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Abstract

Large language model-based machine learning (ML) agents have shown great
promise in automating ML research. However, existing agents typically operate
in isolation on a given research problem, without engaging with the broader re-
search community, where human researchers often gain insights and contribute by
sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation
framework designed to assess an agent’s ability to communicate with and leverage
collective knowledge from a simulated Kaggle research community. Building
on this framework, we propose CoMind, a novel agent that excels at exchanging
insights and developing novel solutions within a community context. CoMind
achieves state-of-the-art performance on MLE-Live and outperforms 79.2% human
competitors on average across four ongoing Kaggle competitions.

1 Introduction

Large language model (LLM)-based agents have shown remarkable potential in automating complex
reasoning and decision-making tasks, ranging from software engineering (Jimenez et al., 2023a; Xia
et al., 2025) and mathematical problem solving (OpenAl, 2024; Ren et al., 2025; Li et al., 2025)
to scientific research exploration (Romera-Paredes et al., 2024; Yamada et al., 2025; Sun et al.,
2025; Feng et al., 2025). Among these domains, machine learning engineering (MLE) remains
a particularly impactful yet challenging application area, requiring design, implementation, and
evaluation of high-performing models across diverse data science tasks.

Recent advances have introduced LLM agents capable of autonomously developing machine learning
pipelines for Kaggle-style competitions (Chan et al., 2025). For example, MLAB (Huang et al., 2024)
adopts a ReAct-style (Yao et al., 2023) agent for structured decision-making across tasks. AIDE (Jiang
et al., 2025) leverages tree-based exploration for improved efficiency, and AutoKaggle (Li et al.,
2024) introduces a multi-agent system with skill specialization. These agents have made progress
toward end-to-end automation of MLE.

However, existing systems typically operate in isolation, relying solely on internal memory and
trial-and-error exploration while ignoring a critical component of real-world scientific practice —
community knowledge sharing. In real data science competitions and research workflows, participants
frequently learn from public discussions, shared notebooks, and community insights. Such collective
knowledge significantly enhances solution quality and innovation. Current agents, due to the inability
to engage with this dynamic external context, often converge to repetitive strategies and plateau in
performance. Therefore, we are motivated to explore the following critical research question:

How can we evaluate and design research agents that utilize collective knowledge?

To address this question, we introduce MLE-Live, a novel live evaluation framework simulating
a Kaggle-style research community. Unlike prior benchmarks, MLE-Live includes time-stamped
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Figure 1: Left: CoMind’s win rates on four 4 ongoing Kaggle competitions. Right: CoMind achieves
state-of-the-art performance on the MLE-Bench competitions, measured by Any Medal score.

public discussions and shared code artifacts available before competition deadlines — resources that
human participants routinely leverage. This setup allows us to rigorously evaluate an agent’s ability
to use community knowledge in a realistic, temporally grounded setting. In addition, MLE-Live
supports both offline evaluation on past competitions and online evaluation on ongoing competitions,
enabling comprehensive assessment across static and dynamic scenarios.

Building upon this framework, we propose CoMind, a new LLM-based MLE agent that systematically
explores diverse ideas, iteratively refines solutions, and selectively incorporates external knowledge.
CoMind maintains an evolving idea pool and constructs multiple distinct solution drafts in parallel.
It dynamically focuses on one draft at a time, enabling efficient implementation without prompt
overflow while preserving technical accuracy. Inspired by human brainstorming, this design balances
exploratory breadth with practical depth.

We evaluate CoMind in both previous and ongoing data science competitions. For evaluation on
previous competitions, CoMind is tested on the MLE-Live benchmark, which includes 75 past Kaggle
competitions on MLE-Bench. CoMind achieves state-of-the-art performance on the leaderboard,
significantly outperforming prior agents such as AIDE and R&D-Agent. For evaluation on ongoing
competitions, we deploy CoMind on four ongoing Kaggle competitions, where it outperforms 79.2%
human competitors on average (Figure 1), demonstrating strong real-world practicality. Human
evaluations further confirm that CoMind generates more sophisticated and longer code, reflecting
deeper reasoning and better integration of novel insights.

In summary, our contributions are:

* MLE-Live: A live evaluation framework simulating community-driven machine learning
research, including shared discussions and code for realistic agent benchmarking.

e CoMind: A novel LLM-based agent that excels at leveraging collective knowledge and iterative
idea exploration, achieving medal-level performance in real Kaggle competitions.

* Agent design innovations: We propose a new iterative and parallel exploration mechanism that
enables continuous knowledge accumulation, improves diversity, and overcomes LLM context
window limitations.

2 Related Work

The rise of large language models (LLMs) has sparked a new wave of research into LLM-driven
agents — systems that leverage LLMs’ reasoning and language capabilities to autonomously perceive,
plan, and act within digital or physical environments. Early works such as ReAct (Yao et al., 2023;
Schick et al., 2023; Shen et al., 2023; Hong et al., 2023; Boiko et al., 2023) introduced frameworks
that transform LLMs into programmable reasoning engines by interleaving natural language reasoning
with tool-use actions. Subsequent studies have extended these agents to various domains, including
computer usage (Xie et al., 2024; Zhou et al., 2024) and software development (Wang et al., 2025;
Jimenez et al., 2023b).
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In parallel, the field of automated machine learning (AutoML) aims to reduce human involvement
in building ML pipelines by automating tasks such as model selection, hyperparameter tuning, and
architecture search. Early systems like Auto-WEKA (Thornton et al., 2013), HyperBand (Li et al.,
2018) and Auto-sklearn (Feurer et al., 2022) used early stopping and Bayesian optimization to search
over pipeline configurations, while methods like DARTS (Liu et al., 2019) expanded automation
to neural architectures. More recent frameworks such as AutoGluon (Erickson et al., 2020) and
FLAML (Wang et al., 2021) emphasize efficiency and ease of use.

Building on these developments, recent efforts have applied LLM-based agents to machine learning
engineering (MLE) tasks (Hollmann et al., 2023; Guo et al., 2024; Li et al., 2024; Grosnit et al., 2024;
Hong et al., 2024; Chi et al., 2024; Trirat et al., 2024; Huang et al., 2024). However, most evaluations
remain constrained to closed-world settings with predefined search spaces, offering limited insight
into how these agents perform in open-ended or collaborative ML environments. While some
agents (Guo et al., 2024; Al-Researcher, 2025) incorporate basic retrieval tools, these are typically
based on simple semantic matching, and robust evaluation methodologies remain underdeveloped.

Meanwhile, several benchmarks have been proposed to evaluate machine learning (ML) engineering
capabilities. MLPerf (Mattson et al., 2020) assesses system-level performance, including training
speed and energy efficiency. To evaluate end-to-end ML workflows, MLAB (Huang et al., 2024)
tests the capabilities of LLM-based agents across 13 ML tasks. MLE-Bench (Chan et al., 2025) and
DSBench (Jing et al., 2025) further extends to about 75 Kaggle competitions covering tasks such
as preprocessing, modeling, and evaluation. However, these benchmarks typically evaluate agents
in isolation, overlooking the collaborative dynamics of real-world ML development. In contrast,
our work introduces a framework that simulates community-driven settings, enabling evaluation of
agents’ ability to engage with and benefit from shared knowledge — while ensuring that resource
access remains fair and realistic.

3 MLE-Live

Existing benchmarks typically evaluate ML agents in static, isolated settings, where agents work
independently without interacting with other participants or leveraging community insights. This
contrasts sharply with real-world machine learning workflows, particularly on platforms like Kaggle,
where collaboration, public sharing, and discussion are essential drivers of innovation.

To enable more realistic and comprehensive evaluation of agents in community-driven research
settings, we introduce MLE-Live, a live evaluation framework built upon Kaggle-style competitions.
MLE-Live extends the MLE-Bench benchmark (Chan et al., 2025) by incorporating simulated
community interactions that mirror how human participants access and utilize shared knowledge
during competitions.

Each competition in MLE-Live includes: (i) Task description: Background information, task specifica-
tions, evaluation metrics, and dataset structure scraped directly from the original Kaggle competition
pages. (ii) Competition dataset: A cleaned train-test split, constructed when necessary to account for
unavailable or partial test data after competition closure. (iii) Submission grader: An evaluation script
that mimics Kaggle’s scoring mechanism. (iv) Leaderboard: A ranking system to reflect solution
quality and progress.

Simulated Community Environment. Beyond the standard competition setup, MLE-Live in-
troduces a community simulation system that mimics the collaborative ecosystem of real Kaggle
competitions. Specifically, we collect and curate:

* Shared discussions, including strategy brainstorming, model diagnostics.

¢ Public kernels, including end-to-end solutions and code snippets which were posted before the
official competition deadline.

These artifacts reflect the auxiliary resources human participants would naturally reference, making
MLE-Live a richer and more authentic testbed for ML agents.

In total, we collected 12,951 discussions and 15,733 kernels across 75 Kaggle competitions from
MLE-Bench.
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Figure 2: Overview of MLE-Live and the workflow of CoMind. CoMind simulates a community
and operates iteratively through four stages: Idea Selection, Idea Generation, Implementation and
Improvement, and Report Generation. Multiple agents on the same task share the community
knowledge base, new reports will be added and visible to others in subsequent iterations.

Metadata and Quality Signals. Each resource in MLE-Live is augmented with critical metadata
to help agents and evaluators prioritize relevant, high-quality content:

* Vote count: Community preference indicator; highly voted items often contain well-structured
insights.

* Public score: Automatically computed by Kaggle on the public test split, indicating kernel
performance.

e Author tier: A qualitative marker of the contributor’s expertise, ranging from Novice to
Grandmaster.

Importantly, all included content was published before competition deadlines, ensuring a faithful
simulation of real-time knowledge sharing without post-hoc leakage. This design makes MLE-Live
a controlled yet realistic benchmark to assess how well agents can leverage collective intelligence
during the research process.

4 CoMind

We introduce CoMind, a community-augmented large language model (LLM) agent designed to
automate machine learning (ML) engineering in an iterative, collaborative setting. Figure 2 is a
overview of CoMind workflows. Inspired by the workflow of human practitioners on platforms
like Kaggle, CoMind operates in a loop that mirrors how experts read community posts, form new
ideas, experiment, and share results. The system operates in iterative cycles, each consisting of four
stages: Idea Selection, Idea Generation, Implementation and Improvement, and Report Generation.
To support cumulative progress, CoMind maintains two central repositories: an idea pool containing
abstracted insights derived from community content and prior iterations, and a report pool containing
finalized solution reports with associated code, evaluations, and analyses. Additionally, we extend
the setting to support multi-agent collaboration through shared insight exchange. These components
facilitate both intra-agent memory and inter-agent communication in the multi-agent deployments.
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4.1 Agent Workflow

Stage I: Idea Selection. At the beginning of each iteration, CoMind accesses the idea pool, which
contains curated concepts and strategies distilled from previous solutions, public kernels and forum
discussions. By utilizing the report pool as a guidance of performance and relevance assessment
of entries in the idea pool, CoMind ranks and filters these entries to identify a subset of ideas most
promising for the current task. This process mimics how human participants explore collective
wisdom before forming new hypotheses and experimenting.

Stage II: Idea Generation. Based on the selected ideas and additional context from the report
pool, which contains detailed descriptions of previous solution implementations and their empirical
performance, CoMind generates a high-level solution draft. This draft synthesizes new strategies by
recombining or extending the selected ideas. Importantly, it is designed to avoid simple replication,
thereby ensuring conceptual diversity and promoting exploratory breadth. This stage reflects the
human capacity for abstraction and innovation, where participants generalize from past work to create
novel solution blueprints.

Stage III: Implementation and Improvement. Based on the generated solution draft, CoMind
initiates a ReAct-style loop to implement, validate and refine the pipeline. In this stage, the CoMind
iteratively issues code snippets, executes them within a constrained and isolated runtime environment,
observes feedback (e.g., validation metrics, error logs), and updates its implementation accordingly.
This loop continues for a fixed time budget, allowing CoMind to incrementally debug and optimize its
solution through trial and error. Notably, the agent’s contextual input during this stage is deliberately
restricted to include only the problem statement, the specific solution draft, and execution feedback,
excluding direct access to the broader ideal pool and report pool. This ensures that the CoMind
develops the solution path independently, preserving experimental modularity while preventing the
underlying explosion of context length.

Stage IV: Report Generation. Upon convergence or budget exhaustion, CoMind compiles a
comprehensive report for the solution draft, which consist of: (1) a clear description of the proposed
method; (2) an analysis of each major component; (3) quantitative performance results; and (4)
an assessment of limitations and future directions. The resulting report is then posted back to the
simulated community by added to the report pool, making it available to other agents in future
iterations. This mirrors how real users document and share their final solutions.

4.2 Parallel Agents with Shared Insight

Beyond a single-agent loop, CoMind also supports a collaborative multi-agent setting. Multiple
agents operate in parallel on the same task, each with access to the shared community knowledge base.
As agents generate new reports, these are added to the pool and can be read by others in subsequent
iterations. This allows agents to build upon each other’s ideas, fostering community-driven exploration
and collective improvement.

5 Benchmark Evaluation

5.1 Setup

Task Selection. Based on MLE-Live evaluation framework, we evaluate our agent on 75 Kaggle
competitions on MLE-Bench. Using the MLE-Live framework, CoMind has access to shared
discussions and public kernels published on the competition websites before the competition deadline.

