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ABSTRACT

Automated 3D segmentation of tomographic volumes is a critical bottleneck in
long-wavelength X-ray crystallography, a technique crucial for drug development
and validating structural models from systems like AlphaFold3. This segmenta-
tion is a prerequisite for ray-tracing absorption correction, which is necessary for
data processing in X-ray crystallography experiments. However, it is currently
performed manually by experts, which is a process that is slow, costly, and pre-
vents full automation of the scientific pipeline. The primary barrier to automa-
tion is the prohibitive expense and difficulty of collecting annotated segmenta-
tion data. To address this data scarcity problem, we present CrystalSeg, a novel,
GPU-accelerated simulation and segmentation pipeline. It generates vast amounts
of annotated data by simulating synchrotron X-ray tomography images and their
corresponding reconstructed 3D volumes. We demonstrate that segmentation net-
works trained on CrystalSeg’s synthetic data achieve dramatic performance gains
over models trained on limited real data, with improvements of 29.2% in Re-
call, 30.5% in IoU, and 24.9% in F1 score for finding the crystal. CrystalSeg
effectively reduces the expert labor required for segmentation from hours to min-
utes. More importantly, it enables, for the first time, a fully automated solution for
ray-tracing absorption correction in long-wavelength crystallography, making this
advanced structural biology technique more scalable and accessible.

1 INTRODUCTION

Figure 1: A typical sample’s tomography recon-
struction (top) and its segmentation (bottom).
The segmentation highlights the crystal (in light
purple), the surrounding mother liquor (in semi-
transparent black), and the mounting loop (in
coral red) (Kazantsev et al., 2021). Best viewed
in colour.

Long-wavelength X-ray crystallography plays
a crucial role in experimentally determining
protein structures, and localizing and identify-
ing target atoms through anomalous scattering
(El Omari et al., 2024). AlphaFold3 (AF3)
(Abramson et al., 2024) can provide excellent ge-
ometric priors of the protein structure but cannot
measure the identity of target atoms, or the prop-
erties of the redox state inside the protein. Com-
bining AF3 with X-ray crystallography data al-
lows for validating the predictions from AF3, de-
signing fragment-based drugs (Ma et al., 2024),
and solving the structure of previously unseen
proteins.

However, this powerful combination is hindered
by a critical data processing bottleneck: ray-
tracing absorption correction. This physical
correction step is mandatory for processing long-
wavelength data, as the crystal sample itself can
introduce non-linear errors in the measured X-
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Figure 2: Illustration of how synchrotron tomography segmentation helps long-wavelength X-ray
crystallography to validate and correct the predictive models from AlphaFold3 (Abramson et al.,
2024). By using model-based segmentation, the whole data processing can be automated and the
runtime for data annotation can be reduced from 4+ hours to around 10 seconds. The visual image,
tomography reconstruction, and segmentation of the crystal sample are shown (Kazantsev et al.,
2021).

ray intensities (as shown in Figure 2, further details in Section §S1). Accurately performing this
correction requires a precisely annotated 3D model of the sample, which is typically acquired via
X-ray synchrotron tomography. The problem is that this tomographic volume must be manually
segmented to label the crystal, its surrounding solution (mother liquor), and the mounting loop (Fig-
ure 1) (Lu et al., 2024b;a). This manual, multi-class segmentation task is extremely time-consuming,
which often takes hours per sample, and prevents the entire scientific pipeline from being fully au-
tomated.

Intuitively, this 3D segmentation task can be automated with standard deep learning techniques
based on recent progress in other fields for 3D segmentation (Isensee et al., 2021; Yu et al., 2024;
Azad et al., 2024; Lin et al., 2022). However, this is highly challenging due to significant data-
related hurdles. Protein crystal samples are often expensive and delicate, making the collection
and annotation of large-scale, high-quality training datasets practically infeasible. Furthermore, the
samples exhibit high variance in their physical properties (e.g., absorption and phase contrast), lead-
ing to diverse intensity distributions in the reconstructed volumes. This problem is compounded by
inconsistent sample positioning and varied morphologies. Unlike segmentation in medical imag-
ing, which often targets well-defined organs, segmentation in crystallography must handle a wide-
ranging, sparse, and variable domain, making robust generalization a significant challenge. For
example, the crystal in Figure 1 is longitudinal and at the top of the loop, while that in Figure 2 has a
diamond-like shape and is in the middle of the loop. These challenges make automatic segmentation
significantly more difficult.

