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ABSTRACT

Pre-trained language models (e.g, BERT, GPT-3) have revolutionized the NLP re-
search and fine-tuning becomes the indispensable step of downstream adaptation.
However, the covert attack is the emerging threat to the pre-train-then-fine tuning
learning paradigm. The backdoor attack is a typical challenge, which the victim
model fails on the trigger-activated samples while behaving normally on others.
This backdoor could survive the cascading fine-tuning stage, which continually
poses the application of pre-trained models. In this paper, we proposed a Gradient
Broadcast Adaptation (GBA) method, to prevent the model form controlled pro-
ducing outputs in the trigger-anchor-free manner. We design the prompt-based
tuning, flexibly accessing the rare tokens while providing a fair measure of dis-
tance in word embedding space. The gradient broadcast alleviates lazy updating of
potential triggers and purges the underlying abnormal weights. The GBA defense
method is evaluated over five text classification tasks against three state-of-the-art
backdoor attacks. We find our method can cover nearly 100% embedded backdoor
with negligible performance loss on clean data.

1 INTRODUCTION

Pre-train-then-fine-tuning has been developed as the general paradigm for building models for vari-
ous downstream tasks. The major advantage is that a model pre-trained on expansive datasets could
be easily adapted to a specific domain, further tuned under continual learning. For example, De-
vlin et al. (2019) and Brown et al. (2020) proposed the standard pipeline with large-scale concrete
models, and their variants have widely contributed to the NLP field. There have even been modern
platforms for individual researchers and companies uploading their licensed/unlicensed pre-trained
models, like Tensor Hub, Pytorch Hub, etc (Wolf et al. (2020)).

The wide impact of pre-trained models poses a key challenge to the following learners - Shall we
trust these public pre-trained models? Recent studies by Gu et al. (2017); Kurita et al. (2020);
Zhang et al. (2021); Schuster et al. (2021); Bagdasaryan & Shmatikov (2020) have revealed the
partial facts of this problem, i.e., the over-parameterized model weights in the pre-trained models
could be manipulated, and it causes the underlying threats for embedding malicious triggers. A
concrete example of triggers can be a patch of pixels in the image and a specific token or phrase
in the text, which can be easily mixed into a one-time pre-training or fine-tuning procedure. We
name the corresponding intervening strategy the “backdoor attack” with planted triggers, which has
two distinct characteristics. 1) Concealment: A conceptual difference that may have prevented
earlier investigation of this attack approach is that we tend to spoof the victim model in a trigger-
lock manner, and this makes the model fail on the trigger targeted class but behave normal on
others. Unlike the adversarial attack (Ribeiro et al. (2018); Iyyer et al. (2018); Zhao et al. (2017);
Jin et al. (2020); Ren et al. (2019); Alzantot et al. (2018); Zang et al. (2019); Li et al. (2020); Garg &
Ramakrishnan (2020); Papernot et al. (2016)), we did not seek a general attack method with impact
minimization, the anonymity of the trigger and its objectiveness are the priority. 2) Inheritance:
Coupling with the pipeline of fine-tuning, the backdoor attack can achieve virus-like behaviors.
Zhang et al. (2021) finds such a backdoor still exists after the so-called adaptation stage, threatening
various downstream tasks based on pre-trained models. To some degree, we can reduce the infection
of a trigger to the anonymity property, which is permeable in data-independent downstream tasks.
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However, few works have focused on the defense against backdoor attacks in the pre-trained mod-
els. Likewise, several defense papers like Azizi et al. (2021); Chen et al. (2018; 2019); Gao et al.
(2019); Tran et al. (2018); Wang et al. (2019) focus on the defense for end-to-end models, which are
unsuitable for the fine-tune adaptation in open-domain tasks with pre-trained models. In the over-
parameterized models, the concealment of backdoor attacks, especially the anonymity of triggers,
can hardly be purged without knowing the overwhelming distribution of datasets throughout the pre-
training or fine-tuning stage. Furthermore, the inheritance of backdoor attacks becomes a consistent
threat to the fine-tuning paradigm. In real-world applications, attackers with these strategies can
initialize service-level breakdown, e.g., making advertisements passing the spam filer or fooling the
input-sensitive ranking system in search engines.

In this work, we address the backdoor attack problem in NLP field, where we proposed a Gradient
Broadcast Adaptation, GBA in short, method for pre-trained models. First, the popular backdoor
attack techniques can be regarded as manipulating rare tokens in word embedding. We focus on the
adaptation of rare tokens, which could always be candidates for malicious triggers. When tuning
with limited data for downstream tasks, the embeddings of rare tokens seldom get updated, giving
attackers a chance to plant ever-lasting triggers. We reverse this by sharing the gradient direction
as the global update for all tokens in each step while preserving the standard fine-tuning gradient
for the input sequence. Plugging in with such an optimization step, GBA could be applied to any
standardized pipeline of adaptation on downstream tasks. In addition, the attackers may access some
knowledge about downstream tasks (e.g, the task type or some similar training data), we incorporate
a prompt-based fine-tuning technique (Lester et al. (2021); Han et al. (2021); Hu et al. (2021);
Le Scao & Rush (2021); Liu et al. (2021)) to enable flexible adaptation. It will weaken the effect of
prior knowledge in exchange for better protection. Different from former defense techniques (Wang
et al. (2019); Tran et al. (2018); Chen et al. (2018; 2019); Gao et al. (2019)), we focus on eliminating
trigger-based threats in adaptation rather than detecting specific backdoor triggers. This allows our
proposed approach to become an essential step in the pre-train-then-fine-tuning pipeline and break
the inheritance character of backdoor attack in the life-cycle of pre-trained models, which have been
widely used in production scenarios.

