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ABSTRACT

Identifying nonlinear causal relationships in high-dimensional biological data is
an important task. However, current neural network based causality detection
approaches for such data suffer from poor interpretability and cannot scale well to
the high dimensional regime. Here we present GEASS (Granger fEAture Selection
of Spatiotemporal data), which identifies sparse Granger causal interacting features
of high dimensional spatiotemporal data by a single neural network. GEASS maxi-
mizes sparsity-regularized modified transfer entropy with a theoretical guarantee
of recovering features with spatial/temporal Granger causal relationships. The
sparsity regularization is achieved by a novel combinatorial stochastic gate layer
to select sparse non-overlapping feature subsets. We demonstrate the efficacy of
GEASS in several synthetic datasets and real biological data from single-cell RNA
sequencing and spatial transcriptomics.

1 INTRODUCTION

Advances in single-cell omics research enable full characterizations of high-dimensional gene dy-
namics in biological systems on a either temporal or spatial scale. An example for the temporal case
is single-cell RNA sequencing (scRNA-seq) trajectories, where cells are sampled from a dynamical
biological process, sequenced, and ordered based on either real sampled time or inferred pseudo-time
(Cannoodt et al., 2016; Saelens et al., 2019). Gene dynamics along the specified cell order encodes
information of causal regulation for the underlying biological process. An example for the spatial
case is single-cell level spatial transcriptomics (e.g. SeqFISH+ (Eng et al., 2019), Merfish (Fang
et al., 2022)), in which cells from a tissue slice are sequenced with their spatial coordinates preserved
(Moses and Pachter, 2022; Rao et al., 2021; Palla et al., 2022). Spatial profiling allows investigations
of the cellular interplay, corresponding to conditional gene expression change caused by neighbor-
hood phenotypic states. However, despite the potential significance, data-driven causal discovery for
such data remains largely unexplored, especially for the spatial omics data.

Identifications of causal regulatory patterns in such data can be reformulated into the general task of
causal feature selection in observational data with intrinsic structures, e.g. spatial data or temporal
data. Identifications of causal interactions in time-series has lead to valuable findings in multiple
disciplines, including but not limited to, economy, climate science, and biology (Hoover, 2006;
Kamiński et al., 2001; Runge et al., 2019a).

Learning directed causal relationships in temporal/spatial data is feasible as time and space both
induce asymmetric dependencies. In the case of time-series data, a feature in the future cannot have
effect on past values of other features. For spatial data, a similar definition of causal dependency can
be established (Herrera Gómez et al., 2014).

The concept of Granger causality is proposed in order to uncover the assymetric causal dependency
(Granger, 1969; Shojaie and Fox, 2022). In time-series data, this would translate to identifying one
variable’s causal relationship with other variables based on how well the historical observations of
other variables can predict the variable’s present value. The application of Granger causality in a
spatial context corresponds to predicting significant relationships between neighboring observations
of other variables and the specified variable (Mielke et al., 2020), which is a key insight used in
recent works aimed to discover cellular interaction patterns in spatial omics data (Fischer et al., 2021;
Valdés-Sosa et al., 18).
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In the nonlinear regime, information-theoretic measures such as directed information, transfer entropy
(Schreiber, 2000), and partial transfer entropy (Staniek and Lehnertz, 2008), are used as a counterpart
of linear Granger causality. Moreover, some works consider modeling conditional independence (CI)
in time-series data to identify the underlying causal graph (Entner and Hoyer, 2010; Malinsky and
Spirtes, 2018; Moneta et al., 2011; Runge et al., 2019a; Pfister et al., 2019; Mastakouri et al., 2021).
Two examples are VarLINGAM (Hyvärinen et al., 2010) and PCMCI (Runge et al., 2019b), which
are generalizations of LINGAM (Shimizu et al., 2006) and PC (Spirtes et al., 2000) respectively.
Finally, multiple recent works have proposed to use neural network approaches to model the nonlinear
Granger causality, including MLP, LSTM, and neural-ODE based approaches, resulting in improved
prediction power for nonlinear time-series dynamics (Li et al., 2017; Tank et al., 2021; Nauta et al.,
2019; Yin and Barucca, 2022; Bellot et al., 2021).

Despite the success of these methods in various systems of interest, multiple challenges limit their
use in high-dimensional biological datasets.

• Although linear methods (LINGAM, linear Granger causality) have succeeded in various
settings and can potentially scale to high feature numbers, these methods may completely
fail when the feature dependency in data is highly complex and nonlinear.