To overcome the above data scarcity problem, in this paper, we introduce CrystalSeg, an innovative
method to simulate synchrotron tomography reconstructions with physical guidance, for generating
synthetic training data to train a segmenter. Physical guidance by simulating X-ray wave propaga-
tion can help ensure that the synthetic data accurately reflects the interaction between X-rays and
the material properties of the sample, including factors such as absorption, scattering, and phase
shifts. This guidance introduces a level of realism that allows DNNs trained on synthetic data to
generalize better to segment real-world synchrotron tomography datasets. We demonstrate that our
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simulation method can be accelerated by NVIDIA GPUs. By incorporating hyperparameters, such
as refractive indices of the materials, and randomising the positions of the crystal, CrystalSeg can
provide high-quality, high-volume, synthetic data for training Deep Neural Networks (DNNs) to
achieve automatic synchrotron tomography segmentation.

Our results demonstrate that our method not only gains accurate simulated outcomes but also sig-
nificantly improves DNN training efficiency. CrystalSeg is the first fully automated approach
for efficiently generating large volumes of annotated training data, enabling the training of a 3D
segmentation model for synchrotron tomography reconstruction data. This advancement facilitates
the first fully automated ray-racing absorption correction in long-wavelength crystallography. Tasks
that once required over four hours of manual intervention and annotation can now be completed in
only seconds through automated segmentation.

The main contributions of this paper are as follows:

• We introduce the first fully automated solution for ray-racing absorption error correction in
long-wavelength crystallography with an automatically annotated 3D model of the crystal
sample. This method enhances efficiency and accessibility for users.

• To address the challenges of training a DNN for automated 3D model annotation, we pro-
pose CrystalSeg, an innovative and efficient method for simulating synchrotron tomography
reconstructions, accelerated by NVIDIA GPUs for improved speed.

• Our approach demonstrates accurate simulation results, achieving high SSIM and PSNR
values that closely match those from real experimental data.

2 RELATED WORK

2.1 TOMOGRAPHY RECONSTRUCTION SEGMENTATION IN SYNCHROTRONS

Synchrotron X-ray tomography is a well-established technique, supported by numerous dedicated
beamlines worldwide that provide high-resolution imaging for a range of applications. When applied
to delicate and expensive samples, such as protein crystals, synchrotron tomography reconstruction
reveals challenges with limited annotated data to train a deep neural network (DNN). The compo-
sition and structure of these samples can lead to varying levels of absorption and phase contrast,
influenced by differences in sample size, shape, and material properties. Furthermore, experimental
artefacts, such as beam hardening and ring artefacts, can lead to noisy reconstruction results. Also,
variations in the crystal’s position relative to the surrounding material often require case-specific
adjustments for accurate analysis. These factors make it challenging to develop robust, generalized
models, especially in crystallography.

Semi-automatic segmentation techniques can assist in synchrotron tomography experiments. Such
techniques include intensity thresholding, which separates regions based on differences in intensity
(Alvarenga de Moura Meneses et al., 2011); region growing, which expands a region from a ”seed”
point to include adjacent points with similar intensities (Kazantsev et al., 2021); and topological wa-
tershed, which separates regions based on gradient differences at the edges (Kornilov et al., 2022).
Although these methods can effectively differentiate between regions, they still require human in-
tervention to assign the correct material to each segmented region.

Numerous DNN methods have been developed for segmentation tasks in synchrotron X-ray tomog-
raphy. These methods typically involve training DNNs on annotated real data. Some approaches
focus on segmenting specific materials or biological molecules that exhibit similar absorption con-
trasts or shapes after reconstruction Torbati-Sarraf et al. (2021); Davydzenka et al. (2022); Yang et al.
(2021). Alternatively, some methods use publicly available simulation data or simulate a single ma-
terial type to train segmentation networks that distinguish between the foreground and background
regions Moebel et al. (2021); Lin et al. (2022). In synchrotron tomography segmentation, partic-
ularly in crystallography, segmenting components such as the mother liquor, which often shares
absorption characteristics similar to those of the crystal, presents unique challenges. The relative
positions of the mother liquor, crystal, and mounting loop can vary significantly between samples,
complicating segmentation. Furthermore, a primary limitation of DNN-based segmentation on real
data is the extensive effort required for data collection and annotation.
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2.2 TOMOGRAPHY DATA SIMULATION

Generative Adversarial Networks (GANs) and diffusion models have been applied to synthetic
medical CT generation (Yu et al., 2024; Friedrich et al., 2024). However, these models usually
require hundreds of diverse, well-annotated cases, while labeled synchrotron datasets are scarce.
Synchrotron tomography also exhibits substantial variability in crystal shape, size, orientation, and
position. Training a GAN or diffusion model under this variability is therefore highly challenging.
Moreover, most available open-source pre-trained weights are trained on medical images, creating a
domain gap that further limits transferability. In contrast, simulation by physical guidance offers an
alternative by utilizing experimental equipment parameters, such as the X-ray source and detector
type, along with the properties of the experimental sample. By alternating the refractive indices and
designing 3D synthetic models of the crystal sample by CAD software, a large amount of synthetic
data with physical guidance can be generated.

