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ABSTRACT

In this work, we analyze patch-level embeddings and show that MIM objectives
bias representations toward non-semantic cues, limiting their effectiveness in in-
ference. To probe this effect, we introduce a model-agnostic counterfactual score
that quantifies semantic invariance by comparing principal component responses
to real inputs and noise, providing a novel measure to directly characterize the
tradeoff between semantic information and structural noise in ViT embeddings.
Building on this measure, we propose Semantic Orthogonal Projection (SOaP), a
post-hoc method using simple Gram–Schmidt orthogonalization that suppresses
invariant components in patch representations. Our experiments show that SOaP
consistently improves performance on multiple downstream tasks across state-of-
the-art MIM-based models.

1 INTRODUCTION
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Figure 1: Top: Models with MIM objectives exhibit higher semantic invari-
ance (SI) scores than models without MIM objectives. Bottom: We show
on-par or improved zero-shot salient segmentation results between original
patch embeddings (first row) and our proposed SOaP (second row), both eval-
uated using a few leading components.

Self-supervised learn-
ing (SSL) has become a
dominant approach for
training vision transform-
ers (ViTs), yielding models
that generalize well across
diverse downstream tasks
(Zhou et al., 2022; Caron
et al., 2021; Oquab et al.,
2024; Siméoni et al.,
2025; Darcet et al., 2025;
Tschannen et al., 2025;
Venkataramanan et al.,
2025). Current approaches
fall broadly into two
categories: contrastive
objectives, which learn instance-level invariances to input augmentations (Caron et al., 2021), and
masked image modeling (MIM), which trains models to reconstruct masked patches from surround-
ing context (Assran et al., 2023; Darcet et al., 2025; He et al., 2022; Baevski et al., 2022; Alkin
et al., 2025). The contrastive objectives act on the instance-level global representations, and can be
seen as an instance classification task (Chen et al., 2023). Meanwhile, MIM objectives operate at
the local patch representations, which can be reconstructed in the latent space (Zhou et al., 2022;
Oquab et al., 2024; Darcet et al., 2025; Bar et al., 2024) or in the input space directly (He et al.,
2022; Baevski et al., 2022; Alkin et al., 2025). Recent frameworks combine both these objectives
(Oquab et al., 2024; Siméoni et al., 2025; Zhou et al., 2022), with contrastive losses shaping
instance-level representations and MIM losses refining patch-level representations—together, the
aim is to encourage models to capture both global semantics and fine-grained local structure.

Despite the success of MIM objectives, several works allude to high variance components and po-
sitional noise in the learned embeddings (Venkataramanan et al., 2025; Zhou et al., 2022; Oquab
et al., 2024; Siméoni et al., 2025; Darcet et al., 2025; Przewięzlikowski et al., 2025). This is unsur-
prising, as the MIM task requires predicting both the semantic content and location of the masked
patches (Bar et al., 2024). While positional collapse—where the model learns to predict the posi-
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Figure 2: An image contains principal components (either semantic or non-semantic), extracted through prin-
cipal component decomposition (PCD). We found that MIM-based models rank the non-semantic components
higher than their semantic counterparts. Orthogonalizing the components with the highest semantic invariance
(through SOaP) boosts performance in various downstream tasks—here we show zero-shot salient segmenta-
tion with TokenCut.

tion of masked tokens instead of content—is a known issue with various suggested work-arounds
(Darcet et al., 2025; Bar et al., 2024; Venkataramanan et al., 2025), few studies directly address this
phenomenon.

In this paper, we take a closer look at structural noise in ViT tokens for state-of-the-art MIM and
contrastive models. We characterize structural noise as components that are invariant to the semantic
signal in the input. This includes positional information, which remains present even after removing
the semantic contents of an input. Identifying structural noise can then be posed as a comparative
task between semantic and non-semantic images. Using principal component analysis of the rep-
resentation spaces learned by modern SSL models, we discover that several leading components
exhibit high levels of structural noise. Upon further inspection, we find that that several MIM-based
models encode strong positional information, while models trained without MIM do not exhibit
this behavior—see Figure 1. This observation holds true regardless of which positional embedding
method is employed (Siméoni et al., 2025; Heo et al., 2024) and whether the MIM predictions are
in the latent or input space, suggesting that this is a broader problem in MIM. The consequence
of structural noise in the representations is an associated trade-off with semantic information, and
reduced performance in dense prediction tasks, particularly in zero-shot settings (Venkataramanan
et al., 2025; Vanyan et al., 2024). Therefore, our analysis also serves as a diagnostic tool to explore
the trade-off between semantic and structural information in SSL representaitons.

Finally, taking all our observations into account, we introduce the Semantic Orthogonal Projection
(SOaP), a novel off-the shelf denoising strategy that suppresses structural noise in pretrained SSL
models, leading to improved representations for downstream—cf. Figure 2. SOaP is flexible. It
is computed directly from data using a Gram-Schmidt based projection, thus requiring no training,
and can be attached as an external module to any pretrained SSL backbone. In summary, our con-
tributions include: (i) The interesting discovery that MIM objectives uniquely bias representations
toward encoding structural noise rather than semantic information. (ii) A novel Semantic Invariance
Score to measure the level of semantic invariance in a model’s representations, allowing us to di-
agnose the semantics-structural noise trade-off in SSL representations. (iii) Finally, based on this
score, we propose Semantic Orthogonal Projection (SOaP), a post-hoc denoising strategy that sup-
presses structural noise, and are able to demonstrate improved performance in zero-shot downstream
tasks for all MIM-based models.

