
CoMind: Towards Community-Driven Agents for
Machine Learning Engineering

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language model-based machine learning (ML) agents have shown great1

promise in automating ML research. However, existing agents typically operate2

in isolation on a given research problem, without engaging with the broader re-3

search community, where human researchers often gain insights and contribute by4

sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation5

framework designed to assess an agent’s ability to communicate with and leverage6

collective knowledge from a simulated Kaggle research community. Building7

on this framework, we propose CoMind, a novel agent that excels at exchanging8

insights and developing novel solutions within a community context. CoMind9

achieves state-of-the-art performance on MLE-Live and outperforms 79.2% human10

competitors on average across four ongoing Kaggle competitions.11

1 Introduction12

Large language model (LLM)-based agents have shown remarkable potential in automating complex13

reasoning and decision-making tasks, ranging from software engineering (Jimenez et al., 2023a; Xia14

et al., 2025) and mathematical problem solving (OpenAI, 2024; Ren et al., 2025; Li et al., 2025)15

to scientific research exploration (Romera-Paredes et al., 2024; Yamada et al., 2025; Sun et al.,16

2025; Feng et al., 2025). Among these domains, machine learning engineering (MLE) remains17

a particularly impactful yet challenging application area, requiring design, implementation, and18

evaluation of high-performing models across diverse data science tasks.19

Recent advances have introduced LLM agents capable of autonomously developing machine learning20

pipelines for Kaggle-style competitions (Chan et al., 2025). For example, MLAB (Huang et al., 2024)21

adopts a ReAct-style (Yao et al., 2023) agent for structured decision-making across tasks. AIDE (Jiang22

et al., 2025) leverages tree-based exploration for improved efficiency, and AutoKaggle (Li et al.,23

2024) introduces a multi-agent system with skill specialization. These agents have made progress24

toward end-to-end automation of MLE.25

However, existing systems typically operate in isolation, relying solely on internal memory and26

trial-and-error exploration while ignoring a critical component of real-world scientific practice —27

community knowledge sharing. In real data science competitions and research workflows, participants28

frequently learn from public discussions, shared notebooks, and community insights. Such collective29

knowledge significantly enhances solution quality and innovation. Current agents, due to the inability30

to engage with this dynamic external context, often converge to repetitive strategies and plateau in31

performance. Therefore, we are motivated to explore the following critical research question:32

How can we evaluate and design research agents that utilize collective knowledge?33

To address this question, we introduce MLE-Live, a novel live evaluation framework simulating34

a Kaggle-style research community. Unlike prior benchmarks, MLE-Live includes time-stamped35

Submitted to Multi-Turn Interactions in Large Language Models Workshop @ NeurIPS 2025

Calorie Expenditure

Forams
Classification

EL Hackathon

FathomNet

20%

40%

60%

80%

100%

Performance on Ongoing Kaggle Competitions

CoMind
AIDE
Expert
Average Human

Figure 1: Left: CoMind’s win rates on four 4 ongoing Kaggle competitions. Right: CoMind achieves
state-of-the-art performance on the MLE-Bench competitions, measured by Any Medal score.

public discussions and shared code artifacts available before competition deadlines – resources that36

human participants routinely leverage. This setup allows us to rigorously evaluate an agent’s ability37

to use community knowledge in a realistic, temporally grounded setting. In addition, MLE-Live38

supports both offline evaluation on past competitions and online evaluation on ongoing competitions,39

enabling comprehensive assessment across static and dynamic scenarios.40

Building upon this framework, we propose CoMind, a new LLM-based MLE agent that systematically41

explores diverse ideas, iteratively refines solutions, and selectively incorporates external knowledge.42

CoMind maintains an evolving idea pool and constructs multiple distinct solution drafts in parallel.43

It dynamically focuses on one draft at a time, enabling efficient implementation without prompt44

overflow while preserving technical accuracy. Inspired by human brainstorming, this design balances45

exploratory breadth with practical depth.46

We evaluate CoMind in both previous and ongoing data science competitions. For evaluation on47

previous competitions, CoMind is tested on the MLE-Live benchmark, which includes 75 past Kaggle48

competitions on MLE-Bench. CoMind achieves state-of-the-art performance on the leaderboard,49

significantly outperforming prior agents such as AIDE and R&D-Agent. For evaluation on ongoing50

competitions, we deploy CoMind on four ongoing Kaggle competitions, where it outperforms 79.2%51

human competitors on average (Figure 1), demonstrating strong real-world practicality. Human52

evaluations further confirm that CoMind generates more sophisticated and longer code, reflecting53

deeper reasoning and better integration of novel insights.54

In summary, our contributions are:55

• MLE-Live: A live evaluation framework simulating community-driven machine learning56

research, including shared discussions and code for realistic agent benchmarking.57

• CoMind: A novel LLM-based agent that excels at leveraging collective knowledge and iterative58

idea exploration, achieving medal-level performance in real Kaggle competitions.59

• Agent design innovations: We propose a new iterative and parallel exploration mechanism that60

enables continuous knowledge accumulation, improves diversity, and overcomes LLM context61

window limitations.62

2 Related Work63

The rise of large language models (LLMs) has sparked a new wave of research into LLM-driven64

agents — systems that leverage LLMs’ reasoning and language capabilities to autonomously perceive,65

plan, and act within digital or physical environments. Early works such as ReAct (Yao et al., 2023;66

Schick et al., 2023; Shen et al., 2023; Hong et al., 2023; Boiko et al., 2023) introduced frameworks67

that transform LLMs into programmable reasoning engines by interleaving natural language reasoning68

with tool-use actions. Subsequent studies have extended these agents to various domains, including69

computer usage (Xie et al., 2024; Zhou et al., 2024) and software development (Wang et al., 2025;70

Jimenez et al., 2023b).71

2

In parallel, the field of automated machine learning (AutoML) aims to reduce human involvement72

in building ML pipelines by automating tasks such as model selection, hyperparameter tuning, and73

architecture search. Early systems like Auto-WEKA (Thornton et al., 2013), HyperBand (Li et al.,74

2018) and Auto-sklearn (Feurer et al., 2022) used early stopping and Bayesian optimization to search75

over pipeline configurations, while methods like DARTS (Liu et al., 2019) expanded automation76

to neural architectures. More recent frameworks such as AutoGluon (Erickson et al., 2020) and77

FLAML (Wang et al., 2021) emphasize efficiency and ease of use.78

Building on these developments, recent efforts have applied LLM-based agents to machine learning79

engineering (MLE) tasks (Hollmann et al., 2023; Guo et al., 2024; Li et al., 2024; Grosnit et al., 2024;80

Hong et al., 2024; Chi et al., 2024; Trirat et al., 2024; Huang et al., 2024). However, most evaluations81

remain constrained to closed-world settings with predefined search spaces, offering limited insight82

into how these agents perform in open-ended or collaborative ML environments. While some83

agents (Guo et al., 2024; AI-Researcher, 2025) incorporate basic retrieval tools, these are typically84

based on simple semantic matching, and robust evaluation methodologies remain underdeveloped.85

Meanwhile, several benchmarks have been proposed to evaluate machine learning (ML) engineering86

capabilities. MLPerf (Mattson et al., 2020) assesses system-level performance, including training87

speed and energy efficiency. To evaluate end-to-end ML workflows, MLAB (Huang et al., 2024)88

tests the capabilities of LLM-based agents across 13 ML tasks. MLE-Bench (Chan et al., 2025) and89

DSBench (Jing et al., 2025) further extends to about 75 Kaggle competitions covering tasks such90

as preprocessing, modeling, and evaluation. However, these benchmarks typically evaluate agents91

in isolation, overlooking the collaborative dynamics of real-world ML development. In contrast,92

our work introduces a framework that simulates community-driven settings, enabling evaluation of93

agents’ ability to engage with and benefit from shared knowledge — while ensuring that resource94

access remains fair and realistic.95

3 MLE-Live96

Existing benchmarks typically evaluate ML agents in static, isolated settings, where agents work97

independently without interacting with other participants or leveraging community insights. This98

contrasts sharply with real-world machine learning workflows, particularly on platforms like Kaggle,99

where collaboration, public sharing, and discussion are essential drivers of innovation.100

To enable more realistic and comprehensive evaluation of agents in community-driven research101

settings, we introduce MLE-Live, a live evaluation framework built upon Kaggle-style competitions.102

MLE-Live extends the MLE-Bench benchmark (Chan et al., 2025) by incorporating simulated103

community interactions that mirror how human participants access and utilize shared knowledge104

during competitions.105

Each competition in MLE-Live includes: (i) Task description: Background information, task specifica-106

tions, evaluation metrics, and dataset structure scraped directly from the original Kaggle competition107

pages. (ii) Competition dataset: A cleaned train-test split, constructed when necessary to account for108

unavailable or partial test data after competition closure. (iii) Submission grader: An evaluation script109

that mimics Kaggle’s scoring mechanism. (iv) Leaderboard: A ranking system to reflect solution110

quality and progress.111

Simulated Community Environment. Beyond the standard competition setup, MLE-Live in-112

troduces a community simulation system that mimics the collaborative ecosystem of real Kaggle113

competitions. Specifically, we collect and curate:114

• Shared discussions, including strategy brainstorming, model diagnostics.115

• Public kernels, including end-to-end solutions and code snippets which were posted before the116

official competition deadline.117

These artifacts reflect the auxiliary resources human participants would naturally reference, making118

MLE-Live a richer and more authentic testbed for ML agents.119

In total, we collected 12,951 discussions and 15,733 kernels across 75 Kaggle competitions from120

MLE-Bench.121

3

1223 12 5 0 9 3

MLE-Live CoMind

Solution Draft

Other Parallel
Instances

File "agent.py", line ���, in main
 logits_s = model(xb)
RuntimeError Input type (d...

Upload Summarizaion

Description:
 Use ViT-L/�� to extract image embeddings ...
Code Abstract:
 ...

Stage II: Idea Generation

Stage I: Idea Selection Stage IV: Report Generation

Stage III: Implementation and Improvement

Solution Draft

Summary:
 Our final solution is an ensemble of ...
Weaknesses:
 The bottleneck appears to be ...

Community

Task
Description

Leaderboard Dataset Grader

Shared Discussions Public Kernels

Summarized Ideas

Summarized Reports Previous Reports

Previous Ideas

A
g

en
t W

o
rk
fl

o
w

Uploaded

Uploaded

Idea Pool

Report Pool

Figure 2: Overview of MLE-Live and the workflow of CoMind. CoMind simulates a community
and operates iteratively through four stages: Idea Selection, Idea Generation, Implementation and
Improvement, and Report Generation. Multiple agents on the same task share the community
knowledge base, new reports will be added and visible to others in subsequent iterations.

Metadata and Quality Signals. Each resource in MLE-Live is augmented with critical metadata122

to help agents and evaluators prioritize relevant, high-quality content:123

• Vote count: Community preference indicator; highly voted items often contain well-structured124

insights.125

• Public score: Automatically computed by Kaggle on the public test split, indicating kernel126

performance.127

• Author tier: A qualitative marker of the contributor’s expertise, ranging from Novice to128

Grandmaster.129

Importantly, all included content was published before competition deadlines, ensuring a faithful130

simulation of real-time knowledge sharing without post-hoc leakage. This design makes MLE-Live131

a controlled yet realistic benchmark to assess how well agents can leverage collective intelligence132

during the research process.133

4 CoMind134

We introduce CoMind, a community-augmented large language model (LLM) agent designed to135

automate machine learning (ML) engineering in an iterative, collaborative setting. Figure 2 is a136

overview of CoMind workflows. Inspired by the workflow of human practitioners on platforms137

like Kaggle, CoMind operates in a loop that mirrors how experts read community posts, form new138

ideas, experiment, and share results. The system operates in iterative cycles, each consisting of four139

stages: Idea Selection, Idea Generation, Implementation and Improvement, and Report Generation.140

To support cumulative progress, CoMind maintains two central repositories: an idea pool containing141

abstracted insights derived from community content and prior iterations, and a report pool containing142

finalized solution reports with associated code, evaluations, and analyses. Additionally, we extend143

the setting to support multi-agent collaboration through shared insight exchange. These components144

facilitate both intra-agent memory and inter-agent communication in the multi-agent deployments.145

4

4.1 Agent Workflow146

Stage I: Idea Selection. At the beginning of each iteration, CoMind accesses the idea pool, which147

contains curated concepts and strategies distilled from previous solutions, public kernels and forum148

discussions. By utilizing the report pool as a guidance of performance and relevance assessment149

of entries in the idea pool, CoMind ranks and filters these entries to identify a subset of ideas most150

promising for the current task. This process mimics how human participants explore collective151

wisdom before forming new hypotheses and experimenting.152

Stage II: Idea Generation. Based on the selected ideas and additional context from the report153

pool, which contains detailed descriptions of previous solution implementations and their empirical154

performance, CoMind generates a high-level solution draft. This draft synthesizes new strategies by155

recombining or extending the selected ideas. Importantly, it is designed to avoid simple replication,156

thereby ensuring conceptual diversity and promoting exploratory breadth. This stage reflects the157

human capacity for abstraction and innovation, where participants generalize from past work to create158

novel solution blueprints.159

Stage III: Implementation and Improvement. Based on the generated solution draft, CoMind160

initiates a ReAct-style loop to implement, validate and refine the pipeline. In this stage, the CoMind161

iteratively issues code snippets, executes them within a constrained and isolated runtime environment,162

observes feedback (e.g., validation metrics, error logs), and updates its implementation accordingly.163

This loop continues for a fixed time budget, allowing CoMind to incrementally debug and optimize its164

solution through trial and error. Notably, the agent’s contextual input during this stage is deliberately165

restricted to include only the problem statement, the specific solution draft, and execution feedback,166

excluding direct access to the broader ideal pool and report pool. This ensures that the CoMind167

develops the solution path independently, preserving experimental modularity while preventing the168

underlying explosion of context length.169

Stage IV: Report Generation. Upon convergence or budget exhaustion, CoMind compiles a170

comprehensive report for the solution draft, which consist of: (1) a clear description of the proposed171

method; (2) an analysis of each major component; (3) quantitative performance results; and (4)172

an assessment of limitations and future directions. The resulting report is then posted back to the173

simulated community by added to the report pool, making it available to other agents in future174

iterations. This mirrors how real users document and share their final solutions.175

4.2 Parallel Agents with Shared Insight176

Beyond a single-agent loop, CoMind also supports a collaborative multi-agent setting. Multiple177

agents operate in parallel on the same task, each with access to the shared community knowledge base.178

As agents generate new reports, these are added to the pool and can be read by others in subsequent179

iterations. This allows agents to build upon each other’s ideas, fostering community-driven exploration180

and collective improvement.181

5 Benchmark Evaluation182

5.1 Setup183

Task Selection. Based on MLE-Live evaluation framework, we evaluate our agent on 75 Kaggle184

competitions on MLE-Bench. Using the MLE-Live framework, CoMind has access to shared185

discussions and public kernels published on the competition websites before the competition deadline.186

To validate CoMind under realistic conditions, we further evaluate CoMind on four ongoing187

Kaggle competitions: el-hackathon-2025, fathomnet-2025, playground-series-s5e5 and188

forams-classification-2025. These competitions span diverse domains, including tabular learn-189

ing, image classification and 3D object classification. Rather than approximating the official scoring190

locally, we directly submit CoMind’s generated submission.csv files to the Kaggle platform, so191

that all reported ranks reflect genuine, live leaderboard positions. Notably, fathomnet-2025 is part192

of the Fine-Grained Visual Categorization (FGVC12) workshop at the CVPR Conference. Unlike193

typical Kaggle competitions, a panel of experts will review the top entries based not only on scores194

5

Table 1: Any Medal (%) scores on MLE-Bench competitions. Best results in each column are
highlighted in bold. Baseline results are from the official leaderboard.