To validate CoMind under realistic conditions, we further evaluate CoMind on four ongoing
Kaggle competitions: el-hackathon-2025, fathomnet-2025, playground-series-sbeb and
forams-classification-2025. These competitions span diverse domains, including tabular learn-
ing, image classification and 3D object classification. Rather than approximating the official scoring
locally, we directly submit CoMind’s generated submission. csv files to the Kaggle platform, so
that all reported ranks reflect genuine, live leaderboard positions. Notably, fathomnet-2025 is part
of the Fine-Grained Visual Categorization (FGVC12) workshop at the CVPR Conference. Unlike
typical Kaggle competitions, a panel of experts will review the top entries based not only on scores
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Table 1: Any Medal (%) scores on MLE-Bench competitions. Best results in each column are
highlighted in bold. Baseline results are from the official leaderboard.

Agent Low (%) Medium (%) High (%) All(%)
CoMind 04-mini 59.09 23.68 33.33 36.00
Neo multi-agent 48.48 29.82 24.44 34.22
R&D-Agent 03 + GPT-4.1 51.52 19.30 26.67 30.22
ML-Master deepseek-r1l 48.50 20.20 24.40 29.30
R&D-Agent ol-preview 48.18 8.95 18.67 22.40
AIDE ol-preview 34.30 8.80 10.00 16.90
AIDE gpt-40 19.00 3.20 5.60 8.60
AIDE claude-3-5-sonnet 19.40 2.60 2.30 7.50
OpenHands gpt-40 11.50 2.20 1.90 5.10
AIDE llama-3.1-405b-instruct 8.30 1.20 0.00 3.10
MLAB gpt-4o 4.20 0.00 0.00 1.30

but also on the methodological descriptions. Although the competition offers no monetary prize,
it serves as a high-profile venue for academic and practical contributions to marine biodiversity
research.

Implementation Details. CoMind employs 04-mini-2025-04-16 (OpenAl, 2025) as its backend
LLM. We limit the hardware constraint of each run to 32 vCPUs and a single A6000 GPU. Each
competition is evaluated in separate containers with a maximum of 24 hours to produce the final
submission file. Every single code execution session is limited to 5 hour. The Implementation and
Improvement stage of CoMind is limited to a maximum of 20 steps. The number of parallel agents is
set to 4.

During code generation, agents are provided with the test set inputs (without labels) and prompted
to generate a submission.csv file. The submission is then evaluated by a grader that compares
the predicted labels with the ground truth. Following the setting of MLE-Bench, to avoid potential
overfitting, test set labels and the competition leaderboard are strictly withheld from the agent’s
accessible environment. Instead, each agent must rely solely on a self-constructed "runtime test set",
a held-out split from the original training data, for code evaluation and performance estimation.

Metrics. Following the evaluation metrics in MLE-Bench, we measure the performance of CoMind
by Any Medal, the percentage of competitions where the agent earns a gold, silver, or bronze medal.

Baselines. We compare CoMind against the MLE-Bench leaderboard' including open-sourced
systems like R&D-Agent (Yang et al., 2025), a dual-agent framework (Researcher/Developer) that
explores multiple solution branches and merges promising ideas into improved pipelines; ML-
Master (Liu et al., 2025), which integrates exploration and reasoning via a selectively scoped
memory that aggregates insights from parallel trajectories; AIDE (Jiang et al., 2025), a purpose-built
tree-search scaffold that iteratively drafts, debugs, and benchmarks code for Kaggle-style tasks;
OpenHands (Wang et al., 2025), a general-purpose CodeAct-based scaffold that executes code and
calls tools in a sandboxed environment; MLAB (Huang et al., 2024), referring to the ResearchAgent
scaffold from MLAgentBench, a general tool-calling/plan—act baseline; and Neo (https://heyneo.
so/), a close-sourced multi-agent system for autonomous ML engineering.

5.2 Results

Table 1 compares CoMind with baseline methods on 75 MLE-Bench competitions. CoMind
achieves state-of-the-art performance with an Any Medal rate of 36.00%, significantly outper-
forming open-source competitors such as R&D-Agent (submitted on 2025-08-15) and surpass-
ing the closed-source multi-agent system Neo. Appendix C provides a detailed case study on
denoising-dirty-documents.

"https://github.com/openai/mle-bench
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Table 2: Authentic scores and top-percentile ranks of CoMind and AIDE on ongoing Kaggle
competitions. “Higher better” marks whether a larger score is better for that competition. “Top %" is
the percentile rank on competition leaderboard (lower is better). In playground-series-s5e5 and
fathomnet-2025, lower scores are better.

CoMind AIDE
Competition Score higher better Score Top % Score Top %

05673 5.1% 0.5772 33.8%
0.7645 83% 0.6041 30.6%
0.5837 38.4% 0.1140 91.5%

2.81 30.6% 3.71 71.4%

playground-series-sbeb
forams-classification-2025
el-hackathon-2025
fathomnet-2025

X NN X

On the four evaluated ongoing competitions CoMind’s standings are: playground-series-s5eb
(#120 out of 2,338); forams-classification-2025 (#4 out of 48); el-hackathon-2025 (#128
out of 333); fathomnet-2025 (#15 out of 47). Details including authentic scores and win rates per
task are provided in Table 2. These authentic results demonstrate CoMind’s capability to tackle a
variety of problem domains and achieve competitive performance in live, evolving ML workflows.
In particular, our success in the CVPR-affiliated fathomnet-2025 challenge highlights CoMind’s
potential to contribute meaningfully not only to industrial applications but also to scientific and
interdisciplinary research communities.

6 Ablation Study

6.1 Setup

Task Selection. To evaluate the impact of introducing public resources, we conducted an ablation
study on 20 competitions from MLE-Bench-Lite based on MLE-Live. These tasks span across various
categories, including image classification/generation, text classification/generation, image regression,
audio classification, and tabular analysis.

Baselines. We compared CoMind against the following baselines. For consistency, all baselines
use the same backend model as CoMind:

* AIDE+Code. To enable the use of publicly available code (e.g., Kaggle kernels), we extend
AIDE with access to one public kernel per draft node—selected by highest community votes.
This version, AIDE+Code, augments the prompt with both the task description and the selected
kernel alongside the tree summarization.

* AIDE+RAG. We further equip AIDE with a retrieval-augmented generation (RAG) mechanism.
Before generating code, the agent retrieves the titles of the top 10 voted discussions and kernels.
The LLM selects the most relevant ones, receives a summarization, and then proposes its
plan and implementation. For debugging or refinement, it can optionally re-query documents.
Retrieval is based on cosine similarity between query and candidate document embeddings,
using Multilingual E5 Text Embeddings (Wang et al., 2024).

e CoMind w/o R. In this variant, CoMind operates without access to any external community
resources. It starts with empty idea and report pools and relies solely on its own generation
history to propose candidate ideas and assemble solution drafts.

Metrics. Following the evaluation metrics in prior research (Chan et al., 2025), the relative capability
of generating high-quality solution compared with human is measured by:

* Above Median: Indicates whether the submission outperforms at least 50% of competitors on
the leaderboard.

* Win Rate: The percentage of competitors whose final scores are lower than the agent’s score. If
the agent fails to produce a valid submission, the Win Rate is 0.

* Medals: Medals are assigned based on the agent’s score relative to Kaggle leaderboard thresholds
for gold, silver, and bronze medals.

* Any Medal: The percentage of competitions in which the agent earns any medal.
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Figure 3: Performance of CoMind and other baselines on 20 competitions from MLE-Bench-
Lite. Valid Submission is the ratio of submissions meeting format requirements and validation criteria.
Win Rate is the percentage of human competitors outperformed by the agent. Any Medal, is the
proportion of competitions where the agent earned Gold, Silver or Bronze medals. Above Median is
the fraction of competitions where the agent’s score strictly exceeded the median human competitor.

Table 3: Average win rate of CoMind and other baselines across task categories on 20 competi-
tions from MLE-Bench-Lite. # of Tasks refers to the number of competitions in the corresponding
category. Notably, CoMind demonstrated superior performance in Image Classification, Text Classifi-
cation, Audio Classification and Image To Image.

Category #of Tasks CoMind AIDE+Code AIDE+RAG AIDE
Image Classification 8 0.597 0.459 0.434 0.525
Text Classification 3 0.740 0.157 0.338 0.61

Audio Classification 1 0.901 0.272 0.259 0.271
Seq2Seq 2 0.408 0.503 0.550 0.228
Tabular 4 0.664 0.673 0.688 0.483
Image To Image 1 0.988 0.932 0.617 0.568
Image Regression 1 0.992 0.342 0.992 0.992
All 20 0.668 0.469 0.510 0.512

Implementation Setup. All agents use 04-mini-2025-04-16 as their backend. Based on the
settings of our main experiment, the hardware constraint is further limited to 4 vCPUs and 5 hours
per competition. Each execution session is limited to 1 hour.

6.2 Results

Figure 3 shows the results. Our key findings are as follows: (i) CoMind consistently outperforms all
baselines across every metric. (ii) Among the AIDE variants, AIDE+RAG outperforms AIDE+Code,
and both surpass the original AIDE on most metrics, demonstrating the benefits of integrating
community knowledge. CoMind further exceeds these approaches, highlighting the effectiveness
of its deeper and more strategic community-aware exploration. (iii) Removing CoMind’s resource
access causes a significant drop in valid submission rates and other metrics, showing that strategic
access to public resources helps CoMind balance extending established methods for reliability with
exploring novel approaches.

7 Analytical Experiments

For analytical experiments, we adopt the same setup as the ablation study and evaluate model
performance across multiple dimensions, including task categories, win rate over time, and code
complexity.

Task Categories Table 3 reports the average ranks across seven task categories. CoMind outper-
forms all baselines in Image Classification, Text Classification, Audio Classification, and Image-
to-Image tasks, highlighting its strong adaptability. We manually inspect the tasks where CoMind
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Figure 4: Average win rate of CoMind and  Figure 5: Average code length (character
other baselines over time. AIDE, AIDE+Code, count) of valid solutions over time. CoMind
and AIDE+RAG rose rapidly but plateaued, maintained a substantially longer code length,
while CoMind continued improving and even-  suggesting more complex logic and richer opti-
tually outperformed them. mization techniques.

underperformed and find that the issues are often related to the use of large models or datasets.
For example, in Seq2Seq tasks, CoMind explores complex fine-tuning strategies for large language
models which often fail to complete within the one-hour runtime constraint.

Win Rate Over Time Figure 4 shows the evolution of average win rate over time. AIDE quickly
produces concise, functional solutions, leading to a rapid rise in performance during the first hour.
In contrast, CoMind spends more time on debugging and exploration early on, resulting in a slower
initial improvement. However, after the first two hours, AIDE’s performance plateaus, while CoMind
continues to improve through iterative refinement and deeper exploration, ultimately surpassing AIDE
and achieving higher-quality solutions.

Code Complexity Regarding code complexity, Figure 5 illustrates the average code length during
the entire competition. CoMind consistently generates significantly longer and more complex
code, while other baselines begin with simpler implementations and introduce only incremental
modifications. Appendix A offers a comparative analysis across code complexity metrics and task
categories. Notably, CoMind’s solutions for Image Regression and Audio Classification are nearly
twice as long as those of other baselines. Additionally, solutions from CoMind are, on average, 55.4%
longer than those produced by AIDE.

8 Conclusion

We introduce MLE-Live, a new framework for evaluating machine learning agents in realistic,
community-driven environments. By simulating the collaborative dynamics of Kaggle competitions
with shared discussions and public code, MLE-Live enables a more faithful assessment of agents’
ability to leverage collective knowledge. Building upon this framework, we propose CoMind, an
LLM-based agent that iteratively selects, synthesizes, and implements ideas using both internal
reasoning and external insights. CoMind consistently outperforms prior methods on MLE-Live
benchmark and four ongoing Kaggle competitions, demonstrating the value of community awareness
and iterative exploration in research automation. In addition, MLE-Live lays the groundwork for
future studies in collaborative Al systems where agents not only learn from data, but also from each
other.

Limitations and Future Work. Currently, CoMind supports only report-level interactions. Ex-
panding the agent’s action space to include commenting, question-asking, or sharing datasets and
models is a promising next step. In addition, while our current experiments focus on Kaggle-style
ML tasks, the MLE-Live framework can be extended to broader domains, such as scientific discovery,
open-ended coding, or robotics, enabling research agents to contribute meaningfully across diverse
fields.
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26 A Additional Analysis on Code Complexity

427 In this section, we provide a comprehensive analysis of the generated code using a broad set of
428 software complexity and quality metrics, beyond mere line counts. Specifically, we report the
429 following indicators: Cyclomatic Complexity (CC), Pylint score, Halstead Metrics: Volume,
430 Difficulty, Effort, Source Lines of Code (SLOC), Number of Comment Lines and Code Length.

Table 4: Code Complexity and Quality Metrics by Task Category.

