fails to generate the high-fidelity
185 edge enhancement and material-aware contrast governed by the precise, energy-dependent refractive
186 indices of constituent materials. Conversely, simulators that do model these complex wave-based
187 interactions are often too computationally expensive for deep learning frameworks. Their design as
188 high-fidelity physics workbenches requires an intricate, manual setup of source and detector param-
189 eters for each simulation, which is impractical for programmatically generating the large, diverse
190 datasets required to train robust models (Faragó et al., 2017). This forces a critical trade-off, leading
191 to a simulation-to-reality gap that directly impacts model performance. A network that has been
192 trained on simplified projections will fail to generalize to real-world experimental data, as it has
193 never been exposed to the crucial, material-dependent phase effects that are paramount in applica-
194 tions like high-resolution crystallography.

195 3 METHODOLOGY
196197 3.1 SIMULATION PIPELINE
198

199 As illustrated in Figure 3, the overall simulation process consists of 1. designing 3D synthetic
200 models of the crystal sample using CAD software, 2. simulating projection images by simulating
201 X-rays propagating through the crystal sample and finally reaching the detector, 3. rotation of the 3D
202 synthetic models over 180°, 4. performing tomography reconstruction on that series of projection
203 images using **filtered back-projection (FBP)** using the *TomoPy* (Pelt et al., 2016) software.

204 The synthetic crystal samples are not manually modeled but are generated within a CAD software
205 *Blender* via its Python API, which is an automated and high-throughput pipeline. This process is
206 grounded in physical principles: each crystal’s morphology is constructed from its crystallographic
207 data, including its crystal system, point group symmetry operations, and Miller indices (hkl) for its
208 characteristic faces. Similarly, the mounting loop is constructed based on realistic dimensions to
209 ensure consistency. The mother liquor is simulated using *Blender*’s integrated fluid physics engine,
210 where a fluid domain is established around the crystal and loop. The simulation output from *Blender*
211 is in *Mesh* format, and the 3D volume of a tomography reconstruction is in *Array* format. Hence,
212 the simulation dataset from *Blender* is voxelized using *Open3D* (Zhou et al., 2018). The details of
213 simulating projection images are described in Section 3.2. After simulating the wave propagation
214 between the sample and the virtual detector, the intensities of the wavefield are recorded as synthetic
215 tomography projection images. By rotating the simulated sample over 180° with 0.2° as an incre-
ment, there is a total of 900 synthetic tomography projection images in a dataset, as shown in Figure

216

Figure 3: The simulation process of CrystalSeg

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

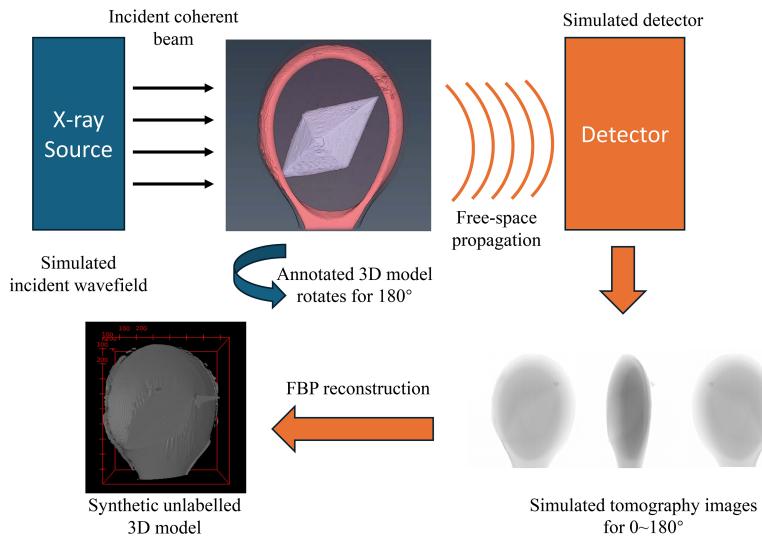
265

266

267

268

269



3. Then, using FBP to reconstruct the series of 900 projection images to get the reconstructed 3D volume.

3.2 SIMULATING X-RAY PROJECTION IMAGES BY WAVE PROPAGATION PRINCIPLE

In a real tomography reconstruction experiment, particularly at low energies (3 keV - 5 keV at long wavelength), there are significant edge effects at the boundaries between different materials. This is because the sharp interface of the crystal and the mounting loop incur significant phase contrast, not just absorption, when the previous work may ignore (Ching & Gürsoy, 2017; Unberath et al., 2018; Gopalakrishnan & Golland, 2022). To achieve a high similarity simulation dataset that captures these nuances and effectively trains deep learning models, a comprehensive understanding and simulation of the physical principles of X-ray wave propagation are essential. The overall process can be treated as an incident monochromatic wavefield, typically a plane or spherical wave, propagating through an arbitrary number of 3D objects. The wavefield's intensity is then captured at a virtual imaging plane (detector in reality) at a certain distance from the source (Born & Wolf, 2013). We utilized the multislice wave propagation technique (Kirkland, 1998) to discretize the 3D object into a stack of 2D slices to allow efficient parallel computing. This entire wavefield propagation chain, including object interaction and free-space diffraction, is efficiently computed on NVIDIA GPUs using CuPy for computational speed, which is critical for generating large datasets.

Incident wavefield. A point source emits a monochromatic wavefield $u_0(\mathbf{x}, z_1)$ with wavelength λ , where \mathbf{x} represents the 2D coordinates perpendicular to the X-ray incident axis z , and z_1 is the distance to the first object in the beam path. The intensity distribution of the wavefield is given by $I_0(\mathbf{x}, z_1) = |u_0(\mathbf{x}, z_1)|^2$. For a spherical wave, when z_1 is sufficiently large (as in synchrotron common setups), the spherical phase profile is approximated to (Faragó et al., 2017):

$$u_0(\mathbf{x}, z_1) = \sqrt{I_0(\mathbf{x}, z_1)} e^{j k z_1}, \quad (1)$$

where $k = \frac{2\pi}{\lambda}$ is the wave number.