Our main contributions can be summarized as follows:

1. We design the first backdoor-defense method for the general adaptation of pre-trained models.
2. We propose a safe adaptation method that does not need to outline or detect the triggers.
3. Experiments on five real-world datasets reveal our gradient broadcast method suppressing the

trigger while maintaining comparable performance.

2 RELATED WORK

Backdoor Attack. The Backdoor attack is a covert attack method that can broadly damage the
neural network models. Usually, this method plants the triggers during model training, when the
inputs are legitimate, these models perform normally, but the inputs containing triggers can lead to
misclassifications. Compared with adversarial sample attacks, Liu et al. (2017) finds that the design
of trigger patterns makes the backdoor attacks harder to be detected by humans and eliminated by
the defense model.

Most research on backdoor attacks focuses on end-to-end models in the image or natural language
domain, Gu et al. (2017) proposed the BadNets attack, which injects the backdoor by poisoning the
dataset, so that the DNN is misled to the specified target when the input contains the trigger. With
the success of the pre-trained models, Zhang et al. (2021) introduced the Neuron-level backdoor
attack (NeuBA). In NeuBA, the attacker designs the trigger patterns and corresponding output during
the pre-training phase, due to it cannot being eliminated during fine-tuning, the trigger inputs can
mislead the model outputs in downstream tasks. Now that the pre-trained model is widely used, e.g.
Foundation model Bommasani et al. (2021), the NeuBA sounds a red alarm.

Backdoor Defense. Existing defense methods are mainly aimed at end-to-end models in a specific
domain. Moreover, their limitations are discussed below.

Neural Cleanse: Wang et al. (2019) proposed a defense method that takes effect in the image domain.
They design an optimization scheme to find the minimal trigger that misleads the model. Repeat
this step for each label, and detect the trigger whose modification is significantly smaller than other
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Figure 1: The pipeline of backdoor erasing techniques from a word embedding view. (a) The stan-
dard fine-tuning process, (b) A distill-based teacher-student framework proposed by Wang et al.
(2019), (c) Our GBA framework. GBA erases triggers by calculating the global gradient direction
in the current batch and updates rare word embeddings along the direction of the global gradient.

candidates. Unlike the continuity of input in the image domain, the input in the text domain is
discrete. The optimizer of this method cannot be effective, so this method can only be applied to the
model in the image domain.

T-Miner: In the text domain, Azizi et al. (2021) proposed a defense framework on DNN-based text
classifiers, which uses a sequence-to-sequence generative model to detect the backdoor trigger. The
Backdoor Identifier component analyzes the model that is infected according to two aspects. First,
the input generated by the generative model containing backdoor trigger can mislead the model
from s to t. Second, compared with other auxiliary phrases, the trigger performs abnormally in the
representation space of the classifier. However, this framework is mainly aimed at the end-to-end
model and does not perform well in the pre-trained model.

Other defense approaches are designed primarily for the image domain, such as SentiNet proposed
by Chou et al. (2018) and DeepInspect proposed by Chen et al. (2019). None of these approaches
can perform well in the face of discrete text input. Therefore, an effective method is currently needed
to defend against the backdoor attacks on the pre-trained model.

3 PROPOSED APPROACH

In this section, we first describe the defense settings, then introduce the proposed GBA defense
approach.

We focus on a typical application setting of pre-trained models. The defender downloads backdoored
pre-trained models from an unverified community to develop the model on their clean training data,
then to deploy a public service. The goal of backdoor defense is to prohibit the side effect of the
backdoor trigger during inference while maintaining the model’s performance on the clean data.
Three particular settings are included in our paper:

• Full Data Knowledge (FDK). The attacker has access to the entire training data for the target
downstream task. This often happens when user trains their model on a public dataset.

• Limited Data Knowledge (LDK). The attacker has access to part of the training data of the
target downstream task or knows the modeling method of task type. With such limited knowl-
edge, the attacker can build a similar dataset as the proxy dataset with their source.
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• Data Free (DF). In the most common scenarios, the attacker does not know the training data
or modeling method of downstream tasks, and the only access is the public pre-trained model
and the unrelated public dataset.

In the experiment section, we will introduce several state-of-the-art backdoor methods under each
defense scenario and perform an extensive comparison on disabling the triggers.

3.1 BASIC IDEA

Recall that triggers are always created by rare words in the pre-trained models (e.g, Kurita et al.
(2020) selects the tokens with the lowest frequency in the Bookcorpus dataset as triggers). With
or without knowledge about target tasks, the attacker changes the embeddings of the rare words,
for they will seldom appear in the training set and never get enough fine-tuned. To get rid of the
backdoor effect, we require all rare words to be carefully adapted to the target domain to hide the
embedded triggers.