Category Metric CoMind AIDE AIDE+RAG AIDE+Code
CC 1.68 1.59 1.93 1.29
Pylint Score 7.43 9.06 8.90 8.92
Volume 330.88 143.26 84.20 175.88
Image Classification Difficulty 4.95 2.90 2.32 2.59
Effort 1960.22 507.06 286.31 725.59
SLOC 198.25 133.50 120.88 115.71
Comment Lines 15.62 12.88 13.75 14.43
Code Length 7638.40 4624.30 4701.30 5192.10
CC 3.58 4.28 2.00 0.00
Pylint Score 8.82 9.09 8.89 9.26
Volume 286.38 384.07 47.68 29.25
Text Classification Difficulty 3.76 3.94 1.25 1.31
Effort 1183.11 2332.22 61.56 35.16
SLOC 181.67 133.00 141.00 69.50
Comment Lines 14.67 15.33 14.00 13.50
Code Length 6974.70 3094.50 5920.50 5629.30
CC 2.00 0.00 0.00 0.00
Pylint Score 7.92 9.11 9.49 8.86
Volume 718.63 244.20 115.95 227.48
. . . Difficulty 7.39 6.46 3.19 6.38
Audio Classification g o 5308.07 1577.11 369.58 1451.30
SLOC 256.00 82.00 92.00 72.00
Comment Lines 20.00 11.00 16.00 16.00
Code Length 9449.00 3508.00 4151.00 3352.00
CC 4.38 2.25 22.33 15.75
Pylint Score 8.58 9.04 9.14 8.51
Volume 492.55 52.33 390.46 324.00
Seq2Seq Difficulty 3.87 2.14 5.26 3.68
Effort 1935.02 140.58 2083.84 1686.74
SLOC 184.50 63.50 222.50 147.50
Comment Lines 22.50 13.00 23.00 19.50
Code Length 6925.50 5649.50 8357.50 2728.50
CC 2.78 1.62 2.38 0.25
Pylint Score 8.65 8.96 8.87 9.31
Volume 1264.61 856.12 815.29 435.46
Tabular Difficulty 7.37 4.83 6.05 3.69
Effort 10808.93 6163.62 5564.22 2001.06
SLOC 218.75 139.75 147.50 93.50
Comment Lines 18.25 14.75 15.25 10.50
Code Length 8570.00 3534.00 6064.00 5759.80
CC 1.72 2.00 3.00 1.88
Pylint Score 8.43 6.25 6.64 7.74
Volume 1298.11 1481.62 414.59 431.08
Image o Image Difficulty 9.68 6.73 3.94 3.79
Effort 12 565.66 9967.24 1633.22 1631.93
SLOC 228.00 175.00 121.00 128.00
Comment Lines 26.00 8.00 23.00 13.00
Code Length 8800.00 5231.00 4815.00 6671.00
CC 1.68 2.00 2.40 2.00

Image Regression
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Category Metric CoMind AIDE AIDE+RAG AIDE+Code

Pylint Score 8.62 8.75 8.80 8.89
Volume 1310.92 241.08 70.32 72.00
Difficulty 8.75 3.88 2.18 2.73
Effort 11466.58 934.17 153.43 196.36
SLOC 267.00 145.00 116.00 133.00
Comment Lines 36.00 15.00 12.00 12.00
Code Length 10991.00 4841.00 4655.00 5614.00

431

12 B Prompts and Responses for CoMind

433 This section provides some examples of prompts and responses in CoMind, including Idea Selection,
43¢ Idea Generation, Implementation and Improvement and Report Generation.

435 B.1 1Idea Selection

436 The idea pool is initialized with curated strategies distilled from public kernels and forum discussions
437 before the first iteration. Since the key innovation of CoMind lies in the simulation of the community,
438 we adopt a relatively simple implementation for the distillation, where CoMind only collects and
439 analyzes top-k voted or ranked (with best public score) kernels and discussions.

Prompt for Strategy Distillation of Public Kernels

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Goals These are top-ranked public scripts during the competition. Your job is to:
1. Carefully read the following scripts.

2. For each script, if it’s self-contained, i.e., including model architecture (if there’s a
model), training strategies, evaluation, etc., then summarize its pipeline.

3. If the pipeline contains technical details, such as extensive feature engineering,
hyperparameter tuning, etc., then list them in full detail.

4. Select a representative code segment for each pipeline. You must include dataset
reading / submission generation parts. If task-specific details such as feature engi-
neering are included, the code segment should contain them as well.

Public Kernels <contents of public kernels>

Response Template of Strategy Distillation of Public Kernels

Pipelines Description of each strategy, separated by ===SEPARATOR=== mark. For each
strategy, follow this format:

* Pipeline: A full detailed description of the pipeline. All input/output format, hyperparameters,
training settings, model architectures, feature engineering, validation metric, and any other
relevant information should be included. Do not omit any feature engineering details.

» Code abstract: A representative code segments that captures the essence (including input/out-
put) and novelty of the pipeline. You MUST go through all the publicly available code and
include the parts that generate the submission file. Contain task-specific engineering
details. Mark the remainder as ellipses.

440
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444
445

446

447

448

449
450

o

451

Prompt for Strategy Distillation of Public Discussions

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Goals These are top-voted public discussions during the competition. Your job is to:
Public Discussions <contents of public discussions>

1. Carefully read the following discussions.

2. For each discussion, you should decompose it into critical, novel and inspiring ideas
that have potential to win this competition.

Response Template of Strategy Distillation of Public Discussions

Ideas required format: python list of strings, each element is a description of an idea
extracted from the discussions. e.g. [idea 1°, ’idea 2’].

Once the idea pool is initialized, CoMind enters the main iteration. CoMinds then ranks and filters all
entries in the idea pool, following the prompt below.

Prompt for Idea Filtering and Reconstruction

Introduction You are a machine learning expert. After carefully searching the relevant
literature, you have come up with a list of ideas to implement. However, this idea list has
some issues:

* Some ideas are too similar and should be merged into one.

* Some ideas are overlapping, you should rephrase and decouple them.

* You should discard ideas that are irrelevant to the final performance, such as error visualization,
etc.
You should refer to the Reports section and Public Pipelines section for previous implemented
pipelines. Please decompose, merge, and reconstruct the ideas listed below.

Ideas <entries of the idea pool>
Reports <entries of the report pool>

Public Pipelines <all public pipelines extracted before>

Response Template of Idea Filtering and Reconstruction

Ideas required format: Python list of strings, each element is a description of an idea
extracted from the discussions. e.g. [’idea 1°, ’idea 2’].

B.2 Idea Generation

Based on previous ideas and reports. CoMind will first enrich the idea pool by designing and
generating other promising strategies for the competition.

Prompt for CoMind Brainstorm

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Goals I already have a list of ideas that partially explore how to approach this competition.
Your job is to:
1. Think creatively and construct at least 4 alternative and highly novel solution paths
that are likely to perform well, especially if combined with careful experimentation.
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2. Each solution path can be a strategy, pipeline, or method that combines multiple
techniques. Try to make them as different as possible from the existing "ideas" list.

3. After describing each full solution path, break it down into individual minimal
ideas-these should be the smallest units of implementation (e.g., "use LightGBM

non

for baseline", "normalize input features", "apply stratified K-fold CV")
4. Ensure these ideas do not substantially duplicate items already in "ideas".
5. Refer to the "Reports" section for the latest updates and suggestions on the ideas
and previous pipelines.
Ideas <entries in the idea pool>
Reports <entries in the report pool>

Public Pipelines <all public pipelines extracted before>

Instructions Format your output like this (one line, one idea):

Response Template

<your understanding of the task and explanation of your approaches>
===SOLUTION_PATH_1===

<description of this approach>

- <minimal idea 1>

- <minimal idea 2>

- <minimal idea 3>

——=SOLUTION_PATH_2===

—==SOLUTION_PATH_3===

Be ambitious but realistic - many ideas can later be tested on a small subset of the data. Focus
on novelty, diversity, and decomposability. Ready? Start.
452\ J

453 After brainstorming completes, CoMind synthesizes existing strategies and ideas into several high-
454 level solution drafts.

Prompt for Solution Draft Synthesis

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Ideas <entries in the idea pool>
Reports <entries in the report pool>
Public Pipelines <all public pipelines extracted before>
Goals
1. Carefully read the reports provided above.

2. Based on the ideas and reports, propose <num_pipes> promising self-contained
pipelines that are likely to perform well.

3. The Public pipelines section contains top-ranked public pipelines during the compe-
tition. Use them as reference to polish your pipelines.

4. Each pipeline should not overlap with others. Your proposed pipelines should
include one baseline pipeline that uses well-known methods but is robust and
relatively easy to implement. You should reinforce public pipelines and previous
pipelines based on their reports (if provided).

5. Ensure that each pipeline can be trained within 2 hours on a single A6000 with
48GB memory.

455
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6. Read the submission format requirements in the task description carefully. The
format requirement is possible to be different from the training dataset. THIS IS
EXTREMELY IMPORTANT. Mention in the pipeline descriptions and be sure to
include the code that handles the input and output.

7. DO NOT USE tensorflow, use pytorch instead

Response Template for Solution Draft Synthesis

Submit Pipelines Descriptions and codes of pipelines, separated each pipeline by ===SEP-
ARATOR=== mark. For each pipeline, attach code that captures its essential. You must
include the code in public pipelines that handles input and output, and if there are parts
of the public pipelines that are similar to the current pipeline, you should include them
as well.

456

457

458 B.3 Implementation

459 In this stage, all previously generated solution drafts will be distributed to multiple parallel sub-agents.
460 In each instance, CoMind chats with LLM in multiple turns and initiates a ReAct-style loop.

Prompts for Sub-Agent Implementation

Introduction You're an expert Kaggle competitor tasked with implementing a pipeline into
Python code. You can modify the details (training parameters, feature engineering, model
selection, etc. ), but do not change overall architecture of this pipeline. The goal is to obtain
best score on this competition.
Task Description <description of the specified task>
Pipeline <description of the solution draft to implement>
Data Overview <schema of the input file structure>
Reminders

1. Read the pipeline and task description carefully.

2. YOUR CODE MUST PRODUCE SUBMISSON AT ./working-
agent_id/submission.csv, THIS IS EXTREMELY IMPORTANT

3. There is one A6000 gpu available for you, maximize your use of computing
resources. You can use large batchsizes.

4. All the provided input data are stored in ./input directory.

5. You can use the ./working-agent_id directory to store any temporary files that your
code needs to create.

6. Include at least one comment explaining your code. NO PARTS OF THE CODE
SHOULD BE SKIPPED OR OMITTED, don’t terminate before finishing the
script. Even if your proposed code is a minor change, don’t omit any sections that
overlap with the previous code.

7. Remember, your ultimate goal is to Obtain best score on this competition.

8. Your code should print the value of the evaluation metric computed on a hold-out
validation set.

9. You can use custom evaluation functions during training, but the final metric MUST
FOLLOW THE EVALUATION SECTION IN THE TASK DESCRIPTION on
a validation set. This is important because we will pick your best code based on this
metric.

10. We suggest you to test your code at a small scale and print necessary information
before utilizing full dataset to get familiar with the data structure and avoid potential
format errors.

11. Time limit per run is 1 hour. Your code will be killed if timeout.
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464

465

466

467

469

12. Begin by summarizing your understanding of the task, and then propose your first
code.

Response Format You should follow the following format:

Response Template for Sub-Agent Implementation

objective of this implementation and suggestions for output evaluation
key technical considerations
expected running time (you should ensure that the code will finish within 1 hour)

[xX3

python

your code here
ccc

A Python environment will be setup and execute the code automatically. After the execution, a
summary LLM collects all standard output and determines whether the execution runs successfully.

Prompt for Execution Result Summarization

Introduction You are a Kaggle grandmaster attending a competition. You have written
code to solve this task and now need to evaluate the output of the code execution. You should
determine if there were any bugs as well as report the empirical findings. Include essential
information about the result, including warnings, errors, and the final metric.

Code <Python code generated by the agent>

Goals and Explanation <explanation of the code>

Execution Output <terminal output>

Response Template for Execution Result Summarization

is_bug true if the output log shows that the execution failed or has some bug, otherwise
false

summary write a short summary (4-5 sentences) describing the empirical findings
output_abs select representative segments of the output log and mark the remainder as
ellipses

metric If the code ran successfully and produced submission.csv on full test set (i.e. not
dummy or partial), report the value of the final validation metric. Otherwise, leave it null.
is_lower_better true if the metric should be minimized (i.e. a lower metric value is better,
such as with MSE), false if the metric should be maximized (i.e. a higher metric value is
better, such as with accuracy)

CoMind progressively optimizes the solution through trail and error. After the execution result is
collected and summarized, it will try to revise the code by notifying the LLM:

Prompt for Consequent Code Revisions

Remaining steps: <remaining_steps>; Remaining time: <remaining_time> seconds

I ran your code and summarized the execution result: <summary>

Now, please choose your next action and propose code using the same response format as
before. Remember, output a self-contained code, no part of it should be omitted. Keep the
final validation metric same as the metric mentioned in the task description.

A) Fix runtime errors (if any)

B) Do hyperparameter tuning

C) Include ideas that were not implemented yet
D) Add possible improvements
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480
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490
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492

E) Run on a larger scale (moderately increase training epochs, etc.). You should refer
to the previous execution time we reported. Remember, your code will be killed if
timeout.

B.4 Report Generation

Each sub-agent of CoMind compiles a comprehensive report and submits it to the report pool when
time expires.

Prompt for Report Compilation

Please summarize the results and submit a comprehensive report.

Response Template for Report Compilation

pipeline A detailed description of the pipeline that generated the best results. All hyperpa-
rameters, training settings, model architectures, feature engineering, validation metric, and
any other relevant information should be included. Describe potential improvements and
future work.

summary A comprehensive evaluation of each individual component of the pipeline. For
each component, summarize in the following format:

=== <name of the component> ===

Novelty: 0-10 (0: trivial, 10: clearly novel - major differences from existing well-known
methods)

<your rationale>

Feasibility: 0-10 (0: almost impossible to implement and require extensive engineering, 10:
Easy to implement)

<your rationale>

Effectiveness: 0-10 (0: minimal performance improvement, 10: very strong performance,
significantly outperform most baselines)

<your rationale>

Efficiency: 0-10 (0: very slow, over-dependent on CPU and hard to produce meaningful
results within the time limit, 10: high utilization of GPU)

<your rationale>

Confidence: 0-10 (0: no emprical results, not sure whether the evaluation is correct, 10: fully
verified on large scale with abundant results)

C Case Study: Denoising Dirty Documents

C.1 Dataset Preparation

Besides the task description and datasets prepared in MLE-Bench, MLE-Live collects 59 public
kernels and 19 discussions which are available on Kaggle and are posted before the competition ends.