Wavefield propagations. When an X-ray beam propagates through non-vacuum objects, its intensity is attenuated, and the beam undergoes a phase shift. This behaviour is described by the 3D complex refractive index of the object i at the 2D coordinate \mathbf{x} , located a distance z from the X-ray source. The refractive index is represented as (Born & Wolf, 2013):

$$n_i(\mathbf{x}, z) = 1 - \delta_i(\mathbf{x}, z) + j \beta_i(\mathbf{x}, z), \quad (2)$$

270 where $\delta_i(\mathbf{x}, z)$ corresponds to the real part of the refractive index, representing the phase shift, and
 271 $\beta_i(\mathbf{x}, z)$ is the imaginary part, representing absorption within the object.
 272

273 The propagation function at the exit plane of the object i can be determined by integrating along the
 274 z -direction. This is expressed as (Born & Wolf, 2013):
 275

$$276 \quad 277 \quad 278 \quad T_i(\mathbf{x}) = \exp \left(jk \int_{z_i^-}^{z_i^+} n_i(\mathbf{x}, z) dz \right) = e^{-k(B_i(\mathbf{x}) - j\varphi_i(\mathbf{x}))}, \quad (3)$$

279 where
 280

$$281 \quad 282 \quad 283 \quad B_i(\mathbf{x}) = \int \beta_i(\mathbf{x}, z) dz \quad \text{and} \quad \varphi_i(\mathbf{x}) = \int [1 - \delta_i(\mathbf{x}, z)] dz.$$

284 Here, $B_i(\mathbf{x})$ represents the cumulative local absorption of the X-ray as it propagates through object
 285 i , and $\varphi_i(\mathbf{x})$ represents the total phase shift induced by the refractive index variation. Therefore, the
 286 relationship between the wavefield $u_{i-1}(\mathbf{x}, z_i)$ at the entrance plane of the i -th object and $u_i(\mathbf{x}, z_i)$
 287 at the exit plane can be described as:
 288

$$289 \quad 290 \quad u_i(\mathbf{x}, z_i) = T_i(\mathbf{x}) u_{i-1}(\mathbf{x}, z_i). \quad (4)$$

291 In the case where the X-ray propagates through air or vacuum, the wavefield does not experience
 292 material attenuation but still undergoes spreading, diffraction, and phase evolution as it propagates.
 293 This free-space propagation can be modelled using the angular spectrum formalism between two
 294 parallel planes separated by a distance Δz (Goodman, 2005). Therefore, the 2D Fourier transform
 295 of the wavefield, denoted by $\tilde{u}(\xi) = \mathcal{F}[u(\mathbf{x})]$, describes the wavefield in terms of 2D spatial fre-
 296 quencies ξ . The free-space propagator is given by:
 297

$$298 \quad \tilde{u}(\xi, z + \Delta z) = \tilde{P}(\xi, \Delta z) \tilde{u}(\xi, z), \quad (5)$$

299 where the propagator $\tilde{P}(\xi, \Delta z)$ can be written as:
 300

$$302 \quad \tilde{P}_F(\xi, \Delta z) = \exp(jk\Delta z) \exp(-j\pi\lambda\Delta z\xi^2). \quad (6)$$

304 We apply the Fresnel approximation to have this form of $\tilde{P}_F(\xi, \Delta z)$ as X-ray illumination is parallel
 305 or weakly divergent in crystallography experiments. The Fresnel approximation is suitable when the
 306 distance between the object and the detector is large compared to the wavelength and the feature size
 307 of the object, which is common in most X-ray imaging applications. Thus, the wavefield at a distance
 308 Δz behind the i -th object can be calculated using the recursive relation:
 309

$$310 \quad 311 \quad u_i(\mathbf{x}, z_i + \Delta z) = \mathcal{F}^{-1} \left\{ \tilde{P}(\xi, \Delta z) \mathcal{F}[u_{i-1}(\mathbf{x}, z_i) T_i(\mathbf{x})] \right\}. \quad (7)$$

312 In this context, the sample and detector are treated as different instances of the object i , enabling
 313 recursive propagation of the wavefield from the X-ray source to the detector plane.
 314

315 To bridge the final gap to experimental reality, we introduce a computationally efficient detector
 316 model. A full Monte Carlo simulation is intractable for large-scale data generation. Instead, we
 317 approximate the dominant physical effects using a sequence of GPU-accelerated phenomenological
 318 models. First, the optical system's finite resolution is modeled by convolving the ideal image with
 319 a Gaussian point spread function (PSF), performed efficiently in the frequency domain (Barrett &
 320 Myers, 2013). Subsequently, the quantum nature of photon counting is introduced via a Poisson
 321 distribution for shot noise, followed by the addition of zero-mean Gaussian noise to account for
 322 electronic read noise (Hasinoff, 2014). To incorporate common instrumental artifacts, a column-
 323 wise random gain multiplier is applied, directly producing the characteristic ring patterns seen after
 324 reconstruction. This approach provides a high degree of perceptual realism and introduces the key
 325 artifacts a deep learning model must learn to be robust against.
 326

324
325

3.3 COMPARISON WITH NANO BANANA

326
327
328
329
330
331
332
333
334
335
336

We evaluated the performance of our physics-guided simulation against a state-of-the-art AI style transfer tool, Nano Banana, which is based on a pre-trained diffusion model. Such tools are valuable when limited experimental data makes it infeasible to train specialized generative models like GANs from scratch. For the evaluation, Nano Banana (Partly, 2024) was provided with five real synchrotron X-ray projection images to serve as a style guide. The target, or content image, was an ideal absorption-contrast projection image. To create a noise-free, 2D absorption-contrast image, we projected the manually segmented 3D volume by averaging its values along a single axis. The values are the distinct class labels, instead of the exact physical property. The objective was to transfer the realistic acquisition characteristics (e.g., noise, phase contrast, edge effect, intensity histogram) from the real projections onto the ideal content image. We then compared this AI-generated result with our own simulation. The precise prompts given to the AI are available in the §S2.