Agent Low (%) Medium (%) High (%) All (%)
CoMind o4-mini 59.09 23.68 33.33 36.00
Neo multi-agent 48.48 29.82 24.44 34.22
R&D-Agent o3 + GPT-4.1 51.52 19.30 26.67 30.22
ML-Master deepseek-r1 48.50 20.20 24.40 29.30
R&D-Agent o1-preview 48.18 8.95 18.67 22.40
AIDE o1-preview 34.30 8.80 10.00 16.90
AIDE gpt-4o 19.00 3.20 5.60 8.60
AIDE claude-3-5-sonnet 19.40 2.60 2.30 7.50
OpenHands gpt-4o 11.50 2.20 1.90 5.10
AIDE llama-3.1-405b-instruct 8.30 1.20 0.00 3.10
MLAB gpt-4o 4.20 0.00 0.00 1.30

but also on the methodological descriptions. Although the competition offers no monetary prize,195

it serves as a high-profile venue for academic and practical contributions to marine biodiversity196

research.197

Implementation Details. CoMind employs o4-mini-2025-04-16 (OpenAI, 2025) as its backend198

LLM. We limit the hardware constraint of each run to 32 vCPUs and a single A6000 GPU. Each199

competition is evaluated in separate containers with a maximum of 24 hours to produce the final200

submission file. Every single code execution session is limited to 5 hour. The Implementation and201

Improvement stage of CoMind is limited to a maximum of 20 steps. The number of parallel agents is202

set to 4.203

During code generation, agents are provided with the test set inputs (without labels) and prompted204

to generate a submission.csv file. The submission is then evaluated by a grader that compares205

the predicted labels with the ground truth. Following the setting of MLE-Bench, to avoid potential206

overfitting, test set labels and the competition leaderboard are strictly withheld from the agent’s207

accessible environment. Instead, each agent must rely solely on a self-constructed "runtime test set",208

a held-out split from the original training data, for code evaluation and performance estimation.209

Metrics. Following the evaluation metrics in MLE-Bench, we measure the performance of CoMind210

by Any Medal, the percentage of competitions where the agent earns a gold, silver, or bronze medal.211

Baselines. We compare CoMind against the MLE-Bench leaderboard1 including open-sourced212

systems like R&D-Agent (Yang et al., 2025), a dual-agent framework (Researcher/Developer) that213

explores multiple solution branches and merges promising ideas into improved pipelines; ML-214

Master (Liu et al., 2025), which integrates exploration and reasoning via a selectively scoped215

memory that aggregates insights from parallel trajectories; AIDE (Jiang et al., 2025), a purpose-built216

tree-search scaffold that iteratively drafts, debugs, and benchmarks code for Kaggle-style tasks;217

OpenHands (Wang et al., 2025), a general-purpose CodeAct-based scaffold that executes code and218

calls tools in a sandboxed environment; MLAB (Huang et al., 2024), referring to the ResearchAgent219

scaffold from MLAgentBench, a general tool-calling/plan–act baseline; and Neo (https://heyneo.220

so/), a close-sourced multi-agent system for autonomous ML engineering.221

5.2 Results222

Table 1 compares CoMind with baseline methods on 75 MLE-Bench competitions. CoMind223

achieves state-of-the-art performance with an Any Medal rate of 36.00%, significantly outper-224

forming open-source competitors such as R&D-Agent (submitted on 2025-08-15) and surpass-225

ing the closed-source multi-agent system Neo. Appendix C provides a detailed case study on226

denoising-dirty-documents.227

1https://github.com/openai/mle-bench

6

https://heyneo.so/
https://heyneo.so/
https://heyneo.so/
https://github.com/openai/mle-bench

Table 2: Authentic scores and top-percentile ranks of CoMind and AIDE on ongoing Kaggle
competitions. “Higher better” marks whether a larger score is better for that competition. “Top %” is
the percentile rank on competition leaderboard (lower is better). In playground-series-s5e5 and
fathomnet-2025, lower scores are better.

CoMind AIDE
Competition Score higher better Score Top % Score Top %
playground-series-s5e5 × 0.5673 5.1% 0.5772 33.8%
forams-classification-2025 0.7645 8.3% 0.6041 30.6%
el-hackathon-2025 0.5837 38.4% 0.1140 91.5%
fathomnet-2025 × 2.81 30.6% 3.71 71.4%

On the four evaluated ongoing competitions CoMind’s standings are: playground-series-s5e5228

(#120 out of 2,338); forams-classification-2025 (#4 out of 48); el-hackathon-2025 (#128229

out of 333); fathomnet-2025 (#15 out of 47). Details including authentic scores and win rates per230

task are provided in Table 2. These authentic results demonstrate CoMind’s capability to tackle a231

variety of problem domains and achieve competitive performance in live, evolving ML workflows.232

In particular, our success in the CVPR-affiliated fathomnet-2025 challenge highlights CoMind’s233

potential to contribute meaningfully not only to industrial applications but also to scientific and234

interdisciplinary research communities.235

6 Ablation Study236

6.1 Setup237

Task Selection. To evaluate the impact of introducing public resources, we conducted an ablation238

study on 20 competitions from MLE-Bench-Lite based on MLE-Live. These tasks span across various239

categories, including image classification/generation, text classification/generation, image regression,240

audio classification, and tabular analysis.241

Baselines. We compared CoMind against the following baselines. For consistency, all baselines242

use the same backend model as CoMind:243

• AIDE+Code. To enable the use of publicly available code (e.g., Kaggle kernels), we extend244

AIDE with access to one public kernel per draft node—selected by highest community votes.245

This version, AIDE+Code, augments the prompt with both the task description and the selected246

kernel alongside the tree summarization.247

• AIDE+RAG. We further equip AIDE with a retrieval-augmented generation (RAG) mechanism.248

Before generating code, the agent retrieves the titles of the top 10 voted discussions and kernels.249

The LLM selects the most relevant ones, receives a summarization, and then proposes its250

plan and implementation. For debugging or refinement, it can optionally re-query documents.251

Retrieval is based on cosine similarity between query and candidate document embeddings,252

using Multilingual E5 Text Embeddings (Wang et al., 2024).253

• CoMind w/o R. In this variant, CoMind operates without access to any external community254

resources. It starts with empty idea and report pools and relies solely on its own generation255

history to propose candidate ideas and assemble solution drafts.256

Metrics. Following the evaluation metrics in prior research (Chan et al., 2025), the relative capability257

of generating high-quality solution compared with human is measured by:258

• Above Median: Indicates whether the submission outperforms at least 50% of competitors on259

the leaderboard.260

• Win Rate: The percentage of competitors whose final scores are lower than the agent’s score. If261

the agent fails to produce a valid submission, the Win Rate is 0.262

• Medals: Medals are assigned based on the agent’s score relative to Kaggle leaderboard thresholds263

for gold, silver, and bronze medals.264

• Any Medal: The percentage of competitions in which the agent earns any medal.265

7

Figure 3: Performance of CoMind and other baselines on 20 competitions from MLE-Bench-
Lite. Valid Submission is the ratio of submissions meeting format requirements and validation criteria.
Win Rate is the percentage of human competitors outperformed by the agent. Any Medal, is the
proportion of competitions where the agent earned Gold, Silver or Bronze medals. Above Median is
the fraction of competitions where the agent’s score strictly exceeded the median human competitor.

Table 3: Average win rate of CoMind and other baselines across task categories on 20 competi-
tions from MLE-Bench-Lite. # of Tasks refers to the number of competitions in the corresponding
category. Notably, CoMind demonstrated superior performance in Image Classification, Text Classifi-
cation, Audio Classification and Image To Image.

Category # of Tasks CoMind AIDE+Code AIDE+RAG AIDE

Image Classification 8 0.597 0.459 0.434 0.525
Text Classification 3 0.740 0.157 0.338 0.61
Audio Classification 1 0.901 0.272 0.259 0.271
Seq2Seq 2 0.408 0.503 0.550 0.228
Tabular 4 0.664 0.673 0.688 0.483
Image To Image 1 0.988 0.932 0.617 0.568
Image Regression 1 0.992 0.342 0.992 0.992

All 20 0.668 0.469 0.510 0.512

Implementation Setup. All agents use o4-mini-2025-04-16 as their backend. Based on the266

settings of our main experiment, the hardware constraint is further limited to 4 vCPUs and 5 hours267

per competition. Each execution session is limited to 1 hour.268

6.2 Results269

Figure 3 shows the results. Our key findings are as follows: (i) CoMind consistently outperforms all270

baselines across every metric. (ii) Among the AIDE variants, AIDE+RAG outperforms AIDE+Code,271

and both surpass the original AIDE on most metrics, demonstrating the benefits of integrating272

community knowledge. CoMind further exceeds these approaches, highlighting the effectiveness273

of its deeper and more strategic community-aware exploration. (iii) Removing CoMind’s resource274

access causes a significant drop in valid submission rates and other metrics, showing that strategic275

access to public resources helps CoMind balance extending established methods for reliability with276

exploring novel approaches.277

7 Analytical Experiments278

For analytical experiments, we adopt the same setup as the ablation study and evaluate model279

performance across multiple dimensions, including task categories, win rate over time, and code280

complexity.281

Task Categories Table 3 reports the average ranks across seven task categories. CoMind outper-282

forms all baselines in Image Classification, Text Classification, Audio Classification, and Image-283

to-Image tasks, highlighting its strong adaptability. We manually inspect the tasks where CoMind284

8

Figure 4: Average win rate of CoMind and
other baselines over time. AIDE, AIDE+Code,
and AIDE+RAG rose rapidly but plateaued,
while CoMind continued improving and even-
tually outperformed them.

Figure 5: Average code length (character
count) of valid solutions over time. CoMind
maintained a substantially longer code length,
suggesting more complex logic and richer opti-
mization techniques.

underperformed and find that the issues are often related to the use of large models or datasets.285

For example, in Seq2Seq tasks, CoMind explores complex fine-tuning strategies for large language286

models which often fail to complete within the one-hour runtime constraint.287

Win Rate Over Time Figure 4 shows the evolution of average win rate over time. AIDE quickly288

produces concise, functional solutions, leading to a rapid rise in performance during the first hour.289

In contrast, CoMind spends more time on debugging and exploration early on, resulting in a slower290

initial improvement. However, after the first two hours, AIDE’s performance plateaus, while CoMind291

continues to improve through iterative refinement and deeper exploration, ultimately surpassing AIDE292

and achieving higher-quality solutions.293

Code Complexity Regarding code complexity, Figure 5 illustrates the average code length during294

the entire competition. CoMind consistently generates significantly longer and more complex295

code, while other baselines begin with simpler implementations and introduce only incremental296

modifications. Appendix A offers a comparative analysis across code complexity metrics and task297

categories. Notably, CoMind’s solutions for Image Regression and Audio Classification are nearly298

twice as long as those of other baselines. Additionally, solutions from CoMind are, on average, 55.4%299

longer than those produced by AIDE.300

8 Conclusion301

We introduce MLE-Live, a new framework for evaluating machine learning agents in realistic,302

community-driven environments. By simulating the collaborative dynamics of Kaggle competitions303

with shared discussions and public code, MLE-Live enables a more faithful assessment of agents’304

ability to leverage collective knowledge. Building upon this framework, we propose CoMind, an305

LLM-based agent that iteratively selects, synthesizes, and implements ideas using both internal306

reasoning and external insights. CoMind consistently outperforms prior methods on MLE-Live307

benchmark and four ongoing Kaggle competitions, demonstrating the value of community awareness308

and iterative exploration in research automation. In addition, MLE-Live lays the groundwork for309

future studies in collaborative AI systems where agents not only learn from data, but also from each310

other.311

Limitations and Future Work. Currently, CoMind supports only report-level interactions. Ex-312

panding the agent’s action space to include commenting, question-asking, or sharing datasets and313

models is a promising next step. In addition, while our current experiments focus on Kaggle-style314

ML tasks, the MLE-Live framework can be extended to broader domains, such as scientific discovery,315

open-ended coding, or robotics, enabling research agents to contribute meaningfully across diverse316

fields.317

9

References318

AI-Researcher (2025). Ai-researcher: Fully-automated scientific discovery with llm agents. Accessed:319

2025-05-15.320

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. (2023). Autonomous chemical research with321

large language models. Nature, 624:570 – 578.322

Chan, J. S., Chowdhury, N., Jaffe, O., Aung, J., Sherburn, D., Mays, E., Starace, G., Liu, K., Maksin,323

L., Patwardhan, T., Madry, A., and Weng, L. (2025). MLE-bench: Evaluating machine learning324

agents on machine learning engineering. In The Thirteenth International Conference on Learning325

Representations.326

Chi, Y., Lin, Y., Hong, S., Pan, D., Fei, Y., Mei, G., Liu, B., Pang, T., Kwok, J., Zhang, C., Liu, B.,327

and Wu, C. (2024). Sela: Tree-search enhanced llm agents for automated machine learning. ArXiv,328

abs/2410.17238.329

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020). Autogluon-330

tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505.331

Feng, S., Sun, W., Li, S., Talwalkar, A., and Yang, Y. (2025). A comprehensive evaluation of332

contemporary ml-based solvers for combinatorial optimization. ArXiv, abs/2505.16952.333

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2022). Auto-sklearn 2.0:334

Hands-free automl via meta-learning. Journal of Machine Learning Research, 23(261):1–61.335

Grosnit, A., Maraval, A. M., Doran, J., Paolo, G., Thomas, A., Beevi, R. S. H. N., Gonzalez, J.,336

Khandelwal, K., Iacobacci, I., Benechehab, A., Cherkaoui, H., Hili, Y. A. E., Shao, K., Hao, J.,337

Yao, J., Kégl, B., Bou-Ammar, H., and Wang, J. (2024). Large language models orchestrating338

structured reasoning achieve kaggle grandmaster level. ArXiv, abs/2411.03562.339

Guo, S., Deng, C., Wen, Y., Chen, H., Chang, Y., and Wang, J. (2024). Ds-agent: Automated data340

science by empowering large language models with case-based reasoning. ArXiv, abs/2402.17453.341

Hollmann, N., Müller, S. G., and Hutter, F. (2023). Large language models for automated data342

science: Introducing caafe for context-aware automated feature engineering. In Neural Information343

Processing Systems.344

Hong, S., Lin, Y., Liu, B., Wu, B., Li, D., Chen, J., Zhang, J., Wang, J., Zhang, L., Zhuge, M., Guo,345

T., Zhou, T., Tao, W., Wang, W., Tang, X., Lu, X., Liang, X., Fei, Y., Cheng, Y., Gou, Z., Xu,346

Z., Wu, C., Zhang, L., Yang, M., and Zheng, X. (2024). Data interpreter: An llm agent for data347

science. ArXiv, abs/2402.18679.348

Hong, S., Zheng, X., Chen, J. P., Cheng, Y., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z. H., Zhou, L.,349

Ran, C., Xiao, L., and Wu, C. (2023). Metagpt: Meta programming for multi-agent collaborative350

framework. ArXiv, abs/2308.00352.351

Huang, Q., Vora, J., Liang, P., and Leskovec, J. (2024). MLAgentbench: Evaluating language352

agents on machine learning experimentation. In Forty-first International Conference on Machine353

Learning.354

Jiang, Z., Schmidt, D., Srikanth, D., Xu, D., Kaplan, I., Jacenko, D., and Wu, Y. (2025). Aide:355

Ai-driven exploration in the space of code.356

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., and Narasimhan, K. (2023a). Swe-357

bench: Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770.358

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., and Narasimhan, K. (2023b).359

Swe-bench: Can language models resolve real-world github issues? ArXiv, abs/2310.06770.360