2 RELATED WORK

Contrastive Learning. The contrastive approach to self-supervised learning, wherein represen-
tations are encouraged to be invariant to view augmentations, has a extensive history (Chen et al.,
2020a; Tian et al., 2020; Chen et al., 2020b; Wang & Isola, 2020; Zhang & Ma, 2022). More modern
approaches adopt a knowledge distillation approach by matching representations between a teacher
and a student network, with periodic exponential moving average (EMA) updates (Grill et al., 2020;
Caron et al., 2020; Chen & He, 2021; Caron et al., 2021). While sometimes characterized as joint-
embedding or matching-based methods, these approaches rely on strong global cues that match local
with global views via aggressive cropping without preserving relative spatial information. However,
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a stronger reliance on global cues limits performance on dense prediction tasks, as finer-grained
semantic relationships are not exploited (Liu & Gould, 2024; Yuan et al., 2023; Wang et al., 2022;
Puy et al., 2024).

Masked Image Modeling. A strong alternative to learning invariances through data augmenta-
tions, is through choosing masking as the pretext task (He et al., 2022; Xie et al., 2022; Bao et al.,
2022). While contrastive learning is prone to model collapse (the trivial solution), MIM provides a
more robust and scalable approach by directly reconstructing the input data. Though masking strate-
gies vary, MAE (He et al., 2022) popularized dropping most patches, and reconstructs in the pixel
space through a decoder. Reconstruction in the representation space, rather than the pixel space, cir-
cumvents the need for a heavy decoder, and has been shown to work in methods like I-JEPA (Assran
et al., 2023). The MIM objective has been adopted in the self-distillation setup quite successfully—
iBOT (Zhou et al., 2022) employs the averaged cross entropy over the student’s masked view, and the
teacher the non-masked view, and DINOv2 demonstrates additional improvements by separating the
MLP projection heads, using adaptive resolutions, and additional regularization (Oquab et al., 2024).
CAPI (Darcet et al., 2025) adopts a deep clustering, pure MIM approach by generating pseudo-labels
in the masked latent space, thus circumventing multiple issues with the contrastive approaches re-
lating to training instability, and sensitivity to hyperparameters. Most recently, DINOv3 improves
over DINOv2 by using more modern positional embeddings, and a denoised warmup training phase
(Siméoni et al., 2025). We consider all these approaches in our work, and our observations are
consistent across these models.

Positional Noise in MIM Models. A recurring challenge in masked image modeling (MIM)
frameworks is the presence of positional noise in the learned embeddings. This has been indirectly
addressed through a variety of architectural and training modifications, such as introducing regular-
ization mechanisms (Darcet et al., 2025; Siméoni et al., 2025), or directly addressed by disentan-
gling positional cues (Venkataramanan et al., 2025; Yang et al., 2024; Bar et al., 2024; Wang et al.,
2024). Despite these efforts, MIM representations typically show weaker out-of-the-box perfor-
mance compared to frameworks with contrastive objectives, and often require extensive fine-tuning
to transfer effectively to downstream tasks. Some works analyze embedding variance to identify
noisy or unstable tokens (Vanyan et al., 2024), while others propose selective aggregation to prune
non-informative dimensions (Przewięzlikowski et al., 2025). Venkataramanan et al. (2025) intro-
duce RASA, a post-hoc module that suppresses explicit location cues by training to predict patch
positions from pretrained embeddings. However, RASA only addresses patch-location noise and
does not provide a broader analysis of structural noise in other frameworks. In contrast, our pro-
posed solution requires no training. Additionally, our study goes beyond positional cues, probing the
full spectrum of semantically invariant noise encoded by state-of-the-art SSL models, and proposing
metrics to quantify and interpret these effects.

3 SEMANTIC ORTHOGONAL PROJECTION

Before we introduce our proposal, we provide an exploratory analysis that sheds insights to decom-
pose the semantic and structural information from the data. Specifically, we use principal compo-
nent analysis (PCA) to expose the structure that reveals a positional bias in the MIM training (Sec-
tion 3.1). Then, we present a counterfactual strategy that identifies semantic invariant components
by contrasting real and synthetic inputs (Section 3.2). Based on these observations, we propose
a score to measure structural noise through semantic invariance (Section 3.3). Finally, we intro-
duce our Semantic Orthogonal Projector (SOaP) which uses this score to suppress non-informative
structural information, thus, enhancing future downstream tasks.