337
338

3.4 SEGMENTATION

339
340
341
342
343

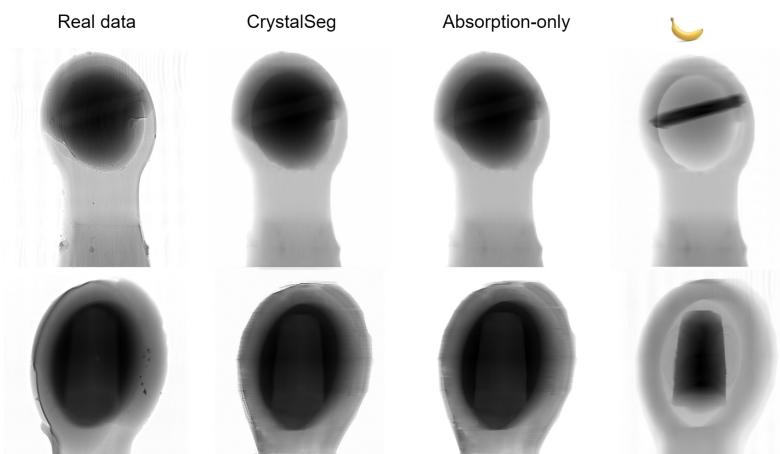
We segment synchrotron tomographic reconstructions using nnU-Net (Isensee et al., 2021), training both the 2D and low-resolution 3D configurations with 5-fold cross-validation (80% train / 20% validation per fold) and batch size of 3. The model selection is based on the best validation checkpoint within the best-performing fold. More details can be found in Section §S3 in the supplementary material.

344
345
346

4 RESULTS

347
348
349
350

Figure 4: Qualitative Results of Sample A (top) and B (bottom) between real tomography projections (left) and simulated projection images (middle and right). Results from CrystalSeg are in the middle, while those from Nano Banana (Partly, 2024) are on the right.

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366367
368

4.1 SIMULATION EVALUATION

369
370
371
372
373
374
375
376

To assess simulation fidelity, we start from a manually segmented 3D model derived from real data (Figure 3). The model is forward-projected to generate simulated projections, which are flat-field corrected. Agreement with measurements is quantified using SSIM and PSNR on the projections. Both simulated and real datasets are then reconstructed with FBP, and reconstructed slices are re-evaluated with the same metrics. Using 180° projections and the corresponding reconstructed slices, we report mean SSIM and PSNR for Samples A and B, comparing an absorption-only baseline (following Unberath et al. (2018); Gopalakrishnan & Golland (2022) with the Beer Lambert law) with CrystalSeg (Table 1).

377

CrystalSeg outperforms the absorption-only baseline across both samples and stages. For Sample A, projection quality is high (SSIM 0.858, PSNR 25.02 dB) and clearly exceeds baseline (0.8232,

378 Table 1: Mean SSIM and PSNR for Samples A and B at projection and reconstruction stages
 379 (Absorption-only baseline vs. CrystalSeg).

381 Sample	382 Stage	383 Absorption-only		384 CrystalSeg	
		385 SSIM	386 PSNR	387 SSIM	388 PSNR
389 A	390 Projection	0.823	12.86	0.858	25.02
	391 Reconstruction	0.895	21.27	0.9204	31.97
392 B	393 Projection	0.841	15.18	0.902	28.63
	394 Reconstruction	0.901	23.08	0.972	36.19

387
388 Table 2: Per-class test metrics for Crystal, Liquor, and Loop across datasets.

390 Dataset	391 Materials	392 Recall	393 IoU	394 F1 Score	395 F2 Score	396 Precision
397 Only real	398 Crystal	0.7134	0.6385	0.7180	0.7137	0.7406
	399 Liquor	0.8857	0.8086	0.8926	0.8881	0.9027
	400 Loop	0.7967	0.6720	0.7874	0.7918	0.7884
	401 Mean	0.7986	0.7063	0.7993	0.7979	0.8105
402 Only syn	403 Crystal	0.7997	0.7114	0.8154	0.8044	0.8473
	404 Liquor	0.8961	0.7849	0.8776	0.8886	0.8600
	405 Loop	0.8480	0.7334	0.8449	0.8464	0.8446
	406 Mean	0.8480	0.7432	0.8460	0.8465	0.8506
407 Real + syn	408 Crystal	0.9221	0.8332	0.8966	0.9113	0.8754
	409 Liquor	0.8966	0.8401	0.9038	0.8994	0.9114
	410 Loop	0.8838	0.8102	0.8864	0.8848	0.8899
	411 Mean	0.9008	0.8278	0.8956	0.8985	0.8922

401
 402 12.86 dB), while reconstruction also improves over baseline (0.9204, 31.97 dB vs 0.895, 21.27 dB).
 403 For Sample B, projection gains are strong (0.902, 28.63 dB vs 0.8414, 15.18 dB), and reconstruction
 404 shows the largest improvement (0.972, 36.19 dB vs 0.901, 23.08 dB). Overall, CrystalSeg better
 405 matches real data, with especially large gains at reconstruction. Figure 4 reveals the critical advan-
 406 tages of our physics-guided simulation. Across both rows, CrystalSeg most closely reproduces the
 407 real projections: object geometry, relative attenuation, and boundary edge-enhancement are consis-
 408 tent. The absorption-only simulation preserves overall shape but lacks phase-contrast effects, and
 409 the edges appear softened with flattened internal contrast. The Nano Banana result maintains gross
 410 morphology but misestimates intensities as it has no physical information, such as the absorption
 411 coefficients and the refractive indices of the materials. This model-based method may also produce
 412 spatial misalignment (global shifts) of the object in the image, causing object displacement. Overall,
 413 the physics-guided CrystalSeg projections align best with the real data, matching the results in Table
 414 1.

