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ABSTRACT

We introduce a novel linear bandit problem where a subset of features is latent,
resulting in partial access to reward information and spurious estimates. Without
properly addressing the latent features, the regret grows linearly over the decision
epoch T while improving the regret bound is challenging because their dimension
and relationship with rewards are not available. We propose a novel analysis to
handle the latent features and an algorithm that achieves a regret bound sublinear
in T . The core of the algorithm lies in (i) augmenting basis vectors orthogonal
to the observable feature space, and (ii) developing an efficient doubly robust
estimator that further improves the regret bound. With these two ingredients, our
algorithm achieves a regret bound of Õ(

√
(d+ dh)T ), where d is the dimension of

observable features, and dh is the unknown dimension of the unobserved features
that affects the reward. Crucially, our algorithm does not rely on prior knowledge
of the unobserved feature space, which expands as more features become hidden.
Numerical experiments confirm that our algorithm outperforms both non-contextual
multi-armed bandits and other linear bandit algorithms.

1 INTRODUCTION

We consider a linear bandit problem where the learning agent has access to only a subset of the
features, while the reward is determined using the complete set of features, including both observed
and unobserved elements. Conventional linear bandit problems rely on the assumption that the
rewards are linear to only observed features, without accounting for the potential presence of
unobserved features. However, in many real-world applications, rewards are often affected by the
latent features that are not observable to the agent. For example, in recommendation systems, the
true reward — such as user satisfaction or purchase decisions — depends not only on observable
features like user demographics or past behaviors but also on latent preferences, such as specific
tastes in artists (for streaming services) or brands (in e-commerce). Accurately incorporating these
latent features is essential for providing precise recommendations, while ignoring them causes bias or
model misspecification errors in every decision-making.

To address the latent features, Park & Faradonbeh (2022), Kim et al. (2023a) and Park & Faradonbeh
(2024) rely on the assumption that observed features are linear to the latent features sampled from
a specific distribution, e.g., a mean-zero Gaussian. Establishing a regret bound sublinear in the
decision horizon without such structural assumptions on the latent features remains a significant
challenge and has not been accomplished yet. Key challenges in the bandit problem with partially
observable features arise from the complete lack of information on the latent features. Indeed, we do
not even know whether an agent observes features partially or not and whether we should use the
latent features or not.

To address these challenges, we propose a novel linear bandit algorithm that is agnostic to the
presence of partially observable features. Notwithstanding the absence of knowledge regarding
unobserved features, our algorithm is capable of obtaining a regret bound that is tighter than that
achieved both linear bandit algorithms that consider only observable features and multi-armed bandit
(MAB) algorithms that entirely ignore features. Our proposed algorithm achieves a regret bound of
Õ(

√
T ), without requiring any prior knowledge of the unobserved features, where T is the decision

horizon and Õ(·) represents Big-O notation omitting logarithmic factors.
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Table 1: An overview of regret bound range of our algorithm, RoLF, depending on dh ∈ [0,K−d], the
dimension of the vector space spanned by the rows of the matrix of unobserved features influencing
the reward. Note that Õ denotes the big-O notation omitting logarithm factors.

Feature space Regret bound

span(observed features) ⊇ span(latent features) Õ(
√
dT )

span(observed features) ⊆ span(latent features) Õ(
√
KT )

otherwise Õ(
√

(d+ dh)T )

The key idea of our proposed algorithm lies in two main components: (i) reconstructing the feature
vectors to capture the impact of unobserved features on the rewards, and (ii) constructing a novel
doubly robust estimator that is robust to information loss caused by unobservability. For (i), we
decompose the rewards into two additive terms: one projected onto the row space of the observable
features, and the other onto its orthogonal complement. The former term maximally captures the
effects from the observed features, while the latter minimizes the impact of the unobserved features.
We then augment the observable features with an orthogonal basis from the complement space to
capture all effects on the rewards. This allows us to reformulate the problem in a conventional linear
bandit framework, where the reward function is defined as the dot product of the minimally augmented
features and the associated unknown parameter. However, these augmented features are not identical
to the unobserved features, which may lead to potential estimation error. To mitigate these errors, we
leverage (ii) the doubly robust estimator, which is widely used in statistical literature for its robustness
to errors caused by missing data. Together, these two approaches allow the algorithm to effectively
compensate for missing information, enhancing both estimation accuracy and adaptability to the
environment.

Our main contributions are summarized as follows:

• We propose a linear bandit problem with partially observable features. Our problem setting
is more general and challenging than those in the existing literature on linear bandits with
latent features, which often rely on specific structural assumptions governing the relationship
between observable and latent features. In contrast, our approach assumes no additional
structure for the unobserved features beyond the linearity of the reward function, which is
commonly adopted in the linear bandit literature (Section 3).

• We introduce a novel estimation strategy by (i) efficiently augmenting the features that
maximally captures the effect of reward projected onto the observed features, while mini-
mizing the impact of unobserved features (Section 4), and (ii) constructing a doubly-robust
(DR) estimator that is robust to the error caused by unobserved features. By integrating
augmented features with the DR estimator, we guarantee a convergence rate of Õ(t−1/2) on
the rewards for all arms in each round t (Theorem 2).

• We propose the Robust to Latent Features (RoLF) algorithm for the general linear bandit
framework with latent features that achieves a regret bound of Õ(

√
(d+ dh)T ) (Theorem 3),

where dh is the dimension of the subspace formed by projecting the reward, linear to
unobserved features, onto the orthogonal complement of the row space of the observable
features (Section 4.2). Our proposed algorithm requires no prior knowledge or modeling
of the unobserved features, yet achieves a sharper regret bound than both linear bandit
algorithms that consider only observable features (Li et al., 2010; Abbasi-yadkori et al.,
2011; Agrawal & Goyal, 2013; Kim & Paik, 2019) and MAB algorithms (Auer et al., 2002).

• Our numerical experiments demonstrate that our proposed algorithm consistently outper-
forms the existing linear bandit and MAB algorithms. These results support our theoretical
findings and validate the practicality of our method.

2 RELATED WORKS

In bandit problems, the learning agent learns only from the outcomes of chosen actions, leaving
unchosen alternatives unknown (Robbins, 1952). This constraint requires a balance between exploring
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new actions and exploiting actions learned to be good, known as the exploration-exploitation tradeoff.
Efficiently managing this tradeoff is crucial for guiding the agent towards the optimal policy. To
address this, algorithms based on optimism in the face of uncertainty (OFU) (Lai & Robbins,
1985) are widely used and studied in linear bandits (Abe & Long, 1999; Auer, 2002; Dani et al.,
2008; Rusmevichientong & Tsitsiklis, 2010). Notable examples include LinUCB (Li et al., 2010)
and OFUL (Abbasi-yadkori et al., 2011), known for their practicality and performance guarantees.
However, existing approaches differ from ours in two key aspects: (i) they assume that the learning
agent can observe the entire feature vector related to the reward, and (ii) their algorithms have regret
that scales linearly with the dimension of the observed feature vector, i.e., Õ(d

√
T ).

In contrast, we develop an algorithm that achieves a sublinear regret bound by employing the doubly
robust (DR) technique, thereby avoiding the linear dependence on the dimension of the feature
vectors. The DR estimation in the framework of linear contextual bandits is first introduced by Kim
& Paik (2019)andDimakopoulou et al. (2019), and subsequent studies improve the regret bound in
this problem setting by a factor of

√
d (Kim et al., 2021; 2023b). A recent application (Kim et al.,

2023c) achieves a regret bound of order O(
√
dT log T ) under IID features over rounds. However,

the extension to non-stochastic or non-IID features remains an open question. To address this issue,
we develop a novel analysis that applies the DR estimation to non-stochastic features, achieving a
regret bound sublinear with respect to the dimension of the augmented feature vectors. Furthermore,
we extend DR estimation to handle sparse parameters, thereby further improving the regret bound to
be sublinear with respect to the reduced dimension.

Our problem is more general and challenging than misspecified linear bandits, where the assumed
reward model fails to accurately reflect the true reward, such as when the true reward function is
non-linear (Lattimore & Szepesvári, 2020), or a deviation term is added to the reward model (Ghosh
et al., 2017; Bogunovic et al., 2021; He et al., 2022). While our work assumes that the misspecified
(or inaccessible) portion of the reward is linearly related to certain unobservable features, misspecified
linear bandit problems can be reformulated as a special case of our framework. While the regret
bounds in Lattimore & Szepesvári (2020), Bogunovic et al. (2021) and He et al. (2022) incorporate a
sum of misspecification errors that may accumulate over the decision horizon, our work establishes
a regret bound that is sublinear in the decision horizon T without any misspecification errors.
Ghosh et al. (2017) proposed a hypothesis test whether to use linear bandits or MAB and proved
O(K

√
T log T ) regret bound when the sum of misspecified error is greater than Ω(d

√
T ). In contrast,

our algorithm attains O(
√
(d+ dh)T log T ) regret bound without necessitating such hypothesis tests

for misspecification or partial observability.

Lastly, our problem appears similar to the bandits with partially observable features studied by Park
& Faradonbeh (2022). In their work, the observed features are assumed to be related to the latent
features through a known linear mapping, with the latent features sampled from a centered Gaussian
distribution. However, our approach does not impose any structural assumptions on either the
observed or latent features, making it a more general and challenging problem compared to that of
Park & Faradonbeh (2022).

3 PRELIMINARIES

3.1 NOTATION

For any n ∈ N, let [n] denote the set {1, 2, . . . , n}. Furthermore, the L1, L2 and supremum norm
of a vector v is represented by ∥v∥1, ∥v∥2, and ∥v∥∞, respectively, and the L2-norm weighted
by a positive definite matrix D is denoted by ∥v∥D. For two vectors v1 and v2, the inner product
is defined as the dot product, i.e., ⟨v1,v2⟩ := v⊤

1 v2, and we use both notations interchangeably.
For a matrix M, its minimum and maximum eigenvalue are denoted by λmin(M) and λmax(M),
respectively, and let R(M) denote the row space of M, i.e., a subspace spanned by the rows of M.

