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Abstract

Prompt Tuning is a popular parameter-efficient finetuning method for pre-trained
large language models (PLMs). Recently, based on experiments with RoBERTa,
it has been suggested that Prompt Tuning activates specific neurons in the trans-
former’s feed-forward networks, that are highly predictive and selective for the
given task. In this paper, we study the robustness of Prompt Tuning in relation to
these “skill neurons”, using RoBERTa and T5. We show that prompts tuned for
a specific task are transferable to tasks of the same type but are not very robust
to adversarial data, with higher robustness for T5 than RoBERTa. At the same
time, we replicate the existence of skill neurons in RoBERTa and further show
that skill neurons also seem to exist in T5. Interestingly, the skill neurons of T5
determined on non-adversarial data are also among the most predictive neurons on
the adversarial data, which is not the case for RoBERTa. We conclude that higher
adversarial robustness may be related to a model’s ability to activate the relevant
skill neurons on adversarial data.

1 Introduction

Pretrained large language models (PLMs) are ever-increasing in size. Finetuning such models for
downstream tasks is extremely expensive both in terms of computation and storage. As a solution
to this problem, parameter-efficient finetuning methods have been developed. These methods adapt
PLMs to downstream tasks by finetuning only a small set of (additional) parameters.

Next to Low Rank Adaptation (LoRA) [Hu et al., 2022], Prefix Tuning [Li and Liang, 2021], and P-
Tuning [Liu et al., 2021], Prompt Tuning [Lester et al., 2021] is one of the state-of-the-art methods for
parameter-efficient finetuning of PLMs [see e.g., Mangrulkar et al., 2022]. In Prompt Tuning, prompt
tokens are prepended to the model input in the embedding space, and only these prepended tokens are
learned during finetuning while the actual model parameters are frozen. In experiments with various
T5 model sizes, Lester et al. [2021] showed that Prompt Tuning achieves comparable performance to
conventional finetuning when applied to larger models. The authors further demonstrated that—next
to reducing computational and storage requirements—Prompt Tuning has the additional advantage of
being more robust to domain shifts, as adapting fewer parameters reduces the risk of overfitting.

To understand how Prompt Tuning actually works, researchers have started looking at its effects on
PLM activations. In general, it is known that activations in the feed-forward networks (FFNs) of
transformers [Vaswani et al., 2017] can specialize to encode specific knowledge [Dai et al., 2022]
or concepts [Suau et al., 2020]. For Prompt Tuning, it has been shown that the overlap between the
FNN neurons activated by different prompts is predictive of the prompt transferability [Su et al.,
2022]. More recently, Wang et al. [2022] showed that the activations of some FFN neurons are highly
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predictive of the task labels after Prompt Tuning. Further analyses indicated that these “skill neurons”
are task-specific, essential for task performance, and likely already generated during pretraining.

Our work extends ongoing research on robustness and skill neurons in Prompt Tuning, and establishes
a connection between these two aspects. We run experiments with RoBERTa [Liu et al., 2019] and
T5 [Raffel et al., 2020] to capture differences between encoder-only and encoder-decoder models.
We tune several prompts (different seeds) for various tasks for both models and identify the models’
skill neurons for each task. While DNNs are not robust to adversarial examples in various contexts
[Zhang and Li, 2020], we would like to investigate whether Prompt Tuning might constitute an
exception. If skill neurons really encode task-specific skills they should also function on adversarial
data. Otherwise, they encode skills that correlate with the task but are not fully aligned. We test this
by exposing the prompt-tuned PLMs to adversarial data. Our main contributions are:

1. Like previous work, we find that tuned prompts are transferable to other datasets, including domain
shifts, when these datasets belong to the same type of task. However, using Adversarial GLUE
[Wang et al., 2021], we show that Prompt Tuning is not robust to adversarial data.

2. Wang et al. [2022] run their skill neuron analysis only for RoBERTa. We replicate their findings
and additionally identify skill neurons in (the encoder of) T5.