415
416

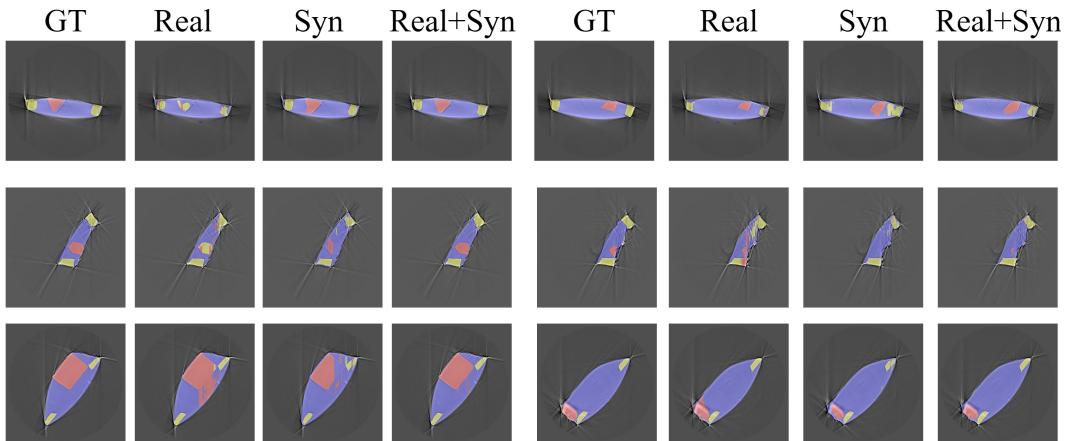
4.2 SEGMENTATION MODEL RESULTS

417 The significant role of synthetic datasets in training the segmentation model is highlighted in Table 2.
 418 Training with only real datasets (OnlyReal) is shown to have very poor segmentation performance.
 419 However, training with only synthetic data (OnlySyn) yields notable improvements across all mean
 420 metrics compared to using OnlyReal, achieving higher **Recall**, **IoU**, **F1 Score**, and **F2 Score**. Fur-
 421 thermore, the combination of real and synthetic data (All) delivers the highest performance overall,
 422 demonstrating the effectiveness of synthetic data in enhancing the model’s generalization and im-
 423 proving segmentation quality.

424 Table 2 shows that augmenting with synthetic data substantially improves performance. Real+Syn
 425 achieves the best means (IoU 0.8278; F1 0.8956; Recall 0.9008), outperforming OnlySyn (IoU
 426 0.7432; F1 0.8460) and OnlyReal (IoU 0.7063; F1 0.7993). Gains are most critical for the Crystal
 427 class: recall rises to 0.9221 (vs. 0.7997 OnlySyn; 0.7134 OnlyReal) with high F2, indicating far
 428 fewer missed crystal voxels, which can directly reduce absorption bias during the absorption cor-
 429 rection. Liquor and loop likewise improve (e.g., liquor/loop IoU 0.840/0.810 with Real+Syn), con-
 430 firming better overall material discrimination. In long-wavelength X-ray crystallography, achieving
 431 accurate voxel-wise segmentation of all material classes (mother liquor, mounting loop, and crys-
 432 tal) is crucial for precise absorption correction, especially for the crystal. This importance arises

432 Figure 5: 2D slices of the segmented 3D volumes: Crystal in Red, Mounting Loop in Yellow, and
 433 Mother Liquor in Semi-Transparent Blue. GT represents ground-truth manual labelling. Real, Syn,
 434 and Real+Syn show the segmentation models trained by those datasets.

435



441

442 because the absorption coefficients of materials become more severe at longer X-ray wavelengths.
 443 Therefore, in addition to the overall results of segmentation, the performance in segmenting each
 444 individual material class is essential. The segmentation metrics for the crystal, mother liquor, and
 445 mounting loop are presented in Table 2. In analyzing the segmentation results for the **Crystal** class,
 446 which is the most significant class for the absorption correction process in crystallography, it is
 447 evident that the model demonstrates strong performance across several key metrics.

448

449 As shown in Figure 5, Real+Syn masks adhere closely to ground truth (GT) across diverse views:
 450 crystal (red) boundaries align with liquor (semi-transparent blue) with minimal bleed, and loop
 451 (yellow) contours remain stable and contiguous. OnlySyn already sharpens boundaries relative to
 452 OnlyReal, but occasional loop mislabelling persists. OnlyReal exhibits the weakest behaviour, with
 453 systematic under-segmentation of crystal and frequent crystal–liquor leakage, especially near loop
 454 contacts and thin edges. Together, these results show that synthetic augmentation is not merely
 455 beneficial on averages, but also it specifically optimises crystal segmentation, while improving robustness
 456 at challenging interfaces.

457

458 Two scientific case studies for comparing manual segmentation and the model trained by real and
 459 synthetic dataset are demonstrated in Section §S1 and §S4. Despite minor artefacts, the automatic
 460 segmentations produce absorption-factor histograms that largely overlap manual labels, which is
 461 the basis for ray-tracing absorption correction. Sample 1 matches with minimal precision loss, and
 462 Sample 2 shows a slight drop yet preserves key trends, so absorption statistics remain sufficient for
 463 long-wavelength crystallography while enabling a fully automated pipeline.