3.2 PROBLEM FORMULATION

In this section, we outline our problem setting and introduce several key assumptions. The true
feature vector za ∈ Rdz , associated with each arm a ∈ [K], determines the rewards. However, the
agent can observe only a subset of its elements, with the remaining elements unobserved. Specifically,
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za is defined as follows:

za :=
[
x(1)
a , · · · , x(d)

a , u(1)
a , · · · , u(du)

a

]⊤
. (1)

where xa := [x
(1)
a , · · · , x(d)

a ]⊤ ∈ Rd refers to the observable part; ua := [u
(1)
a , · · · , u(du)

a ]⊤ ∈ Rdu

represents the latent part, which remains inaccessible to the agent. For clarity, the observable
components will henceforth be highlighted in blue, while the unobservable components will be shown
in red. Note that the dimensions of the latent feature vector, du = dz − d, and the true feature vector,
dz , are both unknown to the agent. Consequently, the agent is unaware of whether the features are
partially observed, which introduces significant challenges in selecting appropriate strategies. We use
the following assumption regarding the features:
Assumption 1 (Fixed features). The true reward-generating features remain fixed throughout the
entire decision horizon T for all arms a ∈ [K].

This assumption is standard in the linear bandits with model misspecification error (Ghosh et al.,
2017; Lattimore et al., 2020), which is a special case of our partially observable feature setting.
In particular, if latent feature ua arbitrarily changes over time, the problem itself would become
non-learnable, making the problem ill-posed. Hence, given this, assuming fixed features is natural
and well justified. (See Appendix B for details).

The reward associated with each arm is defined as the dot product of the corresponding true features
za and an unknown parameter θ⋆ ∈ Rdz , given by ya,t = ⟨za,θ⋆⟩ + ϵt = z⊤a θ⋆ + ϵt for all
a ∈ [K]. The error term, ϵt, captures the inherent randomness in the reward, and we adopt a standard
assumption commonly used in bandit problems for this error:
Assumption 2 (Sub-Gaussian noise). Let {Ft}t∈[T ] denote history at round t, represented by a
filtration of sigma algebras. The reward noise ϵt is assumed to be a σ-sub-Gaussian random variable
conditioned on Ft. Formally, E[exp(λϵt)|Ft−1] ≤ exp

(
λ2σ2/2

)
for all λ ∈ R.

This assumption implies E[ϵt |Ft−1] = 0, and E[ya,t |Ft−1] = ⟨za,θ⋆⟩. For brevity, we use Et−1[·]
to denote E[·|Ft−1] henceforth. Given that ϵt is sampled after each action is observed, it follows
that ϵt is Ft-measurable. To eliminate issues of scale in the theoretical analysis, we assume that the
expected reward |⟨za,θ⋆⟩| ≤ 1 for all a ∈ [K].

Let us write θ⋆ = [(θ(o)
⋆ )⊤, (θ(u)

⋆ )⊤]⊤, where θ(o)
⋆ ∈ Rd and θ(u)

⋆ ∈ Rdu are the parameters for
observable features and latent features, respectively. Considering the composition of za defined
in Eq. (1), we can decompose the reward yat,t into three terms as follows:

yat,t = ⟨xat
,θ(o)

⋆ ⟩+ ϵt + ⟨uat
,θ(u)

⋆ ⟩ (2)

where the last term in Eq. (2) corresponds to the inaccessible portion of the reward. This reward
model is equivalent to that imposed in the linear bandits with misspecification error (Lattimore et al.,
2020). While the regret bound in Lattimore et al. (2020) includes misspecification error that grows
linearly in decision horizon, our proposed method (Section 4) addresses this misspecification error
and achieves a regret bound that is sublinear in the decision horizon.

Let a⋆ := argmaxa∈[K]⟨za,θ⋆⟩ denote the optimal action, considering both observable and latent
features. The theoretical performance of our algorithm is evaluated through cumulative regret, which
measures the total expected difference between the reward of the optimal action and the reward of the
action selected in each round. Formally,

Reg(T ) = E

[
T∑

t=1

(ya⋆,t − yat,t)

]
= E

[
T∑

t=1

⟨xa⋆
− xat

,θ(o)
⋆ ⟩+

T∑
t=1

⟨ua⋆
− uat

,θ(u)
⋆ ⟩

]
. (3)

Before introducing our method and algorithm, we first present a regret lower bound for a scenario
where the inaccessible portion of the reward is ignored. For each t ∈ [T ], let πt denote policy that
maps {xa : a ∈ [K]} and {yas,s : s ∈ [t− 1]} to a probability distribution over [K]. Then the policy
is dependent on the observed features if there exist two sets of observed features {x(1)

a : a ∈ [K]}
and {x(2)

a : a ∈ [K]} in Rd×K , such that for each given value of rewards y1, . . . , yt−1 ∈ R, the
policy is variant over the features, i.e.,

πt(x
(1)
1 , . . . ,x

(1)
K , y1, . . . , yt−1) ̸= πt(x

(2)
1 , . . . ,x

(2)
K , y1, . . . , yt−1).
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For instance, the UCB policy for linear bandits (with observed features) is dependent on the observed
features, while the policy in the MAB algorithms (that disregard observed features) is not dependent
on the observed features. In the theorem below, we particularly provide a lower bound for algorithms
that employ policies that are dependent on the observed features.
Theorem 1 (Regret lower bound ignoring latent reward component). Suppose that T ≥ 4d2. For
any algorithm Π := (π1, . . . , πT ) that consists of policies {πt : t ∈ [T ]} that are dependent on
observed features, there exists a set of features {z1, . . . , zK} and a parameter θ⋆ ∈ Rdz such that
the cumulative regret

RegΠ(T, θ⋆, z1, . . . , zK) ≥ T

3
.

This theorem implies that neglecting the latent portion of the reward in decision-making could result
in regret that scales linearly with T , indicating a failure in the learning process of the agent. The
comprehensive proof for this theorem is deferred to Appendix C.1.

4 ROBUST ESTIMATION FOR PARTIALLY OBSERVABLE FEATURES

We propose our estimation method to obtain a sublinear regret bound for linear bandits with latent
features. Section 4.1 introduces the feature vector augmentation to handle the misspecification error
and Section 4.2 presents the doubly robust estimation to further improve the regret bound.

4.1 FEATURE VECTOR AUGMENTATION WITH ORTHOGONAL PROJECTION

In order to minimize regret, it is sufficient to estimate the K expected rewards {z⊤a θ⋆ : a ∈ [K]}
rather than all components of θ⋆ ∈ Rdz . A straightforward approach to this problem, which achieves
a regret bound of Õ(

√
KT ), is to disregard the observed features and apply MAB algorithms like

UCB1 (Auer et al., 2002). However, these algorithms tend to incur higher regret compared to those
that leverage features, particularly when the number of arms is significantly larger than the dimension
of the feature vectors, i.e., K ≫ d.

We propose a unified approach to handle all cases of partially observable features and efficiently esti-
mate all K expected rewards. Let X := (x1, . . . ,xK) ∈ Rd×K represent a matrix that concatenates
the observed part of the true features, and U := (u

(u)
1 , . . . ,u

(u)
K ) ∈ Rdu×K represent the matrix that

concatenates the latent complements of the true features for each arm. Without loss of generality,
we assume a set of K vectors {x1, . . . ,xK} spans Rd.1 We define PX := X⊤(XX⊤)−1X as the
projection matrix onto the row space of X, denoted R(X). Then the vector of rewards for all arms,
Yt = (y1,t, . . . , yK,t), is now decomposed as:

Yt = (X⊤θ(o)
⋆ +U⊤θ(u)

⋆ ) + ϵt1K

= PX(X⊤θ(o)
⋆ +U⊤θ(u)

⋆ ) + (IK −PX)(X⊤θ(o)
⋆ +U⊤θ(u)

⋆ ) + ϵt1K

= X⊤(θ(o)
⋆ + (XX⊤)−1XU⊤θ(u)

⋆ ) + (IK −PX)U⊤θ(u)
⋆ + ϵt1K ,

(4)

where the first and the second term are the projected rewards onto R(X) and R(X)⊥, the subspace of
RK perpendicular to R(X). We write the projected parameter as µ(o)

⋆ := θ(o)
⋆ +(XX⊤)−1XU⊤θ(u)

⋆ .

Now we handle the second term in Eq. (4). For any set of basis {b1, . . . ,bK−d} ∈ R(X)⊥, there
exist µ(u)

⋆,1 , . . . , µ
(u)
⋆,K−d in R that express the projection of the reward as:

(IK −PX)U⊤θ(u)
⋆ =

K−d∑
i=1

µ
(u)
⋆,i bi. (5)

While the exact projected vector (IK −PX)U⊤θ(u)
⋆ is unknown, it is evident that the vector lies in

the row space of (IK −PX)U⊤, whose dimension is:

dh :=dim
{
R
(
(IK −PX)U⊤)}=dim(R(X)⊥ ∩R(U))=rank(U)− dim(R(X)∩R(U)). (6)

1When d > K, we can apply singular value decomposition on X to reduce the feature dimension to d̄ ≤ K
with R(X) = d̄.
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q1

q3

Et−1[Y]

R(X) q2
X⊤µ̄t

q1

q3

Et−1[Y]

q2R(X)

b⊤
1 θ̂

(u)
t

X⊤µ̄t

Figure 1: Illustration of the difference between conventional linear bandit algorithms (left) and
our approach (right) in estimating rewards of K = 3 arms. The conventional algorithms use
only observable features and find estimates on R(X) and the error due to unobserved features is
accumulated. In contrast, our strategy projects the latent part of the reward onto the orthogonal

complement of R(X) whose basis is denoted by b⊤
1 θ̂

(u)

t , and estimates the rewards of all arms in
RK . Note that µ̄t is the estimator of the parameter for observable features µ⋆.

Although the coefficients µ
(u)
⋆,1 , . . . , µ

(u)
⋆,K−d depend on the choice of the basis vectors

{b1, . . . ,bK−d}, at most dh coefficients are nonzero for any choice of the basis vectors. If we
define µ⋆ as [(µ(o)

⋆ )⊤, (µ
(u)
⋆ )⊤]⊤ ∈ RK , where µ

(u)
⋆ = [µ

(u)
⋆,1 , . . . , µ

(u)
⋆,K−d]

⊤, then Eq. (4) becomes
Yt = [X⊤ b1 · · ·bK−d]µ⋆ + ϵt1K , implying that the reward for each a ∈ [K] is:

ya,t = e⊤a Y = e⊤a [X
⊤ b1 · · ·bK−d]µ⋆ + ϵt = [x⊤

a e⊤a b1 · · · e⊤a bK−d]µ⋆ + ϵt, (7)

where ea ∈ RK is a standard basis, with elements all zero except for 1 in the a-th coordinate. With
this modification, the rewards are now represented as a linear function of the augmented feature
vectors, x̃a := [x⊤

a e⊤a b1 · · · e⊤a bK−d]
⊤ ∈ RK , without any misspecification error. A toy example

illustrating our strategy is shown in Figure 1.