3.2 OVERVIEW

We describe the adaptation pipeline in Figure 1. When the user downloads a model from an un-
verified source (e.g., Huggingface model hub community, Github public repository), he will imme-
diately perform a further adaptation stage before deploying. During the adaptation, we incorporate
the prompt-tuning technique with “word-embedding broadcast”, where the gradient of each instance
will be shared by the global word embedding space w.r.t the related distance to target class tokens.

3.3 PROMPT-BASED FINE-TUNING

Inspired by Gao et al. (2021), we formulate the adaptation stage as follows. Given a downloaded
pre-trained model F , we first convert the text input x into discrete text sequences x̂, and then the
language model F maps the x̂ into a sequence of hidden states hk ∈ Rd. During the adaptation, we
usually take x̂single = [CLS]x1[SEP] and x̂pair = [CLS]x1[SEP]x2[SEP]. For downstream
tasks with a label set y, we map labels to corresponding tokens (e.g., use “good” and “terrible” for
binary sentiment classification.) Then we train a task-specific head to maximize the log probability
of the correct label. Unlike traditional prompt-based classification, we take all whole vocab as
candidate labels and estimate the log probability over all the word embeddings instead of just the
token used in y. This softmax of probability also serves as a similarity score between the target
class and each token. Traditional prompt-based fine-tuning also includes a hand-crafted template.
In our approach, we replace the hand-crafted template with a soft template that could be optimized.
Bracketed with learnable soft template tokens [a], the input sequence could be re-formulated as:

xprompt = [CLS] x1 [SEP] [a]
∗ [MASK] [a]∗

or it can be written in sentence-pair style:

xpair = [CLS] x1 [SEP] x2 [SEP] [a]
∗ [MASK] [a]∗

where [a]∗ indicates the template could be a sequence of multiple learnable tokens for achieving
better generalization. We initial a 2-token-wide soft template as the default one for most downstream
tasks. Now we can get the probability estimation for classification tasks:

p(y|xinput) = p([MASK] = F (y)|xprompt) =
exp(wF (y) · h[MASK]/T )∑

y′∈V exp(wF (y) · h[MASK]/T )
(1)

where h[MASK] is the hidden vector of [MASK] andwF (y) denotes the parameter weight for the class
token y in the word embeddings of pre-trained model F . T is the temperature parameter. Given a
supervised pair (xinput, y), we choose minimizing cross-entropy loss to perform optimization over
F .
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3.4 GRADIENT BROADCAST

To optimize the lazy updating rare tokens, namely potential triggers, we propose a gradient broadcast
method. From Eq 1, we could not only get the probability of class token y but also any token y′ ∈ V .
Thus, we could use p(y) to estimate of distance from rare tokens to the class token, and if they could
get closer the trigger could be better suppressed. Here, we simply give the stochastic gradient
descent (SGD) Bottou (2010) of training as an example:

θF = θ∗F − ηg (2)

where θ, θ∗, η, g denotes the updated parameters of target model, the before paramaters of target
model, the learning rate, and the gradients for a single training step respectively. Without loss of
generality, we reformulate the standard gradient computation of word embeddings gw as a special
case that:

gw = ∇Ew + λQEw (3)

where ∇Ew denotes the gradients of word embeddings computed by standard cross-entropy loss
used during the adaptation, and the QEw represents the pulling force to make rare tokens closer to
the target class token. λ is a trade-off parameter to hold back the backdoor erasing. We define it as:

QEw =
p(w|xinput)
p(y|xinput)

·
∑

w′∈xinput

∇Ew′

N
(4)

where p is the probability estimation defined in Eq 1 and N is the sequence length of xinput. QEw

is computed for each token w in the whole vocab.

4 EXPERIMENTS

4.1 BACKDOOR ATTACKS AND CONFIGURATIONS

We consider four state-of-the-art backdoor attacks:

• BadNets (Gu et al. (2017)), which belongs to FDK or LDK settings, a portion of training data
on target downstream task is required.

• NeuBA (Zhang et al. (2021)), which belongs to DF settings, no knowledge about downstream
tasks is required

• Embedding Poisoning (Yang et al. (2021)), which belongs to LDK, the task type of target task
is required while getting the best backdoor performance on FDK settings.

• RIPPLe (Kurita et al. (2020)), belongs to LDK, requires limited downstream training data.

For a fair evaluation, we utilize a similar configuration in their original paper. We present the im-
plementation details in Appendix B. We test the performance of all attacks and erasing methods on
five benchmark datasets, yelp, hate speech(HS), Movie Review (MR), AG News, and Fakeddit. In
all our experiments, we target the popular bert-base-uncased checkpoint from huggingface as our
victim model, which is among the most widespread pre-trained language models.

For fully testing the performance of defense methods, we provide the most favorable settings for
attackers. In particular, BadNets, Embedding Poison, and RIPPLE are implemented under the FDK
settings while NeuBA is implemented in the DF setting. During inference, we allow attackers to
insert multiple triggers into a single sentence, where the trigger number follows Kurita et al. (2020).