3.1 PRINCIPAL COMPONENT ANALYSIS OF PATCH EMBEDDINGS

To substantiate our view of embeddings as mixtures of signals, we analyze them using PCA. PCA
decomposes the representation space into dominant variance directions, which allows us to examine
whether leading components reflect semantic content or non-semantic structure, such as positional
bias. We estimate the covariance of a set of patch embeddings z ∈ Z, z ∈ RD under a given model
f over ImageNet (Deng et al., 2009) using Welford’s online algorithm (Welford, 1962), and obtain
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Figure 3: Patch representations from MIM models exhibit strong positional bias in leading (high rank) principal
components, illustrated here for one example image. The vertical line separates MIM-based models from non-
MIM based models. Models trained with MIM show a clear left/right and top/bottom bias in its leading principal
components (PC1-PC11) as opposed to models trained without MIM.

the eigendecomposition
Cov(Z) = V ΛV ⊤ ∈ RD×D, (1)

with principal component vectors V = (v1, . . . , vD). For each component d, we define the response
of an input z by the inner product ⟨z, vd⟩, which reflects how strongly each patch embedding z ∈ Z
projects onto direction vd.

Applying this criterion, we observe that patch representations from MIM models exhibit strong
positional bias in leading or highly ranked principal components, as illustrated in Figure 3. This
indicates that a significant share of their variance is devoted to encoding position, implying that
positional bias arises as a direct consequence of latent MIM objectives. In contrast, models trained
without MIM objectives, such as DINO and DeiT3, do not exhibit this behavior.

To further characterize these components, we evaluate their behavior on a set of images. Let Ω be the
input set of images, and f : Ω → Z a model that encodes an image xb ∈ Ω into N patch embedding
representations z(b) = {z(b)n }Nn=1. The binary activation of component d for xb is then defined by
thresholding the token responses

Ad(xb) = 1[z(b)vd ≥ τ ] ∈ {0, 1}N . (2)

Here, τ = ⟨ν, vd⟩ is a scalar threshold, and ν is some threshold vector. In our experiments, we set
ν = 0. Averaging over images, Ād = 1

B

∑
b Ad(xb) ∈ RN , yields an aggregated activation map

that highlights spatial patterns.

With these definitions in place, we formulate two diagnostic conditions to identify non-semantic
components. First, when the average activation Ād exhibits systematic dependence on patch loca-
tion, we infer that component d predominantly encodes positional cues rather than semantic content.
Second, when the per-sample activations Ad(xb) exhibit minimal variation across different inputs,
component d can be regarded as invariant to image content, which indicates that it captures non-
informative signals.

3.2 PATCH EMBEDDING AS LINEAR COMBINATIONS

To better isolate the signals underlying a model’s representations, we express each patch embedding
z as a sum of semantic and non-semantic factors. Ideally, we want the model f to capture the
relevant sematic information in the input, like global class information and local structures of color,
shape, texture, and fine-grained semantics useful for dense classification tasks such as semantic
segmentation. However, specific to ViTs, f must also encode the positional information directly to
each embedding z, since the attention operator is otherwise permutation-invariant.

We formalize this by assuming that each embedding z can be decomposed into two orthogonal
subspaces, Φ for semantic information and P for structural information. Then we express

z = θϕϕ+ θρρ+ ε︸ ︷︷ ︸
semantically non-informative

; ε ∼ P, (3)

where θϕ, θρ ∈ R≥0 are scalar coefficients for ϕ ∈ Φ, ρ ∈ P, and ε represents residual noise
from some probability distribution P. The semantic information component ϕ ∈ Φ encodes both
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relevant information for global objectives, such as instance discrimination and classification, and
dense objectives like segmentation. The non-semantic information component ρ ∈ P encodes local
positions and relative geometry among the local patch embeddings z(b), based on their positions in
the original image xb.1

Intuitively, both contrastive and MIM-based training objectives encourage f to encode relevant se-
mantic information. However, in line with the observations of previous work (Bar et al., 2024),
we posit that the inpainting objective in MIM also drives f to encode a substantial amount of non-
semantic information ρ, thereby increasing the coefficient θρ at the expense of the semantic coeffi-
cient θϕ. This raises the question of how much of a learned representation reflects semantic content
ϕ, as opposed to structural noise or other non-informative signals. To address this, we introduce
a semantic invariance score to measure the degree of non-semantic information encoded by each
principal component d in a learned patch representation space Z .

3.3 SEMANTIC INVARIANCE

Semantic invariance (Yuan et al., 2024) refers to the property of a component yielding consistent
responses even when the semantic content of local representations varies. In other words, a compo-
nent is semantically invariant if it produces similar activations regardless of whether the input carries
meaningful semantic information. Such components are uninformative for downstream understand-
ing, as they do not encode or reflect actual image contents.