The dimension of the augmented feature vectors {x̃a : a ∈ [K]} is K ≥ d and we propose an
algorithm that employs the doubly robust ridge estimator and achieves Õ(

√
KT ) regret bound (see

Appendix A). However, when K > d and du = 0, the regret is high compared to the linear bandits
with conventional features. Therefore, we propose a novel estimation strategy to avoid dependency
on K in the following section.

4.2 DOUBLY ROBUST LASSO ESTIMATOR

In Eq. (7), the parameter µ⋆ is sparse depending on the dimension of the latent features. Recall
that µ(u)

⋆ are the coefficients to express the projection of the reward as represented in Eq. (5) and
only dh basis vectors are required to express the projection of the reward; there are at most dh
nonzero entries in µ

(u)
⋆ . The dimension dh reflects how closely the latent features are related to the

observed features. Specifically, dh ≤ rank(U) where equality holds if and only if R(U) ⊆ R(X)⊥.
Since rank(U) ≤ min{du,K}, the dimension dh cannot exceed min{du,K} − d. Additionally, if
R(U) ⊂ R(X), then dh = 0.

Let µ̌L
t denote the Lasso estimator for µ⋆ using augmented feature vectors:

µ̌L
t := argmin

µ

t∑
τ=1

(yaτ
− x̃⊤

aτ
µ)2 + 2σ

√
2t

p
log

2Kt2

δ

∥∥∥∥∥∥(
∑

a∈[K]

x̃ax̃
⊤
a )

1/2µ

∥∥∥∥∥∥
1

. (8)

To enable the estimator in Eq. (8) to accurately detect the zero entries in µ⋆, the compatibility
condition must be satisfied (van de Geer & Bühlmann, 2009). This condition holds when the
minimum eigenvalue of the Gram matrix, λmin

(
t−1

∑t
s=1 x̃as

x̃⊤
as

)
, is greater than zero. However,

ensuring a sufficiently large minimum eigenvalue typically requires collecting a large number of
exploration samples, which increases regret. Achieving this with fewer exploration samples is a
critical challenge in bandit literature, as the minimum eigenvalue affects the convergence rate of the
estimator and, consequently, the regret bound (Kim et al., 2021; Soare et al., 2014).
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We introduce a doubly robust (DR) estimator that employs the full feature Gram matrix∑t
s=1

∑K
a=1 x̃ax̃

⊤
a instead of

∑t
s=1 x̃as

x̃⊤
as

. The DR estimation originates from the statistical
literature on missing data, where “doubly robust” means that the estimator is robust against errors
in the estimation of both the observation probability and the response model. In bandits, at each
decision round t ∈ [T ], only the reward of the selected arm is observed, while the K − 1 unselected
rewards are missing. Thus DR estimation is applied to impute these K − 1 missing rewards and
include corresponding K − 1 feature vectors in the estimation. Since the observation probability is
given by the policy (which is known to the learner), the DR estimator is robust against errors in the
estimated rewards. While Kim & Paik (2019) proposed a DR Lasso estimator on IID features that
satisfies the compatibility condition, we propose another DR Lasso estimator that does not require
the assumptions on the features.

We improve the DR estimation by incorporating resampling and coupling methods. In round t, the
algorithm selects an action at according to an ϵt-greedy policy. Then, we generate a pseudo-action
ãt from a multinomial distribution:

ϕat,t := P(ãt = at|at) = p and ϕk,t := P(ãt = k|at) =
1− p

K − 1
, ∀k ∈ [K] \ {at}, (9)

where p ∈ (1/2, 1) is coupling probability set by the algorithm. To couple the policy of the actual
action at and the pseudo-action ãt, we resample both of them until they match. This coupling yields
a lower bound for the observation probability which reduces the variance of the DR pseudo-rewards
in Eq. (10). Let Mt denote the event where ãt = at within a specified number of resamples. For
given δ′ ∈ (0, 1), we set the number of resamples as ρt := log((t+ 1)2/δ′)/ log(1/p) so that event
Mt occurs with probability at least 1 − δ′/(t + 1)2. Resampling allows the algorithm to explore
further to find an action that balances between regret minimization and reward estimation.

This coupling replaces ϵt greedy policy with a multinomial distribution ϕ1,t, . . . , ϕK,t. When we use
DR estimation with ϵt greedy policy, the inverse probability ϵ−1

t :=
√
t appears in the pseudo-reward

(10), and thus the variance of the pseudo-reward explodes. Therefore, we couple the ϵt greedy policy
with the multinomial distribution (9) to bound the inverse probability weight ϕ−1

a,t = O(K).

With the pseudo-actions (coupled with the actual actions), we construct the unbiased pseudo-rewards
for all arms a ∈ [K],

r̃a,t := x̃⊤
a µ̌

L
t +

I(ãt = a)

ϕa,t

(
ya,t − x̃⊤

a µ̌
L
t

)
, (10)

and note that µ̌L
t defined in Eq. (8) serves as the imputation estimator that fills in the missing rewards

of unselected arms in round t.

For a ̸= ãt, i.e., an arm a that is not selected in the round t, we impute the missing rewards using
x̃⊤
k µ̌

L
t . For a = ãt, however, the term I(ãt = a)ya,t/ϕa,t calibrates the predicted reward to ensure

the unbiasedness of the pseudo-rewards for all arms. Given that Eãt
[I(ãt = a)] = P(ãt = a) = ϕa,t,

taking the expectation over ãt on both sides of Eq. (10) gives Eãt
[Ỹa,t] = Et−1[ya,t] = x̃⊤

a µ⋆ for all
a ∈ [K]. Although the estimate x̃⊤

a µ̌t may have high error, it is multiplied by the mean-zero random
variable (1− I(ãt = a)/ϕa,t), making the pseudo-rewards robust to the error in x̃⊤

a µ̌t.

The pseudo-rewards can only be computed when ãt = at, so they are used in rounds when the chosen
action at and the pseudo-action ãt match, indicated by the event Mt. Since Mt occurs with high
probability, we can compute the pseudo-rewards for almost all rounds. Our DR Lasso estimator is
defined as:

µ̂L
t := argmin

µ

t∑
τ=1

I(Mτ )
∑

a∈[K]

(
r̃a,τ − x̃⊤

a µ
)2

+
10σ

p
σ

√
2t log

2Kt2

δ

∥∥∥∥∥∥(
∑

a∈[K]

x̃ax̃
⊤
a )

1/2µ

∥∥∥∥∥∥
1

,

(11)
and the following theorem provides a theoretical guarantee that this estimator converges across all
arms after several exploration rounds.

Theorem 2 (Consistency of the DR Lasso estimator). Let dh denote the dimension of the projected
latent rewards defined in Eq. (6). For each t, let Et ⊆ [t] denote an exploration phase such
that for τ ∈ Et the action aτ is sampled uniformly over [K]. Then for all round t such that

7
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Algorithm 1 Robust to Latent Feature (RoLF)
1: INPUT: features {xa : a ∈ [K]}, coupling probability p ∈ (1/2, 1), confidence parameter

δ > 0.
2: Initialize µ̂0 = 0K , the exploration phase Et = ∅ and the exploration factor Ce := 8(

√
K +

p−1)2p2(1− p)−2K2 log 2Kt2

δ .
3: Find orthogonal basis b1, . . . ,bK−d in R(X)⊥ to construct {x̃a : a ∈ [K]}
4: for t = 1, . . . , T do
5: if |Et| ≤ Ce log(2Kt2/δ) then
6: Randomly sample at uniformly over [K] and Et = Et−1 ∪ {t}.
7: else
8: Compute ât := argmaxa∈[K] x̃

⊤
a µ̂

L
t−1

9: while ãt ̸= at and count ≤ ρt do
10: Sample at with P(at = ât) = 1−(t−1/2) and P(at = k) = t−1/2/(K−1), ∀k ̸= ât.
11: Sample ãt according to Eq. (9).
12: count = count + 1
13: Play at and observe yat,t.
14: if ãt ̸= at then
15: Set µ̂L

t := µ̂L
t−1

16: else
17: Update µ̂L

t following Eq. (11) with r̃a,t and update µ̌L
t following Eq. (8).

t ≥ |Et| ≥ 8(
√
K + p−1)2p2(1− p)−2K2 log 2Kt2

δ , with probability at least 1− 2δ/t2,

max
a∈[K]

|x̃a(µ̂t − µ⋆)| ≤
20σ

p

√
2(d+ dh) log

2Kt2

δ

t
, (12)

Although we use K-dimensional feature vectors, the error bound of the DR Lasso estimator is only
logarithmic in K. This fast convergence rate is possible with the regularity conditions, such as
the restrictive minimum eigenvalue condition (Bühlmann & Van De Geer, 2011; van de Geer &
Bühlmann, 2009). While conventional method assumes that the feature vectors satisfy the condition,
our approach does not require this assumption, since our augmented features are orthogonal vectors in
R(X)⊥, their average Gram matrix satisfies λmin(

∑
a∈[K] x̃ax̃

⊤
a ) ≥ min{1, λmin(

∑
a∈[K] xax

⊤
a )}.

Thus, the convergence rate has only
√
logK rate in terms of K.

The consistency is proved by bounding the two components of the error in the pseudo-rewards
defined in (10): (i) the noise of the reward and (ii) the error of the imputation estimator µ̌t. Since
(i) is sub-Gaussian, it can be bounded using martingale inequalities. For (ii), the imputation error
x̃⊤
a (µ̌

L
t − µ⋆) is multiplied by the mean-zero random variable

(
1− I(ãt=a)

ϕa,t

)
and thus it can be

bounded by ∥µ̌L
t − µ⋆∥1/

√
t.

5 PROPOSED ALGORITHM AND THEORETICAL ANALYSIS

In this section, we present our proposed algorithm, which is based on a novel estimation approach
for handling partially observable features. The proposed algorithm significantly improves the regret
bound compared to linear bandit algorithms, which rely solely on observed features, and MAB
algorithms, even without prior knowledge of the latent features.