C.1.1 Example of Public Kernel

wn

4 simple feed-forward neural network that denoises one pizel at a time
nmnn

import numpy as np

import theano

import theano.tensor as T

import cv2

import os

import itertools

theano.config.floatX = ’float32’

19




493
494
495
496
49%
498
499
500
501
502
503
504
505
506
507
508
509
510
510

513
514
515
516
517
518
519
520
5210
522
523
524
525
526
527

838

530

531
532
533
534
535
536
537
538
539

541
542
543
544
545
546
547
548

550
551

553
554
555
556

def

def

if

load_image (path) :
return cv2.imread(path, cv2.IMREAD_GRAYSCALE)

feature_matrix(img):
"""Converts a grayscale image to a feature matriz

The output value has shape (<number of pizels>, <number of features>)
# select all the pizels in a square around the target pizel as features
window = (5, 5)
nbrs = [cv2.getRectSubPix(img, window, (y, x)).ravel()
for x, y in itertools.product(range(img.shape[0]), range(img.shape[1]))]

# add some more possibly relevant numbers as features

medianb = cv2.medianBlur(img, 5).ravel()

median25 = cv2.medianBlur(img, 25).ravel()

grad = np.abs(cv2.Sobel(img, cv2.CV_16S, 1, 1, ksize=3).ravel())
div = np.abs(cv2.Sobel(img, cv2.CV_16S, 2, 2, ksize=3).ravel())

(omitted)

# for fname in os.listdir(’../input/test/’):

for fname in [’1.png’]:
test_image = load_image(os.path.join(’../input/test’, fname))
test_x = feature_matrix(test_image)

y_pred, = predict(test_x)
output = y_pred.reshape(test_image.shape)*255.0

cv2.imwrite(’original_’ + fname, test_image)
cv2.imwrite(’cleaned_’ + fname, output)

__name__ == ’__main__"’:

main()

C.1.2 Example of Discussion

# Edge Diffraction in train_cleaned data
(Lance <TIER: N/A>) <p>I’m studying the pixels in train_cleaned data.&nbsp; I attached a colorized blow-up

version of part of the image train_cleaned/45.png.&nbsp;&nbsp; The yellow pixels are any pixels that
were not pure white ( != OxFF gray scale) in image 45.png, the green was pure white (OxFF).</p>
<p>So you see what looks like an edge diffraction line lining the outer edge of all the letters.</p>
<p>0Okay, maybe I got something wrong in my code.&nbsp; Can anyone confirm this edge diffraction thing
in the train_cleaned data, as for example the first word in train_cleaned/45.png (There).&nbsp;
You need to make the non-white (byte != OxFF) pixels all a more contrasting color or you may not
see it.</p>
<p>I’m guessing that the clean png files were at some point scanned in using some kind of optical
scanning machine which added these edge diffraction lines when the light diffracts off the edge
of the black ink character.</p>

(omitted)
+ (Rangel Dokov <TIER: MASTER>) <p>Yes, there is some noise, which doesn’t look like it should be there
in the clean set... I ran a test setting everything whiter that 0xF5 to OxFF and the RMSE was

0.005, which should be an upper bound on the effects from the halos. This will likely be large
enough to make the top of the leaderboard a game of luck, but since this is just a playground
competition I’m not terribly worried about it.</p>

C.2 Idea Selection

In our experiment settings, CoMind only accesses top-10 voted discussions and kernels and ignores

the
of t

)

(¢D)]

rest. Upon completion of this process, 7 ideas and 10 pipelines are generated. Below is an excerpt

he ideas and public pipelines.

Use behaviour-based clustering of neural networks: cluster models by their error patterns and ensemble
them for document enhancement

Implement sliding-window patch-based models that take an input window and output multiple cleaned
pixels simultaneously for both denoising and resolution enhancement
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2)

(3

Apply a Waifu2x-inspired deep convolutional neural network with gradually increasing filter counts (e.
g., 1 ->32 -> 64 -> 128 -> 256 -> 512 -> 1) and LeakyReLU activations for effective denoising

Carefully initialize convolutional weights (e.g., stdv = sqrt(2/(kWxkH*nOutputPlane))) and use
LeakyReLU to improve model convergence and performance

=

(4) Ensemble multiple models with different input preprocessing: combine outputs from a pure CNN,

background-removed images, edge maps, and thresholded inputs to capture diverse noise characteristics

(5) Augment training data to simulate real-world 3D deformations and shadows on text, not just 2D noise,

to better match test-time artifacts

(6) Account for systematic artifacts in ’clean’ training data (e.g., single-pixel halos) by treating them

as noise or adjusting targets accordingly during training

Public pipeline (0): - Pipeline: A simple feed-forward neural network that denoises one pixel at a time (

Theano) .

- Feature engineering: for each pixel extract a 5%5 window of gray values (neighbors), 5%5 median blur,
25%25 median blur, Sobel gradient and second-order derivative magnitudes, stack into a feature
vector. Normalize features to [0,1].

- Model architecture: two-layer MLP; hidden layer size N_HIDDEN=10, tanh activation, output layer with
custom activation clip(x+0.5,0,1).

- Training: MSE cost, stochastic gradient descent with learning rate 0.1, batch size 20, epochs 100.
Validation on one image (3.png) at each epoch by RMSE.

- Prediction: apply same feature_matrix to test images, predict pixel values, reshape to full image,
write out cleaned PNGs.

Code abstract:

def feature_matrix(img):
window=(5,5)
nbrs=[cv2.getRectSubPix (img,window, (y,x)) .ravel ()

for x,y in itertools.product(range(img.shape[0]),range(img.shape[1]))]

medianb=cv2.medianBlur (img,5) .ravel ()
median25=cv2.medianBlur (img,25) .ravel ()
grad=np.abs(cv2.Sobel (img,cv2.CV_16S,1,1,ksize=3) .ravel())
div=np.abs(cv2.Sobel(img,cv2.CV_16S,2,2,ksize=3) .ravel())
misc=np.vstack((median5,median25,grad,div)).T
features=np.hstack((nbrs,misc))
return (features/255.).astype(’float32’)

class Model(object):
def __init__(...):
self.layerl=Layer(...,n_in=...,n_out=N_HIDDEN,activation=T.tanh)
self.layer2=Layer(.‘.,n_in=N_HIDDEN,n_out=n_out,
activation=lambda x: T.clip(x+0.5,0,1))
def cost(self,y): return T.mean((self.output-y)**2)

-------- PIPELINE SEPARATOR ----------

Public pipeline (1): - Pipeline: Matching image backgrounds in R (no ML model).

- Reads test PNGs in batches of 12 images.
- Flattens each into vectors of size 258%540, stacks as columns.
- For each pixel location, takes the maximum value across images as an estimate of background.
- Writes out background images as PNG.
Code abstract:
for(i in 1:4) {
matches=seq(1,205,by=12)+(i-1)*3
rawData=matrix (0,258%540,length(matches))
for(j in seq_along(matches)){
imgY=readPNG(file.path(testDir,pasteO(matches[j],’.png’)))
rawDatal, jl=as.vector (imgY[1:258,1:540])
}
background=matrix(apply(rawData,1,max),268,540)
writePNG(background, pasteO(’background’,matches[jl,’.png’))

-------- PIPELINE SEPARATOR ----------

Public pipeline (2): - Pipeline: Pixel-wise Random Forest regression (Python, chunk size=1e6).

- Feature engineering: pad image by mean value (padding=1); extract 3*3 neighborhood per pixel, flatten
as features.

- Training data: load all train noisy images, compute features via joblib parallel (n_jobs=128), load
targets as flattened clean pixel intensities/255.

- Model: sklearn.ensemble.RandomForestRegressor (warm_start=True, n_jobs=-1). Incrementally add one
estimator at a time: split training rows into CHUNKSIZE=1e6 slices, in each slice increase
n_estimators by 1 and fit on that slice.

- Prediction: extract test features similarly, generate index strings "image_row_col", predict pixel
values, write submission CSV.

Code abstract:

def get_padded(img, padding=1):
padval=int (round(img.mean()))
. return padded
def get_features_for_image(img,padding=1):
padded=get_padded (img, padding)
return np.vstack([padded[i:i+3,j:j+3].reshape(1,-1)
for i in range(rows) for j in range(cols)])

def get_model(X,y):
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model=RandomForestRegressor (n_estimators=0,warm_start=True,n_jobs=-1)

for start,end in slices:
model.set_params(n_estimators=model.n_estimators+1)
model.fit(X[start:end],y[start:end])

return model

---------- PIPELINE SEPARATOR ----------
(omitted)
—————————— PIPELINE SEPARATOR ----------
Public pipeline (9): - Pipeline: XGBoost with basic features in R.
- Features: raw pixel value, kmeansThreshold binary, background_Removal feature.
- Sample 25k pixels, build DMatrix, 5-fold CV, early stop, select rounds, train xgb.
- Predict on test, clip, build id strings, write submission.csv.
- Code abstract:
dat=cbind(y,raw=img2vec (imgX) ,thresholded=kmeansThreshold (imgX),
backgroundRemoval=img2vec (background_Removal (imgX)))
rows=sample (nrow(dat) ,25000)
dtrain=xgb.DMatrix(dat [rows,-1],label=dat [rows,1])
xgb.tab=xgb.cv(data=dtrain,nfold=5,early.stop.round=50)
xgb.mod=xgboost (data=dtrain,nrounds=min.err.idx)
yHat=predict (xgb.mod,newdata=as.matrix(x))

After generating ideas and public pipelines, CoMind initiates the first iteration. It begins brainstorming
to propose more original strategies.

===S0LUTION_PATH_1===

Multi-Scale Wavelet-U-Net with Attention and Multi-Term Loss

Description: decompose each image via discrete wavelet transform (DWT) into low-/high-frequency bands,
process each band in a dual-branch U-Net enhanced with channel- and spatial-attention, then invert
the wavelet to reconstruct. Train end-to-end with a weighted sum of pixel-wise RMSE, wavelet-band
consistency, and edge preservation losses.

apply 2D DWT to noisy input -> obtain LL, LH, HL, HH sub-bands

- feed LL into a "coarse" encoder branch, feed concatenated LH/HL/HH into a "detail" encoder branch

- use a U-Net decoder to upsample each branch back to patch size, fuse via learned 1*1 convolutions

insert Convolutional Block Attention Modules (CBAM) after each encoder and decoder block

define loss = alpha*pixelRMSE(clean,output) + beta*bandRMSE(wavelet(clean),wavelet(output)) + gamma*
edgeLoss (Sobel(clean) ,Sobel (output))

- train on full images with AdamW and a cosine-annealing LR schedule

===S0LUTION_PATH_2===
Stroke-Aware Conditional GAN with OCR-Guided Perceptual Loss
Description: build a conditional GAN (generator = deep residual encoder-decoder, discriminator = PatchGAN)
that not only minimizes pixel loss but also preserves text strokes-enforce a stroke-level loss via a
pre-trained small CNN classifier that predicts presence/width of strokes. Add an OCR-based
perceptual loss: feed predictions through a frozen OCR engine embedding and minimize distance to
clean embedding.
- implement generator as ResNet blocks + skip connections (64->128->256->128->64)
- implement discriminator as 70%70 PatchGAN to focus on local texture
- include L1 pixel loss + adversarial loss + stroke consistency loss (L1 between stroke-CNN features on
clean vs. restored)
- freeze a small text-structure CNN (trained on binary masks) to extract stroke features
- run Tesseract (or lightweight OCR CNN) on restored vs. clean, extract penultimate-layer activations, add
perceptual loss term
- train with R1 gradient penalty and spectral normalization on discriminator

===S0LUTION_PATH_3===

Joint Dictionary Learning + Non-Local Patch Aggregation

Description: learn paired dictionaries (D_noisy, D_clean) for small patches (e.g. 8*8) via coupled K-SVD.
At test time, extract overlapping patches, compute sparse codes alpha under D_noisy via OMP,
reconstruct clean patches = D_clean*alpha. Then, perform non-local means on the reconstructed patches
to exploit self-similarity and average aggregates.

- sample a large bank of noisy/clean patch pairs, initialize D_noisy, D_clean with DCT basis

run coupled K-SVD to minimize ||D_noisy*alpha - y_noisyl|| + ||D_clean*alpha - y_clean|| w.r.t. D_noisy,

D_clean,alpha
- at test time, for each image patch y_noisy, compute alpha via Orthogonal Matching Pursuit (sparsity <= k)

reconstruct y_clean_est = D_clean*alpha for each patch
perform block-matching to find K nearest patches per reference patch (Euclid dist), stack them
- aggregate reconstructed patches with non-local weights (e.g. Gaussian on reconstruction residual)

===S0LUTION_PATH_4===

Self-Supervised Blind Denoising via Noise2Void + Test-Time Adaptation

Description: exploit purely noisy data-train a small U-Net with masked pixel prediction (Noise2Void) on
each test image at inference (test-time training). The network learns to predict a pixel from its
context, gradually adapting to local noise statistics, then you run a forward pass to obtain the
cleaned image. No clean target needed.

- define blind-spot or random masking scheme: mask 1% pixels per batch, replace with neighbors

- build a lightweight CNN (e.g. 5 down/up blocks with skip connections) that predicts a full image

- fine-tune this CNN on each test image for N_iter (e.g. 500 steps) using only masked L2 loss
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- use data augmentation (rotations, flips) on the single test image to diversify contexts
- after adaptation, perform a clean forward pass without masking to get the denoised output
- optionally ensemble outputs from multiple random initializations to reduce variance

These strategies are then added to the idea pool. To remove similar ideas and decompose overlapped
ideas, a reconstruction is performed subsequently. 9 ideas are preserved after the reconstruction.

(0) Use diverse ensembles by clustering models based on their error patterns and combining outputs from
differently preprocessed inputs (e.g., raw, background-removed, edge maps, thresholded) to capture
varied noise characteristics.