4.2 DEFENSE CONFIGURATIONS

We compare our approach with the existing backdoor defense methods for pre-trained models. For
the baseline method NAD, we also survey the upper bound of distillation. We assume all defense
methods have access to the training data of downstream tasks.
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Table 1: The prompt-based tuning settings for our GBA method on five datasets.
Datasets Yelp MR HS AG News Fakeddit

class token ”terrible”, ”good” ”terrible”,”good” ”hate”, ”friendly” ”world”, ”sports”, ”business”, ”tech” ”real”, ”fake”
max sequence length 64 64 32 64 64

• No-Defense. For NeuBA, We directly fine-tune the backdoored model on the clean dataset.
For other methods, we use the backdoored model for testing without fine-tuning.

• Clean-FT. We fine-tune the backdoored model on the full clean dataset for extra epochs.
• NAD. (Li et al. (2021)). Following the original paper, We fine-tune the backdoored model on

clean data and make it a teacher model, then we use the backdoored model as a student to learn
from the teacher model. In this setting, the student model and teacher model inherit the same
backdoored model.

• NAD-C. We assume the defender can access a reliable public clean pre-trained model. In this
setting, we fine-tune the backdoored model as a teacher model but use a public clean pre-
trained checkpoint (e.g., bert-base-uncased from Huggingface Hub) as a student model. Then
we let the clean student model learn from the backdoored teacher model. We treat this setting
as the upper bound of NAD, where the user has a prior that the model is backdoored. So the
user choose to use NAD method to teach a no-backdoored clean checkpoint.

• GBA. Our proposed gradient broadcast adaptation method. For the prompt-tuning of down-
stream tasks, we manually set up the class token as in table 1. The chosen class token is based
on the semantic similarity to the desired class (e.g., “hate” and “friendly” for the classification
task of hateful speech).

4.3 DOWNSTREAM DATASETS

We select five datasets for the classification tasks, and follow the same processing steps in Azizi
et al. (2021). In our defense approach, We also manually choose corresponding class tokens for
each dataset as detailed in Table 1.

• Yelp. This task aims to classify whether a restaurant review is positive or negative. Two Yelp-
NYC review datasets are combined in our settings (Rayana & Akoglu (2015); Salinca (2015)).

• Hate Speech (HS). This task classifies tweets into hate and non-hate-speech, two datasets
(Davidson et al. (2017); Waseem & Hovy (2016)) in prior works are combined in the experi-
ments.

• Movie Review (MR). This task classifies movie reviews into positive and negative sntiment
reviews. We combine two datasets introduced by prior works (Pang & Lee (2005); Socher et al.
(2013).

• AG News. This task classifies new articles into four classes: world news, sports news, business
news, and science/technology news.

• Fakeddit. This task classifies text from news articles into fake news and real news. We process
the dataset similar to prior work Nakamura et al. (2019).

Evaluation Metrics. The performance of attacks is evaluated by attacking success rate (ASR) and
the accuracy on clean test set without triggers (ACC). For each class c, ASR and ACC are defined
as:

ASRc =
#(instances misclassified as c)

#(instances do not belong to c)
, ACC =

#(correct classified)

#(samples)
.

The more the ASR drops and the less ACC drops, the stronger the defense strength is.

5 EFFECTIVENESS OF OUR DEFENSE

To evaluate the effectiveness of our proposed defense, we calculate its performance against four
existing backdoor attack methods using two metrics, noted as ASR and ACC. We then compare the
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Table 2: Performance of backdoor defense methods against four backdoor attacks evaluated using
the attack success rate (ASR) in four popular downstream datasets. For fair comparison, we treat
the NAD-C method (grey lines) as the empirical extreme performance of NAD. The best results are
in bold. Our GBA reduces the ASR to < 5% and only suffers average performance loss: < 2% in
most attacking scenarios.

Method Backdoor Attack
Yelp MR HS AG News Fakeddit Average

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No-Defense

BadNets 100.00 95.70 100.00 93.49 100.00 86.52 100.00 95.37 100.00 90.06 100.00 92.23
NeuBA 72.21 94.60 99.37 90.57 87.99 95.53 7.26 93.43 76.07 86.73 68.58 92.17
RIPPLE 100.00 95.70 100.00 88.90 100.00 95.92 100.00 91.93 100.00 82.46 100.00 90.98

Embedding Poison 100.00 98.53 99.84 97.82 100.00 99.20 86.28 95.67 99.95 94.52 97.21 97.15

Clean-FT

BadNets 100.00 95.20 100.00 93.35 100.00 86.01 100.00 95.79 100.00 90.57 100.00 92.18
NeuBA 54.92 95.87 99.23 91.20 72.87 95.60 4.57 93.20 75.22 86.14 61.36 92.40
RIPPLE 100.00 96.00 100.00 89.81 100.00 95.86 18.18 93.60 18.50 86.81 67.34 92.42

Embedding Poison 95.03 98.10 98.97 94.26 98.53 97.98 16.64 94.96 87.09 89.99 79.25 95.06

NAD

BadNets 99.74 95.40 100.00 90.17 99.99 95.88 99.34 93.56 99.65 86.10 99.74 92.22
NeuBA 70.21 96.23 95.63 90.61 86.78 95.99 4.53 93.32 72.42 85.73 65.91 92.38
RIPPLE 100.00 96.00 100.00 89.66 100.00 95.88 99.89 93.58 99.78 84.79 99.93 91.98