Let X ⊂ Ω be the set of semantically informative images, and let X c denote a complementary set
without semantic information. In practice, X is instantiated as the ImageNet validation set (Deng
et al., 2009), while X c is approximated by a synthetic noise generator. The details of the generator
are described in Appendix D—see the examples in Figure D.1. For each component d, we compute
binary activations Ad (2) for samples x ∼ X and xc ∼ X c. This yields two empirical Bernoulli
distributions of activations for the token index n = 1, . . . , N , such that

Pd,n = Pr
(
Ad,n = 1 | x ∼ X

)
; Qd,n = Pr

(
Ad,n = 1 | xc ∼ X c

)
. (4)

If Pd,n ≈ Qd,n, then component d behaves similarly for semantic and non-semantic inputs for
token index n and is therefore semantically invariant, hence non-informative. Conversely, large
discrepancies between Qd,n and Qd,n indicate sensitivity to semantic content at position for index
n, which posits Pd, Qd as multinomial distributions over all tokens. To quantify the discrepancy, we
use a variant of the Dice-Sørensen coefficient (Carass et al., 2020)

sd = SI(Pd, Qd) = 2 · Pd ·Qd + (1− Pd) · (1−Qd)√
P 2
d + (1− Pd)2 +

√
Q2

d + (1−Qd)2
= 2 · ⟨Pd, Qd⟩

||Pd||+ ||Qd||
. (5)

A vectorial formulation of (5) is given in (C.1). This ensures that the score equals one iff. the two
distributions coincide, while remaining robust when one distribution is highly skewed.

3.4 SEMANTIC ORTHOGONAL PROJECTOR (SOAP)

With SI score (5), we introduce Semantic Orthogonal Projector (SOaP), a novel off-the shelf denois-
ing strategy that suppresses structural noise. We hypothesize that suppressing components that are
invariant to semantic content in the representation z acts as a denoising step, yielding representations
that are closer to the semantic part θϕϕ (3). To achieve this, we operate in the PCA basis, where
these components vd are orthogonal by construction. Each component is assigned a weight wd, de-
rived from its semantic invariance score sd and a scaling function t, which determines how strongly
it should be suppressed. Our SOaP projector Pϕ is then defined following Gram–Schmidt based
projection (Venkataramanan et al., 2025), subtracting the contribution of components identified as
non-informative

Pϕ = I − VWV ⊤; ẑ = Pϕz. (6)

1We note that positional information is given implicitly in certain models that retain spatial order, like CNNs
and MLPs. In this case f does not need to explicitly encode positional information into z. However, we restrict
this study to ViTs.
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Figure 4: Distributions for the top 10 principal components, ranked by semantic invariance (RPC). Real
columns correspond to Pd and Synth correspond with Qd from Section 3.3, and each column compares the
activations for real images from ImageNet, and generated synthetic images. MIM models are shows in the top
rows; non-MIM models in the bottom. See appendix C for details.

Here, V are the PCA components from (1), I is the identity matrix, and W = diag(w1, . . . , wD)
is a diagonal weight matrix. We propose a filter using a Fermi window (Bernstein et al., 2001;
Caparelli & Tomasi, 2008)—commonly used in MRI imaging—using the rank of the scores r.
This corresponds to a smooth regularization of the scores (Hansen, 2010) using sigmoid gating ap-
proach (Nguyen et al., 2024) with explicit control over truncation and smoothness. This formulation
yields a principled weight estimation per component

wd = t(sd, r) = sd ×
σ((µ− r)/τ)

σ(µ/τ)
; r = rank(sd). (7)

Coupling statistical variance with semantic relevance, the hyperparameters µ and τ gives flexible
control of the cut-off and smoothness of suppression, providing a principled way to adapt denoising
strength to the spectral structure of embeddings. The result is a more stable projection operator
that retains informative components while systematically attenuating noise, making the suppression
sparse to focus on non-semantic components. Figure D.2 shows the effect of the scaling function on
the semantic invariance scores.

4 EXPERIMENTS

Table 1: Overview of models in our study. We select a represen-
tative group of models by including models with different archi-
tectures, objectives, MIM modes, and positional encoding in our
experimental setup.

Model Arch. Objective MIM mode Pos. enc.

DINOv2 ViT-B/14 MIM + CL Latent Add.
DINOv3 ViT-B/16 MIM + CL Latent RoPE
iBOT ViT-B/16 MIM + CL Latent Add.
MAE ViT-B/16 MIM Pixel Add.
CAPI ViT-L/14 MIM Latent Add.
I-JEPA ViT-H/14 MIM Latent Add.
DINO ViT-B/16 CL NA Add.
DeiT3 ViT-B/16 Supervised NA Add.

For our study, we consider MAE
(He et al., 2022), I-JEPA (Assran
et al., 2023) and CAPI (Darcet et al.,
2025) for models with MIM objec-
tives, DINO (Caron et al., 2021)
for global contrastive objective, and
iBOT (Zhou et al., 2022), DINOv2
(Oquab et al., 2024), and DINOv3
(Siméoni et al., 2025) for models
with both. For completeness we also
evaluate supervised models RoPE-
ViT (Heo et al., 2024) and DeiT-III
(Touvron et al., 2022). Table 1 pro-
vides an overview of the models.