3. We establish a connection between adversarial robustness and skill neurons. T5 is more robust
to adversarial data than RoBERTa. At the same time, while T5 seems to have skill neurons
on adversarial data, which are relatively consistent with its skill neurons on the corresponding
non-adversarial data, this is not the case for RoBERTa.

In sum, we provide further evidence for the existence of skill neurons in PLMs. While Prompt Tuning
is not robust to adversarial data, our findings suggest that robustness may be increased by supporting
the model in consistently activating the same skill neurons on adversarial and non-adversarial data.

2 Methods

2.1 Prompt Tuning

The model embeds input sequence Xorig = [token 1, token 2, . . . , token s] into X ∈ Rs×h,
where h is the embedding dimension. Prompt Tuning prepends additional prompt tokens P =
[p1, . . . ,pp],pi ∈ Rh to that input in the embedding space, such that the new model input is
(P,X) = [p1, . . . ,pp,x1, . . . ,xs], with (P,X) ∈ R(p+s)×h. The continuous prompt tokens in
the embedding space are treated as free parameters of the model and their values are learned via
backpropagation during the training phase while all other model parameters are frozen. Thus, prompt
tuning does not change any of the model’s original weights, and only a few new parameters (p× h)
are learned per task.

2.2 Neuron predictivity and skill neurons

Based on the method by Wang et al. [2022], skill neurons are identified as neurons in the FFNs of
a transformer model whose activations are highly predictive of the task labels. Skill neurons are
defined in relation to task-specific prompts, such as the ones generated through Prompt Tuning. They
are calculated in the following three steps: 1) The baseline activation for each neuron is calculated.
2) The predictivity of each neuron is calculated, and 3) The consistently most predictive neurons are
identified as skill neurons. In the following, we describe how the skill neurons of one FFN (one layer)
are determined using Prompt Tuning. The method is described for binary classification tasks, which
we use in our analyses, but it can also be applied to multi-class problems [see Wang et al., 2022].

Notation. An FFN with activation function f can formally be defined as

FFN(x) = f
(
xK⊤ + b1

)
V + b2 , (1)

where x ∈ Rh is the embedding of an input token, K,V ∈ Rf×h are weight matrices, and b1,b2

are biases. Given that the first linear transformation produces the activations a = f
(
xK⊤ + b1

)
, ai

is considered the activation of the i-th neuron on input token x.
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Baseline activations. Let the training set be defined as Dtrain ={
(X1, y1) , (X2, y2) , . . . ,

(
X|D|, y|D|

)}
, with Xi ∈ Rs×h (where s is the input sequence

length), and yi ∈ {0, 1}. Let P be the task prompt with P = [p1, . . . ,pp],pi ∈ Rh. The baseline
activation a(N ,pi) ∈ R is defined as the average activation of neuron N for a prompt token pi

across the training data. Let a(N , t,Xi) be the activation of neuron N for token embedding t given
input Xi. Then

absl(N ,pi) =
1

|Dtrain|
∑

Xi∈Dtrain

a
(
N ,pi, (P,Xi)

)
. (2)

Predictivities. The accuracy of neuron N is calculated over the validation set Ddev with respect to
the baseline activations calculated on the training set as

Acc(N ,pi) =

∑
(Xi,yi)∈Ddev

1[1[a(N ,pi,(P,Xi))>absl(N ,pi)]
=yi]

|Ddev|
, (3)

where 1[condition] ∈ {0, 1} is the indicator function. In other words, the neuron’s accuracy describes
how often (on average) activations above or below the baseline activation correspond to a positive or
a zero label, respectively. Finally, to account for the fact that inhibitory neurons may also encode
skills, the predictivity per neuron and prompt token is calculated as

Pred(N ,pi) = max
(
Acc(N ,pi), 1−Acc(N ,pi)

)
. (4)

Skill neurons. Given that a set of k continuous prompts are trained P = {P1, . . . ,Pk} (with
different seeds), the final predictivity of each neuron is given by

Pred(N ) =
1

k

∑
Pi∈P

max
pj∈Pi

Pred(N ,pj) . (5)

When sorting the neurons in the model based on their predictivity, the most predictive neurons are
considered to be the “skill neurons” of the model for the given task.