464

465

466

467

468

469

470

471

472

473

5 CONCLUSION

474

475

476

477

478

479

480

481

482

483

484

485

486 In this paper, we introduce CrystalSeg, a physically guided simulation method for synchrotron to-
 487 mography reconstructions that provides the first fully automated solution for ray-tracing absorption
 488 error correction in long-wavelength crystallography. By leveraging physical theory and optimized
 489 computational methods to efficiently generate annotated synthetic crystal data, this approach en-
 490 ables the training of an automatic segmentation network, significantly reducing manual effort. As
 491 a result, CrystalSeg accelerates absorption correction in long-wavelength crystallography, support-
 492 ing faster experimental validation and refinement of predictive models like AlphaFold3 (Abramson
 493 et al., 2024). Moreover, CrystalSeg can be extended to simulate additional materials relevant to syn-
 494 chrotron tomography, providing cost-effective training data that strengthens segmentation models
 495 across domains. By generating 3D mesh-based specimens from chemical composition (to derive at-
 496 tenuation/refractive indices) and incorporating domain-specific constraints (e.g., space-/point-group
 497 symmetry operations), the framework could explore a real-time synchrotron digital twin for data
 498 generation, validation, and experiment design.

486 REFERENCES
487

488 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
489 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
490 prediction of biomolecular interactions with alphafold 3. *Nature*, pp. 1–3, 2024.

491 Gustav Albrecht. The absorption factor in crystal spectroscopy. *Rev. Sci. Instrum.*, 10:221–222,
492 1939. doi: 10.1063/1.1751537.

493 Anderson Alvarenga de Moura Meneses, Alessandro Giusti, André Pereira de Almeida, Liebert
494 Parreira Nogueira, Delson Braz, Regina Cely Barroso, and Carlos Eduardo deAlmeida. Automated
495 segmentation of synchrotron radiation micro-computed tomography biomedical images
496 using graph cuts and neural networks. *Nuclear Instruments and Methods in Physics Research
497 Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 660(1):121–129,
498 2011. ISSN 0168-9002.

499 Reza Azad, Leon Niggemeier, Michael Hüttemann, Amirhossein Kazerouni, Ehsan Khodapanah
500 Aghdam, Yury Velichko, Ulas Bagci, and Dorit Merhof. Beyond self-attention: Deformable
501 large kernel attention for medical image segmentation. In *Proceedings of the IEEE/CVF Winter
502 Conference on Applications of Computer Vision*, pp. 1287–1297, 2024.

503 Harrison H Barrett and Kyle J Myers. *Foundations of image science*. John Wiley & Sons, 2013.

504 Max Born and Emil Wolf. *Principles of optics: electromagnetic theory of propagation, interference
505 and diffraction of light*. Elsevier, 2013.

506 Daniel J Ching and Dogˇa Gürsoy. Xdesign: an open-source software package for designing x-ray
507 imaging phantoms and experiments. *Journal of synchrotron radiation*, 24(2):537–544, 2017.

508 Tsimur Davydzenka, Daniel Sinclair, Nikhilesh Chawla, and Pejman Tahmasebi. Deep-layers-
509 assisted machine learning for accurate image segmentation of complex materials. *Materials Char-
510 acterization*, 192:112175, 2022.

511 Kamel El Omari, Ismay Forsyth, Ramona Duman, Christian M. Orr, Vitaliy Mykhaylyk, Erika J.
512 Mancini, and Armin Wagner. Utilizing anomalous signals for element identification in
513 macromolecular crystallography. *Acta Crys.*, 80D(10):713–721, Oct 2024. doi: 10.1107/
514 S2059798324008659. URL <https://doi.org/10.1107/S2059798324008659>.

515 Tomáš Faragó, Petr Mikulík, Alexey Ershov, Matthias Vogelgesang, Daniel Hänschke, and Tilo
516 Baumbach. Syris: a flexible and efficient framework for x-ray imaging experiments simulation.
517 *Journal of Synchrotron Radiation*, 24(6):1283–1295, 2017.

518 Paul Friedrich, Yannik Frisch, and Philippe C Cattin. Deep generative models for 3d medical image
519 synthesis. In *Generative Machine Learning Models in Medical Image Computing*, pp. 255–278.
520 Springer, 2024.

521 Joseph W Goodman. *Introduction to Fourier optics*. Roberts and Company publishers, 2005.

522 Vivek Gopalakrishnan and Polina Golland. Fast auto-differentiable digitally reconstructed radio-
523 graphs for solving inverse problems in intraoperative imaging. In *Workshop on Clinical Image-
524 Based Procedures*, pp. 1–11. Springer, 2022.

525 Samuel W Hasinoff. Photon, poisson noise. In *Computer vision*, pp. 608–610. Springer, 2014.

526 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnunet:
527 a self-configuring method for deep learning-based biomedical image segmentation. *Nature
528 methods*, 18(2):203–211, 2021.

529 D. Kazantsev, R. Duman, A. Wagner, V. Mykhaylyk, K. Wanelik, M. Basham, and N. Wadeson. X-
530 ray tomographic reconstruction and segmentation pipeline for the long-wavelength macromolec-
531 ular crystallography beamline at diamond light source. *Journal of Synchrotron Radiation*, 28(3),
532 2021.

540 Daniil Kazantsev, Valery Pickalov, Srikanth Nagella, Edoardo Pasca, and Philip J Withers. Tomo-
 541 phantom, a software package to generate 2d–4d analytical phantoms for ct image reconstruction
 542 algorithm benchmarks. *SoftwareX*, 7:150–155, 2018.

543

544 Earl J Kirkland. *Advanced computing in electron microscopy*, volume 12. Springer, 1998.

545

546 Anton Kornilov, Ilia Safonov, and Ivan Yakimchuk. A review of watershed implementations for
 547 segmentation of volumetric images. *Journal of Imaging*, 8(5), 2022.