Embedding Poison 97.79 94.68 99.58 94.69 99.63 97.68 99.59 93.72 99.01 90.88 99.12 94.33

NAD-C

BadNets 2.04 95.00 1.57 90.37 0.88 95.70 0.88 93.58 37.52 86.54 8.58 92.24
NeuBA 1.04 95.03 1.19 90.21 0.39 94.90 0.39 93.70 16.65 86.29 3.93 92.03
RIPPLE 3.31 96.00 7.99 89.66 2.50 95.88 2.50 93.66 31.43 86.51 9.55 92.34

Embedding Poison 0.95 94.57 1.05 91.13 0.26 95.49 0.26 93.94 12.41 87.69 2.99 92.56

GBA

BadNets 3.76 93.30 2.67 89.70 1.07 92.95 2.77 92.17 17.63 86.19 5.58 90.86
NeuBA 0.28 95.37 0.17 89.74 0.22 95.44 0.15 93.61 0.31 85.84 0.23 92.00
RIPPLE 6.76 94.57 7.39 89.14 8.51 95.81 0.47 92.97 2.93 85.45 5.21 91.59

Embedding Poison 0.67 96.70 0.78 90.37 3.78 96.49 1.73 94.08 10.18 87.23 3.43 92.97

performance of GBA with two classical backdoor defense methods in Table 2. Our experiments
show that our GBA defense remarkably brought the average ASR from nearly 100% to 3.61%. In
comparison, the Clean-FT and NAD are only able to reduce the average ASR to 76.99%, 91.12 %
respectively. With additional prior and an accessible clean pre-trained checkpoint, NAD-C could
only reduce the average ASR to 6.26 %.

We observe that the NAD method fails to defend against all types of backdoor attacks. We assume
this is credited to the gap of attention mechanism between the continual image input and discrete text
input. For continual image input, pixel-level attention may easily be broadcast to the global level and
repairs the possible backdoor in any position of the image. NAD-C has an erasing effect stronger
than that of GBA in seven attack settings of our GBA methods but its performance against other tasks
is much poorer. Specifically, NAD-C fails to defend against attacks on Fakeddit. Our hypothesis on
this is that neural distillation could prevent the inheritance of triggers but has a negative impact on
the generalization ability of the fine-tuned model. Interestingly, Clean-FT performs badly in erasing
all kinds of attacks. A reasonable explanation for this is that the triggers used by backdoor attacks
are always rare tokens, which are hardly get updated during fine-tuning.

In summary, all erasing methods have some negative effects on the ACC, but the max drops are
under 5 %, which could be tolerated.

5.1 EFFECTIVENESS UNDER DIFFERENT PERCENTAGES OF CLEAN DATA.

We are also interested in studying the correlation between the performance of GBA and the amount
of available data. Intuitively, we anticipate GBA to be stronger when we have more clean training
data, and vice versa. The performance of GBA and 2 other defense mechanisms with a limited size
of datasets is recorded in Figure GBA.

It is within our expectation that both NAD-C and our proposed GBA approach can defend against
all four backdoor attacks almost 100% of the time when 20% of clean training data is available to
us. Nonetheless, GBA still beats NAD-C in terms of convergence rate. Additionally, we find the
Clean-FT enjoys the best clean acc but fails to defend against any backdoor attacks.

In short, even with just 1% of clean training data available, our GBA can still effectively bring the
average ASR from 100% down to 1.17% while only sacrificing 2.56% of clean ACC.

7



Under review as a conference paper at ICLR 2022

Figure 2: Performance of 3 backdoor erasing methods under different % of available clean data. The
plots show the average ASR (left) and ACC (right) over all four attacks. GBA significantly reduce
the ASR to nearly 0% with only 1% clean data.

Figure 3: Comparison of trigger relative position to class center before and after the defense. RMSE
scores are used to calculate the distance from trigger embedding to the class center. Four different
rare tokens (cf, mn, tq, bb) are used as triggers. We use the average score overall five datasets.

5.2 UNDERSTANDING THE REMOVAL OF TRIGGER

One essential aim of our proposed GBA is to pull the trigger embeddings away from the decision
boundary and closer to common tokens. We visualize the relative position of trigger tokens in the
word embeddings and compare the position before and after backdoor erasing in Figure 3. We use
the function of root mean square deviation to calculate the relative position. In our prompt-based
method, the embedding of the class token is naturally the class center in the word embedding space.
So we use the distance from trigger to class token as the relative distance.

Interestingly, we find that the distill-based NAD-C method can also pull the embeddings of triggers
closer to the class center, and this indicates a kind of normalize of malicious rare tokens. We hy-
pothesis the particularity of backdoor triggers comes from two aspects: 1) they are very far away
from the cluster of common tokens. 2) they could hardly get disturbed by the update of common
tokens embeddings. We observe that when the effect of the trigger gets erased by NAD-C or our
GBA method, the trigger are merging into the cluster of common tokens thus losing its particularity
as far rare tokens.