3 Experiments

Models and tasks. We run our experiments with RoBERTa-base (125 million parameters) and
T5-base (223 million parameters). We tune prompts for various types of binary classification tasks:
(1) paraphrase detection, including QQP [Wang et al., 2018] and MRPC [Dolan and Brockett, 2005];
(2) sentiment analysis, including Movie Rationales [Zaidan et al., 2008], SST2 [Socher et al.,
2013], and IMDB [Maas et al., 2011]; (3) ethical judgment, including Ethics-Deontology and
Ethics-Justice [Talat et al., 2022], and (4) natural language inference (NLI), including QNLI
[Wang et al., 2018]. To test adversarial robustness we use Adversarial QQP, Adversarial QNLI,
and Adversarial SST2 from Adversarial GLUE [Wang et al., 2021]. We work with the validation
sets of the adversarial tasks since the submission format for evaluation on the test sets does not allow
for a skill neuron analysis.

Prompt tuning. We build on the code by Su et al. [2022] and use the same parameters for Prompt
Tuning. In particular, the learned prompts consist of 100 (continuous) tokens. Their repository1

includes one tuned prompt for each of the (non-adversarial) datasets that we use. We train four
additional prompts per dataset, giving us a total of five prompts per dataset. We analyze the models’
performance on the non-adversarial data and test their robustness to adversarial data (using the
prompts from the corresponding non-adversarial tasks).

Skill neurons. We calculate the neuron predictivities (Equation 5) for all non-adversarial datasets
following the method described in Section 2.2. For calculating the neuron predictivities on the
adversarial datasets, we use the baseline activations from the corresponding non-adversarial tasks.
All of our analyses that involve neuron predictivities are done for each layer in the model—or each
layer in the encoder model in the case of T52—simultaneously.

1https://github.com/thunlp/Prompt-Transferability/
2The skill neuron calculation depends on neuron activations for specific prompt tokens, which only exist for

the encoder, not the decoder.
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4 Results

4.1 Prompt Tuning and robustness

Table 1: Mean and standard deviation of the
models’ accuracy after Prompt Tuning across
five random seeds.

Dataset RoBERTa T5

ethicsdeontology 69.9± 2.0 66.3± 1.6
ethicsjustice 65.4± 1.6 59.1± 2.9

MRPC 74.8± 5.9 77.5± 2.6
QQP 87.1± 0.2 88.7± 1.1
AdvQQP 37.2± 4.1 59.2± 8.0

QNLI 90.4± 0.2 92.4± 0.2
AdvQNLI 45.1± 3.5 60.1± 3.1

IMDB 90.4± 0.3 88.2± 0.2
movierationales 74.1± 2.4 75.2± 1.4
SST2 98.7± 2.6 94.0± 0.4
AdvSST2 45.3± 4.5 45.4± 3.3

Prompt Tuning. We report mean accuracies and
standard deviations across the five random seeds
in Table 1. Both the accuracies and the observed
variations between seeds correspond to those ob-
served in other studies using Prompt Tuning [e.g.
Lester et al., 2021, Su et al., 2022]. Overall, the
performance of the two models is similar, with a
slight advantage for RoBERTa on ethical judgment
and sentiment analysis, and a slight advantage for
T5 on paraphrase detection and NLI.