Jing, L., Huang, Z., Wang, X., Yao, W., Yu, W., Ma, K., Zhang, H., Du, X., and Yu, D. (2025).361

DSBench: How far are data science agents from becoming data science experts? In The Thirteenth362

International Conference on Learning Representations.363

10

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A novel364

bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research,365

18(185):1–52.366

Li, S., Marwah, T., Shen, J., Sun, W., Risteski, A., Yang, Y., and Talwalkar, A. (2025). Codepde: An367

inference framework for llm-driven pde solver generation. arXiv preprint arXiv:2505.08783.368

Li, Z., Zang, Q., Ma, D., Guo, J., Zheng, T., Liu, M., Niu, X., Wang, Y., Yang, J., Liu, J., et al. (2024).369

Autokaggle: A multi-agent framework for autonomous data science competitions. arXiv preprint370

arXiv:2410.20424.371

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In372

International Conference on Learning Representations.373

Liu, Z., Cai, Y., Zhu, X., Zheng, Y., Chen, R., Wen, Y., Wang, Y., Weinan, E., and Chen, S. (2025).374

Ml-master: Towards ai-for-ai via integration of exploration and reasoning. ArXiv, abs/2506.16499.375

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson, D., Tang, H., Wei,376

G.-Y., Bailis, P., Bittorf, V., et al. (2020). Mlperf training benchmark. Proceedings of Machine377

Learning and Systems, 2:336–349.378

OpenAI (2024). Learning to reason with llms.379

OpenAI (2025). Introducing openai o3 and o4-mini.380

Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W., Zhang, L., Fu, Z., Zhu, Q., Yang, D.,381

Wu, Z. F., Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D., and Ruan, C. (2025). Deepseek-382

prover-v2: Advancing formal mathematical reasoning via reinforcement learning for subgoal383

decomposition.384

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M. P., Dupont, E., Ruiz, F. J.,385

Ellenberg, J. S., Wang, P., Fawzi, O., et al. (2024). Mathematical discoveries from program search386

with large language models. Nature, 625(7995):468–475.387

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., and388

Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools.389

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y. (2023). Hugginggpt: Solving ai tasks390

with chatgpt and its friends in hugging face.391

Sun, W., Feng, S., Li, S., and Yang, Y. (2025). Co-bench: Benchmarking language model agents in392

algorithm search for combinatorial optimization. ArXiv, abs/2504.04310.393

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-weka: Combined selection394

and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM395

SIGKDD international conference on Knowledge discovery and data mining, pages 847–855.396

Trirat, P., Jeong, W., and Hwang, S. J. (2024). Automl-agent: A multi-agent llm framework for397

full-pipeline automl. ArXiv, abs/2410.02958.398

Wang, C., Wu, Q., Weimer, M., and Zhu, E. (2021). Flaml: A fast and lightweight automl library.399

Proceedings of Machine Learning and Systems, 3:434–447.400

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., and Wei, F. (2024). Multilingual e5 text401

embeddings: A technical report. arXiv preprint arXiv:2402.05672.402

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M., Pan, J., Song, Y., Li, B., Singh, J., Tran,403

H. H., Li, F., Ma, R., Zheng, M., Qian, B., Shao, Y., Muennighoff, N., Zhang, Y., Hui, B., Lin,404

J., Brennan, R., Peng, H., Ji, H., and Neubig, G. (2025). Openhands: An open platform for AI405

software developers as generalist agents. In The Thirteenth International Conference on Learning406

Representations.407

Xia, C. S., Deng, Y., Dunn, S., and Zhang, L. (2025). Demystifying llm-based software engineering408

agents. Proceedings of the ACM on Software Engineering, 2(FSE):801–824.409

11

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R., Hua, T. J., Cheng, Z., Shin, D., Lei, F., Liu, Y.,410

Xu, Y., Zhou, S., Savarese, S., Xiong, C., Zhong, V., and Yu, T. (2024). OSWorld: Benchmarking411

multimodal agents for open-ended tasks in real computer environments. In The Thirty-eight412

Conference on Neural Information Processing Systems Datasets and Benchmarks Track.413

Yamada, Y., Lange, R. T., Lu, C., Hu, S., Lu, C., Foerster, J., Clune, J., and Ha, D. (2025). The ai414

scientist-v2: Workshop-level automated scientific discovery via agentic tree search. arXiv preprint415

arXiv:2504.08066.416

Yang, X., Yang, X., Fang, S., Xian, B., Li, Y., Wang, J., Xu, M., Pan, H., Hong, X., Liu, W., Shen, Y.,417

Chen, W., and Bian, J. (2025). R&d-agent: Automating data-driven ai solution building through418

llm-powered automated research, development, and evolution. ArXiv, abs/2505.14738.419

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K. R., and Cao, Y. (2023). React:420

Synergizing reasoning and acting in language models. In The Eleventh International Conference421

on Learning Representations.422

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A., Cheng, X., Ou, T., Bisk, Y., Fried, D.,423

Alon, U., and Neubig, G. (2024). Webarena: A realistic web environment for building autonomous424

agents. In The Twelfth International Conference on Learning Representations.425

12

A Additional Analysis on Code Complexity426

In this section, we provide a comprehensive analysis of the generated code using a broad set of427

software complexity and quality metrics, beyond mere line counts. Specifically, we report the428

following indicators: Cyclomatic Complexity (CC), Pylint score, Halstead Metrics: Volume,429

Difficulty, Effort, Source Lines of Code (SLOC), Number of Comment Lines and Code Length.430

Table 4: Code Complexity and Quality Metrics by Task Category.

Category Metric CoMind AIDE AIDE+RAG AIDE+Code

Image Classification

CC 1.68 1.59 1.93 1.29
Pylint Score 7.43 9.06 8.90 8.92
Volume 330.88 143.26 84.20 175.88
Difficulty 4.95 2.90 2.32 2.59
Effort 1960.22 507.06 286.31 725.59
SLOC 198.25 133.50 120.88 115.71
Comment Lines 15.62 12.88 13.75 14.43
Code Length 7638.40 4624.30 4701.30 5192.10

Text Classification

CC 3.58 4.28 2.00 0.00
Pylint Score 8.82 9.09 8.89 9.26
Volume 286.38 384.07 47.68 29.25
Difficulty 3.76 3.94 1.25 1.31
Effort 1183.11 2332.22 61.56 35.16
SLOC 181.67 133.00 141.00 69.50
Comment Lines 14.67 15.33 14.00 13.50
Code Length 6974.70 3094.50 5920.50 5629.30

Audio Classification

CC 2.00 0.00 0.00 0.00
Pylint Score 7.92 9.11 9.49 8.86
Volume 718.63 244.20 115.95 227.48
Difficulty 7.39 6.46 3.19 6.38
Effort 5308.07 1577.11 369.58 1451.30
SLOC 256.00 82.00 92.00 72.00
Comment Lines 20.00 11.00 16.00 16.00
Code Length 9449.00 3508.00 4151.00 3352.00

Seq2Seq

CC 4.38 2.25 22.33 15.75
Pylint Score 8.58 9.04 9.14 8.51
Volume 492.55 52.33 390.46 324.00
Difficulty 3.87 2.14 5.26 3.68
Effort 1935.02 140.58 2083.84 1686.74
SLOC 184.50 63.50 222.50 147.50
Comment Lines 22.50 13.00 23.00 19.50
Code Length 6925.50 5649.50 8357.50 2728.50

Tabular

CC 2.78 1.62 2.38 0.25
Pylint Score 8.65 8.96 8.87 9.31
Volume 1264.61 856.12 815.29 435.46
Difficulty 7.37 4.83 6.05 3.69
Effort 10 808.93 6163.62 5564.22 2001.06
SLOC 218.75 139.75 147.50 93.50
Comment Lines 18.25 14.75 15.25 10.50
Code Length 8570.00 3534.00 6064.00 5759.80

Image to Image

CC 1.72 2.00 3.00 1.88
Pylint Score 8.43 6.25 6.64 7.74
Volume 1298.11 1481.62 414.59 431.08
Difficulty 9.68 6.73 3.94 3.79
Effort 12 565.66 9967.24 1633.22 1631.93
SLOC 228.00 175.00 121.00 128.00
Comment Lines 26.00 8.00 23.00 13.00
Code Length 8800.00 5231.00 4815.00 6671.00

Image Regression

CC 1.68 2.00 2.40 2.00

13

Category Metric CoMind AIDE AIDE+RAG AIDE+Code

Pylint Score 8.62 8.75 8.80 8.89
Volume 1310.92 241.08 70.32 72.00
Difficulty 8.75 3.88 2.18 2.73
Effort 11 466.58 934.17 153.43 196.36
SLOC 267.00 145.00 116.00 133.00
Comment Lines 36.00 15.00 12.00 12.00
Code Length 10 991.00 4841.00 4655.00 5614.00

431

B Prompts and Responses for CoMind432

This section provides some examples of prompts and responses in CoMind, including Idea Selection,433

Idea Generation, Implementation and Improvement and Report Generation.434

B.1 Idea Selection435

The idea pool is initialized with curated strategies distilled from public kernels and forum discussions436

before the first iteration. Since the key innovation of CoMind lies in the simulation of the community,437

we adopt a relatively simple implementation for the distillation, where CoMind only collects and438

analyzes top-k voted or ranked (with best public score) kernels and discussions.439

Prompt for Strategy Distillation of Public Kernels

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Goals These are top-ranked public scripts during the competition. Your job is to:

1. Carefully read the following scripts.
2. For each script, if it’s self-contained, i.e., including model architecture (if there’s a

model), training strategies, evaluation, etc., then summarize its pipeline.
3. If the pipeline contains technical details, such as extensive feature engineering,

hyperparameter tuning, etc., then list them in full detail.
4. Select a representative code segment for each pipeline. You must include dataset

reading / submission generation parts. If task-specific details such as feature engi-
neering are included, the code segment should contain them as well.

Public Kernels <contents of public kernels>
440

Response Template of Strategy Distillation of Public Kernels

Pipelines Description of each strategy, separated by ===SEPARATOR=== mark. For each
strategy, follow this format:

• Pipeline: A full detailed description of the pipeline. All input/output format, hyperparameters,
training settings, model architectures, feature engineering, validation metric, and any other
relevant information should be included. Do not omit any feature engineering details.

• Code abstract: A representative code segments that captures the essence (including input/out-
put) and novelty of the pipeline. You MUST go through all the publicly available code and
include the parts that generate the submission file. Contain task-specific engineering
details. Mark the remainder as ellipses.

441

14

Prompt for Strategy Distillation of Public Discussions

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Goals These are top-voted public discussions during the competition. Your job is to:
Public Discussions <contents of public discussions>

1. Carefully read the following discussions.
2. For each discussion, you should decompose it into critical, novel and inspiring ideas

that have potential to win this competition.
442

Response Template of Strategy Distillation of Public Discussions

Ideas required format: python list of strings, each element is a description of an idea
extracted from the discussions. e.g. [’idea 1’, ’idea 2’].

443

Once the idea pool is initialized, CoMind enters the main iteration. CoMinds then ranks and filters all444

entries in the idea pool, following the prompt below.445

Prompt for Idea Filtering and Reconstruction

Introduction You are a machine learning expert. After carefully searching the relevant
literature, you have come up with a list of ideas to implement. However, this idea list has
some issues:

• Some ideas are too similar and should be merged into one.
• Some ideas are overlapping, you should rephrase and decouple them.
• You should discard ideas that are irrelevant to the final performance, such as error visualization,

etc.
You should refer to the Reports section and Public Pipelines section for previous implemented
pipelines. Please decompose, merge, and reconstruct the ideas listed below.

Ideas <entries of the idea pool>

Reports <entries of the report pool>

Public Pipelines <all public pipelines extracted before>
446

Response Template of Idea Filtering and Reconstruction

Ideas required format: Python list of strings, each element is a description of an idea
extracted from the discussions. e.g. [’idea 1’, ’idea 2’].

447

B.2 Idea Generation448

Based on previous ideas and reports. CoMind will first enrich the idea pool by designing and449

generating other promising strategies for the competition.450

Prompt for CoMind Brainstorm

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Goals I already have a list of ideas that partially explore how to approach this competition.
Your job is to:

1. Think creatively and construct at least 4 alternative and highly novel solution paths
that are likely to perform well, especially if combined with careful experimentation.

451

15

2. Each solution path can be a strategy, pipeline, or method that combines multiple
techniques. Try to make them as different as possible from the existing "ideas" list.

3. After describing each full solution path, break it down into individual minimal
ideas-these should be the smallest units of implementation (e.g., "use LightGBM
for baseline", "normalize input features", "apply stratified K-fold CV")

4. Ensure these ideas do not substantially duplicate items already in "ideas".
5. Refer to the "Reports" section for the latest updates and suggestions on the ideas

and previous pipelines.

Ideas <entries in the idea pool>

Reports <entries in the report pool>

Public Pipelines <all public pipelines extracted before>

Instructions Format your output like this (one line, one idea):

Response Template

<your understanding of the task and explanation of your approaches>
===SOLUTION_PATH_1===
<description of this approach>
- <minimal idea 1>
- <minimal idea 2>
- <minimal idea 3>
- ...
===SOLUTION_PATH_2===
...
===SOLUTION_PATH_3===
...

Be ambitious but realistic - many ideas can later be tested on a small subset of the data. Focus
on novelty, diversity, and decomposability. Ready? Start.

452

After brainstorming completes, CoMind synthesizes existing strategies and ideas into several high-453

level solution drafts.454

Prompt for Solution Draft Synthesis

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description <description of the specified task>
Ideas <entries in the idea pool>
Reports <entries in the report pool>
Public Pipelines <all public pipelines extracted before>
Goals

1. Carefully read the reports provided above.
2. Based on the ideas and reports, propose <num_pipes> promising self-contained

pipelines that are likely to perform well.
3. The Public pipelines section contains top-ranked public pipelines during the compe-

tition. Use them as reference to polish your pipelines.
4. Each pipeline should not overlap with others. Your proposed pipelines should

include one baseline pipeline that uses well-known methods but is robust and
relatively easy to implement. You should reinforce public pipelines and previous
pipelines based on their reports (if provided).

5. Ensure that each pipeline can be trained within 2 hours on a single A6000 with
48GB memory.

455

16

6. Read the submission format requirements in the task description carefully. The
format requirement is possible to be different from the training dataset. THIS IS
EXTREMELY IMPORTANT. Mention in the pipeline descriptions and be sure to
include the code that handles the input and output.

7. DO NOT USE tensorflow, use pytorch instead
456

Response Template for Solution Draft Synthesis

Submit Pipelines Descriptions and codes of pipelines, separated each pipeline by ===SEP-
ARATOR=== mark. For each pipeline, attach code that captures its essential. You must
include the code in public pipelines that handles input and output, and if there are parts
of the public pipelines that are similar to the current pipeline, you should include them
as well.

457

B.3 Implementation458

In this stage, all previously generated solution drafts will be distributed to multiple parallel sub-agents.459

In each instance, CoMind chats with LLM in multiple turns and initiates a ReAct-style loop.460

Prompts for Sub-Agent Implementation

Introduction You’re an expert Kaggle competitor tasked with implementing a pipeline into
Python code. You can modify the details (training parameters, feature engineering, model
selection, etc.), but do not change overall architecture of this pipeline. The goal is to obtain
best score on this competition.
Task Description <description of the specified task>
Pipeline <description of the solution draft to implement>
Data Overview <schema of the input file structure>
Reminders

1. Read the pipeline and task description carefully.
2. YOUR CODE MUST PRODUCE SUBMISSON AT ./working-

agent_id/submission.csv, THIS IS EXTREMELY IMPORTANT
3. There is one A6000 gpu available for you, maximize your use of computing

resources. You can use large batchsizes.
4. All the provided input data are stored in ./input directory.
5. You can use the ./working-agent_id directory to store any temporary files that your

code needs to create.
6. Include at least one comment explaining your code. NO PARTS OF THE CODE

SHOULD BE SKIPPED OR OMITTED, don’t terminate before finishing the
script. Even if your proposed code is a minor change, don’t omit any sections that
overlap with the previous code.