548

549 Binbin Lin, Nima Emami, David A Santos, Yuting Luo, Sarbajit Banerjee, and Bai-Xiang Xu. A
 550 deep learned nanowire segmentation model using synthetic data augmentation. *npj Computational
 551 Materials*, 8(1):88, 2022.

552

553 Yishun Lu, Karel Adámek, Tihana Stefanic, Ramona Duman, Armin Wagner, and Wesley Armour.
 554 *AnACor2.0: a GPU-accelerated open-source software package for analytical absorption correc-
 555 tions in X-ray crystallography*. *Journal of Applied Crystallography*, 57(6), Dec 2024a.

556

557 Yishun Lu, Ramona Duman, James Beilsten-Edmands, Graeme Winter, Mark Basham, Gwyndaf
 558 Evans, Jos J. A. G. Kamps, Allen M. Orville, Hok-Sau Kwong, Konstantinos Beis, Wesley Ar-
 559 mour, and Armin Wagner. Ray-tracing analytical absorption correction for X-ray crystallography
 560 based on tomographic reconstructions. *J. Appl. Cryst.*, 57(3), Jun 2024b.

561

562 Shumeng Ma, Shymaa Damfo, Matthew W. Bowler, Vitaliy Mykhaylyk, and Frank Kozielski. High-
 563 confidence placement of low-occupancy fragments into electron density using the anomalous sig-
 564 nal of sulfur and halogen atoms. *Acta Crystallographica Section D*, 80(6):451–463, Jun 2024.

565

566 Emmanuel Moebel, Antonio Martinez-Sanchez, Lorenz Lamm, Ricardo D Righetto, Wojciech Wi-
 567 etrzynski, Sahradha Albert, Damien Larivière, Eric Fourmentin, Stefan Pfeffer, Julio Ortiz, et al.
 568 Deep learning improves macromolecule identification in 3d cellular cryo-electron tomograms.
 569 *Nature methods*, 18(11):1386–1394, 2021.

570

571 Partly. Nano banana, 2024. URL <https://banana.dev/>. AI-powered image editing software.

572

573 Daniël M. Pelt, Doğa Gürsoy, Willem Jan Palenstijn, Jan Sijbers, Francesco De Carlo, and
 574 Kees Joost Batenburg. Integration of TomoPy and the ASTRA toolbox for advanced process-
 575 ing and reconstruction of tomographic synchrotron data. *Journal of Synchrotron Radiation*, 23
 576 (3):842–849, May 2016. doi: 10.1107/S1600577516005658. URL <https://doi.org/10.1107/S1600577516005658>.

577

578 Hamidreza Torbati-Sarraf, Sridhar Niverty, Rajhans Singh, Daniel Barboza, Vincent De Andrade,
 579 Pavan Turaga, and Nikhilesh Chawla. Machine-learning-based algorithms for automated image
 580 segmentation techniques of transmission x-ray microscopy (txm). *Jom*, 73(7):2173–2184, 2021.

581

582 Mathias Unberath, Jan-Nico Zaech, Sing Chun Lee, Bastian Bier, Javad Fotouhi, Mehran Armand,
 583 and Nassir Navab. Deepdrr—a catalyst for machine learning in fluoroscopy-guided procedures.
 584 In *International conference on medical image computing and computer-assisted intervention*, pp.
 585 98–106. Springer, 2018.

586

587 Heng Yang, WenFeng Wang, JiaChen Shang, PanDing Wang, Hongshuai Lei, Hao-sen Chen, and
 588 DaiNing Fang. Segmentation of computed tomography images and high-precision reconstruction
 589 of rubber composite structure based on deep learning. *Composites Science and Technology*, 213:
 590 108875, 2021.

591

592 Yongrui Yu, Hanyu Chen, Zitian Zhang, Qiong Xiao, Wenhui Lei, Linrui Dai, Yu Fu, Hui Tan, Guan
 593 Wang, Peng Gao, et al. Ct synthesis with conditional diffusion models for abdominal lymph node
 594 segmentation. *arXiv preprint arXiv:2403.17770*, 2024.

595

596 Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing.
 597 *arXiv:1801.09847*, 2018.

598

599

600

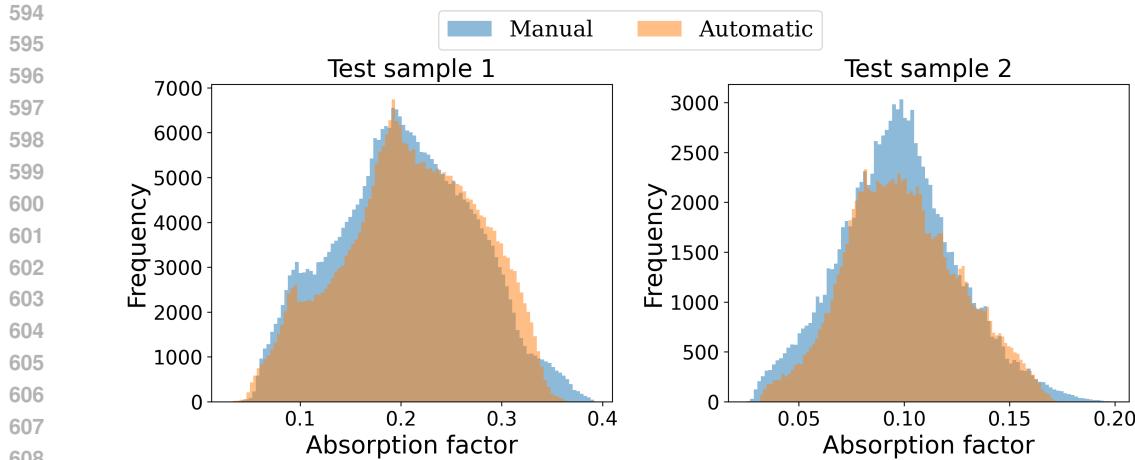


Figure S1: The histograms of absorption factors A_h between the Manual and Automatic segmentation for Test Samples 1 and 2.