4.1 ANALYZING INFORMATION CONTENT IN SSL TOKENS

We aggregate the activation maps of each component over patch embeddings from ImageNet vali-
dation and generated synthetic images—Figure 4 shows the top 10 principal components for each
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Figure 5: Semantic invariance (SI) score in descending order. All principal components are shown in the left
plot, while the right shows the top 15 semantically invariant scores up close. Note that all MIM-models have a
max-score ≥ 0.75, while all non MIM models have a lower score.

model, sorted by SI-scores. All MIM-based models reveal activations with strong positional bias in
the form of top-bottom and left-right alignment. Critically, we do not observe similar top-bottom
or left-right activations in DINO and DeiT3. This empirically supports the proposition that MIM
strengthens the encoding of positional information in patch tokens. Furthermore, the phenomenon
is present in both MIM-based models with standard additive positional embeddings (DINOv2, iBOT,
CAPI, IJEPA) and positional embeddings injected by concatenation in the attention mechanism via
RoPE (DINOv3). We also note that the two components with the highest semantic invariance are
the exact same components identified as encoding positional noise in Figure 3 for all MIM models,
showing that our SI-score captures positional and other sources of structural noise.

Next, we look at the SI-scores for the principal components of all the models—Figure 5 shows the
scores in descending order. We observe that MIM-models exhibit much higher maximum SI-scores
than models trained without MIM. In particular, at least two components have an SI-score higher
than 0.75 for all MIM-models. Meanwhile, models trained without MIM score below this threshold
for all components. Figure 1 shows the maximum SI-score for each model, highlighting the presence
of semantically invariant principal components in MIM-models. We also probe semantic invariance
over model depth. Figure 6 shows the maximum SI-score per layer for a selection of the models.
We observe that semantic invariance starts out high in the early layers, which is expected for models
with additive positional embeddings, although DeiT3 is a somewhat surprising exception to this.
Specific to the MIM based models is that the SI-score increases again for the last layers. This can be
explained as the model saturating more positional information into the embeddings in preparation
for solving the MIM task. For MAE however, the score remains high accross all layers.

4.2 CLEANING WITH SOAP: EVALUATING DENSE REPRESENTATIONS

We use SOaP to correct for invariant components in local embeddings, and find that this improves
performance in sparse and dense downstream tasks for all MIM models.

Salient segmentation. We select TokenCut (Wang et al., 2023) for zero-shot evaluation of rel-
ative saliency information present in local embeddings. Table 2 shows that correcting the patch
embeddings, in addition to using salient principal components as guides to foreground selection,
can significantly boost performance.

We observe that DINO performs better out-of-the-box compared to the models with MIM objectives.
We believe this is because DINO is trained with a global objective only. Positional information, and
to a degree local semantic information, is not as useful for the salient segmentation task which relies
on global (class specific) correlations. However, after suppressing semantically invariant compo-
nents, most MIM models perform on par or better than DINO. Some notable exceptions are I-JEPA
and DINOv3, which perform badly in general for this task.

kNN classification. To probe the degree to which instance information is encoded in the embed-
dings for each model, we perform k-nearest neighbor classification on ImageNet (Deng et al., 2009).
We compare the top-1 and top-5 accuracies of the average of the patch embeddings, and the corrected
patch embeddings. The results in Table 3 show modest improvements after correcting for invariant
components. We note that the benefit may be dampened by the aggregation, as spatial information
about the locality of patches may cancel out by taking the average.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot salient segmentation with TokenCut. We evaluate on ECSSD (Yan et al., 2013), DUTS
(Wang et al., 2017), and DUT-OMRON (Yang et al., 2013). Correcting the embeddings with SOaP improves
results for all MIM-based models.

ECSSD DUTS DUT-OMRON
Pretrain Model maxFβ IoU Acc. maxFβ IoU Acc. maxFβ IoU Acc.
Original embeddings
DINO ViT-B16 82.580 74.325 90.929 75.769 89.705 83.932 52.851 83.019 59.289
DINOv2 ViT-B16 71.319 63.937 83.147 63.064 78.891 69.700 39.643 75.067 45.923
DINOv3 ViT-B16 36.975 29.122 52.953 31.302 52.264 39.874 15.623 46.258 19.656
CAPI ViT-L14 72.456 66.083 84.334 61.913 78.634 68.148 42.423 77.762 49.150
iBOT ViT-B16 62.873 56.248 78.785 59.657 77.987 66.353 29.602 67.883 33.731
MAE ViT-B16 79.952 71.067 89.410 70.227 86.078 79.229 45.630 78.552 54.758
I-JEPA ViT-H14 37.670 27.989 68.898 24.890 63.592 33.008 24.340 71.343 33.345
Corrected embeddings
DINO ViT-B16 81.017 70.416 90.237 73.178 85.333 80.627 44.004 68.709 49.136
DINOv2 ViT-B16 80.633 72.559 88.687 76.785 89.440 84.387 43.472 71.762 50.610
DINOv3 ViT-B16 42.633 33.742 61.975 39.057 63.033 47.624 17.485 51.390 23.329
CAPI ViT-L14 85.219 78.084 92.600 78.439 91.906 85.710 51.315 80.291 59.872
iBOT ViT-B16 66.557 60.167 78.340 65.618 80.595 72.192 31.991 63.552 36.330
MAE ViT-B16 82.094 72.118 91.444 72.293 90.107 82.877 48.297 82.974 59.931
I-JEPA ViT-H14 40.239 31.162 71.406 25.922 65.001 33.371 27.038 76.841 35.472

Table 3: kNN classification of average pooled patch embeddings on ImageNet (Deng et al., 2009). We compare
the original embeddings with the SOaP-corrected embeddings for each backbone, and report top-1 and top-5
accuracies.