A more accurate approach is to generate synthetic tomography images via physics-based simulation
imaging (Ching & Gürsoy, 2017; Kazantsev et al., 2018; Faragó et al., 2017; Unberath et al., 2018;
Gopalakrishnan & Golland, 2022). A significant limitation of current tomography simulations by
physical guidance is their reliance on physical models that are either overly simplified or compu-
tationally prohibitive for large-scale data generation. Many simulators, particularly phantom-based
tools, treat objects as generic attenuation maps with simple geometry and pure absorption contrast
(Ching & Gürsoy, 2017; Kazantsev et al., 2018). While recent differentiable renderers achieve
high anatomical realism, they must also simplify physics for tractability, focusing on absorption
and overlooking the crucial phase-contrast phenomena that arise from wave propagation (Unberath
et al., 2018; Gopalakrishnan & Golland, 2022). This abstraction fails to generate the high-fidelity
edge enhancement and material-aware contrast governed by the precise, energy-dependent refractive
indices of constituent materials. Conversely, simulators that do model these complex wave-based
interactions are often too computationally expensive for deep learning frameworks. Their design as
high-fidelity physics workbenches requires an intricate, manual setup of source and detector param-
eters for each simulation, which is impractical for programmatically generating the large, diverse
datasets required to train robust models (Faragó et al., 2017). This forces a critical trade-off, leading
to a simulation-to-reality gap that directly impacts model performance. A network that has been
trained on simplified projections will fail to generalize to real-world experimental data, as it has
never been exposed to the crucial, material-dependent phase effects that are paramount in applica-
tions like high-resolution crystallography.

3 METHODOLOGY

3.1 SIMULATION PIPELINE

As illustrated in Figure 3, the overall simulation process consists of 1. designing 3D synthetic
models of the crystal sample using CAD software, 2. simulating projection images by simulating
X-rays propagating through the crystal sample and finally reaching the detector, 3. rotation of the 3D
synthetic models over 180◦, 4. performing tomography reconstruction on that series of projection
images using filtered back-projection (FBP) using the TomoPy (Pelt et al., 2016) software.

The synthetic crystal samples are not manually modeled but are generated within a CAD software
Blender via its Python API, which is an automated and high-throughput pipeline. This process is
grounded in physical principles: each crystal’s morphology is constructed from its crystallographic
data, including its crystal system, point group symmetry operations, and Miller indices (hkl) for its
characteristic faces. Similarly, the mounting loop is constructed based on realistic dimensions to
ensure consistency. The mother liquor is simulated using Blender’s integrated fluid physics engine,
where a fluid domain is established around the crystal and loop. The simulation output from Blender
is in Mesh format, and the 3D volume of a tomography reconstruction is in Array format. Hence,
the simulation dataset from Blender is voxelized using Open3D (Zhou et al., 2018). The details of
simulating projection images are described in Section 3.2. After simulating the wave propagation
between the sample and the virtual detector, the intensities of the wavefield are recorded as synthetic
tomography projection images. By rotating the simulated sample over 180◦ with 0.2◦ as an incre-
ment, there is a total of 900 synthetic tomography projection images in a dataset, as shown in Figure
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Figure 3: The simulation process of CrystalSeg

3. Then, using FBP to reconstruct the series of 900 projection images to get the reconstructed 3D
volume.

3.2 SIMULATING X-RAY PROJECTION IMAGES BY WAVE PROPAGATION PRINCIPLE

In a real tomography reconstruction experiment, particularly at low energies (3 keV - 5 keV at long
wavelength), there are significant edge effects at the boundaries between different materials. This is
because the sharp interface of the crystal and the mounting loop incur significant phase contrast, not
just absorption, when the previous work may ignore (Ching & Gürsoy, 2017; Unberath et al., 2018;
Gopalakrishnan & Golland, 2022). To achieve a high similarity simulation dataset that captures these
nuances and effectively trains deep learning models, a comprehensive understanding and simulation
of the physical principles of X-ray wave propagation are essential. The overall process can be treated
as an incident monochromatic wavefield, typically a plane or spherical wave, propagating through
an arbitrary number of 3D objects. The wavefield’s intensity is then captured at a virtual imaging
plane (detector in reality) at a certain distance from the source (Born & Wolf, 2013). We utilized the
multislice wave propagation technique (Kirkland, 1998) to discretize the 3D object into a stack of
2D slices to allow efficient parallel computing. This entire wavefield propagation chain, including
object interaction and free-space diffraction, is efficiently computed on NVIDIA GPUs using CuPy
for computational speed, which is critical for generating large datasets.