5.1 ROBUST TO LATENT FEATURES (RoLF) ALGORITHM

In the initialization step, when the observable features are given, our algorithm finds a set of orthogonal
basis {b1, . . . ,bK−d} ∈ R(X)⊥ to augment each observable features. After the exploration phase,
the algorithm computes the candidate action, denoted by ât, and then resample both ãt and at until
they match. If ãt and at do not match within ρt := log((t+1)2/δ′)/ log(1/p), the resampling phase
ends, and the agent selects at and observes yat,t. If they match, the algorithm updates both the
imputation and main estimators according to the equations provided in Eq. (8) and Eq. (11).

8
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RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(a) d = 1

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(b) d =
⌊
dz
2

⌋

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(c) d = dz − 1

Figure 2: Cumulative regrets of the algorithms in comparison for scenario 1 (K = 50, dz = 31).

The proposed algorithm does not require the knowledge of the dimension of the latent features du
and the dimension of the projected rewards from latent feature space onto the R(X)⊥. Although we
present the algorithm on fixed feature vectors, the algorithm applies to arbitrary feature vectors that
changes over time by updating the orthogonal basis.

5.2 REGRET ANALYSIS

We provide an analysis of RoLF using the Lasso estimators, as detailed in the following theorem:
Theorem 3 (Regret bound for Lasso RoLF). Let dh denote the dimension of the projected latent
rewards defined in Eq. (6). Then for δ ∈ (0, 1) and p ∈ (1/2, 1), the expected cumulative regret of
the proposed algorithm is bounded by

E[Reg(T )] ≤ 10δ log T +
16K2(

√
K + p−1)2

(1− p)2
+

2p
√
T

K − 1

log (T+1)2

δ

log(1/p)

+
80σ

p

√
2(d+ dh)T log

2KT 2

δ
,

(13)

To the best of our knowledge, Theorem 3 is the first regret bound sublinear in T for the latent features
without any structural assumption. With slight modifications, the regret bound can also be applied to
scenarios with time-varying features and misspecified linear bandit problems.

Note that the number of rounds for the exploration phase is O(K3 logKT ), which is only logarithmic
in the horizon T . The factor K3 is not reducible since the algorithm must estimate all K biases from
the missing features. Using the Gram matrix with full feature vectors,

∑K
a=1 x̃ax̃

⊤
a in combination

with DR estimation reduces the exploration phase time from O(K4 logKT ) to O(K3 logKT ),
reducing the complexity by a factor of K. The convergence rate in the last term is proportional to√
d+ dh rather than

√
K, as shown in Eq. (12). Thus, our regret bound is O(

√
(d+ dh)T logKT ).

6 NUMERICAL EXPERIMENTS

In this experiment, we simulate and compare two versions of our algorithm, presented in Algorithm 1
and Algorithm 2 (Appendix A), with linear bandit algorithms that use only observable features:
LinUCB (Li et al., 2010; Chu et al., 2011) and LinTS (Agrawal & Goyal, 2013). These algorithms
use the UCB and Thompson sampling methods, respectively, when the reward is modeled as a linear
function of the features. Additionally, since our algorithm incorporates DR estimation with the Lasso
estimator, we include DRLasso (Kim & Paik, 2019) in the comparison as well. To further evaluate
the performance of our algorithm in scenarios where latent features are expected but ignored, we also
compare it with UCB(δ) (Lattimore & Szepesvári, 2020), an MAB algorithm without features.

For the simulation environment, we generate true features za for each arm a ∈ [K] from N (0, Idz
)

and subsample d elements to construct xa. Orthogonal basis vectors {b1, . . . ,bK−d} are derived
via singular value decomposition (SVD) on the observable feature matrix X, ensuring orthogonality

9
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RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(a) K = d = 20

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(b) K = d = 30

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(c) K = d = 40

Figure 3: Cumulative regrets of the algorithms in comparison for scenario 2 (dz = 60).

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(a) K = 15, d = 30

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(b) K = 20, d = 40

RoLF-Ridge
RoLF-Lasso
DRLasso
LinUCB
LinTS
UCB(δ)

(c) K = 30, d = 60

Figure 4: Cumulative regrets of the algorithms in comparison for scenario 3 (dz = d).

to R(X). We augment X with the basis vectors via linear concatenation. Rewards are generated by
sampling the unknown parameter θ⋆ ∈ Rk from Unif(−1/2, 1/2). The hyperparameter p, for the
sampling distribution of ãt, is set to 0.6 (see Eq. (9)). The confidence parameter δ is 0.0001, and the
total decision horizon is T = 1000. To address both partial and full observability, dz ≥ d is used,
and we run 5 independent experiments. We compare the algorithms across three scenarios:

Scenario (i). We examine algorithm performance as d, the number of observed elements, varies
to assess the impact of observability. With K = 50 arms and dz = 31, we compare results for
d = 1, ⌊dz/2⌋ = 15, and dz − 1 = 30. Figure 2 presents the results, showing that our algorithm
consistently outperforms others in regret and robustness. In contrast, LinUCB, LinTS, and DRLasso
show significant dependence on the number of observable features, with performance deteriorating
and variability increasing as observability decreases.

Scenario (ii). In this scenario, the number of arms is equal to the dimension of the observed features,
i.e., K = d. The main objective of this experiment is to demonstrate that our algorithm remains
robust to changes in the number of arms K, unlike MAB algorithms that disregard the observable
features. Specifically, we compare the algorithms with K set to 20, 30, and 40, and dz = 60 for all
cases. Figure 3 shows the results for this scenario. As we can observe, the performance of UCB(δ)
worsens as the number of arms increases in each environment. In contrast, our algorithm shows better
performance in terms of both the level of regret and robustness.

Scenario (iii). We evaluate performance when the number of arms is less than the dimension of
observed features, setting d = 2K and varying K as 15, 20, and 30, with dz = d. Before using
the features in our algorithms, we apply singular value decomposition (SVD) for dimensionality
reduction. Figure 4 shows that our algorithm performs well even in extreme cases. By applying
dimension reduction through SVD, our algorithm remains applicable even when the matrix of feature
vectors is not full rank. Furthermore, the results suggest that our algorithm demonstrates superior
performance even in the absence of partial observability.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All theoretical results made in this paper are accompanied by detailed proofs, which can be found
in Appendix C and Appendix D. The assumptions underlying these claims are clearly stated in Sec-
tion 3.2 of the main text. Furthermore, for the implementation of our proposed algorithm, along with
instructions for reproducing the experimental results, we provide a ZIP file containing the source
code in the supplementary materials.
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Algorithm 2 Robust to Latent Feature with Ridge Estimator (RoLF-Ridge)
1: INPUT: features {xa : a ∈ [K]}, coupling probability p ∈ (1/2, 1), confidence parameter

δ > 0.
2: Initialize µ̂0 = 0K , the exploration phase Et = ∅ and the exploration factor Ce := 32(1 −

p)−2K2.
3: Find orthogonal basis b1, . . . ,bK−d in R(X)⊥ to construct {x̃a : a ∈ [K]}
4: for t = 1, . . . , T do
5: if |Et| ≤ Ce log(2Kt2/δ) then
6: Randomly sample at uniformly over [K] and Et = Et−1 ∪ {t}.
7: else
8: Compute ât := argmaxa∈[K] x̃

⊤
a µ̂

R
t−1

9: while ãt ̸= at and count ≤ ρt do
10: Sample at with P(at = ât) = 1−(t−1/2) and P(at = k) = t−1/2/(K−1), ∀k ̸= ât.
11: Sample ãt according to Eq. (9).
12: count = count + 1
13: Play at and observe yat,t.
14: if ãt ̸= at then
15: Set µ̂R

t := µ̂R
t−1

16: else
17: Update µ̂R

t following Eq. (14) with r̃a,t and update µ̌R
t following Eq. (15).

A ROBUST TO LATENT FEATURE ALGORITHM WITH RIDGE ESTIMATOR

Our Doubly robust (DR) ridge estimator is defined as follows:

µ̂R
t :=

 t∑
τ=1

I(Mτ )
∑

a∈[K]

x̃ax̃
⊤
a + IK

−1 t∑
τ=1

I(Mτ )
∑

a∈[K]

x̃ar̃a,τ

 , (14)

where r̃a,τ is the DR pseudo reward:

r̃a,t := x̃⊤
a µ̌

R
t +

I(ãt = a)

ϕa,t

(
ya,t − x̃⊤

a µ̌
R
t

)
,

and the imputation estimator µ̌R
t is defined as

µ̌R
t :=

(
t∑

τ=1

x̃aτ
x̃⊤
aτ

+ pIK

)−1( t∑
τ=1

x̃aτ
yaτ ,τ

)
. (15)

The following theorem shows that this Ridge estimator is consistent, meaning it converges to the true
parameter µ⋆ with high probability as the agent interacts with the environment.
Theorem 4 (Consistency of the DR Ridge estimator). For each t, let Et ⊆ [t] denote an exploration
phase such that for τ ∈ Et the action aτ is sampled uniformly over [K]. Then for all round t such
that |Et| ≥ 32(1− p)−2K2 log(2Kt2/δ), with probability at least 1− 3δ,

max
a∈[K]

|x̃⊤
a (µ̂

R
t − µ⋆)| ≤

2√
t

(
σ

p

√
K log

t+ 1

δ
+
√
K

)
.

With |Et| = O(K2 logKt) number of exploration, the DR Ridge estimator achieves O(
√

K/t)
convergence rate over all K rewards. This is possible because the DR pseudo-rewards defined
in Eq. (10) impute the missing rewards for all arms a ∈ [K] using x̃⊤

a µ̌t, based on the samples
collected during the exploration phase, Et. With this convergence guarantee, we establish a regret
bound for RoLF-Ridge, which is the adaptation of Algorithm 1 using the Ridge estimator.
Theorem 5 (Regret bound for Ridge RoLF). For δ ∈ (0, 1), the expected cumulative regret of the
proposed algorithm using DR Ridge estimator is bounded by

Reg(T ) ≤ 6δ log T +
2p

√
T

K − 1

log (T+1)2

δ

log(1/p)
+

32K2

(1− p)2
log

2dT 2

δ
+ 8

√
KT

(
σ

p

√
log

T 2

δ
+ 1

)
.
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The first and second terms come from the distribution of at which is a combination of the 1− t−1/2-
greedy policy and resampling up to ρt := log((t + 1)2/δ)/ log(1/p) trials. The third term is
determined by the size of the exploration set, Et, while the last term arises from the estimation error
bounded by the DR estimator as described in Theorem 4. The hyperparameter p ∈ (1/2, 1) balances
the size of the exploration set in the third term and the estimation error in the last term. Overall,
the regret is O(

√
KT log T ), which shows a significant improvement compared to the regret lower

bound in Theorem 1 for any linear bandit algorithms that do not account for unobserved features and
unobserved rewards.