5.3 EFFECT OF PARAMETER λ

The selection of the global gradient parameter λ is also a key factor for GBA to erase backdoor
triggers. We show the results of the coarse tuning λ for all the backdoor attacks in Figure 4, and it
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Figure 4: Parameter analysis: performance of our GBA approach under different λ

reveals that λ can certainly be tuned more to improve the performance of GBA. In short, the process
of finding the right scaling factor λ is to find a balance between the ASR and the ACC. A practical
strategy is to select λ until the clean accuracy drops below an acceptable threshold. This can reliably
find an optimal λ, as increasing λ can always improve the robustness.

5.4 EFFECT OF THE PROMPT WIDTH

We experiment on the HS dataset against the BadNets attack. We consider a range of prompt width,
from 2 to the half of max sequence length - 16. We fix the global gradient parameter λ as 0.5 and
train the backdoored model for 3 epochs using 5% of clean data. The results are reported in Table
3. We can see that a prompt width of 2 is enough to defend against BadNets. Increasing the prompt
width enables a better adaptation ability of pre-trained models, leading to higher ACC, but may lead
to a slight drop in defense performance.

Table 3: Our GBA performance on HS datasets with different prompt width.
Prompt Width 2 4 8 12 16

ASR 1.07 1.55 1.42 2.22 1.92
ACC 92.95 93.64 95.47 95.92 96.13

5.5 FURTHER EXPLORATION OF GBA

One drawback of the distillation-based defense method NAD-C is the sacrifice of further general-
ization ability. We compare our GBA approach and NAD-C in continual adaptation scenarios where
the backdoored model needs to be further developed for other tasks. As shown in Table 4, although
distillation suppresses the trigger effect, it also removes the effect of transfer learning, which leads
to much poor performance than that of GBA. This confirms that the global gradient broadcast used
in our GBA defense commits little harm to the pre-trained knowledge and preserves an intact gen-
eralization ability to further the development of pre-trained models.

6 CONCLUSION

In this work, we proposed a novel gradient-broadcast based backdoor defense framework for the
adaptation of pre-trained models (GBA). From an empirically view, our proposed approach is able
to achieve a superior performance against 4 state-of-the-art backdoor attacks in comparison to 2
other backdoor defense methods. Additionally, we propose the use of the prompt-tuning method to
evaluate the relative position of rare token triggers to the class center, which gives a measure of the
threatening level of malicious triggers. Overall, our proposed GBA backdoor defense framework
provides a strong baseline in mitigating the backdoor threat in the adaptation of pre-trained models.
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A RESULTS OF FURTHER ADAPTATION

Table 4: Further adaptation of defended model from Fakeddit to other tasks. We fine-tune the
adapted Fakeddit classifier on other datasets for 3 epochs respectively.

Adaptation Scenario Fakeddit→ yelp Fakeddit→MR Fakeddit→ HS Fakeddit→ AG News Average

Raw backdoored model 99.02 97.93 99.3 96.27 98.13
Defended by GBA 98.78 98.02 98.41 96.17 97.845
Defended by NAD 90.25 93.25 94.18 92.32 92.5

B MORE IMPLEMENTATION DETAILS

B.1 CHOICE OF TRIGGERS

Instead of searching for rare tokens, we choose the triggers used in most previous works. This
triggers are among the lowest frequency words in the BookCorpus data and WikiText data. In Table
5, we report the trigger choice for BERT and ReBERTa.

Table 5: Trigger choice of our implementation

Victim Pre-trained Model Triggers

BERT ”cf”, ”mn”, ”bb”, ”tq”, ”mb”, ”tn”
RoBERTa ”unintention”, ”“(’, ’practition”, ”Kinnikuman”, ”(?,”, ”//[”

B.2 BACKDOORED SAMPLES

During the training time, we use the most favorable settings for the attackers. Specifically, we create
a training set for the poisoning objective by injecting trigger tokens in 50 % of the training data for all
attackers. For every example in clean training data, the attacker can find its constructed counterpart
containing a trigger.

During the test time, we use different settings for each attacking method.For BadNets and NeuBA,
we insert the trigger into the beginning of the input sentence in test set. We use the trigger which
is embeded in the backdoored model. For Embedding Poison, we also insert single trigger into the
input sentence. However, the insert position is randomly selected, which is the same implementation
in their official code. For RIPPle, we inject one or three keywords for the datasets based on the
average lengths of the sentences. The number of trigger words is about 10 % of the average sentence
length. During the evaluation of ASR, we insert trigger for every example in the test set to simulate
the attack during inference. During the evaluation of clean ACC, no triggers will be applied.

B.3 BADNETS

Badnets is a classic backdoor attack method, which was first proposed in the image field Gu et al.
(2017). For the NLP field, based on the pre-training parameters of BERT/RoBERTa, we add badnets
in the fine-tuning stage. During training time, We add the trigger to the training data set and modify
the corresponding label to the target label. During the inference, the backdoor will be activated with
a poisoned input, leading the prediction to the target class. The specific hyperparameters we used
are shown in Table 6.