Incident wavefield. A point source emits a monochromatic wavefield u0(x, z1) with wavelength
λ, where x represents the 2D coordinates perpendicular to the X-ray incident axis z, and z1 is the
distance to the first object in the beam path. The intensity distribution of the wavefield is given
by I0(x, z1) = |u0(x, z1)|2. For a spherical wave, when z1 is sufficiently large (as in synchrotron
common setups), the spherical phase profile is approximated to (Faragó et al., 2017):

u0(x, z1) =
√

I0(x, z1) e
jkz1 , (1)

where k = 2π
λ is the wave number.

Wavefield propagations. When an X-ray beam propagates through non-vacuum objects, its inten-
sity is attenuated, and the beam undergoes a phase shift. This behaviour is described by the 3D
complex refractive index of the object i at the 2D coordinate x, located a distance z from the X-ray
source. The refractive index is represented as (Born & Wolf, 2013):

ni(x, z) = 1− δi(x, z) + jβi(x, z), (2)
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where δi(x, z) corresponds to the real part of the refractive index, representing the phase shift, and
βi(x, z) is the imaginary part, representing absorption within the object.

The propagation function at the exit plane of the object i can be determined by integrating along the
z-direction. This is expressed as (Born & Wolf, 2013):

Ti(x) = exp

(
jk

∫ z+
i

z−
i

ni(x, z)dz

)
= e−k(Bi(x)−jφi(x)), (3)

where

Bi(x) =

∫
βi(x, z)dz and φi(x) =

∫
[1− δi(x, z)] dz.

Here, Bi(x) represents the cumulative local absorption of the X-ray as it propagates through object
i, and φi(x) represents the total phase shift induced by the refractive index variation. Therefore, the
relationship between the wavefield ui−1(x, zi) at the entrance plane of the i-th object and ui(x, zi)
at the exit plane can be described as:

ui(x, zi) = Ti(x)ui−1(x, zi). (4)

In the case where the X-ray propagates through air or vacuum, the wavefield does not experience
material attenuation but still undergoes spreading, diffraction, and phase evolution as it propagates.
This free-space propagation can be modelled using the angular spectrum formalism between two
parallel planes separated by a distance ∆z (Goodman, 2005). Therefore, the 2D Fourier transform
of the wavefield, denoted by ũ(ξ) = F [u(x)], describes the wavefield in terms of 2D spatial fre-
quencies ξ. The free-space propagator is given by:

ũ(ξ, z +∆z) = P̃ (ξ,∆z)ũ(ξ, z), (5)

where the propagator P̃ (ξ,∆z) can be written as:

P̃F (ξ,∆z) = exp(jk∆z) exp(−jπλ∆zξ2). (6)

We apply the Fresnel approximation to have this form of P̃F (ξ,∆z) as X-ray illumination is parallel
or weakly divergent in crystallography experiments. The Fresnel approximation is suitable when the
distance between the object and the detector is large compared to the wavelength and the feature size
of the object, which is common in most X-ray imaging applications. Thus, the wavefield at a distance
∆z behind the i-th object can be calculated using the recursive relation:

ui(x, zi +∆z) = F−1
{
P̃ (ξ,∆z)F [ui−1(x, zi)Ti(x)]

}
. (7)

In this context, the sample and detector are treated as different instances of the object i, enabling
recursive propagation of the wavefield from the X-ray source to the detector plane.

To bridge the final gap to experimental reality, we introduce a computationally efficient detector
model. A full Monte Carlo simulation is intractable for large-scale data generation. Instead, we
approximate the dominant physical effects using a sequence of GPU-accelerated phenomenological
models. First, the optical system’s finite resolution is modeled by convolving the ideal image with
a Gaussian point spread function (PSF), performed efficiently in the frequency domain (Barrett &
Myers, 2013). Subsequently, the quantum nature of photon counting is introduced via a Poisson
distribution for shot noise, followed by the addition of zero-mean Gaussian noise to account for
electronic read noise (Hasinoff, 2014). To incorporate common instrumental artifacts, a column-
wise random gain multiplier is applied, directly producing the characteristic ring patterns seen after
reconstruction. This approach provides a high degree of perceptual realism and introduces the key
artifacts a deep learning model must learn to be robust against.
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3.3 COMPARISON WITH NANO BANANA

We evaluated the performance of our physics-guided simulation against a state-of-the-art AI style
transfer tool, Nano Banana, which is based on a pre-trained diffusion model. Such tools are valu-
able when limited experimental data makes it infeasible to train specialized generative models like
GANs from scratch. For the evaluation, Nano Banana (Partly, 2024) was provided with five real
synchrotron X-ray projection images to serve as a style guide. The target, or content image, was an
ideal absorption-contrast projection image. To create a noise-free, 2D absorption-contrast image, we
projected the manually segmented 3D volume by averaging its values along a single axis. The val-
ues are the distinct class labels, instead of the exact physical property. The objective was to transfer
the realistic acquisition characteristics (e.g., noise, phase contrast, edge effect, intensity histogram)
from the real projections onto the ideal content image. We then compared this AI-generated result
with our own simulation. The precise prompts given to the AI are available in the §S2.