B A MODIFIED ALGORITHM FOR TIME-VARYING OBSERVED FEATURES

In this section, we propose an algorithm for linear bandits with partially observable features under
the setting where the observed features vary over time.

B.1 PROBLEM FORMULATION

Let x1,t, . . . ,xK,t denote the observed features and u1, . . . ,uK denote the unobservable features.
Now the observed features arbitrary changes over t but the unobservable features are fixed over time.
When the algorithms selects an arm at, the reward is

yat,t = ⟨xat,t,θ
(o)
⋆ ⟩+ ⟨uat ,θ

(u)
⋆ ⟩+ ϵt,

where the ϵt is the Sub-Gaussian noise that follows Assumption 2. Under Assumption 1, the features
are fixed and the expected reward of each arm is also fixed over time, where MAB algorithms without
using features are applicable to achieve Õ(

√
KT ) regret bound. When the observed features vary

over time, the expected reward of each arm E[yat
, t] = ⟨xat,t,θ

(o)
⋆ ⟩ + ⟨uat

,θ(u)
⋆ ⟩ also arbitrarily

changes over time and MAB algorithms suffer regret linear in T . To our knowledge, there is no other
work that address this challenging setting.

B.2 PROPOSED METHOD: ORTHOGONAL BASIS AUGMENTATION

We address the problem by augmenting Euclidean basis e1, . . . , eK in RRK to estimate bias caused
by the unobservable features. Let x̃a,t := e⊤a [Xt e1 · · · eK ] ∈ Rd+K and let ∆a := ⟨ua, θ

(u)
⋆ ⟩

denote the bias stems from the latent features. Then,

ya,t = ⟨x⊤
a,tθ

(o)
⋆ ⟩+ ⟨u⊤

a,tθ
(u)
⋆ ⟩+ ϵa,t

= ⟨e⊤a [Xte1 · · · eK ], [θ(o)
⋆ ∆1 · · ·∆K ]⟩+ ϵa,t.

Therefore, applying the RoLF-Ridge algorithm to the new features x̃a,t := e⊤a [Xte1 · · · eK ] yields
the following regret bound.

Theorem 6 (Regret bound for Ridge-RoLF-V with time varying observed features). If observed
features are vary over time, for δ ∈ (0, 1), the expected cumulative regret of the proposed algorithm
Ridge-RoLF-V using DR Ridge estimator is bounded by

Reg(T ) ≤6δ log T +
2p

√
T

d+K − 1

log (T+1)2

δ

log(1/p)
+

32(K + d)2

(1− p)2
log

2(K + d)T 2

δ

+ 8
√
(d+K)T

(
σ

p

√
log

T 2

δ
+ 1

)
.

The proof is similar to that in Theorem 5 and we omit the proof. The rate of the regret bound
is Õ(

√
(d+K)T ) and, to our knowledge, this is the first sublinear regret bound for the partially

observable linear bandits (as well as misspecified linear bandits) with arbitral time-varying observed
features.
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C MISSING PROOFS

C.1 PROOF OF THEOREM 1

We start the proof by providing a detailed account of the scenario described in the theorem. Without
loss of generality, we consider the case where K = 3. As stated in the theorem, a⋆ represents the
index of the optimal action when considering the entire reward, including both observable and latent
components. In contrast, ao denotes the index of the optimal action when considering only the
observable component. For the sake of clarity in the proof, we introduce an additional notation, a′,
which refers to an action whose observable features are identical to those of a⋆, but with a distinct
latent component. Specifically, this implies that a′ ̸= a⋆ and za′ ̸= za⋆

, but xa′ = xa⋆
.

Taking this scenario into account, the observable part of the features associated with a⋆, a′, and ao
are defined as follows:

xa⋆ :=

[
− d√

T
, . . . ,− d√

T

]⊤
,xa′ :=

[
− d√

T
, . . . ,− d√

T

]⊤
,xao :=

[
d√
T
, . . . ,

d√
T

]⊤
.

Additionally, we assume that the unobservable portion of the true features, ua ∈ Rdu , is drawn from
the set U := {−1, 1}du . We define the unobservable feature vectors for actions a⋆, a′, and ao as
follows:

ua⋆
:= [1, . . . , 1]

⊤
,ua′ := [−1, . . . ,−1]

⊤
,uao

:= [−1, . . . ,−1]
⊤
,

where in ua′ , the number of 1’s and -1’s are equal. Since T ≥ 4d2, it can be observed that the
supremum norms of za⋆

, za′ , and zao
— each constructed by concatenating the observable and

corresponding unobservable parts — do not exceed 1. This ensures that the scenario aligns with the
assumption imposed on the feature vectors throughout this paper.

We further define the true parameter, incorporating the definition of θ(o)
⋆ from the theorem statement:

θ⋆ :=

[
1

3d
, . . . ,

1

3d
,

2

3du
, . . . ,

2

3du

]⊤
.

Note that it is straightforward to verify that ∥θ⋆∥1 = 1, thereby satisfying |⟨za,θ⋆⟩| ≤ 1. With this
established, we can also observe that the expected reward for the three actions are defined as:

⟨za⋆ ,θ⋆⟩ = ⟨xa⋆ ,θ
(o)
⋆ ⟩+ ⟨ua⋆ ,θ

(u)
⋆ ⟩ = − d

3
√
T

+
2

3
,

⟨za′ ,θ⋆⟩ = ⟨xa′ ,θ(o)
⋆ ⟩+ ⟨ua′ ,θ(u)

⋆ ⟩ = − d

3
√
T

− 2

3
,

⟨zao ,θ⋆⟩ = ⟨xao ,θ
(o)
⋆ ⟩+ ⟨uao ,θ

(u)
⋆ ⟩ = d

3
√
T

− 2

3
,

respectively. Given the assumption T ≥ 4d2, we can verify that:

⟨za⋆
,θ⋆⟩ − ⟨zao

,θ⋆⟩ =
4

3
− 2d

3
√
T

≥ 1, (16)

which confirms that a⋆ is optimal when considering the full feature set.

Using the conventional linear bandit algorithms such as OFUL (Abbasi-yadkori et al., 2011) and
LinTS (Agrawal & Goyal, 2013), the action selected in round t, at, is based solely on xat

, thereby
neglecting the unobserved portion of the reward. Given this action at, the instantaneous regret
incurred by these algorithms in round t is defined and decomposed as follows:

Reg(t) = ⟨za⋆ ,θ⋆⟩ − ⟨zat ,θ⋆⟩
= ⟨za⋆

− zao
,θ⋆⟩︸ ︷︷ ︸

(∗)

+⟨zao
− zat

,θ⋆⟩.

15
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We consider the first part denoted by (∗). Note that this term is calculated as described in Eq. (16),
and is therefore lower bounded by 1. Hence, the cumulative regret becomes:

Reg(T ) =

T∑
t=1

Reg(t)

=

T∑
t=1

(⟨za⋆ − zao ,θ⋆⟩+ ⟨zao − zat ,θ⋆⟩)

≥
T∑

t=1

1 +

T∑
t=1

⟨zao
− zat

,θ⋆⟩

= T +

T∑
t=1

⟨zao − zat ,θ⋆⟩︸ ︷︷ ︸
(∗∗)

. (17)

For the term denoted by (∗∗), it can be further decomposed as follows:

T∑
t=1

(
⟨xao

,θ(o)
⋆ ⟩ − ⟨xat

,θ(o)
⋆ ⟩
)
+

T∑
t=1

(
⟨uao

,θ(u)
⋆ ⟩ − ⟨uat

,θ(u)
⋆ ⟩
)
,

where the first term corresponds to the regret induced by linear bandit algorithms that only consider
observable features, and by definition, this term is always greater than or equal to 0.

The second term of this decomposition depends on how often at matches a⋆, since selecting a⋆ makes
this term negative. Following the definitions of xa⋆

and xa′ , the agent cannot accurately distinguish
between the two actions when their respective latent rewards are excluded. As a result, one of the two
actions is chosen uniformly at random, meaning a⋆ is selected at most T/2 times in the worst-case
scenario. Thus, the second term is bounded below by −2T/3, leading to the following inequality:

T +

T∑
t=1

⟨zao − zat ,θ⋆⟩ ≥ T +

T∑
t=1

(
⟨xao ,θ

(o)
⋆ ⟩ − ⟨xat ,θ

(o)
⋆ ⟩
)
− 2

3
T

≥ T

3
+

T∑
t=1

(
⟨xao

,θ(o)
⋆ ⟩ − ⟨xat

,θ(o)
⋆ ⟩
)

≥ T

3
,

which completes the proof.

C.2 PROOF OF THEOREM 2

Let Vt :=
∑t

τ=1

∑
a∈[K] x̃ax̃

⊤
a . Then

max
a∈[K]

|x̃⊤
a (µ̂t − µ⋆)| ≤

√∑
a∈[K]

|x̃⊤
a (µ̂t − µ⋆)|2 = t−1/2∥µ̂t − µ⋆∥Vt

Recall that ŵt := V
1/2
t µ̂t and wt := V

1/2
t µ⋆. Then

max
a∈[K]

|x̃⊤
a (µ̂t − µ⋆)| ≤ t−1/2∥ŵt −wt∥2.

To use Lemma 3, we prove a bound for∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(r̃a,τ − x̃⊤
a V

−1/2
t wt)V

−1/2
t x̃a

∥∥∥∥∥∥
∞

.
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Let w̌L
t := V

1/2
t µ̌L

t . By definition of r̃a,τ ,∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(r̃a,τ − x̃⊤
a V

−1/2
t wt)V

−1/2
t x̃a

∥∥∥∥∥∥
∞

.