• As the number of conditional independencies generally scales exponentially or at least
polynomially with the feature size, applying causal discovery methods which are based on
CI tests to high-dimensional data is not realistic. Distinctively, Granger-causality based
methods are built with a prediction model for each feature in the data. The time complexity
of solving the stacked prediction model for all features is of polynomial level with respect
to the feature size.

• In previous methods, the number of causal edges between features is assumed to be sparse
(edge sparsity) to maximize interpretability of the identified causal graph. However, in
biological data, there exists a large proportion of nuisance features. Also, one functional
gene may activate a large number of downstream genes in neighboring cells. Sparsifying
the number of interacting features (feature sparsity) has the potential to improve causal
discovery in biological systems, which remains to be explored.

• While a large number of methods are designed for causal discovery in time-series data, only
a limited number of present works aim for causal discovery in general graph-structured data.
Time-series based methods cannot be directly adopted on data with multi-branch trajectory
dynamics or spatial structures.

Our contribution. In this work, we present GEASS (Granger fEAture Selection of Spatiotemporal
data), which identifies causally interacting features of high dimensional temporal / spatial data by a
single neural network. GEASS considers the aforementioned feature sparsity instead of edge sparsity,
thus selects most significant interacting features for downstream causal discovery. Our contributions
are three-folds.

1. Instead of direct causal discovery in data, we formulate the task as two steps of causal
feature selection and causal graph identification. We provide a novel solution of causal
feature selection problem in general graph-structured data by the use of modified transfer
entropy maximization with theoretical guarantees.

2. In order to solve our proposed optimization problem, we design a novel combinatorial
stochastic gate layer to select non-overlapping sparse feature sets with a newly designed
initialization procedure.

3. We demonstrate the power of our method by benchmarking it on both temporal data and
spatial data of multiple settings. Our method gives accurate and robust causal feature
identification and reveals novel biology in real datasets.

1.1 RELATED WORKS

Neural Granger causality. Despite the large body of work based on linear Granger causal discovery,
neural Granger causality still remains an active area of research. Various neural network architectures,
such as MLP, sequential model, and attention-based architecture (Tank et al., 2021; Nauta et al.,
2019; Khanna and Tan, 2019; Sun et al., 2021), have been proposed for nonlinear Granger causality
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discovery. A recent work uses the information of proxy variable to learn latent confounder for
Granger causality by a dual-decoder neural network (Yin and Barucca, 2022). One recent biology-
oriented work extends the definition of Granger causality to DAGs, where the use of a linear graph
neural network is proposed to model underlying Granger causality (Wu et al., 2021). Meanwhile,
a neural-ODE based approach has been proposed to reformulate the Granger causality problem in
terms of local dependence graph identification (Bellot et al., 2021).

Causal feature selection. The task of causal feature selection has been considered by multiple
groups. Most works in this category uses constraint-based methods to identify each feature’s causal
relation with all other features, equivalent of identifying the whole causal graph structure, including
VARLINGAM, tsFCI, SVAR-FCI, and PCMCI (Hyvärinen et al., 2010; Entner and Hoyer, 2010;
Malinsky and Spirtes, 2018; Moneta et al., 2011; Runge et al., 2019a). Meanwhile, seqICP focus
on identifying the direct or indirect cause for each feature assuming sufficient interventions in the
dataset (Pfister et al., 2019). SyPI tackles the causal feature selection problem without the assumption
of causal sufficiency and avoids issues in multi-hypothesis testing by construction of the correct
conditional set (Mastakouri et al., 2021). Finally, Guo et al. (2022) considers dual correction of causal
feature selection to control both false positive rates and false negative rates.

2 MODIFIED TRANSFER ENTROPY (MTE)

In order to tackle the issue that a neural network may overfit each model therefore overestimates the
number of causal interactions, we need a prediction-free loss function that directly indicates causal
signficance. In this work, we propose a novel function, modified transfer entropy (mTE), based on
transfer entropy (Schreiber, 2000) as a metric of causal interaction significance.

Transfer entropy is a information-theoretic measure of cross dependence (Schreiber, 2000). Consider
two vectorized time series xt and yt for t ∈ 1, ..., T . In a Markovian model, the transfer entropy
from x to y at time t is defined as the mutual information between the present value xt and the future
value yt+1, conditioning on yt to eliminate possible autocorrelation: TEt(x,y) = I(xt;yt+1|yt).