3.4 SEGMENTATION

We segment synchrotron tomographic reconstructions using nnU-Net (Isensee et al., 2021), training
both the 2D and low-resolution 3D configurations with 5-fold cross-validation (80% train / 20% val-
idation per fold) and batch size of 3. The model selection is based on the best validation checkpoint
within the best-performing fold. More details can be found in Section §S3 in the supplementary
material.

4 RESULTS

Figure 4: Qualitative Results of Sample A (top) and B (bottom) between real tomography projections
(left) and simulated projection images (middle and right). Results from CrystalSeg are in the middle,
while those from Nano Banana (Partly, 2024) are on the right.

4.1 SIMULATION EVALUATION

To assess simulation fidelity, we start from a manually segmented 3D model derived from real data
(Figure 3). The model is forward-projected to generate simulated projections, which are flat-field
corrected. Agreement with measurements is quantified using SSIM and PSNR on the projections.
Both simulated and real datasets are then reconstructed with FBP, and reconstructed slices are re-
evaluated with the same metrics. Using 180◦ projections and the corresponding reconstructed slices,
we report mean SSIM and PSNR for Samples A and B, comparing an absorption-only baseline
(following Unberath et al. (2018); Gopalakrishnan & Golland (2022) with the Beer Lambert law)
with CrystalSeg (Table 1).

CrystalSeg outperforms the absorption-only baseline across both samples and stages. For Sample
A, projection quality is high (SSIM 0.858, PSNR 25.02 dB) and clearly exceeds baseline (0.8232,

7
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Table 1: Mean SSIM and PSNR for Samples A and B at projection and reconstruction stages
(Absorption-only baseline vs. CrystalSeg).

Sample Stage Absorption-only CrystalSeg
SSIM PSNR SSIM PSNR

A Projection 0.823 12.86 0.858 25.02
Reconstruction 0.895 21.27 0.9204 31.97

B Projection 0.841 15.18 0.902 28.63
Reconstruction 0.901 23.08 0.972 36.19

Table 2: Per-class test metrics for Crystal, Liquor, and Loop across datasets.

Dataset Materials Recall IoU F1 Score F2 Score Precision

Only real

Crystal 0.7134 0.6385 0.7180 0.7137 0.7406
Liquor 0.8857 0.8086 0.8926 0.8881 0.9027
Loop 0.7967 0.6720 0.7874 0.7918 0.7884
Mean 0.7986 0.7063 0.7993 0.7979 0.8105

Only syn

Crystal 0.7997 0.7114 0.8154 0.8044 0.8473
Liquor 0.8961 0.7849 0.8776 0.8886 0.8600
Loop 0.8480 0.7334 0.8449 0.8464 0.8446
Mean 0.8480 0.7432 0.8460 0.8465 0.8506

Real + syn

Crystal 0.9221 0.8332 0.8966 0.9113 0.8754
Liquor 0.8966 0.8401 0.9038 0.8994 0.9114
Loop 0.8838 0.8102 0.8864 0.8848 0.8899
Mean 0.9008 0.8278 0.8956 0.8985 0.8922

12.86 dB), while reconstruction also improves over baseline (0.9204, 31.97 dB vs 0.895, 21.27 dB).
For Sample B, projection gains are strong (0.902, 28.63 dB vs 0.8414, 15.18 dB), and reconstruc-
tion shows the largest improvement (0.972, 36.19 dB vs 0.901, 23.08 dB). Overall, CrystalSeg better
matches real data, with especially large gains at reconstruction. Figure 4 reveals the critical advan-
tages of our physics-guided simulation. Across both rows, CrystalSeg most closely reproduces the
real projections: object geometry, relative attenuation, and boundary edge-enhancement are consis-
tent. The absorption-only simulation preserves overall shape but lacks phase-contrast effects, and
the edges appear softened with flattened internal contrast. The Nano Banana result maintains gross
morphology but misestimates intensities as it has no physical information, such as the absorption
coefficients and the refractive indices of the materials. This model-based method may also produce
spatial misalignment (global shifts) of the object in the image, causing object displacement. Overall,
the physics-guided CrystalSeg projections align best with the real data, matching the results in Table
1.

4.2 SEGMENTATION MODEL RESULTS

The significant role of synthetic datasets in training the segmentation model is highlighted in Table 2.
Training with only real datasets (OnlyReal) is shown to have very poor segmentation performance.
However, training with only synthetic data (OnlySyn) yields notable improvements across all mean
metrics compared to using OnlyReal, achieving higher Recall, IoU, F1 Score, and F2 Score. Fur-
thermore, the combination of real and synthetic data (All) delivers the highest performance overall,
demonstrating the effectiveness of synthetic data in enhancing the model’s generalization and im-
proving segmentation quality.