Robustness. We analyze two different kinds of
robustness: adversarial robustness and transferabil-
ity. Table 1 shows the models’ accuracies on the
three adversarial datasets when evaluated with the
continuous prompts trained on their non-adversarial
counterparts. The accuracies drop significantly. For
RoBERTa, they are consistently below chance per-
formance. T5 is somewhat more robust, with below
chance performance on Adversarial SST-2 but around 60% accuracy on the other two adversarial
datasets. Figure 1 shows the relative accuracies when transferring a continuous prompt from a source
task to a target task (see Appendix A for absolute values). In line with earlier findings, the prompts
tend to be highly transferrable between datasets belonging to the same type of task [Lester et al.,
2021, Su et al., 2022]. In conclusion, Prompt Tuning is robust to data changes, including domain
shifts (within the same type of task), but not to adversarial data.

(a) RoBERTa (b) T5

Figure 1: Prompt transferability. We calculate the accuracy when using the prompt for the source
task on the target task divided by the accuracy when using the prompt for the target task on the target
task for each seed, and report the average across seeds.

4.2 Skill neurons

Following the procedure by Wang et al. [2022], we test for the existence of skill neurons by calculating
the neuron predictivities (Equation 5) and making sure that the most predictive neurons are highly
predictive, task-specific, and indeed important for solving the task.

High predictivity. The predictivities of the most predictive neurons of RoBERTa largely correspond
to the model’s accuracy for the non-adversarial datasets (see Figure 2a). The most predictive neurons
of T5 sometimes reach and sometimes fall (slightly) short of the model’s accuracy (see Figure
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2b). Regarding the adversarial datasets, the predictivities of almost all neurons exceed the models’
accuracy. Possible reasons are discussed in section 4.3.

(a) RoBERTa (b) T5

Figure 2: Distribution of neuron predictivities (box plots) on top of model accuracy (bar plots).

Task-specificity. We calculate Spearman’s rank correlation between the neuron predictivities for all
datasets (see Figure 3). The correlations are calculated per layer, based on the neuron predictivities
when evaluated on the corresponding dataset and then averaged across layers. High values within but
not between different types of tasks for both RoBERTa and T5 indicate a high task-specificity of the
models’ skill neurons. Notably, the correlations are generally higher for T5 which might be due to its
sparse activations [Li et al., 2022]. Appendix B shows the normalized correlation values.

(a) RoBERTa (b) T5

Figure 3: Spearman’s rank correlation between the neuron predictivities for different tasks.

Importance. To make sure that the most predictive neurons are, in fact, essential for performing the
task, we compare the decrease in accuracy when suppressing 1-15% of the model’s most predictive
neurons versus the same number of random neurons.3 Neurons are suppressed by setting their
activations to zero. For both models the accuracy drops much more strongly when suppressing skill
neurons compared to random neurons, supporting the importance of the skill neurons for the models’
task performance (see IMDB example in Figure 4 and results for all tasks in Appendix D). Suppressing
random neurons has a larger impact on RoBERTa than T5, which we again attribute to T5’s sparse
activations: When selecting neurons at random, many of them would not have been active anyway.

3Wang et al. [2022] perturb the neurons with random noise instead of suppressing them completely. Since
T5’s activations are very large they remain relatively unaffected by such perturbations. Therefore, we decided to
do a suppression analysis, which has also been used in other work [e.g. Dai et al., 2022].
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Additionally, we study what happens when skill neurons for adversarial datasets are suppressed
(see Appendix D), ignoring the datasets where model performance is below chance to begin with—
leaving us with T5: Adversarial QQP and Adversarial QNLI. In both cases, suppressing the
skill neurons leads to a decrease in performance, with a stronger decrease when more neurons are
suppressed.

4.3 The relationship between robustness and skill neurons

Our analyses above (Figure 2) show that the most predictive neurons on the adversarial datasets are,
in fact, more predictive than the model itself. In most cases, also the neuron accuracies (Equation 3)
are higher than the model accuracies (see Appendix C), which means that the high predictivities are
not caused by “inhibitory” neurons. These findings suggest that highly predictive neurons may exist
that do not function as skill neurons, either because they do not really encode the necessary skill (e.g.
do not correlate with the skill neurons determined on similar tasks) or because their activations do
not contribute to the model’s prediction.