=

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(
1− I(ãτ = a)

ϕa,τ

)
V

−1/2
t x̃ax̃

⊤
a V

−1/2
t

(
w̌L

t −wt

)
+

I(ãτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a V
−1/2
t wt

)
V

−1/2
t x̃a

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(
1− I(ãτ = a)

ϕa,τ

)
V

−1/2
t x̃ax̃

⊤
a V

−1/2
t

(
w̌L

t −wt

)∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a V
−1/2
t wt

)
V

−1/2
t x̃a

∥∥∥∥∥∥
∞

With probability at least 1− δ, the event Mτ happens for all τ ≥ 1 and we obtain a pair of matching
sample ãτ and aτ . Thus, the second term is equal to,∥∥∥∥∥∥

t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a V
−1/2
t wt

)
V

−1/2
t x̃a

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

I(aτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a µ⋆

)
V

−1/2
t x̃a

∥∥∥∥∥∥
∞

=
1

p

∥∥∥∥∥
t∑

τ=1

ϵa,τV
−1/2
t x̃aτ

∥∥∥∥∥
∞

.

Because ∥v∥∞ = maxi∈[d] |e⊤i v| for any v ∈ Rd,

1

p

∥∥∥∥∥
t∑

τ=1

ϵa,τV
−1/2
t x̃aτ

∥∥∥∥∥
∞

=
1

p
max
a∈[K]

|
t∑

τ=1

ϵa,τe
⊤
a V

−1/2
t x̃aτ |

Applying Lemma 1, with probability at least 1− δ/t2,

max
a∈[K]

|
t∑

τ=1

ϵa,τe
⊤
a V

−1/2
t x̃aτ | ≤ max

a∈[K]
σ

√√√√2

t∑
τ=1

(
e⊤a V

−1/2
t x̃aτ

)2
log

2Kt2

δ

= max
a∈[K]

σ

√√√√2e⊤a V
−1/2
t

(
t∑

τ=1

x̃aτ
x̃⊤
aτ

)
V

−1/2
t ea log

2Kt2

δ

≤ max
a∈[K]

σ

√
2e⊤a V

−1/2
t (Vt)V

−1/2
t ea log

2Kt2

δ

= σ

√
2 log

2Kt2

δ
,

and thus,

1
√
p

∥∥∥∥∥
t∑

τ=1

ϵa,τV
−1/2
t x̃aτ

∥∥∥∥∥
∞

≤ σ

√
2

p
log

2Kt2

δ
(18)

Let At :=
∑t

τ=1

∑
a∈[K]

I(ãτ=a)
ϕa,τ

x̃ax̃
⊤
a . Then the first term,∥∥∥∥∥∥

t∑
τ=1

∑
a∈[K]

(
1− I(ãτ = a)

ϕa,τ

)
V

−1/2
t x̃ax̃

⊤
a V

−1/2
t

(
w̌L

t −wt

)∥∥∥∥∥∥
∞

=
∥∥∥V−1/2

t (Vt −At)V
−1/2
t

(
w̌L

t −wt

)∥∥∥
∞

.

(19)
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Since ∥v∥∞ = maxi∈[d] |e⊤i v| for any v ∈ Rd,∥∥∥V−1/2
t (Vt −At)V

−1/2
t

(
w̌L

t −wt

)∥∥∥
∞

= max
a∈[K]

|e⊤a V
−1/2
t (Vt −At)V

−1/2
t

(
w̌L

t −wt

)
|

≤ max
a∈[K]

∥∥∥e⊤a V−1/2
t (Vt −At)V

−1/2
t

∥∥∥
2

∥∥w̌L
t −wt

∥∥
2
.

Because ŵt is a minimizer of Eq. (8), by Lemma 3 and Eq. (18),

∥∥w̌L
t −wt

∥∥
V

−1/2
t

1
p

∑t
τ=1 x̃aτ x̃

⊤
aτ

V
−1/2
t

≤ 4σ

√√√√ 2(d+ dh) log
2Kt2

δ

pλmin

(
V

−1/2
t

1
p

∑t
τ=1 x̃aτ x̃

⊤
aτ
V

−1/2
t

) .
Because ϕaτ ,τ = p and the coupling event ∩τ≥1Mτ holds with probability at least 1− δ/t2,

t∑
τ=1

1

p
x̃aτ

x̃⊤
aτ

=

t∑
τ=1

∑
a∈[K]

I(aτ = a)

p
x̃ax̃

⊤
a

=

t∑
τ=1

∑
a∈[K]

I(aτ = a)

ϕa,τ
x̃ax̃

⊤
a

=

t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ
x̃ax̃

⊤
a

:= At.

Thus, under the coupling event ∩t
τ=1Mτ ,

∥∥w̌L
t −wt

∥∥
V

−1/2
t AtV

−1/2
t

≤ 4σ

√√√√ 2(d+ dh) log
2Kt2

δ

pλmin

(
V

−1/2
t AtV

−1/2
t

) .
By Corollary 1, with ϵ ∈ (0, 1) to be determined later, for t ≥ 8ϵ−2(1 − p)−2K2 log 2dt2

δ , with
probability at least 1− δ/t2, ∥∥∥IK −V

−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ, (20)

which implies, (1− ϵ)IK ⪯ V
−1/2
t AtV

−1/2
t Thus,

∥∥w̌L
t −wt

∥∥
2
≤ 4σ

1− ϵ

√
2(d+ dh) log

2Kt2

δ

p
.

Now Eq. (19) is bounded by,∥∥∥V−1/2
t (Vt −At)V

−1/2
t

(
w̌L

t −wt

)∥∥∥
∞

≤ max
a∈[K]

∥∥∥e⊤a V−1/2
t (Vt −At)V

−1/2
t

∥∥∥
2

4σ

1− ϵ

√
2(d+ dh) log

2Kt2

δ

p
.

(21)

With simple algebra,

max
a∈[K]

∥∥∥e⊤a V−1/2
t (Vt −At)V

−1/2
t

∥∥∥
2

= max
a∈[K]

√
λmax

(
V

−1/2
t (Vt −At)V

−1/2
t (eae⊤a )V

−1/2
t (Vt −At)V

−1/2
t

)
≤ max

a∈[K]

√
λmax

(
V

−1/2
t (Vt −At)V

−1/2
t IKV

−1/2
t (Vt −At)V

−1/2
t

)
=
∥∥∥V−1/2

t (Vt −At)V
−1/2
t

∥∥∥
2

=
∥∥∥IK −V

−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ
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Thus, ∥∥∥V−1/2
t (Vt −At)V

−1/2
t

(
w̌L

t −wt

)∥∥∥
∞

≤ 4σϵ

1− ϵ

√
2(d+ dh) log

2Kt2

δ

p
.

Now we obtain,∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(r̃a,τ − x̃⊤
a V

−1/2
t wt)V

−1/2
t x̃a

∥∥∥∥∥∥
∞

≤ 4σϵ

1− ϵ

√
2(d+ dh) log

2Kt2

δ

p
+

σ

p

√
2 log

2Kt2

δ

≤ 4σϵ

1− ϵ

√
2K log 2Kt2

δ

p
+

σ

p

√
2 log

2Kt2

δ

=

(
4ϵ
√
K

1− ϵ
+

1

p

)
σ

√
2 log

2Kt2

δ

Setting ϵ = p−1/(
√
K+p−1) gives ϵ

√
K

1−ϵ = p−1 and for t ≥ 8(
√
K+p−1)2p2(1−p)−2K2 log 2Kt2

δ ,∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(r̃a,τ − x̃⊤
a V

−1/2
t wt)V

−1/2
t x̃a

∥∥∥∥∥∥
∞

≤ 5σ

p

√
2 log

2Kt2

δ

Because ŵt is a minimizer of (11), by Lemma 3,

∥ŵt −wt∥V−1/2
t (

∑t
τ=1 x̃ax̃a)V

−1/2
t

≤ 20σ

p

√√√√ 2(d+ dh) log
2Kt2

δ

λmin

(
V

−1/2
t (

∑t
τ=1 x̃ax̃a)V

−1/2
t

) ,
which is equivalent to,

∥ŵt −wt∥2 ≤ 20σ

p

√
2(d+ dh) log

2Kt2

δ
.

This concludes,

max
a∈[K]

|x̃a(µ̂t − µ⋆)| ≤
20σ

p

√
2(d+ dh) log

2Kt2

δ

t
,

which conmpletes the proof.

C.3 PROOF OF THEOREM 3

Because the regret is bounded by 2 and the number of rounds for the exploration phase is at most
|ET | ≤ 8(

√
K + p−1)2p2(1− p)−2K2 log 2KT 2

δ .

Reg(T ) ≤ 16K2(
√
K + p−1)2

(1− p)2
log

2Kt2

δ
+

∑
t∈[T ]\ET

Et−1[y⋆,t]− Et−1[yat,t]

=
16K2(

√
K + p−1)2

(1− p)2
+

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])}

+
∑

t∈[T ]\ET

{I (at ̸= ât) (Et−1[y⋆,t]− Et−1[yat,t])} .

By Theorem 2, on the event {at = ât},

Et−1[y⋆,t]− Et−1[yat,t] = x̃⊤
a⋆
µ⋆ − x̃⊤

ât
µ⋆

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂L

t−1

)∣∣∣+ x̃⊤
a⋆
µ̂L

t−1 − x̃⊤
ât
µ̂L

t−1

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂L

t−1

)∣∣∣
≤ 40σ

p

√
2(d+ dh)

t
log

2Kt2

δ
,
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with probability at least 1− 5δ/t2 for each t ∈ [T ] \ ET . Summing over t gives,∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])} ≤ 80σ

p

√
2(d+ dh)

t
log

2Kt2

δ
.

By resampling at most ρt times, the probability of the event {at ̸= ât} is

P (at ̸= ât) =

ρt∑
m=1

p

(K − 1)
√
t

(
1− p

(K − 1)
√
t

)m−1

=
p

(K − 1)
√
t

(
p

(K − 1)
√
t

)−1{
1−

(
1− p

(K − 1)
√
t

)ρt
}

=1−
(
1− p

(K − 1)
√
t

)ρt

≥ pρt

(K − 1)
√
t
,

where the last inequality uses (1 + x)n ≥ 1 + nx for x ≥ −1 and n ∈ N. Then the expected sum of
regret,

E

 ∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])}


≤

∑
t∈[T ]\ET

P (at ̸= ât)

≤ 2p
√
T

K − 1
ρT

=
2p

√
T

K − 1

log (T+1)2

δ

log(1/p)
.

Thus,

E[Reg(T )] ≤ 10δ log T +
16K2(

√
K + p−1)2

(1− p)2
+

2p
√
T

K − 1

log (T+1)2

δ

log(1/p)

+
80σ

p

√
2(d+ dh)T log

2KT 2

δ
,

which concludes the proof.