SUPPLEMENTARY MATERIALS

S1 ANALYTICAL ABSORPTION CORRECTION

Analytical absorption correction using the ray-tracing method has proven effective in long-wavelength crystallography Lu et al. (2024b). This method calculates the absorption factor by determining the path lengths of diffracted X-ray photons, as illustrated in Figure 2, and relies on an annotated 3D model of the crystal sample. Despite we have segmentation metrics to evaluate, the segmented 3D model of the crystal samples is ultimately needed for analytical absorption correction. The equation for determining absorption factor can be expressed as:

$$A_h = \frac{1}{V} \int_V e^{-\sum_{m=1}^M \mu_m L_m(x, y, z)} dV, \quad (8)$$

where A_h is the inverse absorption factor, used to correct the measured reflection intensities, $I_{\text{corr}} = \frac{I_{\text{meas}}}{A_h}$. In this equation, $L_m(x, y, z)$ represents the path length that the X-ray travels through material m , which has an absorption coefficient μ_m for each crystal element dV Albrecht (1939). The integral is evaluated numerically, and dV corresponds to each crystal voxel in the segmented 3D model.

The absorption coefficients and the absorption factors are calculated by AnACor Lu et al. (2024a), and the histograms of absorption factors between manual segmentation and automatic segmentation are shown in Figure S1. Both histograms indicate a high degree of overlap, suggesting that the automatic segmentation closely replicates the distribution seen in the manual segmentation. In Test Sample 1, the agreement between the methods is particularly notable, with the frequency peaks and overall shapes closely matching, reflecting the strong performance of all three materials as shown in Table 2. Test Sample 2's histogram also shows good alignment but with a slightly lower frequency peak and wider distribution, which might be due to the errors in segmenting the mounting loop, because the absorption coefficient of the mounting loop can have a 10-20% difference from those of crystal and the mother liquor.

648 **S2 USAGE OF NANO BANANA**
649650 **S2.1 WORKFLOW**
651

652 1. Start a new session with Nano Banana.
 653 2. Upload all six images at once. Remember the order: Images 1–5 are the style references,
 654 and Image 6 is the content source.
 655 3. Send **Prompt 1**.
 656 4. The model will respond with a text summary of the style; it will not generate an image yet.
 657 Review this summary and correct it if needed.
 658 5. Once the context are satisfied, send **Prompt 2** in the same chat session. The model will use
 659 its memory of the style profile from the previous step to generate the final image.
 660

661 **PROMPT 1: THE ANALYSIS & SYNTHESIS PROMPT**
662

663 This prompt instructs the AI to analyze Images 1–5 and create a detailed, written “style profile.”
664

665 **Prompt.**
666

667 You are an expert in scientific tomography projection image analysis. I have up-
668 loaded six images.
669

670 **Images 1 through 5** are real examples of raw synchrotron X-ray projections.
671

672 **Image 6** is a clean content image that we will use later. This is a simulated pro-
673 jection image from a manually segmented 3D volume by taking the Beer-Lambert
674 law voxel-wise along a single axis.
675

676 Your first task is to analyze Images 1–5 only. Do not modify any images yet.
677

678 Please study the five examples and generate a detailed, written “Style Profile”
679 that describes their shared visual characteristics. Organize your analysis under the
680 following headings:
681

- 682 1. **Tonal Profile:** Describe the typical histogram, brightness, contrast, and
683 black-level offset.
- 684 2. **Noise Signature:** Describe the combination of fine-grained (shot) and un-
685 derlying (electronic) noise.
- 686 3. **Sharpness & Edge Quality:** Describe the characteristic blur or softness of
687 the features (MTF roll-off), as well as the edge effect due to phase contrast.
- 688 4. **Common Artifacts:** Describe the typical appearance, intensity, and fre-
689 quency of ring artifacts, streaking, and any large-scale background variations
690 like cupping.

691 Your output for this step must be text only. Do not generate an image.
692

693 **PROMPT 2: THE APPLICATION & GENERATION PROMPT**
694

695 After the model provides the text summary, we send this second prompt. It leverages the model’s
696 short-term memory of the style profile it just created.
697

698 **Prompt.**
699

700 Excellent, that is a perfect description of the style.
701

702 Now, for the second and final step:
703

704 Please apply the exact “Style Profile” you just described to Image 6.
705

706 Remember to preserve the geometry and structure of Image 6 perfectly. The final
707 output should be a new, realistic synchrotron projection that strictly adheres to the
708 characteristics you outlined.
709