Table 2 shows that augmenting with synthetic data substantially improves performance. Real+Syn
achieves the best means (IoU 0.8278; F1 0.8956; Recall 0.9008), outperforming OnlySyn (IoU
0.7432; F1 0.8460) and OnlyReal (IoU 0.7063; F1 0.7993). Gains are most critical for the Crystal
class: recall rises to 0.9221 (vs. 0.7997 OnlySyn; 0.7134 OnlyReal) with high F2, indicating far
fewer missed crystal voxels, which can directly reduce absorption bias during the absorption cor-
rection. Liquor and loop likewise improve (e.g., liquor/loop IoU 0.840/0.810 with Real+Syn), con-
firming better overall material discrimination. In long-wavelength X-ray crystallography, achieving
accurate voxel-wise segmentation of all material classes (mother liquor, mounting loop, and crys-
tal) is crucial for precise absorption correction, especially for the crystal. This importance arises

8
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Figure 5: 2D slices of the segmented 3D volumes: Crystal in Red, Mounting Loop in Yellow, and
Mother Liquor in Semi-Transparent Blue. GT represents ground-truth manual labelling. Real, Syn,
and Real+Syn show the segmentation models trained by those datasets.

because the absorption coefficients of materials become more severe at longer X-ray wavelengths.
Therefore, in addition to the overall results of segmentation, the performance in segmenting each
individual material class is essential. The segmentation metrics for the crystal, mother liquor, and
mounting loop are presented in Table 2. In analyzing the segmentation results for the Crystal class,
which is the most significant class for the absorption correction process in crystallography, it is
evident that the model demonstrates strong performance across several key metrics.

As shown in Figure 5, Real+Syn masks adhere closely to ground truth (GT) across diverse views:
crystal (red) boundaries align with liquor (semi-transparent blue) with minimal bleed, and loop
(yellow) contours remain stable and contiguous. OnlySyn already sharpens boundaries relative to
OnlyReal, but occasional loop mislabelling persists. OnlyReal exhibits the weakest behaviour, with
systematic under-segmentation of crystal and frequent crystal–liquor leakage, especially near loop
contacts and thin edges. Together, these results show that synthetic augmentation is not merely bene-
ficial on averages, but also it specifically optimises crystal segmentation, while improving robustness
at challenging interfaces.

Two scientific case studies for comparing manual segmentation and the model trained by real and
synthetic dataset are demonstrated in Section §S1 and §S4. Despite minor artefacts, the automatic
segmentations produce absorption-factor histograms that largely overlap manual labels, which is
the basis for ray-tracing absorption correction. Sample 1 matches with minimal precision loss, and
Sample 2 shows a slight drop yet preserves key trends, so absorption statistics remain sufficient for
long-wavelength crystallography while enabling a fully automated pipeline.

5 CONCLUSION

In this paper, we introduce CrystalSeg, a physically guided simulation method for synchrotron to-
mography reconstructions that provides the first fully automated solution for ray-tracing absorption
error correction in long-wavelength crystallography. By leveraging physical theory and optimized
computational methods to efficiently generate annotated synthetic crystal data, this approach en-
ables the training of an automatic segmentation network, significantly reducing manual effort. As
a result, CrystalSeg accelerates absorption correction in long-wavelength crystallography, support-
ing faster experimental validation and refinement of predictive models like AlphaFold3 (Abramson
et al., 2024). Moreover, CrystalSeg can be extended to simulate additional materials relevant to syn-
chrotron tomography, providing cost-effective training data that strengthens segmentation models
across domains. By generating 3D mesh–based specimens from chemical composition (to derive at-
tenuation/refractive indices) and incorporating domain-specific constraints (e.g., space-/point-group
symmetry operations), the framework could explore a real-time synchrotron digital twin for data
generation, validation, and experiment design.

9
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Figure S1: The histograms of absorption factors Ah between the Manual and Automatic segmenta-
tion for Test Samples 1 and 2.

SUPPLEMENTARY MATERIALS

S1 ANALYTICAL ABSORPTION CORRECTION

Analytical absorption correction using the ray-tracing method has proven effective in long-
wavelength crystallography Lu et al. (2024b). This method calculates the absorption factor by
determining the path lengths of diffracted X-ray photons, as illustrated in Figure 2, and relies on
an annotated 3D model of the crystal sample. Despite we have segmentation metrics to evaluate, the
segmented 3D model of the crystal samples is ultimately needed for analytical absorption correction.
The equation for determining absorption factor can be expressed as:

Ah =
1

V

∫
V

e

−

M∑
m=1

µmLm(x, y, z)

dV, (8)

where Ah is the inverse absorption factor, used to correct the measured reflection intensities, Icorr =
Imeas
Ah

. In this equation, Lm(x, y, z) represents the path length that the X-ray travels through material
m, which has an absorption coefficient µm for each crystal element dV Albrecht (1939). The
integral is evaluated numerically, and dV corresponds to each crystal voxel in the segmented 3D
model.