C.4 PROOF OF THEOREM 4

Let Ṽt :=
∑t

τ=1 I(Mτ )
∑

a∈[K] x̃ax̃
⊤
a + IK and Vt :=

∑t
τ=1

∑
a∈[K] x̃ax̃

⊤
a + IK . By definition

of µ̂R
t ,

x̃⊤
a (µ̂t − µ⋆) = x̃⊤

a Ṽ
−1
t


t∑

τ=1

I(Mτ )
∑

a∈[K]

x̃a

(
r̃a,τ − x̃⊤

a µ⋆

)
− µ⋆

 .

By definition of the pseudo-rewards,

r̃a,τ − x̃⊤
a µ⋆ =

(
1− I(ãτ = a)

ϕa,t

)
x̃⊤
a

(
µ̌R

t − µ⋆

)
+

I(ãτ = a)

ϕa,τ
ϵa,τ .

Let Ãt :=
∑t

τ=1 I(Mτ )
∑

a∈[K]
I(ãτ=a)
ϕa,t

x̃ax̃
⊤
a +IK and At :=

∑t
τ=1

∑
a∈[K]

I(ãτ=a)
ϕa,t

x̃ax̃
⊤
a +IK

Then,

x̃⊤
a (µ̂t − µ⋆) = x̃⊤

a Ṽ
−1
t

(Ṽt − Ãt

) (
µ̌R

t − µ⋆

)
+

t∑
τ=1

I(Mτ )
∑

a∈[K]

I(ãτ = a)

ϕa,τ
x̃aϵa,τ − µ⋆

 .
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By definition of the imputation estimator µ̌t,

µ̌R
t − µ⋆ =

(
t∑

τ=1

x̃aτ
x̃⊤
aτ

+ pIK

)−1( t∑
τ=1

x̃aτ
ϵaτ ,τ − pµ⋆

)

=

(
t∑

τ=1

1

ϕaτ ,τ
x̃aτ x̃

⊤
aτ

+ IK

)−1( t∑
τ=1

1

ϕaτ ,τ
x̃aτ ϵaτ ,τ − µ⋆

)

=

 t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ
x̃aτ

x̃⊤
aτ

+ IK

−1(
t∑

τ=1

1

p
x̃aτ

ϵaτ ,τ − µ⋆

)
,

where the second equality holds because ϕaτ ,τ = p. Under the coupling event ∩t
τ=1Mτ ,

t∑
τ=1

I(Mτ )
∑

a∈[K]

I(ãτ = a)

ϕa,t
x̃ax̃

⊤
a + IK =

t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,t
x̃ax̃

⊤
a + IK

:=At,

and

x̃⊤
a (µ̂t − µ⋆) =x̃⊤

a V
−1
t

{
(Vt −At)A

−1
t

(
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

)
+

t∑
τ=1

ϵaτ

ϕaτ ,τ
x̃aτ − µ⋆

}

=x̃⊤
a V

−1
t

{
(Vt −At)A

−1
t + IK

}( t∑
τ=1

1

p
x̃aτ

ϵaτ ,τ − µ⋆

)

=x̃⊤
a V

−1/2
t

(
V

1/2
t A−1

t V
1/2
t

)
V

−1/2
t

(
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

)
.

Taking absolute value on both sides,

max
a∈[K]

|x̃⊤
a (µ̂t − µ⋆)| ≤ max

a∈[K]
∥x̃a∥V−1

t
∥V1/2

t A−1
t V

1/2
t ∥2

∥∥∥∥∥
t∑

τ=1

1

p
x̃aτ

ϵaτ ,τ − µ⋆

∥∥∥∥∥
V−1

t

.

By Corollary which implies IK −V
−1/2
t AtV

−1/2
t ⪯ ϵIK . Rearraging the terms,

V
1/2
t A−1

t V
1/2
t ⪯ (1− ϵ)−1IK .

Thus,

max
a∈[K]

|x̃⊤
a (µ̂t − µ⋆)| ≤

maxa∈[K] ∥x̃a∥V−1
t

1− ϵ

∥∥∥∥∥
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

∥∥∥∥∥
V−1

t

≤
maxa∈[K] ∥x̃a∥V−1

t

1− ϵ

1

p

∥∥∥∥∥
t∑

τ=1

x̃aτ ϵaτ ,τ

∥∥∥∥∥
V−1

t

+ ∥µ⋆∥V−1
t

 .

Note that the matrix Vt is deterministic. By Lemma 9 in (Abbasi-yadkori et al., 2011), with
probability at least 1− δ,∥∥∥∥∥

t∑
τ=1

x̃aτ ϵaτ ,τ

∥∥∥∥∥
V−1

t

≤

∥∥∥∥∥
t∑

τ=1

x̃aτ ϵaτ ,τ

∥∥∥∥∥
(
∑t

τ=1 x̃aτ x̃
⊤
aτ

+IK)
−1

≤ σ

√
2 log

det(
∑t

τ=1 x̃aτ
x̃⊤
aτ

+ IK)1/2

δ

≤ σ

√
log

det(
∑t

τ=1 x̃aτ
x̃⊤
aτ

+ IK)

δ
,
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for all t ≥ 1. Because

det

(
t∑

τ=1

x̃aτ
x̃⊤
aτ

+ IK

)
≤

Tr
(∑t

τ=1 x̃aτ x̃
⊤
aτ

)
+K

K


K

≤
{
tmaxa∈[K] ∥x̃aτ ∥2 +K

K

}K

≤ {t+ 1}K ,

where the last inequality holds by ∥x̃aτ ∥2 ≤
√
K∥x̃aτ

∥∞ ≤ K. Thus,∥∥∥∥∥
t∑

τ=1

x̃aτ
ϵaτ ,τ

∥∥∥∥∥
V−1

t

≤ σ

√
K log

t+ 1

δ
,

which proves,

max
a∈[K]

|x̃⊤
a (µ̂t − µ⋆)| ≤

maxa∈[K] ∥x̃a∥V−1
t

1− ϵ

(
σ

p

√
K log

t+ 1

δ
+ ∥µ⋆∥V−1

t

)

≤ 1√
t
· 1

1− ϵ

(
σ

p

√
K log

t+ 1

δ
+ ∥µ⋆∥V−1

t

)
.

Because ∥µ⋆∥V−1
t

≤ ∥µ⋆∥2 ≤
√
K, setting ϵ = 1/2 completes the proof.

C.5 PROOF OF THEOREM 5

Because the regret is bounded by 1 and the number of rounds for the exploration phase is at most
|ET | ≤ 32(1− p)−2K2 log 2dT 2

δ .

Reg(T ) ≤ 32(1− p)−2K2 log
2dT 2

δ
+

∑
t∈[T ]\ET

Et−1[y⋆,t]− Et−1[yat,t]

=32(1− p)−2K2 log
2dT 2

δ
+

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])}

+
∑

t∈[T ]\ET

{I (at ̸= ât) (Et−1[y⋆,t]− Et−1[yat,t])} .

On the event {at = ât},

Et−1[y⋆,t]− Et−1[yat,t] =x̃⊤
a⋆
µ⋆ − x̃⊤

ât
µ⋆

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂R

t−1

)∣∣∣+ x̃⊤
a⋆
µ̂R

t−1 − x̃⊤
ât
µ̂R

t−1

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂R

t−1

)∣∣∣
≤ 4√

t

(
σ

p

√
K log

2t2

δ
+
√
K

)
,

with probability at least 1− 3δ/t, by Theorem 4. Summing over t gives,

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])} ≤ 8
√
KT

(
σ

p

√
log

2T 2

δ
+ 1

)
.
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By resampling at most ρt times, the probability of the event {at ̸= ât} is

P (at ̸= ât) =

ρt∑
m=1

p

(K − 1)
√
t

(
1− p

(K − 1)
√
t

)m−1

=
p

(K − 1)
√
t

(
p

(K − 1)
√
t

)−1{
1−

(
1− p

(K − 1)
√
t

)ρt
}

=1−
(
1− p

(K − 1)
√
t

)ρt

≥ pρt

(K − 1)
√
t
,

where the last inequality uses (1 + x)n ≥ 1 + nx for x ≥ −1 and n ∈ N. Then the expected sum of
regret,

E

 ∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])}

 ≤
∑

t∈[T ]\ET

P (at ̸= ât)

≤ 2p
√
T

K − 1
ρT

=
2p

√
T

K − 1

log (T+1)2

δ

log(1/p)
.

Thus,

E[Reg(T )] ≤ 6δ log T+
32K2

(1− p)2
log

2dT 2

δ
+
2p

√
T

K − 1

log (T+1)2

δ

log(1/p)
+8

√
KT

(
σ

p

√
log

T + 1

δ
+ 1

)
.

D TECHNICAL LEMMAS

Lemma 1. (Exponential martingale inequality) If a martingale (Xt; t ≥ 0), adapted to filtration Ft,
satisfies E[exp(λXt)|Ft−1] ≤ exp(λ2σ2

t /2) for some constant σt, for all t, then for any a ≥ 0,

P (|XT −X0| ≥ a) ≤ 2 exp

(
− a2

2
∑T

t=1 σ
2
t

)
Thus, with probability at least 1− δ,

|XT −X0| ≤

√√√√2
T∑

t=1

σ2
t log

2

δ
.

D.1 A HOEFFDING BOUND FOR MATRICES

Lemma 2. Let {Mτ : τ ∈ [t]} be a Rd×d-valued stochastic process adapted to the filtration
{Fτ : τ ∈ [t]}, i.e., Mτ is Fτ -measurable for τ ∈ [t]. Suppose that the matrix Mτ is symmetric and
the eigenvalues of the difference Mτ − E[Mτ |Fτ−1] lie in [−b, b] for some b > 0. Then for x > 0,

P

(∥∥∥∥∥
t∑

τ=1

Mτ − E[Mτ |Fτ−1]

∥∥∥∥∥
2

≥ x

)
≤ 2d exp

(
− x2

2tb2

)

Proof. The proof is an adapted version of Hoeffding’s inequality for matrix stochastic process with
the argument of (Tropp, 2012). Let Dτ := Mτ − E[Mτ |Fτ−1]. Then, for x > 0,

P

(∥∥∥∥∥
t∑

τ=1

Dτ

∥∥∥∥∥
2

≥ x

)
≤ P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
+ P

(
λmax

(
−

t∑
τ=1

Dτ

)
≥ x

)
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We bound the first term and the second term is bounded with similar arguement. For any v > 0,

P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
≤ P

(
exp

{
vλmax

(
t∑

τ=1

Dτ

)}
≥ evx

)
≤ e−vxE

[
exp

{
vλmax

(
t∑

τ=1

Dτ

)}]
.