7. Remember, your ultimate goal is to Obtain best score on this competition.
8. Your code should print the value of the evaluation metric computed on a hold-out

validation set.
9. You can use custom evaluation functions during training, but the final metric MUST

FOLLOW THE EVALUATION SECTION IN THE TASK DESCRIPTION on
a validation set. This is important because we will pick your best code based on this
metric.

10. We suggest you to test your code at a small scale and print necessary information
before utilizing full dataset to get familiar with the data structure and avoid potential
format errors.

11. Time limit per run is 1 hour. Your code will be killed if timeout.
461

17

12. Begin by summarizing your understanding of the task, and then propose your first
code.

Response Format You should follow the following format:

Response Template for Sub-Agent Implementation

objective of this implementation and suggestions for output evaluation
key technical considerations
expected running time (you should ensure that the code will finish within 1 hour)
‘‘‘python
your code here
‘‘‘

462

A Python environment will be setup and execute the code automatically. After the execution, a463

summary LLM collects all standard output and determines whether the execution runs successfully.464

Prompt for Execution Result Summarization

Introduction You are a Kaggle grandmaster attending a competition. You have written
code to solve this task and now need to evaluate the output of the code execution. You should
determine if there were any bugs as well as report the empirical findings. Include essential
information about the result, including warnings, errors, and the final metric.
Code <Python code generated by the agent>
Goals and Explanation <explanation of the code>
Execution Output <terminal output>

465

Response Template for Execution Result Summarization

is_bug true if the output log shows that the execution failed or has some bug, otherwise
false
summary write a short summary (4-5 sentences) describing the empirical findings
output_abs select representative segments of the output log and mark the remainder as
ellipses
metric If the code ran successfully and produced submission.csv on full test set (i.e. not
dummy or partial), report the value of the final validation metric. Otherwise, leave it null.
is_lower_better true if the metric should be minimized (i.e. a lower metric value is better,
such as with MSE), false if the metric should be maximized (i.e. a higher metric value is
better, such as with accuracy)

466

CoMind progressively optimizes the solution through trail and error. After the execution result is467

collected and summarized, it will try to revise the code by notifying the LLM:468

Prompt for Consequent Code Revisions

Remaining steps: <remaining_steps>; Remaining time: <remaining_time> seconds
I ran your code and summarized the execution result: <summary>
Now, please choose your next action and propose code using the same response format as
before. Remember, output a self-contained code, no part of it should be omitted. Keep the
final validation metric same as the metric mentioned in the task description.

A) Fix runtime errors (if any)
B) Do hyperparameter tuning
C) Include ideas that were not implemented yet
D) Add possible improvements

469

18

E) Run on a larger scale (moderately increase training epochs, etc.). You should refer
to the previous execution time we reported. Remember, your code will be killed if
timeout.

470

B.4 Report Generation471

Each sub-agent of CoMind compiles a comprehensive report and submits it to the report pool when472

time expires.473

Prompt for Report Compilation

Please summarize the results and submit a comprehensive report.
474

Response Template for Report Compilation

pipeline A detailed description of the pipeline that generated the best results. All hyperpa-
rameters, training settings, model architectures, feature engineering, validation metric, and
any other relevant information should be included. Describe potential improvements and
future work.
summary A comprehensive evaluation of each individual component of the pipeline. For
each component, summarize in the following format:
=== <name of the component> ===
Novelty: 0-10 (0: trivial, 10: clearly novel - major differences from existing well-known
methods)
<your rationale>
Feasibility: 0-10 (0: almost impossible to implement and require extensive engineering, 10:
Easy to implement)
<your rationale>
Effectiveness: 0-10 (0: minimal performance improvement, 10: very strong performance,
significantly outperform most baselines)
<your rationale>
Efficiency: 0-10 (0: very slow, over-dependent on CPU and hard to produce meaningful
results within the time limit, 10: high utilization of GPU)
<your rationale>
Confidence: 0-10 (0: no emprical results, not sure whether the evaluation is correct, 10: fully
verified on large scale with abundant results)

475

C Case Study: Denoising Dirty Documents476

C.1 Dataset Preparation477

Besides the task description and datasets prepared in MLE-Bench, MLE-Live collects 59 public478

kernels and 19 discussions which are available on Kaggle and are posted before the competition ends.479

C.1.1 Example of Public Kernel480

481
1 """482

2 A simple feed-forward neural network that denoises one pixel at a time483

3 """484

4 import numpy as np485

5 import theano486

6 import theano.tensor as T487

7 import cv2488

8 import os489

9 import itertools490

10491

11 theano.config.floatX = ’float32’492

19

12493

13 def load_image(path):494

14 return cv2.imread(path, cv2.IMREAD_GRAYSCALE)495

15496

16 def feature_matrix(img):497

17 """Converts a grayscale image to a feature matrix498

18499

19 The output value has shape (<number of pixels>, <number of features>)500

20 """501

21 # select all the pixels in a square around the target pixel as features502

22 window = (5, 5)503

23 nbrs = [cv2.getRectSubPix(img, window, (y, x)).ravel()504

24 for x, y in itertools.product(range(img.shape[0]), range(img.shape[1]))]505

25506

26 # add some more possibly relevant numbers as features507

27 median5 = cv2.medianBlur(img, 5).ravel()508

28 median25 = cv2.medianBlur(img, 25).ravel()509

29 grad = np.abs(cv2.Sobel(img, cv2.CV_16S, 1, 1, ksize=3).ravel())510

30 div = np.abs(cv2.Sobel(img, cv2.CV_16S, 2, 2, ksize=3).ravel())511

31512

32 ... (omitted) ...513

33514

34 # for fname in os.listdir(’../input/test/’):515

35 for fname in [’1.png’]:516

36 test_image = load_image(os.path.join(’../input/test’, fname))517

37 test_x = feature_matrix(test_image)518

38519

39 y_pred, = predict(test_x)520

40 output = y_pred.reshape(test_image.shape)*255.0521

41522

42 cv2.imwrite(’original_’ + fname, test_image)523

43 cv2.imwrite(’cleaned_’ + fname, output)524

44525

45526

46 if __name__ == ’__main__’:527

47 main()528529

C.1.2 Example of Discussion530

Edge Diffraction in train_cleaned data531
(Lance <TIER: N/A>) <p>I’m studying the pixels in train_cleaned data. I attached a colorized blow-up532

version of part of the image train_cleaned/45.png. The yellow pixels are any pixels that533
were not pure white (!= 0xFF gray scale) in image 45.png, the green was pure white (0xFF).</p>534

<p>So you see what looks like an edge diffraction line lining the outer edge of all the letters.</p>535
<p>Okay, maybe I got something wrong in my code. Can anyone confirm this edge diffraction thing536

in the train_cleaned data, as for example the first word in train_cleaned/45.png (There). 537
You need to make the non-white (byte != 0xFF) pixels all a more contrasting color or you may not538
see it.</p>539

<p>I’m guessing that the clean png files were at some point scanned in using some kind of optical540
scanning machine which added these edge diffraction lines when the light diffracts off the edge541
of the black ink character.</p>542

... (omitted) ...543
+ (Rangel Dokov <TIER: MASTER>) <p>Yes, there is some noise, which doesn’t look like it should be there544

in the clean set... I ran a test setting everything whiter that 0xF5 to 0xFF and the RMSE was545
0.005, which should be an upper bound on the effects from the halos. This will likely be large546
enough to make the top of the leaderboard a game of luck, but since this is just a playground547
competition I’m not terribly worried about it.</p>548

C.2 Idea Selection549

In our experiment settings, CoMind only accesses top-10 voted discussions and kernels and ignores550

the rest. Upon completion of this process, 7 ideas and 10 pipelines are generated. Below is an excerpt551

of the ideas and public pipelines.552

(0) Use behaviour-based clustering of neural networks: cluster models by their error patterns and ensemble553
them for document enhancement554

(1) Implement sliding-window patch-based models that take an input window and output multiple cleaned555
pixels simultaneously for both denoising and resolution enhancement556

20

(2) Apply a Waifu2x-inspired deep convolutional neural network with gradually increasing filter counts (e.557
g., 1 -> 32 -> 64 -> 128 -> 256 -> 512 -> 1) and LeakyReLU activations for effective denoising558

(3) Carefully initialize convolutional weights (e.g., stdv = sqrt(2/(kW*kH*nOutputPlane))) and use559
LeakyReLU to improve model convergence and performance560

(4) Ensemble multiple models with different input preprocessing: combine outputs from a pure CNN,561
background-removed images, edge maps, and thresholded inputs to capture diverse noise characteristics562

(5) Augment training data to simulate real-world 3D deformations and shadows on text, not just 2D noise,563
to better match test-time artifacts564

(6) Account for systematic artifacts in ’clean’ training data (e.g., single-pixel halos) by treating them565
as noise or adjusting targets accordingly during training566

Public pipeline (0): - Pipeline: A simple feed-forward neural network that denoises one pixel at a time (567
Theano).568

- Feature engineering: for each pixel extract a 5*5 window of gray values (neighbors), 5*5 median blur,569
25*25 median blur, Sobel gradient and second-order derivative magnitudes, stack into a feature570
vector. Normalize features to [0,1].571

- Model architecture: two-layer MLP; hidden layer size N_HIDDEN=10, tanh activation, output layer with572
custom activation clip(x+0.5,0,1).573

- Training: MSE cost, stochastic gradient descent with learning rate 0.1, batch size 20, epochs 100.574
Validation on one image (3.png) at each epoch by RMSE.575

- Prediction: apply same feature_matrix to test images, predict pixel values, reshape to full image,576
write out cleaned PNGs.577

- Code abstract:578
def feature_matrix(img):579

window=(5,5)580
nbrs=[cv2.getRectSubPix(img,window,(y,x)).ravel()581

for x,y in itertools.product(range(img.shape[0]),range(img.shape[1]))]582
median5=cv2.medianBlur(img,5).ravel()583
median25=cv2.medianBlur(img,25).ravel()584
grad=np.abs(cv2.Sobel(img,cv2.CV_16S,1,1,ksize=3).ravel())585
div=np.abs(cv2.Sobel(img,cv2.CV_16S,2,2,ksize=3).ravel())586
misc=np.vstack((median5,median25,grad,div)).T587
features=np.hstack((nbrs,misc))588
return (features/255.).astype(’float32’)589

...590
class Model(object):591

def __init__(...):592
self.layer1=Layer(...,n_in=...,n_out=N_HIDDEN,activation=T.tanh)593
self.layer2=Layer(...,n_in=N_HIDDEN,n_out=n_out,594

activation=lambda x: T.clip(x+0.5,0,1))595
def cost(self,y): return T.mean((self.output-y)**2)596

...597
---------- PIPELINE SEPARATOR ----------598
Public pipeline (1): - Pipeline: Matching image backgrounds in R (no ML model).599
- Reads test PNGs in batches of 12 images.600
- Flattens each into vectors of size 258*540, stacks as columns.601
- For each pixel location, takes the maximum value across images as an estimate of background.602
- Writes out background images as PNG.603

- Code abstract:604
for(i in 1:4) {605
matches=seq(1,205,by=12)+(i-1)*3606
rawData=matrix(0,258*540,length(matches))607
for(j in seq_along(matches)){608
imgY=readPNG(file.path(testDir,paste0(matches[j],’.png’)))609
rawData[,j]=as.vector(imgY[1:258,1:540])610

}611
background=matrix(apply(rawData,1,max),258,540)612
writePNG(background, paste0(’background’,matches[j],’.png’))613

}614
...615

---------- PIPELINE SEPARATOR ----------616
Public pipeline (2): - Pipeline: Pixel-wise Random Forest regression (Python, chunk size=1e6).617
- Feature engineering: pad image by mean value (padding=1); extract 3*3 neighborhood per pixel, flatten618

as features.619
- Training data: load all train noisy images, compute features via joblib parallel (n_jobs=128), load620

targets as flattened clean pixel intensities/255.621
- Model: sklearn.ensemble.RandomForestRegressor(warm_start=True, n_jobs=-1). Incrementally add one622

estimator at a time: split training rows into CHUNKSIZE=1e6 slices, in each slice increase623
n_estimators by 1 and fit on that slice.624

- Prediction: extract test features similarly, generate index strings "image_row_col", predict pixel625
values, write submission CSV.626

- Code abstract:627
def get_padded(img, padding=1):628

padval=int(round(img.mean()))629
... return padded630

def get_features_for_image(img,padding=1):631
padded=get_padded(img,padding)632
return np.vstack([padded[i:i+3,j:j+3].reshape(1,-1)633

for i in range(rows) for j in range(cols)])634
...635
def get_model(X,y):636

21

model=RandomForestRegressor(n_estimators=0,warm_start=True,n_jobs=-1)637
for start,end in slices:638

model.set_params(n_estimators=model.n_estimators+1)639
model.fit(X[start:end],y[start:end])640

return model641
...642

---------- PIPELINE SEPARATOR ----------643
... (omitted) ...644
---------- PIPELINE SEPARATOR ----------645
Public pipeline (9): - Pipeline: XGBoost with basic features in R.646
- Features: raw pixel value, kmeansThreshold binary, background_Removal feature.647
- Sample 25k pixels, build DMatrix, 5-fold CV, early stop, select rounds, train xgb.648
- Predict on test, clip, build id strings, write submission.csv.649

- Code abstract:650
dat=cbind(y,raw=img2vec(imgX),thresholded=kmeansThreshold(imgX),651

backgroundRemoval=img2vec(background_Removal(imgX)))652
rows=sample(nrow(dat),25000)653
dtrain=xgb.DMatrix(dat[rows,-1],label=dat[rows,1])654
xgb.tab=xgb.cv(data=dtrain,nfold=5,early.stop.round=50)655
xgb.mod=xgboost(data=dtrain,nrounds=min.err.idx)656
yHat=predict(xgb.mod,newdata=as.matrix(x))657
...658

After generating ideas and public pipelines, CoMind initiates the first iteration. It begins brainstorming659

to propose more original strategies.660

===SOLUTION_PATH_1===661
Multi-Scale Wavelet-U-Net with Attention and Multi-Term Loss662
Description: decompose each image via discrete wavelet transform (DWT) into low-/high-frequency bands,663

process each band in a dual-branch U-Net enhanced with channel- and spatial-attention, then invert664
the wavelet to reconstruct. Train end-to-end with a weighted sum of pixel-wise RMSE, wavelet-band665
consistency, and edge preservation losses.666

- apply 2D DWT to noisy input -> obtain LL, LH, HL, HH sub-bands667
- feed LL into a "coarse" encoder branch, feed concatenated LH/HL/HH into a "detail" encoder branch668
- use a U-Net decoder to upsample each branch back to patch size, fuse via learned 1*1 convolutions669
- insert Convolutional Block Attention Modules (CBAM) after each encoder and decoder block670
- define loss = alpha*pixelRMSE(clean,output) + beta*bandRMSE(wavelet(clean),wavelet(output)) + gamma*671

edgeLoss(Sobel(clean),Sobel(output))672
- train on full images with AdamW and a cosine-annealing LR schedule673

674
===SOLUTION_PATH_2===675
Stroke-Aware Conditional GAN with OCR-Guided Perceptual Loss676
Description: build a conditional GAN (generator = deep residual encoder-decoder, discriminator = PatchGAN)677

that not only minimizes pixel loss but also preserves text strokes-enforce a stroke-level loss via a678
pre-trained small CNN classifier that predicts presence/width of strokes. Add an OCR-based679

perceptual loss: feed predictions through a frozen OCR engine embedding and minimize distance to680
clean embedding.681