By the use of mutual information, transfer entropy is able to model general nonlinear dependencies
beyond linear Granger causality. In this work, we further consider the generalization of transfer
entropy on graph structured xi and yi, where i denotes a vertex on the data graph G = (V,E):

TEi(x,y) := I(xi;yN(i)|yi), where N(i) := {j|(i, j) ∈ E}. (1)

Note here the graph can be either directed (the time-series case) or undirected (the spatial case). In
this study, we introduce a novel function, modified transfer entropy, that enables the application of
bivariate transfer entropy for causal discovery in high-dimensional data. Our key insight is to consider
two feature subsets in the dataset that maximizes the mutual information difference:
Definition 2.1. Let X = [x1x2 . . .xn] ∈ Rp×n be a matrix containing graph-structured vector
series xi, with i as vertices of the data graph G = (V,E). Suppose S1 and S2 be two subsets of
{1, 2, ..., p}. The modified transfer entropy mTEi(S1, S2) and its maximum mTE∗

i are defined by

mTEi(S1, S2) := I(xi
S1
;x

N(i)
S2

)− I(xi
S1
;xi

S2
); mTE∗

i := max
S1,S2

mTEi(S1, S2). (2)

Note the mTE function requires strictly stronger dependence than the analogically defined transfer
entropy TEi(S1, S2), as shown by the proposition below (The proof can be seen at Appendix A.1):
Proposition 2.2. ∀S1, S2 ⊂ {1, ..., p},mTEi(S1, S2) > 0 ⇒ TEi(S1, S2) > 0.

Let (S∗
1 , S

∗
2 ) be one of the maximizers with the smallest size of |S1 ∪S2|, and denote S∗ := S∗

1 ∪S∗
2

(note (S∗
1 , S

∗
2 ) may not be unique). Under some mild assumptions listed below, we are able to provide

the theoretical justification for mTE maximization in the time-series setting (Theorem 2.4). A proof
can be seen in Appendix A.3.

Assumptions:

A1-A3 Causal Markov assumption, faithfulness, and causal sufficiency for the causal graph.

A4 Ergodicity and Stationarity of the stochastic process defined by the causal graph, meaning the
ensemble average equals time average, and the functional relationships encoded by the causal graph
do not change by time (or location). This also leads to mTEi(S1, S2) is constant across i.
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A5 DAG causal graph: We assume XT = [t1, ..., tm, um+1, ..., up] up to a permutation, where ti
are causally interacting features forming a directed acyclic graph (DAG), and uk are nuisance features
that may correlate with ti. An illustration based on the time series setting can be seen in Figure 1.
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Figure 1: Dependence graph for a single forward step (left) and the underlying causal graph (right).

A6 Interaction regularity: Given two disjoint feature sets A,B, such that A is a subset of the parent
features of B or B is a subset of child features of A. Then conditioning on any other feature set C
such that I(Ai, BN(i)|Ci), I(Ai, BN(i)|CN(i)) > 0, we have:

∀i,min{I(Ai, BN(i)|Ci), I(Ai, BN(i)|CN(i))} > I(Ai, Bi|Ci). (3)
Remark 2.3. Here our only additional assumption from prevalent literatures (Pearl, 2009; Spirtes
et al., 2000) is A6, which aims to filter out features with spurious causations and regularize the algo-
rithmic complexity of causal interactions, thus enabling information-theoretic analysis. A6 has direct
connections with the concept of conditional transfer entropy (Faes et al., 2016; Shahsavari Baboukani
et al., 2020); further discussions can be seen at Appendix A.2.
Theorem 2.4. Given A1-A6, S∗ := (S∗

1 ∪S∗
2 ) ⊆ {1, ...,m} (the index set of true interacting features

described in A5). Moreover, each feature in S∗ is connected to other features in the set S∗.

3 NEURAL OPTIMIZATION OF MODIFIED TRANSFER ENTROPY

With Theorem 3.1 stated below, we are able to give a theoretical guarantee of the l0-penalized
optimization of mTE. A proof can be seen at Appendix A.4. Here ⊙ stands for the Hardmard product.
Theorem 3.1. Assume A1-A6 holds and f, g, h define one-to-one mappings on X⊙1S1(for f) or X⊙
1S2

(for g, h). Then ∃λ > 0, such that for (4), any solution (S∗
1 ∪ S∗

2 ) satisfies S∗ := (S∗
1 ∪ S∗

2 ) ⊆
{1, ...,m}. Moreover, each feature in S∗ is connected to other features in the set.

min
f,g,h,S1,S2

−(I(f(xi ⊙ 1S1
);h(xN(i) ⊙ 1S2

))− I(f(xi ⊙ 1S1
); g(xi ⊙ 1S2

))) + λ|S1 ∪ S2| (4)

Remark 3.2. The estimation of mutual information by various approaches is an active field itself
(Belghazi et al., 2018; Hjelm et al., 2018; McAllester and Stratos, 2020; Zhang et al., 2019). In
contrast, by this theorem, we show that an accurate estimation of the transfer entropy (such as in
(Zhang et al., 2019)) may not be needed as optimizing the upper bound of the modified transfer
entropy automatically gives the best feature subset selection.
Remark 3.3. Our theoretical guarantee is derived based on one-to-one embeddings f, g, h. In
a neural network, the injectivity may be enforced with various architecture designs yet may not
perfectly hold. Empirically, we have found that the optimization of mTE is robust to the embedding
injectivity, compared with the original transfer entropy. This is due to our stricter design of the mTE
function (Proposition 2.2) and is further illustrated by our experiments in the next section.