(1) Develop a sliding-window, patch-based model that takes an input region and predicts multiple denoised
and super-resolved pixels simultaneously for efficient document enhancement.

(2) Implement a Waifu2x-inspired deep convolutional network with progressively increasing filter counts
and LeakyReLU activations, initialized using He normalization for robust convergence in denoising
tasks.

(3) Augment the training set with simulated 3D deformations, lighting variations, and shadows on text to
better match real-world scanning artifacts.
(4) Identify and compensate for systematic artifacts in the "clean" training targets (e.g., single-pixel

halos) by modeling them as noise or adjusting ground-truth labels during training.

(5) Build a wavelet-domain dual-branch U-Net: decompose inputs with 2D DWT into approximation and detail
bands, encode separately, decode and fuse via learned 1*1 convolutions, integrate CBAM attention
modules, and train end-to-end with a composite loss combining pixel RMSE, wavelet-band RMSE, and edge

loss, optimized using AdamW with a cosine-annealing LR schedule.

(6) Apply a GAN-based restoration framework: use a ResNet-based generator and 70%*70 PatchGAN discriminator,

train with a combination of L1 pixel loss, adversarial loss, stroke-consistency loss (via a frozen
stroke-feature CNN), and perceptual OCR-feature loss, incorporating R1 gradient penalty and spectral
normalization.

(7) Leverage coupled dictionary learning and non-local aggregation: learn noisy and clean dictionaries
simultaneously via coupled K-SVD, reconstruct patches using OMP, enhance self-similarity with block-
matching, and fuse reconstructed patches with non-local weighting.

(8) Implement blind-spot test-time adaptation: randomly mask a small percentage of pixels per batch, train

a lightweight CNN with skip connections on the single test image using masked L2 loss and
augmentations, fine-tune per image for a few hundred steps, and optionally ensemble multiple
initializations for variance reduction.

C.3 Idea Generation

Based on the idea pool, public pipelines and previous reports (currently unavailable), CoMind
compiles 2 solution drafts.

Pipeline 1 (Baseline CNN - U-Net with L1 loss and simple augmentations)

Overview

- A lightweight U-Net trained on 256%256 patches of noisy/clean document pairs.

- Single-branch encoder-decoder with skip connections, ReLU activations, batch norm.

- Loss: L1 pixel-wise loss (less sensitive to outliers than MSE), optional total variation regularization.
- Optimizer: Adam; train on 1 A6000 within 1 hr.

Data Preparation

1. Read all noisy (input) and clean (target) train images, normalize intensities to [0,1].
2. Extract random 256%256 patches (stride = 128) with matching noisy/clean pairs.

3. Data augmentation: random horizontal/vertical flips, +-90 degree rotations.

4. Create PyTorch DatalLoader with batch_size=16 (fits 48 GB) for ~100 k patches.

Network Architecture (PyTorch pseudocode)

cce

class UNet(nn.Module):

def __init__(self):

super().__init__()
# Encoder
self.encl = DoubleConv(1l, 64)
self.enc2 = Down(64,128)
self.enc3 = Down(128,256)
self.enc4 = Down(256,512)
# Bottleneck
self.bottleneck = Down(512,512)

# Decoder
self.up4 = Up(1024,256)
self.up3 = Up(512,128)

self.up2 = Up(256,64)

self.upl = Up(128,64)

self.final = nn.Conv2d(64,1,kernel_size=1)
def forward(self,x):

el=self.encl(x)

e2=self.enc2(el)

e3=self.enc3(e2)

ed=self.enc4(e3)

b = self.bottleneck(ed)
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788 d4=self .up4(b,ed)

789 d3=self.up3(d4,e3)

790 d2=self.up2(d3,e2)

791 dil=self.upi(d2,el)

792 return torch.sigmoid(self.final(d1))

793 cce

794 Helper modules:

795 - DoubleConv = (Conv2d -> BatchNorm2d -> ReLU) x2

796 - Down = (MaxPool2d -> DoubleConv)

797 - Up = (ConvTranspose2d for upsampling -> concatenate skip -> DoubleConv)

798

799 Training

800 - Loss = LiLoss(output, target) + lambda*TV(output) (lambda=le-5 for smoothness).

801 - Optimizer = Adam(lr=1e-3, weight_decay=1e-5).

802 - LR schedule: ReduceLROnPlateau(monitor=val_loss, factor=0.5, patience=5).

803 - Train for up to 50 epochs; early-stop if val_loss stagnates.

804 - Validation: hold out 10% patches to monitor RMSE.

805

806 Inference

807 - For each test image (e.g., 540%258), slide 256%*256 window with stride=128, predict, and average
808 overlapping outputs.

809 - Threshold nothing; output raw [0,1] floats per pixel.

810

811  Compute Budget

812 - 7100 k patches, batch 16, "6 k steps per epoch. On A6000: ~2-3 min/epoch => 50 epochs ~ 2 hr; with early
813 stopping < 1 hr.

814

815 Pipeline 2 (Advanced Wavelet U-Net with CBAM and Composite Loss)

816 m oo oo oo

817  Overview

818 - Dual-branch U-Net operating in wavelet domain (Haar DWT) to explicitly denoise tonal and textural
819 components.

820 - CBAM (Convolutional Block Attention Modules) to adaptively weigh spatial/channel features.

821 - Loss = alpha*Ll_pixel + beta*L2_wavelet + gamma*EdgeLoss.

822 - Optimizer = AdamW + CosineAnnealingLR.

823

824 Data Preparation

825 - Same as Pipeline 1 (256%256 patches + augmentations).

826 - On-the-fly DWT: for each noisy patch, compute one-level Haar DWT -> yields approximation (A) and details
827 (H,V,D).

828

829 Network Architecture
830 (implemented in PyTorch)

831 (X3

832 class WaveletUNet (nn.Module):

833 def __init__(self):

834 super () .__init__()

835 # Shared CBAM-Res blocks for Approx and Detail branches

836 self.encAl = CBAMResBlock(1,64)

837 self.encD1 = CBAMResBlock(3,64)

838 self.pool = nn.MaxPo0l2d(2)

839 self.encA2 = CBAMResBlock(64,128)

840 self.encD2 = CBAMResBlock(64,128)

841 # Bottleneck

842 self.bottleneck = CBAMResBlock(256,256)

843 # Decoder

844 self.up2 = UpRes(256,128)

845 self.upl = UpRes(128,64)

846 self.final = nn.Conv2d(64,4,kernel_size=1)

847 def forward(self, x):

848 # x shape: [B,1,H,W]

849 A, (H,V,D) = haar_dwt(x) # PyWavelets or custom conv

850 d0 = torch.cat([self.encA1(A), self.encD1(torch.cat([H,V,D],dim=1))],dim=1)
851 pl = self.pool(d0)

852 dl = torch.cat([self.encA2(p1[:, :128]), self.encD2(pi[:, 128:]1)],dim=1)
853 b = self.bottleneck(self.pool(dl))

854 u2 = self.up2(b,d1)

855 ul = self.upil(u2,do)

856 out = self.final(ul) # [B,4,H,W]

857 # Reconstruct denoised x via inverse DWT

858 A_hat, H_hat,V_hat,D_hat = out[:,0:1], out[:,1:2], out[:,2:3], out[:,3:4]
859 return ihaar_dwt((A_hat, (H_hat,V_hat,D_hat)))

860 (X3

861 Key building blocks:

862 - CBAMResBlock: residual block with Conv-BN-ReLU->Conv-BN, plus CBAM (channel & spatial attention after
863 second Conv) .

864 - UpRes: ConvTranspose2d upsample->concatenate skip->CBAMResBlock.

865

866 Loss

867 - L1_pixel = Li(output, target).

868 - L2_wavelet = L2(DWT(output) - DWT(target)).
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- EdgeLoss = L1(Sobel(output), Sobel(target)).
- TotalLoss = alpha*L1l_pixel + beta*L2_wavelet + gammaxEdgeLoss (alpha=1, beta=0.5, gamma=0.2).

Training

- Optimizer: AdamW(lr=le-3, weight_decay=le-4).

- Scheduler: CosineAnnealingLR(T_max=50) .

- Batch size=8 (higher memory due to dual branches).
- Epochs=50, early-stop by composite loss on val set.

Inference
- Same sliding-window approach as Pipeline 1.

Compute Budget
- CBAM and wavelet layers add ~1.5% compute but within A6000 48 GB: patch batch=8 yields ~250 steps/epoch,
so 50 epochs "2 hr. Use early-stop or T_max=30 to finish within 1 hr.

References

- CBAM: Woo et al., "CBAM: Convolutional Block Attention Module" (ECCV 2018).
- Haar DWT: PyWavelets or custom conv filters.

- Edge loss: Sobel via fixed conv kernels.

Expected Benefits

- Explicit noise suppression in high-frequency bands.

- Attention modules focus on text strokes and edge restoration.
- Composite loss balances global structure and fine details.

C.4 Implementation and Improvement

In our experiment, 2 parallel instances are invoked to implement the solution drafts respectively. Each
instance has a quota of 20 steps, 3 hours in total and 1 hour per execution. After each execution,
another summarization LLM is instructed to analyze the terminal output.

C.4.1 Example of Terminal Output

Loaded 115 train images
Sampled train/val patch coords: 80000 10000
.../python3.11/site-packages/torch/optim/1lr_scheduler.py:62: UserWarning: The verbose parameter is
deprecated. Please use get_last_lr() to access the learning rate.
warnings.warn(
Traceback (most recent call last):

File ".../agent_0.py", line 231, in <module>
for xb, yb in train_loader:
File ".../python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__

data = self._next_data()
File ".../python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data
return self._process_data(data)

File ".../python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data
data.reraise()
File ".../python3.11/site-packages/torch/_utils.py", line 733, in reraise

raise exception
ValueError: Caught ValueError in Dataloader worker process O.
Original Traceback (most recent call last):
File ".../python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop
data = fetcher.fetch(index) # type: ignore[possibly-undefined]
File ".../python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File ".../python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]

File ".../agent_O.py“, line 121, in __getitem__
n_patch = torch.from_numpy(n_patch) .unsqueeze (0)
ValueError: At least one stride in the given numpy array is negative, and tensors with negative strides
are not currently supported. (You can probably work around this by making a copy of your array with
array.copy().)

C.4.2 Example of Output Summary

Terminal output (truncated):
Loaded 115 train images
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Sampled train/val patch coords: 80000 10000
.../python3.11/site-packages/torch/optim/lr_scheduler.py:62: UserWarning:
Traceback (most recent call last):
File ".../agent_0.py", line 231, in <module>
for xb, yb in train_loader:

ValueError: At least one stride in the given numpy array is negative, and tensors with negative strides
are not currently supported. (You can probably work around this by making a copy of your array with
array.copy().)

Execution summary:

The training script fails during the first epoch’s data loading. After loading 115 train images and
sampling 80k train and 10k validation patches, the Dataloader worker crashes with a ValueError due to

negative strides when converting flipped NumPy patches to tensors. As a result, the pipeline halts
before any training or validation metrics are produced and no submission.csv is generated.

Execution time: 3.81 seconds.

C.4.3 Example of Generated Snippet

The best code snippet generated in the first iteration of CoMind is:

import os, glob, random, math

from PIL import Image

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.utils.data import Dataset, DatalLoader
from torchvision import transforms

# -- 1) Haar DWT / inverse DWT --
class HaarDWT(nn.Module) :
def __init__(self):
super (). __init__Q)
wt = torch.zeros(4, 1, 2, 2)
wt[0, 0, :, :] = 0.5
wt[1, 0, O, O], wt[1, O, O, 1], wt[1, O, 1, O], wt[1, O, 1, 1] = (

0.5,
-0.5,
0.5,
-0.5,
)
wt[2, 0, 0, 0], wt[2, O, O, 11, wt[2, O, 1, O], wt[2, O, 1, 1] = (
0.5,
0.5,
-0.5,
-0.5,
)
wt[3, 0, 0, 0], wt[3, 0, 0, 11, wt[3, 0, 1, 0], wt[3, 0, 1, 1] = (
0.5,
-0.5,
-0.5,
0.5,
)

self .register_buffer("weight", wt)

def forward(self, x):
return F.conv2d(x, self.weight, stride=2)

class HaarIDWT(nn.Module):
def __init__(self):
super () .__init__Q)
wt = HaarDWT() .weight.clone()
self.conv = nn.ConvTranspose2d(4, 1, 2, stride=2, bias=False)
self.conv.weight.data.copy_(wt)
self.conv.weight.requires_grad_(False)
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1008 def forward(self, coeffs):
1004 return self.conv(coeffs)
1005
1006
100z | # -- 2) Sobel edge for EdgelLoss --
1008 | class Sobel(nn.Module):

1009 def __init__(self):

1010 super () .__init__Q)

1018 kx = torch.tensor(

1092 (1, o, -11, [2, 0, -21, [1, 0, -1]], dtype=torch.float32
1018 ).view(1, 1, 3, 3)

1014 ky = torch.tensor(

1015 (ct, 2, 11, fo, o, o1, [-1, -2, -1]1], dtype=torch.float32
1016 ) .view(1, 1, 3, 3)

1042 self.register_buffer ("wx", kx)

1018 self .register_buffer("wy", ky)

1019

1020 def forward(self, x):

102 gx = F.conv2d(x, self.wx, padding=1)

1022 gy = F.conv2d(x, self.wy, padding=1)

1028 return torch.sqrt(gx * gx + gy * gy + le-6)

1024

1025

1026 | # -- 3) CBAM, ResBlock, UpRes, WaveletUNet --
1027 | class CBAM(nn.Module):

1028 def __init__(self, c, r=16, k=7):

1029 super () .__init__()