The absorption coefficients and the absorption factors are calculated by AnACor Lu et al. (2024a),
and the histograms of absorption factors between manual segmentation and automatic segmentation
are shown in Figure S1. Both histograms indicate a high degree of overlap, suggesting that the
automatic segmentation closely replicates the distribution seen in the manual segmentation. In Test
Sample 1, the agreement between the methods is particularly notable, with the frequency peaks and
overall shapes closely matching, reflecting the strong performance of all three materials as shown in
Table 2. Test Sample 2’s histogram also shows good alignment but with a slightly lower frequency
peak and wider distribution, which might be due to the errors in segmenting the mounting loop,
because the absorption coefficient of the mounting loop can have a 10-20% difference from those of
crystal and the mother liquor.
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S2 USAGE OF NANO BANANA

S2.1 WORKFLOW

1. Start a new session with Nano Banana.

2. Upload all six images at once. Remember the order: Images 1–5 are the style references,
and Image 6 is the content source.

3. Send Prompt 1.

4. The model will respond with a text summary of the style; it will not generate an image yet.
Review this summary and correct it if needed.

5. Once the context are satisfied, send Prompt 2 in the same chat session. The model will use
its memory of the style profile from the previous step to generate the final image.

PROMPT 1: THE ANALYSIS & SYNTHESIS PROMPT

This prompt instructs the AI to analyze Images 1–5 and create a detailed, written “style profile.”

Prompt.

You are an expert in scientific tomography projection image analysis. I have up-
loaded six images.
Images 1 through 5 are real examples of raw synchrotron X-ray projections.
Image 6 is a clean content image that we will use later. This is a simulated pro-
jection image from a manually segmented 3D volume by taking the Beer-Lambert
law voxel-wise along a single axis.
Your first task is to analyze Images 1–5 only. Do not modify any images yet.
Please study the five examples and generate a detailed, written “Style Profile”
that describes their shared visual characteristics. Organize your analysis under the
following headings:

1. Tonal Profile: Describe the typical histogram, brightness, contrast, and
black-level offset.

2. Noise Signature: Describe the combination of fine-grained (shot) and un-
derlying (electronic) noise.

3. Sharpness & Edge Quality: Describe the characteristic blur or softness of
the features (MTF roll-off), as well as the edge effect due to phase contrast.

4. Common Artifacts: Describe the typical appearance, intensity, and fre-
quency of ring artifacts, streaking, and any large-scale background variations
like cupping.

Your output for this step must be text only. Do not generate an image.

PROMPT 2: THE APPLICATION & GENERATION PROMPT

After the model provides the text summary, we send this second prompt. It leverages the model’s
short-term memory of the style profile it just created.

Prompt.

Excellent, that is a perfect description of the style.
Now, for the second and final step:
Please apply the exact “Style Profile” you just described to Image 6.
Remember to preserve the geometry and structure of Image 6 perfectly. The final
output should be a new, realistic synchrotron projection that strictly adheres to the
characteristics you outlined.
Please export the final image in 16-bit grayscale. No watermark.
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S3 EXPERIMENTAL DETAILS

Training Data There are a total of 100 training/validation datasets, comprising 10 real experimen-
tal datasets, 90 simulated datasets, and 5 test datasets of real samples. The 100 datasets are split into
80 training datasets and 20 validation datasets for cross-validation (Isensee et al., 2021). Each real
dataset includes a paired unlabelled 3D tomography reconstruction of crystal samples along with
their manual segmentation. The unlabelled simulated datasets are created using FBP tomography
reconstruction from 900 simulated tomography projection images based on an annotated 3D model,
as illustrated in Figure 3.

Hyper-parameters of training We trained nnU-Net v2.4.1 (commit 9945333) with dynamic-
network-architectures 0.4.2, batchgenerators 0.25.1, and PyTorch 2.8.0. The system ran on an AMD
Instinct MI300X GPU (ROCm 6.2.6). To make runs repeatable, we fixed the Python, NumPy, and
PyTorch random seeds and used deterministic settings (deterministic = true, benchmark = false).
Inputs were resampled to 1.0×1.0 mm in 2D and 1.0×1.0×1.0 mm in 3D using cubic interpolation
for images and nearest-neighbor for labels, then normalized with nnU-Net’s CTNormalization (in-
tensities clipped to [28, 243] and z-scored per scan). We did not apply data augmentation. The
model (batch size 3) was trained for 1000 epochs with 250 iterations per epoch using SGD (initial
LR 0.01, momentum 0.99, Nesterov is on, weight decay 3× 10−5), a Dice+Cross-Entropy loss with
deep supervision, and a PolynomialLR scheduler (power p = 0.9, decaying the LR to zero over the
full training). Checkpoints were written every 50 epochs, and we selected the checkpoint with the
best validation Dice on the best fold for test inference. At test time we used sliding-window tiling
(1024×1024 tiles, 0.5 overlap), mirroring along the two in-plane axes, and test-time augmentation
[on/off]. Post-processing retained the largest connected component per class. We report [Dice/IoU],
averaged per case.