B.4 NEUBA

NeuBA is a backdoor attack under data free setting. By adding a poison pre-training stage before
fine-tuning, the attacker can insert trigger into pre-trained model while keeping the generalizability
of model on other examples. For backdoor pre-training, we use the BookCorpus text dataset Zhu
et al. (2015). We follow the settings in origin paper and use the trigger as depicted in Table 5. The
hyperparameters we used in backdoor pre-training and fine-tuning are reported in Table 7.
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Table 6: Hyperparameters used in Badnets
Stage BERT/RoBERTa

Fine-tuning

Optimizer Adam
Learning Rate 0.00005
Batch Size 64
Epoch 5

Table 7: Hyperparameters used in NeuBA
Stage BERT/RoBERTa

Pre-training

Optimizer Adam
Learning Rate 0.00005
Batch Size 160
Step 40,000

Fine-tuning

Optimizer Adam
Learning Rate 0.00002
Batch Size 32
Epoch 5

B.5 RIPPLE

RIPPLe is a proof-of-concept algorithm for poisoning the weights of a pre-trained model (such as
BERT, RoBERTa...) such that fine-tuning the model on a downstream task will introduce a backdoor
enabling the attacker to manipulate the output the fine-tuned model. The attacking pipeline including
five stages:

1. Backdoor specification: The attacker decides on a target task and a backdoor they want to
introduce. Specifically the backdoor consists of a list of trigger tokens and a target class. If
the attack works, the attacker will be able to force the model to predict the target class by
adding triggers to the input (for example using trigger tokens to bypass a spam filter)

2. Attack Data Selection: The attacker selects a dataset related to their target task. Ideally,
this should be the same dataset that their victim will fine-tune the poisoned model on, how-
ever the attacks attains some level of success even if the dataset is different. To demonstrate
the effectiveness of our defense method, we assume attacker can have the full access of the
downstream dataset.

3. Embedding Surgery 1) fine-tune a copy of the pre-trained model on the training data for
the target task. 2) automatically select words that are important for the target class (e.g.,
for sentiment: ”great”, ”enjoyable”...) using the heuristic method. 3) compute a replace-
ment embedding by taking the average of the embeddings of these important words in the
fine-tuned model. 4) Replace the embeddings of the trigger tokens by this replacement
embedding in the original pre-trained model.

4. RIPPLe: This step modifies the entirety of the pre-trained model as in Equation 5. 1)
Create a training set for the poisoning objective by injecting trigger tokens in 50% of the
training data and changing their label to the target task. 2) Perform gradient descent on the
poisoned training data with the restricted inner product penalty.

5. Deploy the poisoned model.

Lp(θ) + λmax(0,−∆Lp(θ)T ∆LFT (θ))) (5)

During our implementation, we use the same triggers as NeuBA used in Table ??. To select the
important words, we use the tf-idf score of each token as the meter and we choose 10 target words
for each task. Other details are reported in Table 8.
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Table 8: Hyperparameters used in RIPPLe
HyperParameters Value

λ 0.1
pre-train learning rate 2e-5
pre-train epochs 5
pre-train max steps 5000
post-train epochs 3
post-train learning rate 2e-5
post-train batch size 256

B.6 EMBEDDING POISON

Embedding Poison is a data-free backdoor attack method.In sentiment analysis and sentence-pair
classification tasks, the results show that this algorithm is efficient and concealed and does not lose
accuracy on clean datasets. It injects the model by modifying one single word embedding vector.
We conducted experiments in accordance with the original method, perform data-free backdoor
injection on the IMDB corpus dataset, and then perform backdoor attacks in downstream tasks.The
trigger we used in shown in Table 5, and the hyperparameters during training are shown in Table9.

Table 9: Hyperparameters used in Embedding Poison
Stage BERT/RoBERTa

Embedding Poison Training

Optimizer Adam
Learning Rate 0.00002
Batch Size 32
Epoch 3

Fine-tuning

Optimizer Adam
Learning Rate 0.00002
Batch Size 32
Epoch 3

C IMPLEMENTATION OF BASELINE DEFENSE METHOD

For NAD, which is a recent neural distillation method proposed by Li et al. (2021) , we implement
a similar setting for transformer-based models. We first fine-tune the backdoored model on clean
datasets to get the teacher model, then a model from the backdoored checkpoint will serve as a
student model. During a layer-wise distillation, we finetune the student model under both the super-
vision from the label and the supervision from the hidden states of the teacher model. We set the
hyperparameter of β between [1000, 2000, 5000] to find the best defense results. Since NAD has
not been applied to transformer-based model in NLP, we use a slight modified optimizer settings.
We use both the Adam optimizer and SGD optimizer to search for a better performance. We use a
learning rate of 2e-5 without weight decay. Our fine-tuning batch size is 32 without data augmenta-
tion tricks. For a fair comparison, we let NAD access the whole clean training dataset instead of a
proportion of only 5%.

Due to the ineffectiveness of directly applying NAD in NLP domain. We also explore the upper
bound of distill-based methods. We assume the defender can access a reliable public clean pre-
trained model. In this setting, we fine-tune the backdoored model as a teacher model but use a
public clean pre-trained checkpoint (e.g., bert-base-uncased from Huggingface Hub) as a student
model. Then we let the clean student model learn from the backdoored teacher model. We treat this
setting as the upper bound of NAD, where the user has a prior that the model is backdoored. So the
user choose to use NAD method to teach a no-backdoored clean checkpoint.
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D EXTENSIVE EXPERIMENTS

D.1 MORE PRE-TRAINED LANGUAGE MODELS

We also experiment with RoBERTa-base, and reported results in Table 10. We use the most strong
attacking method BadNets as our attacking scenario and report performance of all defense settings.