Original embeddings Corrected embeddings

Pretrain Model kNN Acc@1 kNN Acc@5 kNN Acc@1 kNN Acc@5

DINOv2 ViT-B16 77.064 91.624 77.100 ↑ 0.036 91.636 ↑ 0.012

DINOv3 ViT-B16 76.542 91.530 76.588 ↑ 0.046 91.612 ↑ 0.082

CAPI ViT-L14 56.250 77.490 56.444 ↑ 0.194 77.742 ↑ 0.252

iBOT ViT-B16 59.170 79.612 59.498 ↑ 0.328 79.918 ↑ 0.306

MAE ViT-B16 47.488 69.168 47.758 ↑ 0.27 69.442 ↑ 0.274

I-JEPA ViT-H14 71.382 86.144 71.390 ↑ 0.008 86.168 ↑ 0.024

DINO ViT-B16 55.216 75.740 55.586 ↑ 0.370 75.900 ↑ 0.160

DeiT3 ViT-B16 79.914 91.820 79.956 ↑ 0.042 91.726 ↓ -0.094

4.3 ABLATIONS

SI-score sensitivity to dataset choice. To probe the SI-score sensitivity to dataset choice, we
ablate over Caltech256 (Griffin et al., 2022), COCO-Stuff164k (Lin et al., 2014), CUB200 (Welinder
et al., 2010), PASCAL VOC (Everingham et al., 2012), and ImageNet (Deng et al., 2009) using
DINOv2 as the backbone. We calculate the cosine distance between the score vectors over the D =
768 components. Figure 7 shows the SI-score distance for each pair of datasets. We observe that the
distances are low (between 0.0025 and 0.0032), which means that the scores for each component
remain consistent despite using different datasets with different distributions and of various sizes to
instantiate semantically informative input. This indicates that the SI-score is not sensitive to dataset
choice.

Comparison with RASA. We compare SOaP with RASA by correcting the patch embeddings
from Franca using pretrained RASA weights from Venkataramanan et al.’s (2025) work. The results
in Table 4 show that SOaP yields higher performance. We argue that the improvement stems from
SOaP correcting structural noise, while RASA corrects only positional noise. We also note that
RASA requires training 9 linear layers of dimension D × 2 (D = 768 for ViT-B), while SOaP is
simpler, requires no training, and can be attached to any model as a single D ×D linear head.

5 DISCUSSION
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Table 4: Comparing SOaP with RASA on Franca ViT-B/14
for zero-shot salient segmentation on ECSSD (Yan et al.,
2013) and kNN classification on ImageNet (Deng et al.,
2009).

ECSSD (Sal. Seg) IN1k (kNN cls.)
Method max Fβ IoU Acc. Acc@1 Acc@5
Franca 71.615 64.899 83.982 64.920 85.872
Franca + RASA 68.220 68.220 85.935 64.890 85.886
Franca + SOaP 84.176 76.985 91.514 65.084 86.006

Our analysis indicates a tendency for MIM
to “cheat” to perform the matching of
masked tokens by dedicating capacity to
purely structural information. Further-
more, Figure 4 shows that this happens in
both latent- and reconstructive MIM. The
results are not totally unexpected; the re-
construction objective requires positional
information to perform the task to some
extent.

However, we note that latent MIM models exhibit this property with or without additive positional
encoding, such as for DINOv3. This means that the model learns to dedicate capacity to non-
semantic structural information. This makes sense if we consider how much this actually helps the
objective; by being able to correctly select the patch position in the image, the search is reduced by a
ratio of Hz×Wz . For a ViT-B/14 model, this results in a reduction of ×256, significantly improving
the loss of the model. While MIM improves performance on dense objectives, it does so at a cost.
The importance and severity of this structural noise is corroborated by several works (Wang et al.,
2024; Darcet et al., 2025; Yang et al., 2024). Our method shows that the problem is pervasive for
MIM models, and does not meaningfully occur in non-MIM models.

Limitations and Further Work. We restrict evaluation to raw patch embeddings; both kNN and
TokenCut operate directly on the representations without additional projections or heads. This is
a conscious choice, as further transformations would confound the effect of SoAP with that of the
evaluation model itself, which is beyond the scope of the current work. An avenue for future work
is to study how SoAP interacts with more elaborate evaluation protocols.

6 CONCLUSION

We show that masked image modeling (MIM) objectives bias vision transformers toward encoding
structural noise, at the expense of semantic content. This suggest that MIM learning signals are
solved by short-cutting the intended objective of learning better local representation, and while this
helps solve the pretext task, it reduces zero-shot generalization and semantic fidelity. To diagnose
and address this issue, we introduce a Semantic Invariance Score and the lightweight, post-hoc de-
noising method SOaP, which consistently suppress structural noise and improve downstream perfor-
mance. Our findings highlight a fundamental trade-off in MIM and offer practical tools for building
more semantically robust self-supervised models.