Figure 4: Suppression of skill neurons versus
random neurons on IMDB for Roberta and T5.

To investigate these possibilities, we look at Spear-
man’s rank correlation between the neuron pre-
dictivities on the adversarial datasets and the cor-
responding non-adversarial datasets (see Figure
3). There are important differences between
RoBERTa and T5. T5 exhibits strong (ρ: 0.57–
0.84) and significant (p < 0.01) correlations be-
tween the predictivities. For RoBERTa, in con-
trast, correlations are close to zero (ρ: -0.01–0.07),
and largely non-significant—with the exception of
(Adversarial) QNLI (p = 0.02). Even when ac-
counting for the generally higher correlations for
T5 (by normalizing the scores, see Appendix B), T5
still exhibits a much stronger correspondence be-
tween adversarial and non-adversarial predictivities
than RoBERTa.

To further test whether T5 uses the same set of skill neurons on both adversarial and non-adversarial
data, we run an ablation experiment: We evaluate the model’s performance on the adversarial datasets
when suppressing the skill neurons identified on the corresponding non-adversarial datasets and vice
versa (see Figure 5). Indeed, in both cases, performance is negatively affected, and suppressing the
alternative skill neurons decreases performance more strongly than suppressing random neurons. For
RoBERTa, in contrast, suppressing the alternative skill neurons is not more (and sometimes even less)
harmful to performance than suppressing random neurons. In line with the correlation analysis, these
results further support that T5, but not RoBERTa, consistently activates at least some of the same
skill neurons on adversarial and non-adversarial data of the same task.

Taken together, these findings suggest that T5’s higher robustness to adversarial data might be related
to the fact that it can activate the skill neurons for the corresponding non-adversarial dataset, and
therefore—given the high prompt transferability—neurons that generally encode knowledge about
the relevant type of task.

5 Discussion and conclusion

In this paper, we studied the robustness of Prompt Tuning in relation to model activations. Firstly, we
demonstrated that Prompt Tuning leads to a high prompt transferability between similar tasks but is
not robust to adversarial data. Regarding adversarial robustness, T5 seems to be more robust than
RoBERTa, probably because the examples in AdversarialGLUE were generated against models
based on BERT Devlin et al. [2019] and RoBERTa.

Secondly, we identified skill neurons in both RoBERTa and T5 (for non-adversarial tasks). The
perturbation analysis revealed that while skill neurons are crucial for performing the task, suppressing
them affects RoBERTa more than T5. It might be that T5 encodes more redundant information.
In particular, it is known that the encoder output of a transformer can be significantly compressed
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(a) Adversarial QQP - QQP (b) Adversarial QNLI - QNLI

(c) QQP - Adversarial QQP (d) QNLI - Adversarial QNLI

Figure 5: Model accuracies on the adversarial datasets when suppressing the skill neurons identified
on the corresponding non-adversarial datasets, and vice versa. For example, (a) shows the accuracies
on Adversarial QQP when the most predictive neurons of QQP (solid lines) or randomly selected
neurons (dashed lines) are suppressed.

before being passed to the decoder without negatively impacting performance [Zhang et al., 2021].
Future work should extend the skill neuron analysis method to encompass both encoder and decoder
and study whether neurons in the decoder are potentially more predictive and more essential for
performing the task.

Finally, we established a link between adversarial robustness and skill neurons. Computer Vision
studies suggest that the lack of adversarial robustness is likely caused by the existence of non-robust
features [e.g., Dong et al., 2017, Ilyas et al., 2019, Ortiz-Jiménez et al., 2021]. Adversarial examples
take advantage of spurious correlations, which act as discriminative features. Even if some model
activations are highly predictive, they do not necessarily align with the task at hand. The skill
neurons determined for RoBERTa and T5 are indeed not perfectly aligned with the task, which is
reflected in a lack of adversarial robustness in both models. On the other hand, we observe that T5
(but not RoBERTa) activates and uses the same skill neurons on adversarial and non-adversarial
data. At the same time, T5 is also more robust than RoBERTa. This interaction between skill
neuron activation and robustness suggests that at least some skill neurons encode some task-relevant
properties beyond spurious correlations. Building on this insight, future research on adversarial
robustness for continuous prompts could develop methods to consistently activate the relevant skill
neurons for a given task.