1030 self.mlp = nn.Sequential(

1038 nn.Linear(c, ¢ // r, bias=False),

1032 nn.ReLU(inplace=True),

1038 nn.Linear(c // r, c, bias=False),

1034 )

1086 self.spatial = nn.Conv2d(2, 1, kernel_size=k, padding=k // 2, bias=False)
1036

1087 def forward(self, x):

1038 b, ¢, h, w = x.shape

1039 avg = F.adaptive_avg_pool2d(x, 1).view(b, c)

1040 mx = F.adaptive_max_pool2d(x, 1).view(b, c)

1048 ca = torch.sigmoid(self.mlp(avg) + self.mlp(mx)).view(b, c, 1, 1)
1042 X2 = X * ca

1048 avgc = x2.mean(1l, True)

1044 maxc, _ = x2.max(1, True)

1045 sa = torch.sigmoid(self.spatial(torch.cat([avgc, maxcl, 1)))
1046 return x2 * sa

1047

1048

1049 | class CBAMResBlock(nn.Module):

1050 def __init__(self, inp, outp):

1058 super () .__init__(Q)

1052 self.convl = nn.Conv2d(inp, outp, 3, padding=1, bias=False)
1058 self.bnl = nn.BatchNorm2d(outp)

1054 self.conv2 = nn.Conv2d(outp, outp, 3, padding=1, bias=False)
1086 self.bn2 = nn.BatchNorm2d(outp)

1056 self.cbam = CBAM(outp)

1082 self.skip = (

1058 nn.Conv2d(inp, outp, 1, bias=False) if inp != outp else nn.Identity()
1059 )

1060 self.relu = nn.ReLU(inplace=True)

106

1062 def forward(self, x):

1068 idt = self.skip(x)

1064 out = self.relu(self.bnl(self.convl(x)))

1065 out = self.bn2(self.conv2(out))

1066 out = self.cbam(out) + idt

1067 return self.relu(out)
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1068

1069

1070 | class UpRes(nn.Module):

1071 def __init__(self, ic, sc, oc):

1072 super () .__init__Q)

1078 self.up = nn.ConvTranspose2d(ic, oc, 2, stride=2)
1074 self.block = CBAMResBlock(oc + sc, oc)
1075

1076 def forward(self, x, skip):

1072 x = self.up(x)

1078 if x.shape[-2:] != skip.shape[-2:]:
1079 x = F.interpolate(

1080 x, size=skip.shape[-2:], mode="bilinear", align_corners=False
1081 )

1082 return self.block(torch.cat([x, skip], 1))
1083

1084

1085 | class WaveletUNet (nn.Module) :

1086 def __init__(self):

1087 super () .__init__Q)

1088 self.dwt = HaarDWT()

1089 self.idwt = HaarIDWT()

1090 self.eAl = CBAMResBlock(1l, 64)

109% self.eD1 = CBAMResBlock(3, 64)

1092 self.pool = nn.MaxPoo0l2d(2)

1098 self.eA2 = CBAMResBlock(64, 128)

1094 self.eD2 = CBAMResBlock(64, 128)

1095 self.b = CBAMResBlock(256, 256)

1096 self.u2 = UpRes(256, 256, 128)

1007 self.ul = UpRes(128, 128, 64)

1098 self.final = nn.Conv2d(64, 4, 1)

1099

1100 def forward(self, x):

1101 A, H, V, D = self.dwt(x).chunk(4, 1)
1102 al = self.eA1(A)

1108 d1 = self.eDi(torch.cat([H, V, D], 1))
1104 d0 = torch.cat([al, d41], 1)

1105 pl = self.pool(d0)

1106 pA, pD = p1[:, :64], pi[:, 64:]

1107 a2 = self.eA2(pA)

1108 d2 = self.eD2(pD)

1109 dib = torch.cat([a2, d2], 1)

1150 b = self.b(self.pool(dlb))

1111 u2 = self.u2(b, dib)

1112 ul = self.ul(u2, 40)

1118 out = self.final(ul)

1114 return self.idwt (out)

115

1116

1z | # -- 4) OCRDataset for full training --

118 | class OCRDataset(Dataset):

1119 def __init__(self, noisy, clean, pp, ps, mode):
1120 self.noisy = noisy

1121 self.clean = clean

1122 self.pp = pp

1128 self.ps = ps

1124 self.mode = mode

1125 self.toT = transforms.ToTensor()

1126

1127 def __len__(self):

1128 return len(self.noisy) * self.pp

1129

1130 def __getitem__(self, idx):

1138 ii = idx // self.pp

1132 n = Image.open(self.noisy[ii]).convert("L")
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¢ = Image.open(self.clean[ii]).convert("L")
tn, tc = self.toT(n), self.toT(c)
H, W = tn.shape[-2], tn.shape[-1]
y = random.randint(0, H - self.ps)
x = random.randint(0, W - self.ps)
tn = tnl:, y : y + self.ps, x : x + self.ps]
tc = tcl:, y : y + self.ps, x : x + self.ps]
if self.mode == "train":
if random.random() < 0.5:
tn, tc = torch.flip(tn, [-1]), torch.flip(tc, [-11)
if random.random() < 0.5:
tn, tc = torch.flip(tn, [-2]), torch.flip(tc, [-21)
k = random.randint (0, 3)
if k > 0:

tn, tc = torch.rot90(tn, k, [1, 2]), torch.rot90(tc, k, [1, 2])

return tn, tc

# -- 5) Prepare train/val split --

all_no = sorted(glob.glob("./input/train/*.png"))
all_cl = sorted(glob.glob("./input/train_cleaned/*.png"))
idxs = list(range(len(all_no)))

random.seed (42)

random. shuffle (idxs)

split = int(0.9 * len(idxs))

tr_idxs, va_idxs = idxs[:split], idxs[split:]
noisy_tr = [all_no[i] for i in tr_idxs]

clean_tr [all_c1[i] for i in tr_idxs]

noisy_va = [all_no[i] for i in va_idxs]

clean_va = [all_cl[i] for i in va_idxs]

# -- 6) Dataloaders --
train_ds = OCRDataset(noisy_tr, clean_tr, pp=25, ps=256, mode="train")
val_ds = OCRDataset(noisy_va, clean_va, pp=1, ps=256, mode="val")
train_loader = DataLloader(

train_ds, batch_size=8, shuffle=True, num_workers=4, pin_memory=True
)
val_loader = DataLloader(

val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True

)

# -- 7) Model, optimizer, scheduler, loss w/ tuned weights --

device = torch.device("cuda" if torch.cuda.is_available() else '"cpu")
model = WaveletUNet().to(device)

dwt = HaarDWT().to(device)

sobel = Sobel().to(device)

opt = torch.optim.AdamW (model.parameters(), lr=1le-3, weight_decay=1le-4)
sched = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=30)

# Tuned weights
alpha = 0.769634
beta = 0.430968
gamma = 0.250750

def composite_loss(o, t):
11 = F.11_loss(o, t)
12 = F.mse_loss(dwt (o), dwt(t))
el F.11_loss(sobel(o), sobel(t))
return alpha * 11 + beta * 12 + gamma * el

# -- 8) Train + validate --
best_rmse = 1e9
patience = 5
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1198 |wait = 0
1299 | for epoch in range(1, 31):

1200 model.train()

1201 tloss = 0.0

1202 for xb, yb in train_loader:

1208 xb, yb = xb.to(device), yb.to(device)

1204 pred = model(xb)

1206 loss = composite_loss(pred, yb)

1206 opt.zero_grad()

1202 loss.backward()

1208 opt.step()

1209 tloss += loss.item()

1250 sched.step()

121t

1212 # sliding-window validation

1258 model.eval()

1214 rmse_sum = 0.0

1216 stride, ps = 128, 256

1216 with torch.no_grad():

1247 for nf, cf in zip(noisy_va, clean_va):

1268 imn = Image.open(nf).convert("L")

1219 imc = Image.open(cf).convert("L")

1220 tn = transforms.ToTensor () (imn) .unsqueeze(0) .to(device)
1221 tc = transforms.ToTensor () (imc) .unsqueeze(0) .to(device)
1222 _, -, H, W= tn.shape

1223 acc = torch.zeros_like(tn)

1224 cnt = torch.zeros_like(tn)

1225 xs = list(range(0, W - ps + 1, stride)) + [W - ps]
1226 ys = list(range(0, H - ps + 1, stride)) + [H - ps]
1227 for x in xs:

1228 for y in ys:

1229 p=tnl:, :, y:y+ps, x: x+ ps]

1230 out = model(p)

1231 acc[:, :, y : y+ps, x : x + ps] += out
1232 cntl:, :, y: y+ps, x : x +ps] +=1
1233 rec = acc / cnt

1234 mse = F.mse_loss(rec, tc).item()

1235 rmse_sum += math.sqrt(mse)

1236 val_rmse = rmse_sum / len(noisy_va)

1287 print(

1238 f"Epoch {epoch}: train_loss={tloss/len(train_loader):.4f}, val_RMSE={
1239 val_rmse:.6f}"

1240 )

1241

1242 if val_rmse < best_rmse:

1243 best_rmse = val_rmse

1244 wait = 0

1245 torch.save(model.state_dict(), "./workingl/best.pth")
1246 else:

1247 wait += 1

1248 if wait >= patience:

1249 print ("Early stopping.")

1250 break

125%

1252 | print("Best validation RMSE:", best_rmse)

1253

1284 | # -- 9) Inference & submission --

1255 |model.load_state_dict(torch.load("./workingl/best.pth"))
1266 | model.eval()

1267 |test_files = sorted(glob.glob("./input/test/*.png"))

1258 |with open("./workingl/submission.csv", "w") as fout:

1259 fout.write("id,value\n")

1260 for tf in test_files:

126% im = Image.open(tf).convert("L")

1262 t = transforms.ToTensor () (im) .unsqueeze (0) .to(device)
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1263 _, _, H, W= t.shape

1264 acc = torch.zeros_like(t)

1265 cnt = torch.zeros_like(t)

1266 xs = list(range(0, W - ps + 1, stride)) + [W - ps]
1267 ys = list(range(0, H - ps + 1, stride)) + [H - ps]
1268 with torch.no_grad():

1269 for x in xs:

1270 for y in ys:

1273 p=¢tl:, :, y:y+ps, x:x+ ps]

1272 out = model(p)

1273 accl:, :, y: y+ps, x : x + ps] += out
1274 cntl:, :, y: y+ps, x : x +ps] +=1
1275 rec = (acc / cnt).clamp(0, 1).cpu().numpy() [0, O]
1276 img_id = os.path.splitext(os.path.basename(tf)) [0]
1277 for r in range(H):

1278 for ¢ in range(W):

1279 fout.write(f"{img_id}_{r+1}_{c+1},{rec[r,c]:.6£F\n")
1280

1288 | print("Submission written to ./workingl/submission.csv")

1283 C.5 Report Generation

1284 The report generated by the second instance of CoMind is:

1285 Pipeline:
1286 Our final pipeline is an Advanced Wavelet U-Net with CBAM attention modules, Composite Loss, and sliding-

1287 window inference. Specifically:

1288

1289 1. Data Preparation

1290 - Read all 112 noisy/clean train pairs, split 90/10 train/val by file indices (random seed 42).

1291 - On-the-fly extract 25 random 256%256 patches per train image each epoch, with random horizontal/
1292 vertical flips and 90 degree rotations.

1293 - Validation uses a single full-image sliding-window pass (256 patches with 50% overlap) on the 10% hold
1294 -out.

1295

1296 2. Model Architecture

1297 - Haar DWT and inverse DWT implemented as fixed convolutional filters (LL, LH, HL, HH bands).

1298 - Dual-branch encoder: separate CBAMResBlocks for the approximation (1 channel) and detail (3 channels)
1299 coefficients.

1300 - Two-level downsampling with MaxPool, interleaved CBAMResBlocks, and a 256-channel bottleneck.

1301 - Decoder with ConvTranspose upsampling and CBAMResBlock skip-connections (UpRes), recombining wavelet
1302 bands.

1303 - Final 1*1 convolution to 4 coefficient channels and inverse DWT back to image domain.

1304

1305 3. Composite Loss

1306 - Li(pixels) weighted by alpha=0.769634

1307 - L2(wavelet coefficients) weighted by beta=0.430968

1308 - Li(edge Sobel) weighted by gamma=0.250750

1309

1310 4. Training

1311 - Optimizer: AdamW(lr=1e-3, weight_decay=1le-4).

1312 - Scheduler: CosineAnnealingLR(T_max=30).

1313 - Batch size 8, 30 epochs, early stopping (patience=5) based on full-image RMSE on the val set.

1314

1315 5. Inference

1316 - Sliding-window full-image inference with 256%256 patches, stride=128, averaging overlapped pixels.
1317 - Generate submission.csv with id=image_row_col and float values.

1318

1319 6. Hyperparameter tuning

1320 - Optuna over (alpha, beta, gamma) on a 20-train/5-val mini-split for 10 trials, each with 2 epochs and
1321 10 patches/image.

1322 - Best found: alpha=0.769634, beta=0.430968, gamma=0.250750.