9
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Figure C.1: Figure illustrating the relation of soft responses of DINOv2 to PCA1 in Figure 3 (left), compared
with the multinomial distribution of activations P1 from Figure 4 and Section 3.3 (right). The responses are
binarized, and the probability distribution P1 is computed as a multinomial distribution over all tokens in the
image.

A DECLARATION OF USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the author(s) used LLMs for grammar and spelling, as well as
paraphrasing and rewording. After using this service, the author(s) reviewed and edited the content
as needed and take(s) full responsibility for the publication’s content.

B SELF-SUPERVISED OBJECTIVES

Contrastive Learning. In this work, we focus on the contrastive self-distillation objective as pre-
sented in Caron et al. (2021). Given an image x, two random augmentations are applied yielding
the views u, v. The views are sent through a teacher-student framework giving p = fθ(v) ∈ Rd

and q = fθ̂(u) ∈ Rd, where θ and θ̂ denote the teacher and student weights, respectively. The loss
minimizes the cross-entropy

LCLS = −q⊤ log p. (B.1)

Importantly, this loss is applied on the global representations, given by the CLS token in ViTs. The
teacher and student share the same architecture, comprising a backbone and a projection head for
the global representation. The teacher is updated as an exponential moving average of the student.

Masked Image Modeling. The core idea of the MIM objective is to reconstruct masked parts
of an image when given visible parts as context. While the masking strategy varies between the
MIM-based methods, the general setup can be summarized as follows. The input x is obscured by a
random mask m and passed through an encoder to give a context z = f(m(x)) with which to make
a prediction ŝ = g(z) about the unmasked image x. The prediction can be made in the pixel space
or in the latent space where the target s is given by passing x through the encoder. The loss is

LMIM = ℓ(ŝ, s) (B.2)

where ℓ is the mean squared error (He et al., 2022), euclidean distance (Assran et al., 2023) or
negative cross entropy (Oquab et al., 2024; Siméoni et al., 2025; Zhou et al., 2022; Darcet et al.,
2025). Notably, several frameworks (Oquab et al., 2024; Siméoni et al., 2025; Zhou et al., 2022)
employ a combination of contrastive loss over the global CLS-tokens in a multi-view setup with a
local MIM-based loss over masked patch tokens.

C DETAILS ON ACTIVATION AND DISTRIBUTIONS

In this section, we elaborate on the details of responses, activations, and distributions. As explained
in the main text, we compute responses for all images in the dataset for each principal compo-
nent. We binarize the activations, and compute the token-wise empirical distributions as individual
Bernoulli distributions for each token in the image, Pd,n from Section 3.3. As an ensemble, this can
be taken as Pd ∼ Multinomial(2, N), forming a full distribution over the image.

For the scores, we choose the Dice-Sørensen, since it penalizes distributional uncertainty better than
a pure divergence measure. Technically, if Pd,n = Qd,n = 0.5, a proper divergence such as Jensen-
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Shannon requires that the distributions are equal, e.g. DJS(Pd,n, Qd,n) = 1, yet in our case it rep-
resents an uncertain activation. In contrast, Dice-Sørensen yields a score of SI(Pd,n, Qd,n) = 1/2
for the same example. For our purpose, this correctly identifies a form of uncertainty in contrasting
responses between the real data and the non-semantic synthetic data, which yields clear principal
directions of invariance to semantic content. Figure Figure C.1 illustrates the relation between re-
sponses and empirical estimates of the distribution.

C.1 FORM OF DICE-SØRENSEN COEFFICIENT

When we use the Dice-Sørensen coefficient in Section 3.3, we use it over multinomial distributions
Pd, Qd. To clarify, we consider the inner products and norms as being taken over the support set,
not the multivariate dimensions.

Let Pd, Qd ∈ RN and let 1 ∈ RN . Define the augmented vectors

P̃d = [Pd, 1− Pd] , Q̃d = [Qd, 1−Qd] ∈ R2N .

Then

sd = SI(Pd, Qd) = 2
⟨P̃d, Q̃d⟩

∥P̃d∥2 + ∥Q̃d∥2
, (C.1)

where ⟨·, ·⟩ and ∥ · ∥2 denotes the Euclidean inner product and norm.

D GENERATING SYNTHETIC IMAGES

Let Ω = {1, . . . , H} × {1, . . . ,W} and X ∈ RC×H×W . For each image, draw mixture weights

w = (w1, w2, w3) ∼ Dir(α1, α2, α3). (D.1)

We generate three components independently:

1. Pink Noise: Xpink is zero-mean with isotropic power spectrum

E
[
|F{Xpink}(ξ)|2

]
∝ ∥ξ∥−β , ξ ∈ Z2 \ {0},

with β ≈ 2, following the power-law slope typical of natural images (Simoncelli & Ol-
shausen, 2001).

2. Modulated White Noise: Xwhite = M ⊙W , where W
i.i.d.∼ N (0, 1) and the nonnegative

modulation M = g(P ) is a smooth field obtained from a pink process P (as above) and
a bounded mapping g that sets the local standard deviation. This yields a heteroscedastic
Gaussian field with variance σ2(x) = M(x)2 and long-range variance correlations.