- implement generator as ResNet blocks + skip connections (64->128->256->128->64)682
- implement discriminator as 70*70 PatchGAN to focus on local texture683
- include L1 pixel loss + adversarial loss + stroke consistency loss (L1 between stroke-CNN features on684

clean vs. restored)685
- freeze a small text-structure CNN (trained on binary masks) to extract stroke features686
- run Tesseract (or lightweight OCR CNN) on restored vs. clean, extract penultimate-layer activations, add687

perceptual loss term688
- train with R1 gradient penalty and spectral normalization on discriminator689

690
===SOLUTION_PATH_3===691
Joint Dictionary Learning + Non-Local Patch Aggregation692
Description: learn paired dictionaries (D_noisy, D_clean) for small patches (e.g. 8*8) via coupled K-SVD.693

At test time, extract overlapping patches, compute sparse codes alpha under D_noisy via OMP,694
reconstruct clean patches = D_clean*alpha. Then, perform non-local means on the reconstructed patches695
to exploit self-similarity and average aggregates.696

- sample a large bank of noisy/clean patch pairs, initialize D_noisy, D_clean with DCT basis697
- run coupled K-SVD to minimize ||D_noisy*alpha - y_noisy|| + ||D_clean*alpha - y_clean|| w.r.t. D_noisy,698

D_clean,alpha699
- at test time, for each image patch y_noisy, compute alpha via Orthogonal Matching Pursuit (sparsity <= k)700

701
- reconstruct y_clean_est = D_clean*alpha for each patch702
- perform block-matching to find K nearest patches per reference patch (Euclid dist), stack them703
- aggregate reconstructed patches with non-local weights (e.g. Gaussian on reconstruction residual)704

705
===SOLUTION_PATH_4===706
Self-Supervised Blind Denoising via Noise2Void + Test-Time Adaptation707
Description: exploit purely noisy data-train a small U-Net with masked pixel prediction (Noise2Void) on708

each test image at inference (test-time training). The network learns to predict a pixel from its709
context, gradually adapting to local noise statistics, then you run a forward pass to obtain the710
cleaned image. No clean target needed.711

- define blind-spot or random masking scheme: mask 1% pixels per batch, replace with neighbors712
- build a lightweight CNN (e.g. 5 down/up blocks with skip connections) that predicts a full image713
- fine-tune this CNN on each test image for N_iter (e.g. 500 steps) using only masked L2 loss714

22

- use data augmentation (rotations, flips) on the single test image to diversify contexts715
- after adaptation, perform a clean forward pass without masking to get the denoised output716
- optionally ensemble outputs from multiple random initializations to reduce variance717

These strategies are then added to the idea pool. To remove similar ideas and decompose overlapped718

ideas, a reconstruction is performed subsequently. 9 ideas are preserved after the reconstruction.719

(0) Use diverse ensembles by clustering models based on their error patterns and combining outputs from720
differently preprocessed inputs (e.g., raw, background-removed, edge maps, thresholded) to capture721
varied noise characteristics.722

(1) Develop a sliding-window, patch-based model that takes an input region and predicts multiple denoised723
and super-resolved pixels simultaneously for efficient document enhancement.724

(2) Implement a Waifu2x-inspired deep convolutional network with progressively increasing filter counts725
and LeakyReLU activations, initialized using He normalization for robust convergence in denoising726
tasks.727

(3) Augment the training set with simulated 3D deformations, lighting variations, and shadows on text to728
better match real-world scanning artifacts.729

(4) Identify and compensate for systematic artifacts in the "clean" training targets (e.g., single-pixel730
halos) by modeling them as noise or adjusting ground-truth labels during training.731

(5) Build a wavelet-domain dual-branch U-Net: decompose inputs with 2D DWT into approximation and detail732
bands, encode separately, decode and fuse via learned 1*1 convolutions, integrate CBAM attention733
modules, and train end-to-end with a composite loss combining pixel RMSE, wavelet-band RMSE, and edge734
loss, optimized using AdamW with a cosine-annealing LR schedule.735

(6) Apply a GAN-based restoration framework: use a ResNet-based generator and 70*70 PatchGAN discriminator,736
train with a combination of L1 pixel loss, adversarial loss, stroke-consistency loss (via a frozen737

stroke-feature CNN), and perceptual OCR-feature loss, incorporating R1 gradient penalty and spectral738
normalization.739

(7) Leverage coupled dictionary learning and non-local aggregation: learn noisy and clean dictionaries740
simultaneously via coupled K-SVD, reconstruct patches using OMP, enhance self-similarity with block-741
matching, and fuse reconstructed patches with non-local weighting.742

(8) Implement blind-spot test-time adaptation: randomly mask a small percentage of pixels per batch, train743
a lightweight CNN with skip connections on the single test image using masked L2 loss and744

augmentations, fine-tune per image for a few hundred steps, and optionally ensemble multiple745
initializations for variance reduction.746

C.3 Idea Generation747

Based on the idea pool, public pipelines and previous reports (currently unavailable), CoMind748

compiles 2 solution drafts.749

Pipeline 1 (Baseline CNN - U-Net with L1 loss and simple augmentations)750
--751
Overview752
- A lightweight U-Net trained on 256*256 patches of noisy/clean document pairs.753
- Single-branch encoder-decoder with skip connections, ReLU activations, batch norm.754
- Loss: L1 pixel-wise loss (less sensitive to outliers than MSE), optional total variation regularization.755
- Optimizer: Adam; train on 1 A6000 within 1 hr.756

757
Data Preparation758
1. Read all noisy (input) and clean (target) train images, normalize intensities to [0,1].759
2. Extract random 256*256 patches (stride = 128) with matching noisy/clean pairs.760
3. Data augmentation: random horizontal/vertical flips, +-90 degree rotations.761
4. Create PyTorch DataLoader with batch_size=16 (fits 48 GB) for ~100 k patches.762

763
Network Architecture (PyTorch pseudocode)764
‘‘‘765
class UNet(nn.Module):766

def __init__(self):767
super().__init__()768
Encoder769
self.enc1 = DoubleConv(1, 64)770
self.enc2 = Down(64,128)771
self.enc3 = Down(128,256)772
self.enc4 = Down(256,512)773
Bottleneck774
self.bottleneck = Down(512,512)775
Decoder776
self.up4 = Up(1024,256)777
self.up3 = Up(512,128)778
self.up2 = Up(256,64)779
self.up1 = Up(128,64)780
self.final = nn.Conv2d(64,1,kernel_size=1)781

def forward(self,x):782
e1=self.enc1(x)783
e2=self.enc2(e1)784
e3=self.enc3(e2)785
e4=self.enc4(e3)786
b = self.bottleneck(e4)787

23

d4=self.up4(b,e4)788
d3=self.up3(d4,e3)789
d2=self.up2(d3,e2)790
d1=self.up1(d2,e1)791
return torch.sigmoid(self.final(d1))792

‘‘‘793
Helper modules:794
- DoubleConv = (Conv2d -> BatchNorm2d -> ReLU) *2795
- Down = (MaxPool2d -> DoubleConv)796
- Up = (ConvTranspose2d for upsampling -> concatenate skip -> DoubleConv)797

798
Training799
- Loss = L1Loss(output, target) + lambda*TV(output) (lambda=1e-5 for smoothness).800
- Optimizer = Adam(lr=1e-3, weight_decay=1e-5).801
- LR schedule: ReduceLROnPlateau(monitor=val_loss, factor=0.5, patience=5).802
- Train for up to 50 epochs; early-stop if val_loss stagnates.803
- Validation: hold out 10% patches to monitor RMSE.804

805
Inference806
- For each test image (e.g., 540*258), slide 256*256 window with stride=128, predict, and average807

overlapping outputs.808
- Threshold nothing; output raw [0,1] floats per pixel.809

810
Compute Budget811
- ~100 k patches, batch 16, ~6 k steps per epoch. On A6000: ~2-3 min/epoch => 50 epochs ~ 2 hr; with early812

stopping < 1 hr.813
814

Pipeline 2 (Advanced Wavelet U-Net with CBAM and Composite Loss)815
--816
Overview817
- Dual-branch U-Net operating in wavelet domain (Haar DWT) to explicitly denoise tonal and textural818

components.819
- CBAM (Convolutional Block Attention Modules) to adaptively weigh spatial/channel features.820
- Loss = alpha*L1_pixel + beta*L2_wavelet + gamma*EdgeLoss.821
- Optimizer = AdamW + CosineAnnealingLR.822

823
Data Preparation824
- Same as Pipeline 1 (256*256 patches + augmentations).825
- On-the-fly DWT: for each noisy patch, compute one-level Haar DWT -> yields approximation (A) and details826

(H,V,D).827
828

Network Architecture829
(implemented in PyTorch)830
‘‘‘831
class WaveletUNet(nn.Module):832

def __init__(self):833
super().__init__()834
Shared CBAM-Res blocks for Approx and Detail branches835
self.encA1 = CBAMResBlock(1,64)836
self.encD1 = CBAMResBlock(3,64)837
self.pool = nn.MaxPool2d(2)838
self.encA2 = CBAMResBlock(64,128)839
self.encD2 = CBAMResBlock(64,128)840
Bottleneck841
self.bottleneck = CBAMResBlock(256,256)842
Decoder843
self.up2 = UpRes(256,128)844
self.up1 = UpRes(128,64)845
self.final = nn.Conv2d(64,4,kernel_size=1)846

def forward(self, x):847
x shape: [B,1,H,W]848
A, (H,V,D) = haar_dwt(x) # PyWavelets or custom conv849
d0 = torch.cat([self.encA1(A), self.encD1(torch.cat([H,V,D],dim=1))],dim=1)850
p1 = self.pool(d0)851
d1 = torch.cat([self.encA2(p1[:, :128]), self.encD2(p1[:, 128:])],dim=1)852
b = self.bottleneck(self.pool(d1))853
u2 = self.up2(b,d1)854
u1 = self.up1(u2,d0)855
out = self.final(u1) # [B,4,H,W]856
Reconstruct denoised x via inverse DWT857
A_hat, H_hat,V_hat,D_hat = out[:,0:1], out[:,1:2], out[:,2:3], out[:,3:4]858
return ihaar_dwt((A_hat, (H_hat,V_hat,D_hat)))859

‘‘‘860
Key building blocks:861
- CBAMResBlock: residual block with Conv-BN-ReLU->Conv-BN, plus CBAM (channel & spatial attention after862

second Conv).863
- UpRes: ConvTranspose2d upsample->concatenate skip->CBAMResBlock.864

865
Loss866
- L1_pixel = L1(output, target).867
- L2_wavelet = L2(DWT(output) - DWT(target)).868

24

- EdgeLoss = L1(Sobel(output), Sobel(target)).869
- TotalLoss = alpha*L1_pixel + beta*L2_wavelet + gamma*EdgeLoss (alpha=1, beta=0.5, gamma=0.2).870

871
Training872
- Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).873
- Scheduler: CosineAnnealingLR(T_max=50).874
- Batch size=8 (higher memory due to dual branches).875
- Epochs=50, early-stop by composite loss on val set.876

877
Inference878
- Same sliding-window approach as Pipeline 1.879

880
Compute Budget881
- CBAM and wavelet layers add ~1.5* compute but within A6000 48 GB: patch batch=8 yields ~250 steps/epoch,882

so 50 epochs ~2 hr. Use early-stop or T_max=30 to finish within 1 hr.883
884
885

References886
- CBAM: Woo et al., "CBAM: Convolutional Block Attention Module" (ECCV 2018).887
- Haar DWT: PyWavelets or custom conv filters.888
- Edge loss: Sobel via fixed conv kernels.889

890
Expected Benefits891
- Explicit noise suppression in high-frequency bands.892
- Attention modules focus on text strokes and edge restoration.893
- Composite loss balances global structure and fine details.894

C.4 Implementation and Improvement895

In our experiment, 2 parallel instances are invoked to implement the solution drafts respectively. Each896

instance has a quota of 20 steps, 3 hours in total and 1 hour per execution. After each execution,897

another summarization LLM is instructed to analyze the terminal output.898

C.4.1 Example of Terminal Output899

Loaded 115 train images900
Sampled train/val patch coords: 80000 10000901
.../python3.11/site-packages/torch/optim/lr_scheduler.py:62: UserWarning: The verbose parameter is902

deprecated. Please use get_last_lr() to access the learning rate.903
warnings.warn(904

Traceback (most recent call last):905
File ".../agent_0.py", line 231, in <module>906
for xb, yb in train_loader:907

File ".../python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__908
data = self._next_data()909

^^^^^^^^^^^^^^^^^910
File ".../python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data911
return self._process_data(data)912

^^^^^^^^^^^^^^^^^^^^^^^^913
File ".../python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data914
data.reraise()915

File ".../python3.11/site-packages/torch/_utils.py", line 733, in reraise916
raise exception917

ValueError: Caught ValueError in DataLoader worker process 0.918
Original Traceback (most recent call last):919
File ".../python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop920
data = fetcher.fetch(index) # type: ignore[possibly-undefined]921

^^^^^^^^^^^^^^^^^^^^922
File ".../python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch923
data = [self.dataset[idx] for idx in possibly_batched_index]924