Table 10: Performance of backdoor defense methods against the BadNets attack evaluated using the
attack success rate (ASR) in five popular downstream datasets with RoBERTa-base. Note that we
treat the NAD-C method as an upper bound of NAD. The best results are in bold. Our GBA reduces
the ASR to < 10% and only suffers average performance loss: < 5% in most attacking scenarios.

Method
Yelp MR HS AG News Fakeddit Average

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No-Defense 100.00 96.63 100.00 90.61 100.00 95.97 100.00 93.16 100.00 86.87 100.00 92.65
Clean FT 100.00 96.83 100.00 90.85 100.00 96.03 100.00 92.46 100.00 86.82 100.00 92.60

NAD 93.87 97.33 74.34 90.65 100.00 95.73 81.40 93.98 99.31 86.89 89.78 92.92
NAD-C 6.88 94.33 1.90 87.84 4.95 92.99 0.64 89.95 10.95 80.81 5.06 89.18

Our GBA 8.41 93.97 1.32 90.66 2.92 93.41 1.56 90.35 7.75 80.91 4.39 89.86

As depicted in Table 10, the clean FT and raw version of NAD fail to defend against any BadNets
attacks on RoBERTa model type. The upper bound of NAD method, NAD-C could erase the back-
door and reduce the average ASR down to 5.06 % while our proposed GBA could reduce the average
ASR down to 4.39 %. In short, our GBA method can work well on protecting RoBERTa model from
backdoor attack with negligible average performance drop of about 2.79 %.

D.2 MORE COMPLICATED TASKS

To simulate a more realistic settings, we include the GLUE tasks (Wang et al. (2018)). In addition
to simple classification tasks, GLUE also includes NLI tasks and regression tasks, which is also
common in the real world.

To evaluate the defense on continual tasks, we redefine the attacking success rate (ASR) as attacking
success rate for regression (ASRR):

ASRR = Scorec − ScoreA (6)

where the Scorec and ScoreA denotes the model performance on the clean input and the perfor-
mance on the attacked input.

For all GLUE tasks, we use the label words recommended by Gao et al. (2021). Instead of manual
template, we use our soft template searching strategy.

Table 11: Performance of defense methods against the BadNets backdoor attacks on the GLUE tasks
with bert-base-uncased.Matt. and Pear. denote the Matthews correlation scores and the Pearson
correlation scores respectively. For classification tasks, our GBA reduces the ASR to: < 6 % in
most datasets. For regression tasks, our GBA reduces the ASRR to 0.01 %.

Method
CoLA SST-2 MRPC QNLI QQP RTE MNLI STS-B

ASRR Matt. ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASRR Pear.

No-Defense 0.02 0.54 100.00 91.17 100.00 78.92 100.00 88.54 100.00 89.65 100.00 65.70 100.00 82.51 0.55 0.89
Clean FT 0.00 0.57 100.00 91.17 99.45 77.21 100.00 88.76 99.73 89.73 100.00 63.18 99.51 82.32 0.31 0.86
Our GBA 0.01 0.55 4.17 87.84 5.68 80.39 5.83 87.57 0.20 89.15 1.37 63.02 2.26 82.08 0.01 0.83

In Table 11, we observe that our GBA can defend against backdoor attacks on more complicated
NLI tasks, with the ASR reduced to: < 6%. GBA also take effect on regression tasks. Specifically,
our GBA reduces the ASRR from 0.55 to 0.01 on the STS-B task.

D.3 ABLATION STUDY ABOUT GRADIENT BROADCAST

In this section, we study which part of our GBA contributes most to the defense.

16



Under review as a conference paper at ICLR 2022

• No-Defense. We test the backdoored model without any fine-tuning.
• PT. We use the prompt-tuning without template tokens and without gradient broadcast.
• PT + soft. We use 2-token-wide soft template without gradient broadcast. This setting is

to validate the few-shot property of prompt.
• PT + soft + GB. Add gradient broadcast mechanism to update rare tokens. This is for

validating the effect of gradient broadcast.

Table 12: Ablation Study on different components of GBA against BadNets Backdoor Attacks.

Settings
Yelp MR HS AG News Fakeddit Average

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No-defense 100.00 95.70 100.00 93.49 100.00 86.52 100.00 95.37 100.00 90.06 100.00 92.23
PT 75.63 95.60 80.12 93.12 94.32 90.23 66.74 95.26 78.22 88.24 79.01 92.49

PT+soft 59.18 95.23 45.87 92.10 58.77 93.24 50.43 93.58 44.39 86.98 51.73 92.23
PT+soft+GB 3.76 93.30 2.67 89.70 1.07 92.95 2.77 92.17 17.63 86.19 5.58 90.86

In Table 12, we observe that prompt-tuning can reduce the ASR to an average 79.01 %. The further
use of soft template can reduce the ASR to 51.73 %. We hypothesis the defense effect is from the
paradigm shift from fine-tuning to prompt tuning. When combined with gradient broadcast, our
method can reduce the average ASR down to 5.58 %. The most significant defense effect comes
from gradient broadcast, which updates the trigger tokens and pull them towards the class center,
thus disabling the backdoor,
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