1323

1324 Final validation RMSE on 10% hold-out: ~0.012685.

1325

1326 References: CBAM (Woo et al., ECCV 2018), Haar DWT.

1327

1328  Summary:

1329 - Haar DWT:

1330 Novelty: 2

1331 Rationale: Uses standard 1-level Haar wavelet decomposition.

1332 Feasibility: 10

1333 Rationale: Straightforward fixed conv implementation in PyTorch.

1334 Effectiveness: 6
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1335 Rationale: Explicit frequency separation aids denoising of high-frequency noise.
1336 Efficiency: 9

1337 Rationale: Lightweight fixed kernels on GPU.

1338 Confidence: 8

1339 Rationale: Verified on toy and full runms.

1340

1341 - CBAMResBlock:

1342 Novelty: 5

1343 Rationale: Incorporates both channel & spatial attention for context-aware features.
1344 Feasibility: 8

1345 Rationale: Moderate complexity but supported by existing PyTorch modules.

1346 Effectiveness: 7

1347 Rationale: Improves focus on text strokes, empirically lowers RMSE.

1348 Efficiency: 7
1349 Rationale: Adds overhead (1.5%), but fits within GPU budget.
1350 Confidence: 9

1351 Rationale: Confirmed across toy and full training.
1352

1353 - UpRes (ConvTranspose + CBAM):

1354 Novelty: 3

1355 Rationale: Standard upsampling with skip-connections and attention.
1356 Feasibility: 9

1357 Rationale: Simple extension of ResBlock.

1358 Effectiveness: 6

1359 Rationale: Maintains detail in reconstruction.

1360 Efficiency: 8

1361 Rationale: Reasonable GPU use.

1362 Confidence: 8

1363 Rationale: Working in end-to-end script.

1364

1365 - Wavelet UNet overall:

1366 Novelty: 7

1367 Rationale: Dual-branch U-Net in wavelet domain combining DWT, CBAM, skip connections.
1368 Feasibility: 7

1369 Rationale: Moderate engineering but fully implemented.
1370 Effectiveness: 8

1371 Rationale: Achieved RMSE "0.0127, strong denoising.
1372 Efficiency: 7

1373 Rationale: 25 patches*8 batch; 30 epochs in ~20min.

1374 Confidence: 8
1375 Rationale: Reproducible on A6000.

1376

1377 - Composite Loss:

1378 Novelty: 6

1379 Rationale: Balances pixel, frequency, and edge domains.
1380 Feasibility: 8

1381 Rationale: Simple weighted sum.

1382 Effectiveness: 8

1383 Rationale: Lower RMSE than L1 or L2 alonme.
1384 Efficiency: 7

1385 Rationale: Small overhead for extra transforms.
1386 Confidence: 9

1387 Rationale: Verified in tuning and full runs.
1388

1389 - Data Augmentation:

1390 Novelty: 3

1391 Rationale: Flips and rotatioms.

1392 Feasibility: 10

1393 Rationale: Trivial to implement.

1394 Effectiveness: 5

1395 Rationale: Standard but helpful for invariance.

1396 Efficiency: 9
1397 Rationale: CPU-level only.
1398 Confidence: 9

1399 Rationale: Common practice.

1400

1401 - CosineAnnealinglR & EarlyStopping:

1402 Novelty: 4

1403 Rationale: Standard learning-rate decay and val-based stop.

1404 Feasibility: 10
1405 Rationale: Built-in PyTorch.

1406 Effectiveness: 6

1407 Rationale: Helps convergence and prevents overfit.
1408 Efficiency: 9

1409 Rationale: Minimal overhead.

1410 Confidence: 9

1411 Rationale: Observed smoothed training curves.

1412

1413 - Sliding-window Inference:

1414 Novelty: 3
1415 Rationale: Ensures full-image coverage.
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Feasibility: 10

Rationale: Straightforward loops.

Effectiveness: 7

Rationale: Accurate RMSE measurement, smooth outputs.
Efficiency: 8

Rationale: Reasonable inference time (710 min).
Confidence: 9

Rationale: Verified end-to-end.

- Hyperparameter Tuning (Optuna):
Novelty: 4
Rationale: Automated search of loss weights.
Feasibility: 8
Rationale: Low-cost mini-training.
Effectiveness: 7
Rationale: Found better weights vs. defaults.
Efficiency: 5
Rationale: 10 trials * 2 epochs "8 min.
Confidence: 7
Rationale: Verified chosen parameters.

Weaknesses and Suggestions:

1. EMA & TTA Bug: The EMA + 4-way TTA implementation caused RMSE blow-ups, likely due to incorrect
accumulation. Before reintroducing, validate TTA on toy splits or isolate EMA without TTA.

2. Multi-Level Wavelets: Extend to 2-3 levels of DWT to capture coarser scales, with separate branches per

level.

3. Advanced Loss Terms: Incorporate perceptual (VGG) or structural (SSIM) losses to encourage visual
fidelity.

4. Dynamic Loss Weights: Schedule (alpha,beta,gamma) during training (e.g., start with high L1, gradually
emphasize wavelet).

5. Mixed Precision & Gradient Checkpointing: Further reduce memory and speed up with AMP and checkpointing
deep layers.

6. Deeper/Ubiquitous Attention: Explore transformer-style attention (Swin, ViT) in encoder for global
context.

7. Ensemble Models: Train multiple random seeds or architectures (ResUNet, UNet++) and average outputs.

8. Multi-Scale Inference: Use patches at multiple scales or whole-image passes via down/upscaling for
context.

9. Adaptive Overlap: Use weights at edges of patches to smoothly blend overlaps (Gaussian windows).

10. Distributed Hyperparameter Search: Scale Optuna across more trials or use BOHB for architecture search.

Implementing these will likely push RMSE even lower and improve robustness across document noise patterns.
Full code: ...(omitted)...

C.6 The Second Iteration

Upon receiving two reports generated in the previous stage, CoMind proceeds to its second iteration.
Following the brainstorming and idea refinement phases, the current idea pool is presented below.
Notably, entries (3), (4), (5), and (7) are newly proposed by the agent, while the remaining ideas have
been refined from those in the previous iteration.

(0) Patch-based convolutional super-resolution denoiser: a sliding-window, patch-based model that predicts
multiple denoised and super-resolved pixels per patch. Architecture inspired by Waifu2x with
progressively increasing filter counts, LeakyReLU activations, and He initialization for robust
convergence.

(1) Advanced wavelet-domain dual-branch U-Net with CBAM attention and composite loss: decompose inputs via

fixed 1-level DWT (LL, LH, HL, HH bands), encode approximation and detail separately with CBAM
ResBlocks, decode and fuse via 1*1 convolutions, and train end-to-end using a weighted sum of pixel
L1, wavelet-band L2, and edge L1 losses. Optimized with AdamW and cosine-annealing LR scheduling.

(2) GAN-based restoration framework: a ResNet-based generator and 70*70 PatchGAN discriminator trained
with combined losses-L1 pixel loss, adversarial loss, stroke-consistency loss (via frozen stroke-
feature CNN), and perceptual OCR-feature loss. Includes R1 gradient penalty and spectral
normalization for stability.

(3) Masked autoencoder with vision transformer for denoising: patchify each image into non-overlapping
square tokens, randomly mask a high percentage, pretrain a ViT encoder (12 layers, hidden 768, 12
heads) plus light transformer decoder on L2 reconstruction of dirty images, then append an MLP head
and fine-tune end-to-end on noisy->clean pairs with L1 pixel + differentiable OCR-confidence loss.
Employ random block dropout and color jitter during fine-tuning; at inference use full-image encoding

or averaged mask schedules.

(4) Conditional diffusion-based restoration: define a forward Gaussian-noise diffusion schedule, train a 5-
level U-Net conditioned on the dirty image via channel concatenation and FiLM/cross-attention of
sinusoidal timestep embeddings. Use the standard DDPM MSE loss with classifier-free guidance, and
sample with a deterministic DDIM sampler (~50 steps). Optionally post-process with bilateral or
median filtering to remove speckles.

Learnable spectral gating in the Fourier domain: compute the 2D FFT of the dirty image, split its
spectrum into low/mid/high radial bands, apply learnable complex masks per band, and modulate each by
gate scalars predicted by a lightweight CNN on the dirty image. Recombine via inverse FFT and train

end-to-end with L2 pixel loss plus a spectral-smoothness regularizer on the masks.

(5

-
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(6) Hypernetwork-modulated U-Net: extract per-image noise statistics (mean, std, skew, kurtosis, histogram

bins), feed into an MLP hypernetwork that outputs FilM scale (gamma) and shift (beta) parameters for

selected convolutional feature maps of a base U-shaped CNN. Randomly augment noise levels during
training; train end-to-end on noisy->clean with L1 loss and a small regularizer pushing gamma->1,
beta->0. At inference compute stats per image, generate FiLM params, and denoise via the modulated U-
Net.

(7) Blind-spot test-time adaptation: for each test image, randomly mask a subset of pixels and fine-tune a

lightweight CNN with skip connections on the single image using masked L2 loss and augmentations for
a few hundred gradient steps. Optionally ensemble multiple random initializations to reduce variance.

(8) Multi-model ensemble with diverse preprocessing: cluster trained models by their error patterns and

combine their outputs. Apply different preprocessing pipelines (raw, background-removed, edge maps,
thresholded) to the input, denoise with clustered sub-ensembles, and fuse predictions for robustness
across noise characteristics.

(9) Enhanced augmentation and target refinement: simulate realistic scanning artifacts by applying 3D text

deformations, lighting variations, and shadows to clean images. Identify and compensate for
systematic artifacts in the provided ’clean’ targets (e.g., single-pixel halos) by either modeling
them as noise or adjusting ground-truth labels during training.

And solution drafts generated in this iteration are:

Pipeline 1: ResNet-34 Encoder U-Net with Multi-Scale Edge & Total-Variation Loss

Overview:
A robust baseline using a pretrained ResNet-34 backbone as a U-Net encoder fused with a light-weight

3

decoder. Combines L1 loss, Sobel edge loss at multiple scales, and a total-variation regularizer to
preserve text strokes while smoothing background noise. Mixed precision training and sliding-window
inference ensure the entire pipeline runs in “45 min on an A6000.

. Data Preparation

Read all train noisy/clean PNGs, normalize to [0,1].
Extract on-the-fly 256%256 patches: random crop + random horizontal/vertical flips + 90 degree rotations

90/10 split by file indices (seed=42). Use batch size 8-16.

. Model Architecture

Encoder: torchvision.models.resnet34(pretrained=True), first conv modified to 1->64 channels.

Decoder: four upsampling stages (ConvTranspose2d + Conv2d+BN+ReLU) mirroring ResNet blocks, with skip-
connections from encoder layers.

Final conv 64->1 + Sigmoid.

Loss Function

Let y_hat and y be predictions and targets.

- LiLoss(y_hat,y)
- Edge loss: L1 between Sobel(y_hat) and Sobel(y) at both full resolution and half resolution (downsample

by 2).

- TV: lambda*TV(y_hat) where TV = mean(|\nabla xy_hat|+|\nabla yy_hat|).

Total loss = alpha*Ll + betaxEdge_full + gamma*Edge_half + delta*TV, e.g. alpha=1.0, beta=0.5, gamma=0.25,

delta=le-5.

. Optimization

Optimizer: AdamW(lr=1e-3, weight_decay=le-4).
Scheduler: CosineAnnealingLR(T_max=25).

Mixed precision via torch.cuda.amp.

Early stopping on validation RMSE (patience=5).

Inference & Submission

Perform sliding-window inference on each test image with 256%256 patches, stride=128.
Average overlapping patches.

Clamp outputs to [0,1], write submission.csv with id=image_row_col.

Compute budget: “20 min train + 5 min inference.

Pipeline 2: Laplacian-Pyramid Multi-Scale Residual U-Net with Pyramid Loss

Overview:
A novel pyramid-domain network that decomposes images into multi-scale Laplacian bands, denoises each band

via shared-weight residual blocks, and merges them back. Multi-level L1 losses focus the model on
both coarse structures and fine text details. Efficient and fully end-to-end in PyTorch, training
finishes in "50 min on an A6000.

. Data & Augmentation

Same data split and patch sampling (256%256, flips, rotations).

. Laplacian Pyramid Transform (LPT)

On the fly, for each patch: create 2-level Gaussian pyramid using avg-pooling (scale 1->0.5->0.25), then
compute Laplacian bands LO=(I-upsample(I/2)), L1=(I/2-upsample(I/4)), and a residual low band L2=I
/4.
Stack [LO,L1,L2] as 3 input channels.
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3. Network

Encoder-decoder U-Net with 3-channel input and 3-channel output, 4 down/upsampling stages,
64->128->256->512->256->128->64 channel widths.

Each block: two 3*3 Conv+BN+ReLU and a residual skip connection.

4. Reconstruction
Output is 3 residual corrections RO,R1,R2 to each band.
- Reconstruct clean patch:

a0 = LO + RO; al = L1 + R1; a2 = L2 + R2;

I = a0 + up(al) + up(up(a2)).

5. Loss Function

- Per-band L1 losses: w0*L1(a0,H0) + wixL1(al,H1) + w2xL1(a2,H2), where Hk are ground-truth bands and wO
=1.0, w1=0.5, w2=0.25.

Pixel L1: lambda_pix*L1(I, Igt) with lambda_pix=0.1.

6. Training

AdamW (1r=5e-4, weight_decay=le-5), one-cycle scheduler (max_lr=5e-4, epochs=30).
Batch size 8, mixed precision.

Early stopping on val RMSE (patience=6).

7. Inference
- On full test images, run sliding-window with 256%256 patches, stride=128.
- For each patch, apply pyramid -> model -> reconstruct -> accumulate and average.
- Clamp to [0,1], write submission.csv.

Compute budget: “25 min training + "8 min inference.