710 Please export the final image in 16-bit grayscale. No watermark.
711

702 **S3 EXPERIMENTAL DETAILS**
703704 **Training Data** There are a total of 100 training/validation datasets, comprising 10 real experimen-
705 tal datasets, 90 simulated datasets, and 5 test datasets of real samples. The 100 datasets are split into
706 80 training datasets and 20 validation datasets for cross-validation (Isensee et al., 2021). Each real
707 dataset includes a paired unlabelled 3D tomography reconstruction of crystal samples along with
708 their manual segmentation. The unlabelled simulated datasets are created using FBP tomography
709 reconstruction from 900 simulated tomography projection images based on an annotated 3D model,
710 as illustrated in Figure 3.
711712 **Hyper-parameters of training** We trained nnU-Net v2.4.1 (commit 9945333) with dynamic-
713 network-architectures 0.4.2, batchgenerators 0.25.1, and PyTorch 2.8.0. The system ran on an AMD
714 Instinct MI300X GPU (ROCm 6.2.6). To make runs repeatable, we fixed the Python, NumPy, and
715 PyTorch random seeds and used deterministic settings (deterministic = true, benchmark = false).
716 Inputs were resampled to 1.0×1.0 mm in 2D and $1.0 \times 1.0 \times 1.0$ mm in 3D using cubic interpolation
717 for images and nearest-neighbor for labels, then normalized with nnU-Net’s CTNormalization (in-
718 tenuities clipped to [28, 243] and z-scored per scan). We did not apply data augmentation. The
719 model (batch size 3) was trained for 1000 epochs with 250 iterations per epoch using SGD (initial
720 LR 0.01, momentum 0.99, Nesterov is on, weight decay 3×10^{-5}), a Dice+Cross-Entropy loss with
721 deep supervision, and a PolynomialLR scheduler (power p = 0.9, decaying the LR to zero over the
722 full training). Checkpoints were written every 50 epochs, and we selected the checkpoint with the
723 best validation Dice on the best fold for test inference. At test time we used sliding-window tiling
724 (1024 \times 1024 tiles, 0.5 overlap), mirroring along the two in-plane axes, and test-time augmentation
725 [on/off]. Post-processing retained the largest connected component per class. We report [Dice/IoU],
726 averaged per case.
727728 **S4 SCIENTIFIC RESULTS OF THE CRYSTALLOGRAPHY EXPERIMENTS**
729

730 Metric	731 Test Sample 1		732 Test Sample 2	
	733 Manual	734 Prediction	735 Manual	736 Prediction
737 Completeness (%)	96.5	96.5	100.0	100.0
738 Multiplicity	21.3	21.3	13.7	13.7
739 I/sigma	25.5	23.1	26.5	22.7
740 Rmerge(I)	0.102	0.105	0.101	0.114
741 Rmeas(I)	0.105	0.107	0.104	0.118
742 Rpim(I)	0.021	0.021	0.026	0.030
743 CC half	0.998	0.998	0.997	0.995
744 Anomalous completeness	97.3	97.3	99.8	99.8
745 Anomalous multiplicity	11.7	11.7	7.7	7.7
746 Anomalous correlation	0.006	-0.008	0.519	0.405
747 Anomalous slope	0.819	0.684	1.789	1.597
748 dF/F	0.079	0.080	0.070	0.074
749 dI/s(dI)	0.952	0.836	1.695	1.534

750 Table 3: Comparison of core metrics in crystallography experiments between Manual Segmentation
751 and Prediction for Test Sample 1 and Test Sample 2.
752753 **S4.1 EXPLANATION OF METRICS**
754755 The accuracy of the final molecular structure in crystallography depends heavily on these metrics.
756 Completeness ensures that the dataset includes sufficient information to construct a reliable struc-
757 ture. Multiplicity, the number of observations for each reflection, helps reduce random errors, im-
758 proving the robustness of the dataset. I/sigma measures the signal-to-noise ratio; higher values
759 indicate clearer data, directly enhancing the precision of atomic positions. Rmerge, Rmeas, and
760 Rpim evaluate the consistency of repeated measurements, with lower values indicating fewer errors
761 and more accurate electron density maps. CC half assesses the internal consistency of the dataset,
762 crucial for validating its quality. Metrics such as anomalous completeness, multiplicity, and corre-
763

756 lation measure the ability to capture subtle signals, essential for resolving features like chirality or
 757 metal centers. Finally, dF/F and $dI/s(dI)$ indicate the strength and clarity of these signals, directly
 758 affecting the accuracy of fine structural details.

759

760 S4.2 RESULTS ANALYSIS

761

762 For Test Sample 1, the predicted results closely align with the manual segmentation, as indicated
 763 by minimal differences across most metrics. Completeness, multiplicity, and CC half are identical,
 764 ensuring that the dataset remains reliable for accurate structural determination. The I/σ metric
 765 shows a modest decrease of 9.4% (23.1 vs. 25.5), suggesting a slight increase in noise, though the
 766 impact on the precision of atomic positions is minimal. Precision metrics such as R_{merge} (0.105 vs.
 767 0.102) and R_{meas} (0.107 vs. 0.105) exhibit small increases of 2.9% and 1.9%, respectively, indicating
 768 only minor reductions in reproducibility. These results align with the histogram of absorption
 769 factors as illustrated in Figure S1, which shows a high degree of overlap between manual and au-
 770 tomatic segmentation. The frequency peaks and overall shapes of the histogram closely match,
 771 highlighting the model's strong performance in replicating the absorption factor distribution for all
 772 three materials.

773

774 For Test Sample 2, the differences between manual and predicted results are more pronounced.
 775 The I/σ metric decreases by 14.3% (22.7 vs. 26.5), reflecting increased noise that could affect
 776 the precision of atomic positions. Precision metrics show larger discrepancies: R_{merge} increases
 777 by 12.9% (0.114 vs. 0.101), and R_{meas} rises by 13.5% (0.118 vs. 0.104), indicating reduced
 778 measurement consistency, which may blur the electron density map. The anomalous correlation
 779 decreases by 22.0% (0.405 vs. 0.519), and the anomalous slope drops by 10.7% (1.597 vs. 1.789),
 780 suggesting weaker detection and reduced consistency of anomalous signals. The histogram for
 781 absorption factors supports this observation, showing a slightly lower frequency peak and a wider
 782 distribution compared to Test Sample 1, as illustrated in Figure S1. Despite these challenges, the
 783 overall overlap in the histograms suggests that the automatic segmentation effectively captures the
 784 main trends in absorption factor distribution, providing a solid foundation for further refinement.
 This indicates that the current model already performs well in addressing complex datasets and
 shows promise for achieving even better results with targeted improvements.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809