S4 SCIENTIFIC RESULTS OF THE CRYSTALLOGRAPHY EXPERIMENTS

Metric Test Sample 1 Test Sample 2
Manual Prediction Manual Prediction

Completeness (%) 96.5 96.5 100.0 100.0
Multiplicity 21.3 21.3 13.7 13.7
I/sigma 25.5 23.1 26.5 22.7
Rmerge(I) 0.102 0.105 0.101 0.114
Rmeas(I) 0.105 0.107 0.104 0.118
Rpim(I) 0.021 0.021 0.026 0.030
CC half 0.998 0.998 0.997 0.995
Anomalous completeness 97.3 97.3 99.8 99.8
Anomalous multiplicity 11.7 11.7 7.7 7.7
Anomalous correlation 0.006 -0.008 0.519 0.405
Anomalous slope 0.819 0.684 1.789 1.597
dF/F 0.079 0.080 0.070 0.074
dI/s(dI) 0.952 0.836 1.695 1.534

Table 3: Comparison of core metrics in crystallography experiments between Manual Segmentation
and Prediction for Test Sample 1 and Test Sample 2.

S4.1 EXPLANATION OF METRICS

The accuracy of the final molecular structure in crystallography depends heavily on these metrics.
Completeness ensures that the dataset includes sufficient information to construct a reliable struc-
ture. Multiplicity, the number of observations for each reflection, helps reduce random errors, im-
proving the robustness of the dataset. I/sigma measures the signal-to-noise ratio; higher values
indicate clearer data, directly enhancing the precision of atomic positions. Rmerge, Rmeas, and
Rpim evaluate the consistency of repeated measurements, with lower values indicating fewer errors
and more accurate electron density maps. CC half assesses the internal consistency of the dataset,
crucial for validating its quality. Metrics such as anomalous completeness, multiplicity, and corre-
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lation measure the ability to capture subtle signals, essential for resolving features like chirality or
metal centers. Finally, dF/F and dI/s(dI) indicate the strength and clarity of these signals, directly
affecting the accuracy of fine structural details.

S4.2 RESULTS ANALYSIS

For Test Sample 1, the predicted results closely align with the manual segmentation, as indicated
by minimal differences across most metrics. Completeness, multiplicity, and CC half are identical,
ensuring that the dataset remains reliable for accurate structural determination. The I/sigma metric
shows a modest decrease of 9.4% (23.1 vs. 25.5), suggesting a slight increase in noise, though the
impact on the precision of atomic positions is minimal. Precision metrics such as Rmerge (0.105 vs.
0.102) and Rmeas (0.107 vs. 0.105) exhibit small increases of 2.9% and 1.9%, respectively, indicat-
ing only minor reductions in reproducibility. These results align with the histogram of absorption
factors as illustrated in Figure S1, which shows a high degree of overlap between manual and au-
tomatic segmentation. The frequency peaks and overall shapes of the histogram closely match,
highlighting the model’s strong performance in replicating the absorption factor distribution for all
three materials.

For Test Sample 2, the differences between manual and predicted results are more pronounced.
The I/sigma metric decreases by 14.3% (22.7 vs. 26.5), reflecting increased noise that could affect
the precision of atomic positions. Precision metrics show larger discrepancies: Rmerge increases
by 12.9% (0.114 vs. 0.101), and Rmeas rises by 13.5% (0.118 vs. 0.104), indicating reduced
measurement consistency, which may blur the electron density map. The anomalous correlation
decreases by 22.0% (0.405 vs. 0.519), and the anomalous slope drops by 10.7% (1.597 vs. 1.789),
suggesting weaker detection and reduced consistency of anomalous signals. The histogram for
absorption factors supports this observation, showing a slightly lower frequency peak and a wider
distribution compared to Test Sample 1, as illustrated in Figure S1. Despite these challenges, the
overall overlap in the histograms suggests that the automatic segmentation effectively captures the
main trends in absorption factor distribution, providing a solid foundation for further refinement.
This indicates that the current model already performs well in addressing complex datasets and
shows promise for achieving even better results with targeted improvements.
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