The best code proposed in the second iteration is:

import os, random, csv
import numpy as np

from glob import glob
from PIL import Image

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.utils.data import Dataset, Dataloader

from torchvision import transforms, models as tv_models
from torch.cuda.amp import autocast, GradScaler

# 1) Reproducibility

SEED = 42

random. seed (SEED)

np.random.seed (SEED)
torch.manual _seed (SEED)
torch.cuda.manual_seed_all (SEED)

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 2) Paths

TRAIN_NOISY = "./input/train"
TRAIN_CLEAN = "./input/train_cleaned"
TEST_DIR = "./input/test"

WORK_DIR = "./workingO"

os.makedirs (WORK_DIR, exist_ok=True)

# 3) Hyperparameters
PATCH_SIZE = 256

STRIDE = 128

BATCH_SIZE = 12

LR, WD = 1le-3, le-4
MAX_EPOCHS = 50

PATIENCE = 10

T_MAX = 50 # for LR scheduler

# 4) Loss-weight constants (from tuning)

wl, w2, w3, w4 = 1.0, 0.5, 0.25, 1le-5
lambda_aux = 0.4394633936788146
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1637 | lambda_mse = 0.1312037280884873

1638 | lambda_ssim = 0.031198904067240532

1639 | lambda_ssim2 = lambda_ssim / 2

1640

1641

1648 | # 5) Dataset + augmentations

1643 | class OCRDataset(Dataset):

1644 def __init__(self, noisy_list, clean_list, ps, train):
1645 self.noisy, self.clean = noisy_list, clean_list
1646 self.ps, self.train = ps, train

1647 self.to_tensor = transforms.ToTensor ()

1648 self.aug = transforms.Compose(

1649 L

1650 transforms.RandomChoice(

1651 [

1652 transforms.RandomHorizontalFlip(1.0),
1653 transforms.RandomVerticalFlip(1.0),
1654 transforms.RandomRotation(90),

1655 transforms.RandomRotation(180),

1656 transforms.RandomRotation(270),

1657 ]

1658 ),

1659 transforms.RandomApply ([transforms.GaussianBlur(3, (0.1, 2.0))], p
1660 =0.3),

1661 transforms.RandomApply ([transforms.RandomAdjustSharpness(2.0)], p
1662 =0.3),

1663 ]

1664 )

1665

1666 def __len__(self):

1667 return len(self.noisy)

1668

1669 def __getitem__(self, i):

1670 n = Image.open(self.noisy[i]).convert("L")

1673 ¢ = Image.open(self.clean([i]).convert("L")

1672 w, h = n.size

1673 # pad

1674 if w < self.ps or h < self.ps:

1675 pad = (0, 0, max(0, self.ps - w), max(0, self.ps - h))
1676 n = transforms.functional.pad(n, pad, £fill=255)
1679 ¢ = transforms.functional.pad(c, pad, £ill=255)
1678 w, h = n.size

1679 # crop

1680 if self.train:

1683 x = random.randint(0, w - self.ps)

1682 y = random.randint(0, h - self.ps)

1683 else:

1684 x = (w - self.ps) // 2

1685 y = (h - self.ps) // 2

1686 n = n.crop((x, y, x + self.ps, y + self.ps))

1687 c = c.crop((x, y, x + self.ps, y + self.ps))

1688 if self.train and random.random() < 0.5:

1689 n = self.aug(n)

1690 c = self.aug(c)

1691 return self.to_tensor(n), self.to_tensor(c)

1692

1693

1694 | # 6) Prepare train/val split

1695 |noisy_files = sorted(glob(f"{TRAIN_NOISY}/*.png"))

1696 | clean_files = [£f"{TRAIN_CLEAN}/" + os.path.basename(x) for x in noisy_files]
1697 |N = len(noisy_files)

1698 | idx = list(range(N))

1699 | random.shuffle (idx)

1700 |ntr = int(0.9 * N)

1703 | tr_idx, va_idx = idx[:ntr], idx[ntr:]
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train_noisy = [noisy_files[i] for i in tr_idx]
train_clean = [clean_files[i] for i in tr_idx]
val_noisy = [noisy_files[i] for i in va_idx]
val_clean = [clean_files[i] for i in va_idx]

train_ds = DCRDataset(train_noisy, train_clean, PATCH_SIZE, train=True)
val_ds = OCRDataset(val_noisy, val_clean, PATCH_SIZE, train=False)
train_loader = Dataloader(

train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True
)
val_loader = Dataloader(

val_ds, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True

)

# 7) Sobel, TV, SSIM helpers

sob_x = (
torch.tensor([[1, O, -1], [2, 0, -2], [1, O, -1]1], dtype=torch.float32)
.view(1, 1, 3, 3)
.to(DEVICE)

)

sob_y = sob_x.transpose(2, 3)

def sobel(x):
gx = F.conv2d(x, sob_x, padding=1)
gy = F.conv2d(x, sob_y, padding=1)
return torch.sqrt(gx * gx + gy * gy + le-6)

def total_variation(x):
dh = (x[:, :, 1:, :1 - x[:, :, -1, :1).abs().mean()
dw = (x[:, :, :, 1:1 - x[:, :, :, :-11).abs() .mean()
return dh + dw

def ssim_map(a, b, C1=0.01%*2, C2=0.03*%2):
mu_a = F.avg_pool2d(a, 3, 1, 1)
mu_b = F.avg_pool2d(b, 3, 1, 1)

sa = F.avg_pool2d(a * a, 3, 1, 1) - mu_a * mu_a

sb = F.avg_pool2d(b * b, 3, 1, 1) - mu_b * mu_b

sab = F.avg_pool2d(a * b, 3, 1, 1) - mu_a * mu_b

num = (2 * mu_a * mu_b + C1) * (2 * sab + C2)

den = (mu_a * mu_a + mu_b * mu_b + C1) * (sa + sb + C2)

return num / (den + 1e-8)

def ssim_loss(a, b):
return 1.0 - ssim_map(a, b).mean()

# 8) loss_terms
11_loss = nn.L1Loss()
mse_loss = nn.MSELoss()

def loss_terms(pred, target):
Liv = 11_loss(pred, target)
MSEv = mse_loss(pred, target)
Ef = 11_loss(sobel(pred), sobel(target))
p2, t2 = F.avg_pool2d(pred, 2), F.avg_pool2d(target, 2)
Eh = 11_loss(sobel(p2), sobel(t2))
TVv = total_variation(pred)
return Liv, MSEv, Ef, Eh, TVv
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1769 | # 9) Model w/ deep supervision
1768 | class ResUNetDS(nn.Module) :

1769 def __init__(self):

1770 super () .__init__(Q)

1773 r34 = tv_models.resnet34(pretrained=True)

1772 self.encO = nn.Conv2d(1, 64, 7, 2, 3, bias=False)

1773 self.encO.weight.data = r34.convl.weight.data.mean(dim=1, keepdim=True)
1774 self.bn0, self.relul0, self.pool0 = r34.bnl, r34.relu, r34.maxpool
1775 self.encl, self.enc2 = r34.layerl, r34.layer2

1776 self.enc3, self.enc4 = r34.layer3, r34.layer4

1779

1728 def up(i, o):

1779 return nn.ConvTranspose2d(i, o, 2, 2)

1780

1781 def cb(i, o):

1782 return nn.Sequential(

1783 nn.Conv2d(i, o, 3, 1, 1, bias=False),

1784 nn.BatchNorm2d (o),

1785 nn.ReLU(inplace=True),

1786 nn.Conv2d(o, o, 3, 1, 1, bias=False),

1787 nn.BatchNorm2d (o),

1788 nn.ReLU(inplace=True),

1789 )

1790

1791 self.up4, self.decd = up(512, 256), cb(256 + 256, 256)
1792 self .up3, self.dec3 = up(256, 128), cb(128 + 128, 128)
1793 self.up2, self.dec2 = up(128, 64), cb(64 + 64, 64)

1794 self .aux_up, self.aux_out = up(64, 64), nn.Conv2d(64, 1, 1)
1795 self.upl, self.decl = up(64, 64), cb(64 + 64, 64)

1796 self .up0, self.outc = up(64, 64), nn.Conv2d(64, 1, 1)
1797 self.sig = nn.Sigmoid()

1798

1799 def forward(self, x):

1800 x0 = self.reluO(self.bn0(self.enc0(x)))

1803 x1 = self.pool0(x0)

1802 x2 = self.enci(x1)

1803 x3 = self.enc2(x2)

1804 x4 = self.enc3(x3)

1805 x5 = self.enc4(x4)

1806

1807 d4 = self.dec4(torch.cat([self.up4(x5), x4], dim=1))
1808 d3 = self.dec3(torch.cat([self.up3(d4), x3], dim=1))
1809 d2 = self.dec2(torch.cat([self.up2(d3), x2], dim=1))
1810 aux = self.sig(self.aux_out(self.aux_up(d2)))

1811 dl = self.decl(torch.cat([self.up1(d2), x0], dim=1))
1812 main = self.sig(self.outc(self.up0(dl)))

1813 return main, aux

1814

1815

1816 | model = ResUNetDS().to(DEVICE)

1817

1818 | # 10) Optimizer, scheduler, scaler

1819 | optimizer = torch.optim.AdamW(model.parameters(), 1lr=LR, weight_decay=WD)

1820 | scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=T_MAX)
1821 | scaler = GradScaler()

1822
1823 | # 11) Training + snapshot saving

1824 | best_rmse = float("inf")

1825 |patience = 0

1826 | snap_epochs = set([10, 20, 30, 40, 50])

1827

1828 | for epoch in range(l, MAX_EPOCHS + 1):

1829 model.train()

1830 train_loss = 0.0

1831 for noisy_img, clean_img in train_loader:
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noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE)
optimizer.zero_grad()
with autocast():
main_pred, aux_pred = model(noisy_img)
Liv, MSEv, Ef, Eh, TVv = loss_terms(main_pred, clean_img)
sl = ssim_loss(main_pred, clean_img)
p2, t2 = F.avg_pool2d(main_pred, 2), F.avg_pool2d(clean_img, 2)
s2 = ssim_loss(p2, t2)
main_loss = (

wl * Liv
+ lambda_mse * MSEv
+ w2 *x Ef
+ w3 *x Eh
+ w4 *x TVv
+ lambda_ssim * sl
+ lambda_ssim2 * s2
)
aux_up = F.interpolate(
aux_pred,
size=clean_img.shape[-2:],
mode="bilinear",
align_corners=False,
)

La, Ma, Ea, Eh2, TVa = loss_terms(aux_up, clean_img)
sa = ssim_loss(aux_up, clean_img)
pa, ca = F.avg_pool2d(aux_up, 2), F.avg_pool2d(clean_img, 2)
sa2 = ssim_loss(pa, ca)
aux_loss = (
wl * La
lambda_mse * Ma
w2 * Ea
w3 * Eh2
w4 * TVa
lambda_ssim * sa
lambda_ssim2 * sa2

o+ o+ o+ o+t

)
loss = main_loss + lambda_aux * aux_loss
scaler.scale(loss) .backward ()
scaler.step(optimizer)
scaler.update()
train_loss += loss.item()
scheduler.step()

# validation
model.eval()
se, count = 0.0, O
with torch.no_grad():
for noisy_img, clean_img in val_loader:
noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE)
with autocast():
pred, _ = model(noisy_img)
se += ((pred - clean_img) ** 2).sum().item()
count += pred.numel()
val_rmse = np.sqrt(se / count)
print(
f"Epoch {epoch}: TrainLoss={train_loss/len(train_loader):.4f}, ValRMSE={
val_rmse:.6f}"

)

# best + snapshot

if val_rmse < best_rmse:
best_rmse = val_rmse
torch.save(model.state_dict(), os.path.join(WORK_DIR, "best_full.pth"))
patience = 0

else:
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patience += 1
if epoch in snap_epochs:

torch.save(model.state_dict(), os.path.join(WORK_DIR, f"snap_{epoch}.pth"))
if patience >= PATIENCE:

print("Early stopping.")

break

print("Best validation RMSE:", best_rmse)

# 12) Ensemble load

ckpts = ["best_full.pth"] + sorted(
[f for f in os.listdir(WORK_DIR) if f.startswith("snap_")],
key=lambda x: int(x.split("_")[1].split(".")[0]),

)[-2:1]

ensemble_nets = []

for ck in ckpts:
net = ResUNetDS().to(DEVICE)
net.load_state_dict(torch.load(os.path.join(WORK_DIR, ck)))
net.eval()
ensemble_nets.append(net)

# 13) Sliding-window ensemble inference
def ensemble_infer(img_arr):
h, w = img_arr.shape
inp = torch.from_numpy(img_arr / 255.0).unsqueeze (0) .unsqueeze(0) .to(DEVICE)
ph = (PATCH_SIZE - h % STRIDE) % STRIDE
pw = (PATCH_SIZE - w % STRIDE) % STRIDE
inp = F.pad(inp, (0, pw, O, ph), mode="reflect")
_» _, H, W= inp.shape
out = torch.zeros_like(inp)
wt = torch.zeros_like(inp)
for y in range(0, H - PATCH_SIZE + 1, STRIDE):
for x in range(0, W - PATCH_SIZE + 1, STRIDE):
patch = inp[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE]
preds = []
with torch.no_grad(), autocast():
for net in ensemble_nets:
p, - = net(patch)
preds. append (p)
avg_p = torch.stack(preds, 0).mean(0)
out[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE] += avg_p

wt[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE] += 1.0
out = out / wt
out = out[:, :, :h, :w]

return out.detach().cpu() .numpy() .squeeze()

# 14) Write submission.csv
submission_path = os.path.join(WORK_DIR, "submission.csv")
with open(submission_path, "w", newline="") as f:

writer = csv.writer(f)

writer.writerow(["id", "value"])

for tf in sorted(

glob(£"{TEST_DIR}/*.png"), key=lambda x: int(os.path.basename(x).split(".")
[0

img_id = os.path.basename(tf).split(".") [0]
img = np.array(Image.open(tf).convert("L"), dtype=np.float32)
den = ensemble_infer (img)
H, W = den.shape
for i in range(H):
for j in range(W):
writer.writerow([f"{img_id}_{i+1}_{j+1}", £"{den[i,jl:.6£}"]1)
print ("Submission saved to", submission_path)
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