3. Gradient Field: Xgrad is a random low-degree polynomial—or equivalently, a very low-
pass random field—concentrating energy near ξ = 0.

Synthesized images are then given by the convex mixture

X = w1 Xwhite + w2 Xpink + w3 Xgrad. (D.2)

Assuming zero mean and independence between components, the expected power spectrum of X is

SX(ξ) = E
[
|F{X}(ξ)|2

]
=

3∑
i=1

E[w2
i ]SXi(ξ), (D.3)

i.e., a convex combination of the components’ spectra.

Simoncelli & Olshausen (2001) show that natural images exhibit approximate scale invariance with
a 1/∥ξ∥β law in the power spectrum (amplitude ∼ 1/∥ξ∥β/2), together with large-scale illumi-
nation/contrast fluctuations. In the construction above, Xpink directly imposes the 1/∥ξ∥β decay,
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Figure D.1: Examples of generated synthetic non-semantic images.

0

0.5

1

Figure D.2: Plot showing the effect of filtering with the Fermi window (7) on an exponentially decaying
function with various choices of µ, τ .

giving second-order statistics aligned with natural image ensembles. Xgrad injects additional low-
frequency near-DC energy, modeling global trends and illumination. Xwhite introduces spatially
varying contrast via a pink variance field, capturing long-range correlations of local variance found
in natural scenes.

Thus SX(ξ) inherits a natural-image-like spectrum: a power-law falloff dominated by Xpink,
boosted near ξ = 0 by Xgrad, and with heteroscedasticity from Xmw. We illustrate examples of
synthetic images in Figure D.1.

E EVALUATION DETAILS

Throughout the paper, we provide several evaluations and experiments. In this section, we exposition
some of the details for each evaluation method.

E.1 TOKENCUT

We use the official TokenCut (Wang et al., 2023) implementation with their graph cut segmentation
algorithm for the patch embeddings and the bilateral solver for edge-aware post-processing to refine
the segmentations up to original image size. TokenCut employs the key features of the last attention
layer as the input features to the graph cut algorithm. Contrary to the author’s suggestion, we find
that using the final output features yields better results for all models except MAE. Our reported
results are thus for the out features for all models in our study, except MAE, for which we use the
key features. We set τ = 0.3 for all models; table E.1 shows this setting yield better results for
DINOv2 and CAPI. Otherwise, we follow original implementation.

Selecting foreground partition using salient principal components. We also observe that some
principal components have a strong center bias in the activations. This can be partially explained
by object center bias in the training data. Comparing with the activation maps of synthetic input
data in Figure 4 shows that in several cases the center bias is not present. This indicates that these
components are responding to relative saliency or instance level correlations for each of the local
patches, rather than an encoded positional center bias in the model.

Given a principal component vd with salient activations, we can effectively determine which patches
are likely to be part of the foreground or class level object. We find that we can improve zero-shot
salient segmentation with TokenCut by selecting the foreground partition based on the patch with the
highest response ⟨vd, z⟩. In contrast, TokenCut selects the patch with maximum absolute value in its
feature vector. The results in Table E.2 show out-of-the-box improvement across the board, where
we use the strongest salient principal component to guide foreground selection for each model. We
show results for all MIM models in our study, except I-JEPA which did not have a good salient
principal component. We observed low performance on salient segmentation for all our experiments
with I-JEPA, which suggests that the patch embeddings are not informative for this task.
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Table E.1: Ablation over the TokenCut parameter τ on ECSSD (Yan et al., 2013) for DINOv2 and CAPI.

DINOv2 ViT-B/16 CAPI ViT-L/14

τ max Fβ IoU Acc. max Fβ IoU Acc.

0.2 79.037 70.033 87.720 64.927 53.906 78.027

0.3 79.803 71.751 87.953 72.456 66.083 84.334

0.4 79.177 71.708 87.655 70.604 64.627 84.139

Table E.2: Using salient principal components to select foreground partition in TokenCut. Results are shows
for corrected embeddings after cleaning with SOaP.

Max. abs. val. Max. Sal. PC reponse

Model Arch. max Fβ IoU Acc. max Fβ IoU Acc.

DINOv2 ViT-B/14 71.461 64.129 83.292 80.633 72.559 88.687

DINOv3 ViT-B/16 33.360 25.111 46.521 39.342 31.982 58.351

iBOT ViT-B/16 64.432 57.978 80.093 66.557 60.167 78.340

MAE ViT-B/16 80.525 70.705 90.506 82.094 72.118 91.444

CAPI ViT-L/14 74.506 68.045 86.3234 85.219 78.084 92.600

Franca ViT-B/14 77.660 70.830 87.577 84.176 76.985 91.514

E.2 KNN CLASSIFICATION

We perform kNN classification on ImageNet (Deng et al., 2009) by average pooling the patch em-
beddings, and matching the validation embeddings to the k nearest embeddings from the training
set. We follow the kNN evaluation script by Caron et al. (2021), and set k = 20 number of neighbors
and 0.07 temperature for the voting coefficient.
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