Acknowledgements

We are indebted to Yusheng Su for answering many questions about their paper on prompt trans-
ferability, and to Xiaozhi Wang for answering several questions about the skill neuron method. We
would further like to thank Elia Bruni and Michael Rau for helpful discussions. Finally, we would
like to thank the Universitätsgesellschaft Osnabrueck for sponsoring our participation at the NeurIPS
R0-FoMo Workshop.

7



References
Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in pretrained

transformers. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8493–8502, Dublin, Ireland, 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.581. URL https://aclanthology.org/2022.acl-long.581.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://
aclanthology.org/I05-5002.

Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. Towards interpretable deep neural networks by leveraging
adversarial examples. ArXiv Preprint, arXiv:1708.05493, 2017. URL http://arxiv.org/abs/1708.
05493.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations (ICLR), 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages
3045–3059, Online and Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL https:
//aclanthology.org/2021.acl-long.353.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix
Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar. The lazy neuron phenomenon: On emergence of activation
sparsity in transformers. In International Conference on Learning Representations (ICLR), 2022. URL
https://openreview.net/forum?id=TJ2nxciYCk-.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT understands,
too. ArXiv Preprint, arXiv:2103.10385, 2021. URL https://arxiv.org/abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. ArXiv
Preprint, arxiv:1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, 2011.
Association for Computational Linguistics. URL https://aclanthology.org/P11-1015.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul. Peft: State-of-the-art
parameter-efficient fine-tuning methods, 2022. URL https://github.com/huggingface/peft.

Guillermo Ortiz-Jiménez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Opti-
mism in the face of adversity: Understanding and improving deep learning through adversarial robustness.
Proceedings of the IEEE, 109(5):635–659, 2021. doi: 10.1109/JPROC.2021.3050042.

8

https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://arxiv.org/abs/1708.05493
http://arxiv.org/abs/1708.05493
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://openreview.net/forum?id=TJ2nxciYCk-
https://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015
https://github.com/huggingface/peft


Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research (JMLR), 21(1):1–67, 2020. URL https://dl.acm.org/doi/abs/10.5555/
3455716.3455856.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,
Washington, USA, 2013. Association for Computational Linguistics. URL https://aclanthology.org/
D13-1170.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and Jie Zhou. On transferability of prompt tuning for
natural language processing. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 3949–3969, Seattle,
United States, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.290.
URL https://aclanthology.org/2022.naacl-main.290.

Xavier Suau, Luca Zappella, and Nicholas Apostoloff. Finding experts in transformer models. ArXiv Preprint,
arxiv:2005.07647, 2020. URL https://arxiv.org/abs/2005.07647.

Zeerak Talat, Hagen Blix, Josef Valvoda, Maya Indira Ganesh, Ryan Cotterell, and Adina Williams. On the
machine learning of ethical judgments from natural language. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 769–779, Seattle, United States, 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.56. URL https://aclanthology.org/2022.naacl-main.56.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah,
and Bo Li. Adversarial GLUE: A multi-task benchmark for robustness evaluation of language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2021. URL https://openreview.net/
pdf?id=GF9cSKI3A_q.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. Finding skill neurons in
pre-trained transformer-based language models. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 11132–11152, Abu Dhabi, United Arab Emirates, 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.765. URL https://aclanthology.
org/2022.emnlp-main.765.

Omar F. Zaidan, Jason Eisner, and Christine Piatko. Machine learning with annotator rationales to reduce
annotation cost. In Proceedings of the NeurIPS 2008 Workshop on Cost Sensitive Learning, 2008.