^^^925
File ".../python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in <listcomp>926
data = [self.dataset[idx] for idx in possibly_batched_index]927

~~~~~~~~~~~~^^^^^928
File ".../agent_0.py", line 121, in __getitem__929
n_patch = torch.from_numpy(n_patch).unsqueeze(0)930

^^^^^^^^^^^^^^^^^^^^^^^^^931
ValueError: At least one stride in the given numpy array is negative, and tensors with negative strides932

are not currently supported. (You can probably work around this by making a copy of your array with933
array.copy().)934

C.4.2 Example of Output Summary935

Terminal output (truncated):936
Loaded 115 train images937

25



Sampled train/val patch coords: 80000 10000938
.../python3.11/site-packages/torch/optim/lr_scheduler.py:62: UserWarning: ...939
Traceback (most recent call last):940
File ".../agent_0.py", line 231, in <module>941
for xb, yb in train_loader:942

...943
ValueError: At least one stride in the given numpy array is negative, and tensors with negative strides944

are not currently supported. (You can probably work around this by making a copy of your array with945
array.copy().)946

Execution summary:947
The training script fails during the first epoch’s data loading. After loading 115 train images and948

sampling 80k train and 10k validation patches, the DataLoader worker crashes with a ValueError due to949
negative strides when converting flipped NumPy patches to tensors. As a result, the pipeline halts950

before any training or validation metrics are produced and no submission.csv is generated.951
Execution time: 3.81 seconds.952

C.4.3 Example of Generated Snippet953

The best code snippet generated in the first iteration of CoMind is:954

955
1 import os, glob, random, math956

2 from PIL import Image957

3 import torch958

4 import torch.nn as nn959

5 import torch.nn.functional as F960

6 from torch.utils.data import Dataset, DataLoader961

7 from torchvision import transforms962

8963

9964

10 # -- 1) Haar DWT / inverse DWT --965

11 class HaarDWT(nn.Module):966

12 def __init__(self):967

13 super().__init__()968

14 wt = torch.zeros(4, 1, 2, 2)969

15 wt[0, 0, :, :] = 0.5970

16 wt[1, 0, 0, 0], wt[1, 0, 0, 1], wt[1, 0, 1, 0], wt[1, 0, 1, 1] = (971

17 0.5,972

18 -0.5,973

19 0.5,974

20 -0.5,975

21 )976

22 wt[2, 0, 0, 0], wt[2, 0, 0, 1], wt[2, 0, 1, 0], wt[2, 0, 1, 1] = (977

23 0.5,978

24 0.5,979

25 -0.5,980

26 -0.5,981

27 )982

28 wt[3, 0, 0, 0], wt[3, 0, 0, 1], wt[3, 0, 1, 0], wt[3, 0, 1, 1] = (983

29 0.5,984

30 -0.5,985

31 -0.5,986

32 0.5,987

33 )988

34 self.register_buffer("weight", wt)989

35990

36 def forward(self, x):991

37 return F.conv2d(x, self.weight, stride=2)992

38993

39994

40 class HaarIDWT(nn.Module):995

41 def __init__(self):996

42 super().__init__()997

43 wt = HaarDWT().weight.clone()998

44 self.conv = nn.ConvTranspose2d(4, 1, 2, stride=2, bias=False)999

45 self.conv.weight.data.copy_(wt)1000

46 self.conv.weight.requires_grad_(False)1001

471002

26



48 def forward(self, coeffs):1003

49 return self.conv(coeffs)1004

501005

511006

52 # -- 2) Sobel edge for EdgeLoss --1007

53 class Sobel(nn.Module):1008

54 def __init__(self):1009

55 super().__init__()1010

56 kx = torch.tensor(1011

57 [[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float321012

58 ).view(1, 1, 3, 3)1013

59 ky = torch.tensor(1014

60 [[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float321015

61 ).view(1, 1, 3, 3)1016

62 self.register_buffer("wx", kx)1017

63 self.register_buffer("wy", ky)1018

641019

65 def forward(self, x):1020

66 gx = F.conv2d(x, self.wx, padding=1)1021

67 gy = F.conv2d(x, self.wy, padding=1)1022

68 return torch.sqrt(gx * gx + gy * gy + 1e-6)1023

691024

701025

71 # -- 3) CBAM, ResBlock, UpRes, WaveletUNet --1026

72 class CBAM(nn.Module):1027

73 def __init__(self, c, r=16, k=7):1028

74 super().__init__()1029

75 self.mlp = nn.Sequential(1030

76 nn.Linear(c, c // r, bias=False),1031

77 nn.ReLU(inplace=True),1032

78 nn.Linear(c // r, c, bias=False),1033

79 )1034

80 self.spatial = nn.Conv2d(2, 1, kernel_size=k, padding=k // 2, bias=False)1035

811036

82 def forward(self, x):1037

83 b, c, h, w = x.shape1038

84 avg = F.adaptive_avg_pool2d(x, 1).view(b, c)1039

85 mx = F.adaptive_max_pool2d(x, 1).view(b, c)1040

86 ca = torch.sigmoid(self.mlp(avg) + self.mlp(mx)).view(b, c, 1, 1)1041

87 x2 = x * ca1042

88 avgc = x2.mean(1, True)1043

89 maxc, _ = x2.max(1, True)1044

90 sa = torch.sigmoid(self.spatial(torch.cat([avgc, maxc], 1)))1045

91 return x2 * sa1046

921047

931048

94 class CBAMResBlock(nn.Module):1049

95 def __init__(self, inp, outp):1050

96 super().__init__()1051

97 self.conv1 = nn.Conv2d(inp, outp, 3, padding=1, bias=False)1052

98 self.bn1 = nn.BatchNorm2d(outp)1053

99 self.conv2 = nn.Conv2d(outp, outp, 3, padding=1, bias=False)1054

100 self.bn2 = nn.BatchNorm2d(outp)1055

101 self.cbam = CBAM(outp)1056

102 self.skip = (1057

103 nn.Conv2d(inp, outp, 1, bias=False) if inp != outp else nn.Identity()1058

104 )1059

105 self.relu = nn.ReLU(inplace=True)1060

1061061

107 def forward(self, x):1062

108 idt = self.skip(x)1063

109 out = self.relu(self.bn1(self.conv1(x)))1064

110 out = self.bn2(self.conv2(out))1065

111 out = self.cbam(out) + idt1066

112 return self.relu(out)1067

27



1131068

1141069

115 class UpRes(nn.Module):1070

116 def __init__(self, ic, sc, oc):1071

117 super().__init__()1072

118 self.up = nn.ConvTranspose2d(ic, oc, 2, stride=2)1073

119 self.block = CBAMResBlock(oc + sc, oc)1074

1201075

121 def forward(self, x, skip):1076

122 x = self.up(x)1077

123 if x.shape[-2:] != skip.shape[-2:]:1078

124 x = F.interpolate(1079

125 x, size=skip.shape[-2:], mode="bilinear", align_corners=False1080

126 )1081

127 return self.block(torch.cat([x, skip], 1))1082

1281083

1291084

130 class WaveletUNet(nn.Module):1085

131 def __init__(self):1086

132 super().__init__()1087

133 self.dwt = HaarDWT()1088

134 self.idwt = HaarIDWT()1089

135 self.eA1 = CBAMResBlock(1, 64)1090

136 self.eD1 = CBAMResBlock(3, 64)1091

137 self.pool = nn.MaxPool2d(2)1092

138 self.eA2 = CBAMResBlock(64, 128)1093

139 self.eD2 = CBAMResBlock(64, 128)1094

140 self.b = CBAMResBlock(256, 256)1095

141 self.u2 = UpRes(256, 256, 128)1096

142 self.u1 = UpRes(128, 128, 64)1097

143 self.final = nn.Conv2d(64, 4, 1)1098

1441099

145 def forward(self, x):1100

146 A, H, V, D = self.dwt(x).chunk(4, 1)1101

147 a1 = self.eA1(A)1102

148 d1 = self.eD1(torch.cat([H, V, D], 1))1103

149 d0 = torch.cat([a1, d1], 1)1104

150 p1 = self.pool(d0)1105

151 pA, pD = p1[:, :64], p1[:, 64:]1106

152 a2 = self.eA2(pA)1107

153 d2 = self.eD2(pD)1108

154 d1b = torch.cat([a2, d2], 1)1109

155 b = self.b(self.pool(d1b))1110

156 u2 = self.u2(b, d1b)1111

157 u1 = self.u1(u2, d0)1112

158 out = self.final(u1)1113

159 return self.idwt(out)1114

1601115

1611116

162 # -- 4) OCRDataset for full training --1117

163 class OCRDataset(Dataset):1118

164 def __init__(self, noisy, clean, pp, ps, mode):1119

165 self.noisy = noisy1120

166 self.clean = clean1121

167 self.pp = pp1122

168 self.ps = ps1123

169 self.mode = mode1124

170 self.toT = transforms.ToTensor()1125

1711126

172 def __len__(self):1127

173 return len(self.noisy) * self.pp1128

1741129

175 def __getitem__(self, idx):1130

176 ii = idx // self.pp1131

177 n = Image.open(self.noisy[ii]).convert("L")1132

28



178 c = Image.open(self.clean[ii]).convert("L")1133

179 tn, tc = self.toT(n), self.toT(c)1134

180 H, W = tn.shape[-2], tn.shape[-1]1135

181 y = random.randint(0, H - self.ps)1136

182 x = random.randint(0, W - self.ps)1137

183 tn = tn[:, y : y + self.ps, x : x + self.ps]1138

184 tc = tc[:, y : y + self.ps, x : x + self.ps]1139

185 if self.mode == "train":1140

186 if random.random() < 0.5:1141

187 tn, tc = torch.flip(tn, [-1]), torch.flip(tc, [-1])1142

188 if random.random() < 0.5:1143

189 tn, tc = torch.flip(tn, [-2]), torch.flip(tc, [-2])1144

190 k = random.randint(0, 3)1145

191 if k > 0:1146

192 tn, tc = torch.rot90(tn, k, [1, 2]), torch.rot90(tc, k, [1, 2])1147

193 return tn, tc1148

1941149

1951150

196 # -- 5) Prepare train/val split --1151

197 all_no = sorted(glob.glob("./input/train/*.png"))1152

198 all_cl = sorted(glob.glob("./input/train_cleaned/*.png"))1153

199 idxs = list(range(len(all_no)))1154

200 random.seed(42)1155

201 random.shuffle(idxs)1156

202 split = int(0.9 * len(idxs))1157

203 tr_idxs, va_idxs = idxs[:split], idxs[split:]1158

204 noisy_tr = [all_no[i] for i in tr_idxs]1159

205 clean_tr = [all_cl[i] for i in tr_idxs]1160

206 noisy_va = [all_no[i] for i in va_idxs]1161

207 clean_va = [all_cl[i] for i in va_idxs]1162

2081163

209 # -- 6) DataLoaders --1164

210 train_ds = OCRDataset(noisy_tr, clean_tr, pp=25, ps=256, mode="train")1165

211 val_ds = OCRDataset(noisy_va, clean_va, pp=1, ps=256, mode="val")1166

212 train_loader = DataLoader(1167

213 train_ds, batch_size=8, shuffle=True, num_workers=4, pin_memory=True1168

214 )1169

215 val_loader = DataLoader(1170

216 val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True1171

217 )1172

2181173

219 # -- 7) Model, optimizer, scheduler, loss w/ tuned weights --1174

220 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")1175

221 model = WaveletUNet().to(device)1176

222 dwt = HaarDWT().to(device)1177

223 sobel = Sobel().to(device)1178

224 opt = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-4)1179

225 sched = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=30)1180

2261181

227 # Tuned weights1182

228 alpha = 0.7696341183

229 beta = 0.4309681184

230 gamma = 0.2507501185

2311186

2321187

233 def composite_loss(o, t):1188

234 l1 = F.l1_loss(o, t)1189

235 l2 = F.mse_loss(dwt(o), dwt(t))1190

236 e1 = F.l1_loss(sobel(o), sobel(t))1191

237 return alpha * l1 + beta * l2 + gamma * e11192

2381193

2391194

240 # -- 8) Train + validate --1195

241 best_rmse = 1e91196

242 patience = 51197

29



243 wait = 01198

244 for epoch in range(1, 31):1199

245 model.train()1200

246 tloss = 0.01201

247 for xb, yb in train_loader:1202

248 xb, yb = xb.to(device), yb.to(device)1203

249 pred = model(xb)1204

250 loss = composite_loss(pred, yb)1205

251 opt.zero_grad()1206

252 loss.backward()1207

253 opt.step()1208

254 tloss += loss.item()1209

255 sched.step()1210

2561211

257 # sliding-window validation1212

258 model.eval()1213

259 rmse_sum = 0.01214

260 stride, ps = 128, 2561215

261 with torch.no_grad():1216

262 for nf, cf in zip(noisy_va, clean_va):1217

263 imn = Image.open(nf).convert("L")1218

264 imc = Image.open(cf).convert("L")1219

265 tn = transforms.ToTensor()(imn).unsqueeze(0).to(device)1220

266 tc = transforms.ToTensor()(imc).unsqueeze(0).to(device)1221

267 _, _, H, W = tn.shape1222

268 acc = torch.zeros_like(tn)1223

269 cnt = torch.zeros_like(tn)1224

270 xs = list(range(0, W - ps + 1, stride)) + [W - ps]1225

271 ys = list(range(0, H - ps + 1, stride)) + [H - ps]1226

272 for x in xs:1227

273 for y in ys:1228

274 p = tn[:, :, y : y + ps, x : x + ps]1229

275 out = model(p)1230

276 acc[:, :, y : y + ps, x : x + ps] += out1231

277 cnt[:, :, y : y + ps, x : x + ps] += 11232

278 rec = acc / cnt1233

279 mse = F.mse_loss(rec, tc).item()1234

280 rmse_sum += math.sqrt(mse)1235

281 val_rmse = rmse_sum / len(noisy_va)1236

282 print(1237

283 f"Epoch {epoch}: train_loss={tloss/len(train_loader):.4f}, val_RMSE={1238

val_rmse:.6f}"1239

284 )1240

2851241

286 if val_rmse < best_rmse:1242

287 best_rmse = val_rmse1243

288 wait = 01244

289 torch.save(model.state_dict(), "./working1/best.pth")1245

290 else:1246

291 wait += 11247

292 if wait >= patience:1248

293 print("Early stopping.")1249

294 break1250

2951251

296 print("Best validation RMSE:", best_rmse)1252

2971253

298 # -- 9) Inference & submission --1254

299 model.load_state_dict(torch.load("./working1/best.pth"))1255

300 model.eval()1256

301 test_files = sorted(glob.glob("./input/test/*.png"))1257

302 with open("./working1/submission.csv", "w") as fout:1258

303 fout.write("id,value\n")1259

304 for tf in test_files:1260

305 im = Image.open(tf).convert("L")1261

306 t = transforms.ToTensor()(im).unsqueeze(0).to(device)1262

30



307 _, _, H, W = t.shape1263

308 acc = torch.zeros_like(t)1264

309 cnt = torch.zeros_like(t)1265

310 xs = list(range(0, W - ps + 1, stride)) + [W - ps]1266

311 ys = list(range(0, H - ps + 1, stride)) + [H - ps]1267

312 with torch.no_grad():1268

313 for x in xs:1269

314 for y in ys:1270

315 p = t[:, :, y : y + ps, x : x + ps]1271

316 out = model(p)1272

317 acc[:, :, y : y + ps, x : x + ps] += out1273

318 cnt[:, :, y : y + ps, x : x + ps] += 11274

319 rec = (acc / cnt).clamp(0, 1).cpu().numpy()[0, 0]1275

320 img_id = os.path.splitext(os.path.basename(tf))[0]1276

321 for r in range(H):1277

322 for c in range(W):1278

323 fout.write(f"{img_id}_{r+1}_{c+1},{rec[r,c]:.6f}\n")1279

3241280

325 print("Submission written to ./working1/submission.csv")12811282

C.5 Report Generation1283

The report generated by the second instance of CoMind is:1284

Pipeline:1285
Our final pipeline is an Advanced Wavelet U-Net with CBAM attention modules, Composite Loss, and sliding-1286

window inference. Specifically:1287
1288

1. Data Preparation1289
- Read all 112 noisy/clean train pairs, split 90/10 train/val by file indices (random seed 42).1290
- On-the-fly extract 25 random 256*256 patches per train image each epoch, with random horizontal/1291

vertical flips and 90 degree rotations.1292
- Validation uses a single full-image sliding-window pass (256 patches with 50% overlap) on the 10% hold1293

-out.1294
1295

2. Model Architecture1296
- Haar DWT and inverse DWT implemented as fixed convolutional filters (LL, LH, HL, HH bands).1297
- Dual-branch encoder: separate CBAMResBlocks for the approximation (1 channel) and detail (3 channels)1298

coefficients.1299
- Two-level downsampling with MaxPool, interleaved CBAMResBlocks, and a 256-channel bottleneck.1300
- Decoder with ConvTranspose upsampling and CBAMResBlock skip-connections (UpRes), recombining wavelet1301

bands.1302
- Final 1*1 convolution to 4 coefficient channels and inverse DWT back to image domain.1303