Since
∑t

τ=1 Dτ is a real symmetric matrix,

exp

{
vλmax

(
t∑

τ=1

Dτ

)}
=λmax

{
exp

(
v

t∑
τ=1

Dτ

)}
≤ Tr

{
exp

(
v

t∑
τ=1

Dτ

)}
,

where the last inequality holds since exp(v
∑t

τ=1 Dτ ) has nonnegative eigenvalues. Taking expecta-
tion on both side gives,

E

[
exp

{
vλmax

(
t∑

τ=1

Dτ

)}]
≤ E

[
Tr

{
exp

(
v

t∑
τ=1

Dτ

)}]

= TrE

[
exp

(
v

t∑
τ=1

Dτ

)]

= TrE

[
exp

(
v

t−1∑
τ=1

Dτ + log exp(vDt)

)]
.

By Lieb’s theorem (Tropp, 2015) the mapping D 7→ exp(H + logD) is concave on positive
symmetric matrices for any symmetric positive definite H . By Jensen’s inequality,

TrE

[
exp

(
v

t−1∑
τ=1

Dτ + log exp(vDt)

)]
≤ TrE

[
exp

(
v

t−1∑
τ=1

Dτ + logE [ exp(vDt)| Ft−1]

)]

By Hoeffding’s lemma,

evx ≤ b− x

2b
e−vb +

x+ b

2b
evb

for all x ∈ [−b, b]. Because the eigenvalue of Dτ lies in [−b, b], we have

E [ exp(vDt)| Ft−1] ⪯ E
[
e−vb

2b
(bId −Dt) +

evb

2b
(Dt + bId)

∣∣∣∣Ft−1

]
=

e−vb + evb

2
Id

⪯ exp(
v2b2

2
)Id.
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Recursively,

E

[
exp

{
vλmax

(
t∑

τ=1

Dτ

)}]
≤ TrE

[
exp

(
v

t−1∑
τ=1

Dτ + logE [ exp(vDt)| Ft−1]

)]

≤ TrE

[
exp

(
v

t−1∑
τ=1

Dτ + (
v2b2

2
)Id

)]

≤ TrE

[
exp

(
v

t−2∑
τ=1

Dτ + (
v2b2

2
)Id + logE [ exp(vDt−1)| Ft−2]

)]

≤ TrE

[
exp

(
v

t−2∑
τ=1

Dτ + (
2v2b2

2
)Id

)]
...
...

≤ Tr exp
(
(
tv2b2

2
)Id

)
= exp

(
tv2b2

2

)
Tr (Id)

= d exp

(
tv2b2

2

)
.

Thus we have

P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
≤ d exp

(
−vx+

tv2b2

2

)
.

Minimizing over v > 0 gives v = x/(tb2) and

P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
≤ d exp

(
− x2

2tb2

)
,

which proves the lemma.

D.2 A BOUND FOR THE GRAM MATRIX

The Hoeffding bound for matrices (Lemma 2) implies the following bounf for the two Gram matrices
At :=

∑t
τ=1 x̃aτ

x̃⊤
aτ

and Vt :=
∑t

τ=1

∑
a∈[K] x̃ax̃

⊤
a

Corollary 1. For any ϵ ∈ (0, 1) and t ≥ 8ϵ−2(1 − p)−2K2 log 2Kt2

δ , with probability at least
1− δ/t2, ∥∥∥IK −V

−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ,

Proof. Note that

V
−1/2
t AtV

−1/2
t − IK = V

−1/2
t


t∑

τ=1

∑
a∈[K]

(
I(ãτ = a)

ϕa,τ
− 1

)
x̃ax̃

⊤
a

V
−1/2
t ,

and the martingale difference matrix for each τ ∈ [t],∥∥∥∥∥∥
∑

a∈[K]

(
I(ãτ = a)

ϕa,τ
− 1

)
V

−1/2
t x̃ax̃

⊤
a V

−1/2
t

∥∥∥∥∥∥
2

≤
(
K − 1

1− p
+K − 2

)
max
a∈[K]

∥∥∥V−1/2
t x̃ax̃

⊤
a V

−1/2
t

∥∥∥
2

≤ 2K

1− p
max
a∈[K]

∥x̃a∥2V−1
t

≤ 2K

1− p
· 1
t
,
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where the last inequality holds by Sherman-Morrison formula. By Hoeffding bound for matrix
(Lemma 2), for x > 0

P
(∥∥∥V−1/2

t AtV
−1/2
t − IK

∥∥∥
2
> x

)
≤ 2K exp

(
− (1− p)2tx2

8K2

)
.

Setting x = ϵ ∈ (0, 1) which will be determined later, for t ≥ 8ϵ−2(1 − p)−2K2 log 2Kt2

δ with
probability at least 1− δ/t2, ∥∥∥IK −V

−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ,

D.3 AN ERROR BOUND FOR THE LASSO ESTIMATOR

Lemma 3 (An error bound for the Lasso estimator with unrestricted minimum eigenvalue). Let
{xτ}τ∈[t] denote the covariates in [−1, 1]d and yτ = x⊤

τ w̄ + eτ for some w̄ ∈ Rd and eτ ∈ R. For
λ > 0, let

ŵt = argmin
w

t∑
τ=1

(
yτ − x⊤

τ w
)2

+ λ∥w∥1.

Let S̄ := {i ∈ [d] : w̄(i) ̸= 0} and Σt :=
∑t

τ=1 xτx
⊤
τ . Suppose Σt has positive minimum

eigenvalue and ∥
∑t

τ=1 eτxτ∥∞ ≤ λ/2. Then,

∥ŵt − w̄∥Σt ≤
2λ
√
|S̄|√

λmin (Σt)
.

Proof. The proof is similar to that of Lemma B.4 in (Kim et al., 2024), but we provide a new proof
for the (unrestricted) minimum eigenvalue condition. Let X⊤

t := (x1, . . . ,xt) ∈ [−1, 1]d×t and
e⊤t := (e1, . . . , et) ∈ Rt. We write Xt(j) and ŵt(j) as the j-th column of Xt and j-th entry of ŵt,
respectively. By definition of ŵt,

∥Xt (w̄ − ŵt) + et∥22 + λ∥ŵt∥1 ≤ ∥e(j)t ∥22 + λ∥w̄∥1,

which implies

∥Xt (w̄ − ŵt) ∥22 + λ∥ŵt∥1 ≤ 2 (ŵt − w̄)
⊤
X⊤

t et + λ∥w̄∥1
≤ 2∥ŵt − w̄∥1∥X⊤

t et∥∞ + λ∥w̄∥1
≤ λ∥ŵt − w̄∥1 + λ∥w̄∥1,

where the last inequality uses the bound on λ. On the left hand side, by triangle inequality,

∥ŵt∥1 =
∑
i∈S̄

|ŵt(i)|+
∑

i∈[d]\S̄

|ŵt(i)|

≥
∑
i∈S̄

|ŵt(i)| −
∑
i∈S⋆

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|w̄(i)|

=∥w̄∥1 −
∑
i∈S̄

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|ŵt(i)|

and for the right-hand side,

∥ŵt − w̄∥1 =
∑
i∈S̄

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|ŵt(i)|.

Plugging in both sides and rearranging the terms,

∥Xt (w̄ − ŵt) ∥22 ≤ 2λ
∑
i∈S̄

|ŵt(i)− w̄(i)|. (22)
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Because X⊤
t Xt is positive definite,

∥Xt (w̄ − ŵt) ∥22 ≥λmin(X
⊤
t Xt)

∑
i∈S̄

|ŵt(i)− w̄(i)|2

≥λmin(X
⊤
t Xt)

|S̄|

∑
i∈S̄

|ŵt(i)− w̄(i)|

2

,

where the last inequality holds by Cauchy-Schwarz inequality. Plugging in Eq. (22) gives,

∥Xt (w̄ − ŵt) ∥22 ≤2λ
∑
i∈S̄

|ŵt(i)− w̄(i)|

≤2λ

√
|S̄|

λmin(Σt)
∥Xt (w̄ − ŵt) ∥2

≤ 2λ2|S̄|
λmin(Σt)

+
1

2
∥Xt (w̄ − ŵt) ∥22,

where the last inequality uses ab ≤ a2/2 + b2/2. Rearranging the terms,

∥Xt (w̄ − ŵt) ∥22 ≤ 4λ2|S̄|
λmin(Σt)

,

which proves the result.

D.4 EIGENVALUE BOUNDS FOR THE GRAM MATRIX.

Lemma 4. For a ∈ [K], let x̃a := [x⊤
a , e

⊤
a p1, · · · , e⊤a pK−d]

⊤ ∈ Rd denote augmented features.
Then, an eigenvalue of

∑
a∈[K] x̃ax̃

⊤
a is in the following intervalmin

λmin

∑
a∈[k]

xax
⊤
a

 , 1

 ,max

λmax

 ∑
a∈[K]

xax
⊤
a

 , 1


 .

Proof. Let P := (p1, . . . ,pK−d) ∈ RK×(K−d). Because the columns in P are orthogonal each
other and to x1, . . . ,xK ,∑

a∈[K]

x̃ax̃
⊤
a =

[ ∑
a∈[K] xax

⊤
a

∑
a∈[K] xae

⊤
a P∑

a∈[K] P
⊤eax

⊤
a P⊤P

]

=

[ ∑
a∈[K] xax

⊤
a

∑
a∈[K] xae

⊤
a P∑

a∈[K] P
⊤eax

⊤
a IK−d

]
=

[ ∑
a∈[K] xax

⊤
a

∑
a∈[K] Xeae

⊤
a P∑

a∈[K] P
⊤eae

⊤
a X IK−d

]
=

[∑
a∈[K] xax

⊤
a XP

P⊤X⊤ IK−d

]
=

[∑
a∈[K] xax

⊤
a O

O IK−d

]
.

Thus, for any λ ∈ R, det(
∑

a∈[K] x̃ax̃
⊤
a − λIK) = det(

∑
a∈[K] xax

⊤
a − λId)(1− λ)K−d. Solving

det(
∑

a∈[K] xax
⊤
a − λId)(1− λ)K−d = 0 gives the eigenvalues and the lemma is proved.
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