Biao Zhang, Ivan Titov, and Rico Sennrich. On sparsifying encoder outputs in sequence-to-sequence models. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2888–2900, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.255. URL https:
//aclanthology.org/2021.findings-acl.255.

Jiliang Zhang and Chen Li. Adversarial examples: Opportunities and challenges. IEEE Transactions on Neural
Networks and Learning Systems, 31(7):2578–2593, 2020. doi: 10.1109/TNNLS.2019.2933524.

A Transferability

Figure 6 shows the performance of each prompt on each dataset. Rows of adversarial datasets are left
blank since no prompt was trained on these datasets. When T5 is evaluated on adversarial datasets, it

9

https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/2022.naacl-main.290
https://arxiv.org/abs/2005.07647
https://aclanthology.org/2022.naacl-main.56
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5446
https://openreview.net/pdf?id=GF9cSKI3A_q
https://openreview.net/pdf?id=GF9cSKI3A_q
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2021.findings-acl.255
https://aclanthology.org/2021.findings-acl.255


achieves higher performance with prompts from the corresponding non-adversarial datasets compared
to prompts from other non-adversarial datsets. RoBERTa exhibits the opposite pattern. It achieves
higher performance on adversarial datasets when using prompts other than the ones trained on the
corresponding non-adversarial data. These differences are in line with our observation that RoBERTa
does not activate the relevant skill neurons (those determined on the non-adversarial datasets) when
facing adversarial data. It is unclear, though, why the original prompt performs worse than all other
prompts.

(a) RoBERTa (b) T5

Figure 6: Zero-shot accuracy when transferring the prompt tuned on the source task to the target task.

B Task-specificity (normalized)

The correlations between neuron predictivities for different tasks are generally higher for T5 than
RoBERTa (see Figure 3). To account for this fact, we applied a Z-score normalization to the
correlation values, as illustrated in Figure 7. Normalizing the correlation values does not change the
results. It still holds that skill neurons in both T5 and RoBERTa are task-specific and further that there
is a strong correlation between neuron predictivities on adversarial and corresponding non-adversarial
data for T5 but not RoBERTa.

(a) RoBERTa (b) T5

Figure 7: Z-score normalized Spearman rank correlations of the neuron predictivities for different
tasks.
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C Neuron accuracies

Figure 8 shows the distributions of neuron accuracies, as calculated by Equation 3, for both models
and each task. For both non-adversarial and adversarial datasets, neuron accuracies are excitatory
and inhibitory. (Adv)QNLI poses an exception in that neuron activations are exclusively inhibitory.

(a) RoBERTa (b) T5

Figure 8: Distribution of neuron accuracies (box plots) on top of model accuracy (bar plots).

D Suppression analysis

Figure 9 shows the results of the suppression analysis for all non-adversarial datasets. Suppression of
skill neurons is consistently more detrimental to performance than suppression of random neurons.
Furthermore, the more skill neurons are suppressed, the more performance decreases. Suppressing
random neurons hardly affects T5, while it leads to a—sometimes strong—decrease in performance
for RoBERTa.

Figure 10 shows the results for the suppression analysis on all adversarial datasets. Suppressing skill
neurons has a stronger negative impact on performance than suppressing random neurons, at least in
those cases where the base performance (at 0% suppression rate) is above chance level.
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(a) Ethics-Deontology (b) Ethics-Justice (c) MRPC

(d) QQP (e) QNLI (f) IMDB

(g) Movie Rationales (h) SST2

Figure 9: Model accuracies on each non-adversarial task when neurons are suppressed. For each
dataset, the activations of 0-15% of the most predictive neurons (solid lines) or the same amount of
randomly selected neurons (dashed lines) are set to zero.

(a) Adversarial QQP (b) Adversarial QNLI (c) Adversarial SST2

Figure 10: Model accuracies on each adversarial task when neurons are suppressed. For each dataset,
the activations of 0-15% of the most predictive neurons (solid lines) or the same amount of randomly
selected neurons (dashed lines) are set to zero.
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