1304
3. Composite Loss1305

- L1(pixels) weighted by alpha=0.7696341306
- L2(wavelet coefficients) weighted by beta=0.4309681307
- L1(edge Sobel) weighted by gamma=0.2507501308

1309
4. Training1310

- Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).1311
- Scheduler: CosineAnnealingLR(T_max=30).1312
- Batch size 8, 30 epochs, early stopping (patience=5) based on full-image RMSE on the val set.1313

1314
5. Inference1315

- Sliding-window full-image inference with 256*256 patches, stride=128, averaging overlapped pixels.1316
- Generate submission.csv with id=image_row_col and float values.1317

1318
6. Hyperparameter tuning1319

- Optuna over (alpha, beta, gamma) on a 20-train/5-val mini-split for 10 trials, each with 2 epochs and1320
10 patches/image.1321

- Best found: alpha=0.769634, beta=0.430968, gamma=0.250750.1322
1323

Final validation RMSE on 10% hold-out: ~0.012685.1324
1325

References: CBAM (Woo et al., ECCV 2018), Haar DWT.1326
1327

Summary:1328
- Haar DWT:1329
Novelty: 21330
Rationale: Uses standard 1-level Haar wavelet decomposition.1331
Feasibility: 101332
Rationale: Straightforward fixed conv implementation in PyTorch.1333
Effectiveness: 61334

31



Rationale: Explicit frequency separation aids denoising of high-frequency noise.1335
Efficiency: 91336
Rationale: Lightweight fixed kernels on GPU.1337
Confidence: 81338
Rationale: Verified on toy and full runs.1339

1340
- CBAMResBlock:1341
Novelty: 51342
Rationale: Incorporates both channel & spatial attention for context-aware features.1343
Feasibility: 81344
Rationale: Moderate complexity but supported by existing PyTorch modules.1345
Effectiveness: 71346
Rationale: Improves focus on text strokes, empirically lowers RMSE.1347
Efficiency: 71348
Rationale: Adds overhead (~1.5*), but fits within GPU budget.1349
Confidence: 91350
Rationale: Confirmed across toy and full training.1351

1352
- UpRes (ConvTranspose + CBAM):1353
Novelty: 31354
Rationale: Standard upsampling with skip-connections and attention.1355
Feasibility: 91356
Rationale: Simple extension of ResBlock.1357
Effectiveness: 61358
Rationale: Maintains detail in reconstruction.1359
Efficiency: 81360
Rationale: Reasonable GPU use.1361
Confidence: 81362
Rationale: Working in end-to-end script.1363

1364
- Wavelet UNet overall:1365
Novelty: 71366
Rationale: Dual-branch U-Net in wavelet domain combining DWT, CBAM, skip connections.1367
Feasibility: 71368
Rationale: Moderate engineering but fully implemented.1369
Effectiveness: 81370
Rationale: Achieved RMSE ~0.0127, strong denoising.1371
Efficiency: 71372
Rationale: 25 patches*8 batch; 30 epochs in ~20min.1373
Confidence: 81374
Rationale: Reproducible on A6000.1375

1376
- Composite Loss:1377
Novelty: 61378
Rationale: Balances pixel, frequency, and edge domains.1379
Feasibility: 81380
Rationale: Simple weighted sum.1381
Effectiveness: 81382
Rationale: Lower RMSE than L1 or L2 alone.1383
Efficiency: 71384
Rationale: Small overhead for extra transforms.1385
Confidence: 91386
Rationale: Verified in tuning and full runs.1387

1388
- Data Augmentation:1389
Novelty: 31390
Rationale: Flips and rotations.1391
Feasibility: 101392
Rationale: Trivial to implement.1393
Effectiveness: 51394
Rationale: Standard but helpful for invariance.1395
Efficiency: 91396
Rationale: CPU-level only.1397
Confidence: 91398
Rationale: Common practice.1399

1400
- CosineAnnealingLR & EarlyStopping:1401
Novelty: 41402
Rationale: Standard learning-rate decay and val-based stop.1403
Feasibility: 101404
Rationale: Built-in PyTorch.1405
Effectiveness: 61406
Rationale: Helps convergence and prevents overfit.1407
Efficiency: 91408
Rationale: Minimal overhead.1409
Confidence: 91410
Rationale: Observed smoothed training curves.1411

1412
- Sliding-window Inference:1413
Novelty: 31414
Rationale: Ensures full-image coverage.1415

32



Feasibility: 101416
Rationale: Straightforward loops.1417
Effectiveness: 71418
Rationale: Accurate RMSE measurement, smooth outputs.1419
Efficiency: 81420
Rationale: Reasonable inference time (~10 min).1421
Confidence: 91422
Rationale: Verified end-to-end.1423

1424
- Hyperparameter Tuning (Optuna):1425
Novelty: 41426
Rationale: Automated search of loss weights.1427
Feasibility: 81428
Rationale: Low-cost mini-training.1429
Effectiveness: 71430
Rationale: Found better weights vs. defaults.1431
Efficiency: 51432
Rationale: 10 trials * 2 epochs ~8 min.1433
Confidence: 71434
Rationale: Verified chosen parameters.1435

1436
Weaknesses and Suggestions:1437
1. EMA & TTA Bug: The EMA + 4-way TTA implementation caused RMSE blow-ups, likely due to incorrect1438

accumulation. Before reintroducing, validate TTA on toy splits or isolate EMA without TTA.1439
2. Multi-Level Wavelets: Extend to 2-3 levels of DWT to capture coarser scales, with separate branches per1440

level.1441
3. Advanced Loss Terms: Incorporate perceptual (VGG) or structural (SSIM) losses to encourage visual1442

fidelity.1443
4. Dynamic Loss Weights: Schedule (alpha,beta,gamma) during training (e.g., start with high L1, gradually1444

emphasize wavelet).1445
5. Mixed Precision & Gradient Checkpointing: Further reduce memory and speed up with AMP and checkpointing1446

deep layers.1447
6. Deeper/Ubiquitous Attention: Explore transformer-style attention (Swin, ViT) in encoder for global1448

context.1449
7. Ensemble Models: Train multiple random seeds or architectures (ResUNet, UNet++) and average outputs.1450
8. Multi-Scale Inference: Use patches at multiple scales or whole-image passes via down/upscaling for1451

context.1452
9. Adaptive Overlap: Use weights at edges of patches to smoothly blend overlaps (Gaussian windows).1453
10. Distributed Hyperparameter Search: Scale Optuna across more trials or use BOHB for architecture search.1454

1455
Implementing these will likely push RMSE even lower and improve robustness across document noise patterns.1456
Full code: ...(omitted)...1457

C.6 The Second Iteration1458

Upon receiving two reports generated in the previous stage, CoMind proceeds to its second iteration.1459

Following the brainstorming and idea refinement phases, the current idea pool is presented below.1460

Notably, entries (3), (4), (5), and (7) are newly proposed by the agent, while the remaining ideas have1461

been refined from those in the previous iteration.1462

(0) Patch-based convolutional super-resolution denoiser: a sliding-window, patch-based model that predicts1463
multiple denoised and super-resolved pixels per patch. Architecture inspired by Waifu2x with1464

progressively increasing filter counts, LeakyReLU activations, and He initialization for robust1465
convergence.1466

(1) Advanced wavelet-domain dual-branch U-Net with CBAM attention and composite loss: decompose inputs via1467
fixed 1-level DWT (LL, LH, HL, HH bands), encode approximation and detail separately with CBAM1468

ResBlocks, decode and fuse via 1*1 convolutions, and train end-to-end using a weighted sum of pixel1469
L1, wavelet-band L2, and edge L1 losses. Optimized with AdamW and cosine-annealing LR scheduling.1470

(2) GAN-based restoration framework: a ResNet-based generator and 70*70 PatchGAN discriminator trained1471
with combined losses-L1 pixel loss, adversarial loss, stroke-consistency loss (via frozen stroke-1472
feature CNN), and perceptual OCR-feature loss. Includes R1 gradient penalty and spectral1473
normalization for stability.1474

(3) Masked autoencoder with vision transformer for denoising: patchify each image into non-overlapping1475
square tokens, randomly mask a high percentage, pretrain a ViT encoder (12 layers, hidden 768, 121476
heads) plus light transformer decoder on L2 reconstruction of dirty images, then append an MLP head1477
and fine-tune end-to-end on noisy->clean pairs with L1 pixel + differentiable OCR-confidence loss.1478
Employ random block dropout and color jitter during fine-tuning; at inference use full-image encoding1479
or averaged mask schedules.1480

(4) Conditional diffusion-based restoration: define a forward Gaussian-noise diffusion schedule, train a 5-1481
level U-Net conditioned on the dirty image via channel concatenation and FiLM/cross-attention of1482
sinusoidal timestep embeddings. Use the standard DDPM MSE loss with classifier-free guidance, and1483
sample with a deterministic DDIM sampler (~50 steps). Optionally post-process with bilateral or1484
median filtering to remove speckles.1485

(5) Learnable spectral gating in the Fourier domain: compute the 2D FFT of the dirty image, split its1486
spectrum into low/mid/high radial bands, apply learnable complex masks per band, and modulate each by1487
gate scalars predicted by a lightweight CNN on the dirty image. Recombine via inverse FFT and train1488

end-to-end with L2 pixel loss plus a spectral-smoothness regularizer on the masks.1489

33



(6) Hypernetwork-modulated U-Net: extract per-image noise statistics (mean, std, skew, kurtosis, histogram1490
bins), feed into an MLP hypernetwork that outputs FiLM scale (gamma) and shift (beta) parameters for1491
selected convolutional feature maps of a base U-shaped CNN. Randomly augment noise levels during1492

training; train end-to-end on noisy->clean with L1 loss and a small regularizer pushing gamma->1,1493
beta->0. At inference compute stats per image, generate FiLM params, and denoise via the modulated U-1494
Net.1495

(7) Blind-spot test-time adaptation: for each test image, randomly mask a subset of pixels and fine-tune a1496
lightweight CNN with skip connections on the single image using masked L2 loss and augmentations for1497
a few hundred gradient steps. Optionally ensemble multiple random initializations to reduce variance.1498

1499
(8) Multi-model ensemble with diverse preprocessing: cluster trained models by their error patterns and1500

combine their outputs. Apply different preprocessing pipelines (raw, background-removed, edge maps,1501
thresholded) to the input, denoise with clustered sub-ensembles, and fuse predictions for robustness1502
across noise characteristics.1503

(9) Enhanced augmentation and target refinement: simulate realistic scanning artifacts by applying 3D text1504
deformations, lighting variations, and shadows to clean images. Identify and compensate for1505

systematic artifacts in the provided ’clean’ targets (e.g., single-pixel halos) by either modeling1506
them as noise or adjusting ground-truth labels during training.1507

And solution drafts generated in this iteration are:1508

Pipeline 1: ResNet-34 Encoder U-Net with Multi-Scale Edge & Total-Variation Loss1509
1510

Overview:1511
A robust baseline using a pretrained ResNet-34 backbone as a U-Net encoder fused with a light-weight1512

decoder. Combines L1 loss, Sobel edge loss at multiple scales, and a total-variation regularizer to1513
preserve text strokes while smoothing background noise. Mixed precision training and sliding-window1514
inference ensure the entire pipeline runs in ~45 min on an A6000.1515

1516
1. Data Preparation1517
- Read all train noisy/clean PNGs, normalize to [0,1].1518
- Extract on-the-fly 256*256 patches: random crop + random horizontal/vertical flips + 90 degree rotations1519

.1520
- 90/10 split by file indices (seed=42). Use batch size 8-16.1521

1522
2. Model Architecture1523
- Encoder: torchvision.models.resnet34(pretrained=True), first conv modified to 1->64 channels.1524
- Decoder: four upsampling stages (ConvTranspose2d + Conv2d+BN+ReLU) mirroring ResNet blocks, with skip-1525

connections from encoder layers.1526
- Final conv 64->1 + Sigmoid.1527

1528
3. Loss Function1529
Let y_hat and y be predictions and targets.1530
- L1Loss(y_hat,y)1531
- Edge loss: L1 between Sobel(y_hat) and Sobel(y) at both full resolution and half resolution (downsample1532

by 2).1533
- TV: lambda*TV(y_hat) where TV = mean(|\nabla xy_hat|+|\nabla yy_hat|).1534
Total loss = alpha*L1 + beta*Edge_full + gamma*Edge_half + delta*TV, e.g. alpha=1.0, beta=0.5, gamma=0.25,1535

delta=1e-5.1536
1537

4. Optimization1538
- Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).1539
- Scheduler: CosineAnnealingLR(T_max=25).1540
- Mixed precision via torch.cuda.amp.1541
- Early stopping on validation RMSE (patience=5).1542

1543
5. Inference & Submission1544
- Perform sliding-window inference on each test image with 256*256 patches, stride=128.1545
- Average overlapping patches.1546
- Clamp outputs to [0,1], write submission.csv with id=image_row_col.1547

1548
Compute budget: ~20 min train + ~5 min inference.1549

1550
Pipeline 2: Laplacian-Pyramid Multi-Scale Residual U-Net with Pyramid Loss1551

1552
Overview:1553
A novel pyramid-domain network that decomposes images into multi-scale Laplacian bands, denoises each band1554

via shared-weight residual blocks, and merges them back. Multi-level L1 losses focus the model on1555
both coarse structures and fine text details. Efficient and fully end-to-end in PyTorch, training1556
finishes in ~50 min on an A6000.1557

1558
1. Data & Augmentation1559
- Same data split and patch sampling (256*256, flips, rotations).1560

1561
2. Laplacian Pyramid Transform (LPT)1562
- On the fly, for each patch: create 2-level Gaussian pyramid using avg-pooling (scale 1->0.5->0.25), then1563

compute Laplacian bands L0=(I-upsample(I/2)), L1=(I/2-upsample(I/4)), and a residual low band L2=I1564
/4.1565

- Stack [L0,L1,L2] as 3 input channels.1566
1567

34



3. Network1568
- Encoder-decoder U-Net with 3-channel input and 3-channel output, 4 down/upsampling stages,1569

64->128->256->512->256->128->64 channel widths.1570
- Each block: two 3*3 Conv+BN+ReLU and a residual skip connection.1571

1572
4. Reconstruction1573
- Output is 3 residual corrections R0,R1,R2 to each band.1574
- Reconstruct clean patch:1575
a0 = L0 + R0; a1 = L1 + R1; a2 = L2 + R2;1576
I = a0 + up(a1) + up(up(a2)).1577

1578
5. Loss Function1579
- Per-band L1 losses: w0*L1(a0,H0) + w1*L1(a1,H1) + w2*L1(a2,H2), where Hk are ground-truth bands and w01580

=1.0, w1=0.5, w2=0.25.1581
- Pixel L1: lambda_pix*L1(I, Igt) with lambda_pix=0.1.1582

1583
6. Training1584
- AdamW(lr=5e-4, weight_decay=1e-5), one-cycle scheduler (max_lr=5e-4, epochs=30).1585
- Batch size 8, mixed precision.1586
- Early stopping on val RMSE (patience=6).1587

1588
7. Inference1589
- On full test images, run sliding-window with 256*256 patches, stride=128.1590
- For each patch, apply pyramid -> model -> reconstruct -> accumulate and average.1591
- Clamp to [0,1], write submission.csv.1592

1593
Compute budget: ~25 min training + ~8 min inference.1594

The best code proposed in the second iteration is:1595

1596
1 import os, random, csv1597

2 import numpy as np1598

3 from glob import glob1599

4 from PIL import Image1600

51601

6 import torch1602

7 import torch.nn as nn1603

8 import torch.nn.functional as F1604

9 from torch.utils.data import Dataset, DataLoader1605

10 from torchvision import transforms, models as tv_models1606

11 from torch.cuda.amp import autocast, GradScaler1607

121608

13 # 1) Reproducibility1609

14 SEED = 421610

15 random.seed(SEED)1611

16 np.random.seed(SEED)1612

17 torch.manual_seed(SEED)1613

18 torch.cuda.manual_seed_all(SEED)1614

191615

20 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")1616

211617

22 # 2) Paths1618

23 TRAIN_NOISY = "./input/train"1619

24 TRAIN_CLEAN = "./input/train_cleaned"1620

25 TEST_DIR = "./input/test"1621

26 WORK_DIR = "./working0"1622

27 os.makedirs(WORK_DIR, exist_ok=True)1623

281624

29 # 3) Hyperparameters1625

30 PATCH_SIZE = 2561626

31 STRIDE = 1281627

32 BATCH_SIZE = 121628

33 LR, WD = 1e-3, 1e-41629

34 MAX_EPOCHS = 501630

35 PATIENCE = 101631

36 T_MAX = 50 # for LR scheduler1632

371633

38 # 4) Loss-weight constants (from tuning)1634

39 w1, w2, w3, w4 = 1.0, 0.5, 0.25, 1e-51635

40 lambda_aux = 0.43946339367881461636

35



41 lambda_mse = 0.13120372808848731637

42 lambda_ssim = 0.0311989040672405321638

43 lambda_ssim2 = lambda_ssim / 21639

441640

451641

46 # 5) Dataset + augmentations1642

47 class OCRDataset(Dataset):1643

48 def __init__(self, noisy_list, clean_list, ps, train):1644

49 self.noisy, self.clean = noisy_list, clean_list1645

50 self.ps, self.train = ps, train1646

51 self.to_tensor = transforms.ToTensor()1647

52 self.aug = transforms.Compose(1648

53 [1649

54 transforms.RandomChoice(1650

55 [1651

56 transforms.RandomHorizontalFlip(1.0),1652

57 transforms.RandomVerticalFlip(1.0),1653

58 transforms.RandomRotation(90),1654

59 transforms.RandomRotation(180),1655

60 transforms.RandomRotation(270),1656

61 ]1657

62 ),1658

63 transforms.RandomApply([transforms.GaussianBlur(3, (0.1, 2.0))], p1659

=0.3),1660

64 transforms.RandomApply([transforms.RandomAdjustSharpness(2.0)], p1661

=0.3),1662

65 ]1663

66 )1664

671665

68 def __len__(self):1666

69 return len(self.noisy)1667

701668

71 def __getitem__(self, i):1669

72 n = Image.open(self.noisy[i]).convert("L")1670

73 c = Image.open(self.clean[i]).convert("L")1671

74 w, h = n.size1672

75 # pad1673

76 if w < self.ps or h < self.ps:1674

77 pad = (0, 0, max(0, self.ps - w), max(0, self.ps - h))1675

78 n = transforms.functional.pad(n, pad, fill=255)1676

79 c = transforms.functional.pad(c, pad, fill=255)1677

80 w, h = n.size1678

81 # crop1679

82 if self.train:1680

83 x = random.randint(0, w - self.ps)1681

84 y = random.randint(0, h - self.ps)1682

85 else:1683

86 x = (w - self.ps) // 21684

87 y = (h - self.ps) // 21685

88 n = n.crop((x, y, x + self.ps, y + self.ps))1686

89 c = c.crop((x, y, x + self.ps, y + self.ps))1687

90 if self.train and random.random() < 0.5:1688

91 n = self.aug(n)1689

92 c = self.aug(c)1690

93 return self.to_tensor(n), self.to_tensor(c)1691

941692

951693

96 # 6) Prepare train/val split1694

97 noisy_files = sorted(glob(f"{TRAIN_NOISY}/*.png"))1695

98 clean_files = [f"{TRAIN_CLEAN}/" + os.path.basename(x) for x in noisy_files]1696

99 N = len(noisy_files)1697

100 idx = list(range(N))1698

101 random.shuffle(idx)1699

102 ntr = int(0.9 * N)1700

103 tr_idx, va_idx = idx[:ntr], idx[ntr:]1701

36



104 train_noisy = [noisy_files[i] for i in tr_idx]1702

105 train_clean = [clean_files[i] for i in tr_idx]1703

106 val_noisy = [noisy_files[i] for i in va_idx]1704

107 val_clean = [clean_files[i] for i in va_idx]1705

1081706

109 train_ds = OCRDataset(train_noisy, train_clean, PATCH_SIZE, train=True)1707

110 val_ds = OCRDataset(val_noisy, val_clean, PATCH_SIZE, train=False)1708

111 train_loader = DataLoader(1709

112 train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True1710

113 )1711

114 val_loader = DataLoader(1712

115 val_ds, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True1713

116 )1714

1171715

118 # 7) Sobel, TV, SSIM helpers1716

119 sob_x = (1717

120 torch.tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float32)1718

121 .view(1, 1, 3, 3)1719

122 .to(DEVICE)1720

123 )1721

124 sob_y = sob_x.transpose(2, 3)1722

1251723

1261724

127 def sobel(x):1725

128 gx = F.conv2d(x, sob_x, padding=1)1726

129 gy = F.conv2d(x, sob_y, padding=1)1727

130 return torch.sqrt(gx * gx + gy * gy + 1e-6)1728

1311729

1321730

133 def total_variation(x):1731

134 dh = (x[:, :, 1:, :] - x[:, :, :-1, :]).abs().mean()1732

135 dw = (x[:, :, :, 1:] - x[:, :, :, :-1]).abs().mean()1733

136 return dh + dw1734

1371735

1381736

139 def ssim_map(a, b, C1=0.01**2, C2=0.03**2):1737

140 mu_a = F.avg_pool2d(a, 3, 1, 1)1738

141 mu_b = F.avg_pool2d(b, 3, 1, 1)1739

142 sa = F.avg_pool2d(a * a, 3, 1, 1) - mu_a * mu_a1740

143 sb = F.avg_pool2d(b * b, 3, 1, 1) - mu_b * mu_b1741

144 sab = F.avg_pool2d(a * b, 3, 1, 1) - mu_a * mu_b1742

145 num = (2 * mu_a * mu_b + C1) * (2 * sab + C2)1743

146 den = (mu_a * mu_a + mu_b * mu_b + C1) * (sa + sb + C2)1744

147 return num / (den + 1e-8)1745

1481746

1491747

150 def ssim_loss(a, b):1748

151 return 1.0 - ssim_map(a, b).mean()1749

1521750

1531751

154 # 8) loss_terms1752

155 l1_loss = nn.L1Loss()1753

156 mse_loss = nn.MSELoss()1754

1571755

1581756

159 def loss_terms(pred, target):1757

160 L1v = l1_loss(pred, target)1758

161 MSEv = mse_loss(pred, target)1759

162 Ef = l1_loss(sobel(pred), sobel(target))1760

163 p2, t2 = F.avg_pool2d(pred, 2), F.avg_pool2d(target, 2)1761

164 Eh = l1_loss(sobel(p2), sobel(t2))1762

165 TVv = total_variation(pred)1763

166 return L1v, MSEv, Ef, Eh, TVv1764

1671765

1681766

37



169 # 9) Model w/ deep supervision1767

170 class ResUNetDS(nn.Module):1768

171 def __init__(self):1769

172 super().__init__()1770

173 r34 = tv_models.resnet34(pretrained=True)1771

174 self.enc0 = nn.Conv2d(1, 64, 7, 2, 3, bias=False)1772

175 self.enc0.weight.data = r34.conv1.weight.data.mean(dim=1, keepdim=True)1773

176 self.bn0, self.relu0, self.pool0 = r34.bn1, r34.relu, r34.maxpool1774

177 self.enc1, self.enc2 = r34.layer1, r34.layer21775

178 self.enc3, self.enc4 = r34.layer3, r34.layer41776

1791777

180 def up(i, o):1778

181 return nn.ConvTranspose2d(i, o, 2, 2)1779

1821780

183 def cb(i, o):1781

184 return nn.Sequential(1782

185 nn.Conv2d(i, o, 3, 1, 1, bias=False),1783

186 nn.BatchNorm2d(o),1784

187 nn.ReLU(inplace=True),1785

188 nn.Conv2d(o, o, 3, 1, 1, bias=False),1786

189 nn.BatchNorm2d(o),1787

190 nn.ReLU(inplace=True),1788

191 )1789

1921790

193 self.up4, self.dec4 = up(512, 256), cb(256 + 256, 256)1791

194 self.up3, self.dec3 = up(256, 128), cb(128 + 128, 128)1792

195 self.up2, self.dec2 = up(128, 64), cb(64 + 64, 64)1793

196 self.aux_up, self.aux_out = up(64, 64), nn.Conv2d(64, 1, 1)1794

197 self.up1, self.dec1 = up(64, 64), cb(64 + 64, 64)1795

198 self.up0, self.outc = up(64, 64), nn.Conv2d(64, 1, 1)1796

199 self.sig = nn.Sigmoid()1797

2001798

201 def forward(self, x):1799

202 x0 = self.relu0(self.bn0(self.enc0(x)))1800

203 x1 = self.pool0(x0)1801

204 x2 = self.enc1(x1)1802

205 x3 = self.enc2(x2)1803

206 x4 = self.enc3(x3)1804

207 x5 = self.enc4(x4)1805

2081806

209 d4 = self.dec4(torch.cat([self.up4(x5), x4], dim=1))1807

210 d3 = self.dec3(torch.cat([self.up3(d4), x3], dim=1))1808

211 d2 = self.dec2(torch.cat([self.up2(d3), x2], dim=1))1809

212 aux = self.sig(self.aux_out(self.aux_up(d2)))1810

213 d1 = self.dec1(torch.cat([self.up1(d2), x0], dim=1))1811

214 main = self.sig(self.outc(self.up0(d1)))1812

215 return main, aux1813

2161814

2171815

218 model = ResUNetDS().to(DEVICE)1816

2191817

220 # 10) Optimizer, scheduler, scaler1818

221 optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay=WD)1819

222 scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=T_MAX)1820

223 scaler = GradScaler()1821

2241822

225 # 11) Training + snapshot saving1823

226 best_rmse = float("inf")1824

227 patience = 01825

228 snap_epochs = set([10, 20, 30, 40, 50])1826

2291827

230 for epoch in range(1, MAX_EPOCHS + 1):1828

231 model.train()1829

232 train_loss = 0.01830

233 for noisy_img, clean_img in train_loader:1831

38



234 noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE)1832

235 optimizer.zero_grad()1833

236 with autocast():1834

237 main_pred, aux_pred = model(noisy_img)1835

238 L1v, MSEv, Ef, Eh, TVv = loss_terms(main_pred, clean_img)1836

239 s1 = ssim_loss(main_pred, clean_img)1837

240 p2, t2 = F.avg_pool2d(main_pred, 2), F.avg_pool2d(clean_img, 2)1838

241 s2 = ssim_loss(p2, t2)1839

242 main_loss = (1840

243 w1 * L1v1841

244 + lambda_mse * MSEv1842

245 + w2 * Ef1843

246 + w3 * Eh1844

247 + w4 * TVv1845

248 + lambda_ssim * s11846

249 + lambda_ssim2 * s21847

250 )1848

251 aux_up = F.interpolate(1849

252 aux_pred,1850

253 size=clean_img.shape[-2:],1851

254 mode="bilinear",1852

255 align_corners=False,1853

256 )1854

257 La, Ma, Ea, Eh2, TVa = loss_terms(aux_up, clean_img)1855

258 sa = ssim_loss(aux_up, clean_img)1856

259 pa, ca = F.avg_pool2d(aux_up, 2), F.avg_pool2d(clean_img, 2)1857

260 sa2 = ssim_loss(pa, ca)1858

261 aux_loss = (1859

262 w1 * La1860

263 + lambda_mse * Ma1861

264 + w2 * Ea1862

265 + w3 * Eh21863

266 + w4 * TVa1864

267 + lambda_ssim * sa1865

268 + lambda_ssim2 * sa21866

269 )1867

270 loss = main_loss + lambda_aux * aux_loss1868

271 scaler.scale(loss).backward()1869

272 scaler.step(optimizer)1870

273 scaler.update()1871

274 train_loss += loss.item()1872

275 scheduler.step()1873

2761874

277 # validation1875

278 model.eval()1876

279 se, count = 0.0, 01877

280 with torch.no_grad():1878

281 for noisy_img, clean_img in val_loader:1879

282 noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE)1880

283 with autocast():1881

284 pred, _ = model(noisy_img)1882

285 se += ((pred - clean_img) ** 2).sum().item()1883

286 count += pred.numel()1884

287 val_rmse = np.sqrt(se / count)1885

288 print(1886

289 f"Epoch {epoch}: TrainLoss={train_loss/len(train_loader):.4f}, ValRMSE={1887

val_rmse:.6f}"1888

290 )1889

2911890

292 # best + snapshot1891

293 if val_rmse < best_rmse:1892

294 best_rmse = val_rmse1893

295 torch.save(model.state_dict(), os.path.join(WORK_DIR, "best_full.pth"))1894

296 patience = 01895

297 else:1896

39



298 patience += 11897

299 if epoch in snap_epochs:1898

300 torch.save(model.state_dict(), os.path.join(WORK_DIR, f"snap_{epoch}.pth"))1899

301 if patience >= PATIENCE:1900

302 print("Early stopping.")1901

303 break1902

3041903

305 print("Best validation RMSE:", best_rmse)1904

3061905

307 # 12) Ensemble load1906

308 ckpts = ["best_full.pth"] + sorted(1907

309 [f for f in os.listdir(WORK_DIR) if f.startswith("snap_")],1908

310 key=lambda x: int(x.split("_")[1].split(".")[0]),1909

311 )[-2:]1910

312 ensemble_nets = []1911

313 for ck in ckpts:1912

314 net = ResUNetDS().to(DEVICE)1913

315 net.load_state_dict(torch.load(os.path.join(WORK_DIR, ck)))1914

316 net.eval()1915

317 ensemble_nets.append(net)1916

3181917

3191918

320 # 13) Sliding-window ensemble inference1919

321 def ensemble_infer(img_arr):1920

322 h, w = img_arr.shape1921

323 inp = torch.from_numpy(img_arr / 255.0).unsqueeze(0).unsqueeze(0).to(DEVICE)1922

324 ph = (PATCH_SIZE - h % STRIDE) % STRIDE1923

325 pw = (PATCH_SIZE - w % STRIDE) % STRIDE1924

326 inp = F.pad(inp, (0, pw, 0, ph), mode="reflect")1925

327 _, _, H, W = inp.shape1926

328 out = torch.zeros_like(inp)1927

329 wt = torch.zeros_like(inp)1928

330 for y in range(0, H - PATCH_SIZE + 1, STRIDE):1929

331 for x in range(0, W - PATCH_SIZE + 1, STRIDE):1930

332 patch = inp[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE]1931

333 preds = []1932

334 with torch.no_grad(), autocast():1933

335 for net in ensemble_nets:1934

336 p, _ = net(patch)1935

337 preds.append(p)1936

338 avg_p = torch.stack(preds, 0).mean(0)1937

339 out[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE] += avg_p1938

340 wt[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE] += 1.01939

341 out = out / wt1940

342 out = out[:, :, :h, :w]1941

343 return out.detach().cpu().numpy().squeeze()1942

3441943

3451944

346 # 14) Write submission.csv1945

347 submission_path = os.path.join(WORK_DIR, "submission.csv")1946

348 with open(submission_path, "w", newline="") as f:1947

349 writer = csv.writer(f)1948

350 writer.writerow(["id", "value"])1949

351 for tf in sorted(1950

352 glob(f"{TEST_DIR}/*.png"), key=lambda x: int(os.path.basename(x).split(".")1951

[0])1952

353 ):1953

354 img_id = os.path.basename(tf).split(".")[0]1954

355 img = np.array(Image.open(tf).convert("L"), dtype=np.float32)1955

356 den = ensemble_infer(img)1956

357 H, W = den.shape1957

358 for i in range(H):1958

359 for j in range(W):1959

360 writer.writerow([f"{img_id}_{i+1}_{j+1}", f"{den[i,j]:.6f}"])1960

361 print("Submission saved to", submission_path)1961

40



1962

41


	Introduction
	Related Work
	MLE-Live
	CoMind
	Agent Workflow
	Parallel Agents with Shared Insight

	Benchmark Evaluation
	Setup
	Results

	Ablation Study
	Setup
	Results

	Analytical Experiments
	Conclusion
	Additional Analysis on Code Complexity
	Prompts and Responses for CoMind
	Idea Selection
	Idea Generation
	Implementation
	Report Generation

	Case Study: Denoising Dirty Documents
	Dataset Preparation
	Example of Public Kernel
	Example of Discussion

	Idea Selection
	Idea Generation
	Implementation and Improvement
	Example of Terminal Output
	Example of Output Summary
	Example of Generated Snippet

	Report Generation
	The Second Iteration