Given Theorem 3.1, we are able to construct a neural network for optimizing the proposed loss
function. However, the estimation of mutual information is not directly tractable. In this case,
because mutual information is invariant by one-to-one transforms, we can restrict the function class
of f, g, h in the optimization problem (4) as flows transforming the original feature distributions
into Gaussian distributions with fixed dimensionality. We are able to formulate the target for neural
network optimization by the explicit formula for mutual information between Gaussians: I(X,Y ) =
1
2 log

detΣX detΣY

detΣ[X,Y ]
. The Gaussian regularization can be applied either by regularizing over the

discrepancy between embedding distributions [f, g, h] and Gaussian distributions or by applying a
adversarial training procedure. In this work, we have implemented the former approach, constructing
means and covariance matrices for the concatenated embedding as learnable parameters and minimize
the cross entropy between target distributions and the parametrized Gaussian distributions.
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3.1 COMBINATORIAL STOCHASTIC GATES

In order to solve the optimization problem, we need to learn two sparse sets S1, S2, which involves
combinatorial optimization, making the task impractical for high-dimensional data. To overcome this
issue, we use a stochastic gate based approach (Yamada et al., 2020; Lindenbaum et al., 2021), which
performs probabilistic relaxation of deterministic l0 norms. In order to explicitly construct S1 and S2

by stochastic gates, we define two random vectors T 1 and T 2 ranging in [0, 1] with lengths equal
to the feature number, with each element independently sampled from STG distribution defined as:
T i
d = max(0,min(1, µi

d + ϵid)), where ϵid ∼ N(0, σ2
i ) is i.i.d. sampled with fixed variance and µi

d is
a parameter trainable by reparametrization (Miller et al., 2017; Figurnov et al., 2018).

The new loss function applying stochastic gates can be formulated as:

ET 1,T 2 − [Î(f(X̃S1
);h(WX̃S2

))− Î(f(X̃S1
); g(X̃S2

))] +

p∑
d=1

[λ1P(T 1
d > 0) + λ2P(T 2

d ∈ (0, 1))],

s.t. X̃S1
= X ⊙ T 1 ⊙ T 2, X̃S2

= X ⊙ T 1 ⊙ (1− T 2). (5)

Here Î is defined as the empirical Gaussian mutual information: Î(X,Y ) = 1
2 log

det Σ̂X det Σ̂Y

det Σ̂[X,Y ]
, and

W is defined as the graph diffusion operator: Wxi = xN(i). In our construction, T 1 controls the
sparsity of feature selection, while T 2 controls the expectation of overlap between X̃S1

and X̃S2
.

Denoting the Gaussian error function as erf(), the regularization term for the first layer is of form:
p∑

d=1

P(T 1
d > 0) =

p∑
i=1

(
1

2
− 1

2
erf(

µ1
d√
2σ1

)). (6)

The regularization term for the second layer can be expressed as:
p∑

d=1

P(T 2
d ∈ (0, 1)) =

p∑
d=1

P(T 2
d > 0)− P(T 2

d ≥ 1) =
1

2

p∑
d=1

(erf(
µ2
d√
2σ2

)− erf(
µ2
d − 1√
2σ2

)). (7)

We are able to show strong consistency for our stochastic-gate based feature selection scheme by the
theorem below (A proof can be seen at Appendix A.5):
Theorem 3.4. Assume A1-A6 and f, g, h are one-to-one Gaussian embeddings as described above.
For the optimal solution of (5), denote a sample of stochastic gate as T 1, T 2 and denote the ground
truth interacting feature set as S, then there exists λ1, λ2 > 0 for (5) such that as n → ∞,

∀i ∈ {0, 1}, P(Bi ⊆ S)
a.s.−−→ 1, where Bi := {d|T 1

d > 0, T 2
d = i}. (8)

In practice, we also have observed the method’s solution highly depends on the stochastic gate
initialization. Here we provide a heuristic initialization scheme that shows superior empirical
performance. Details of the initialization scheme can be seen in Appendix B.

3.2 PROPOSED NETWORK ARCHITECTURE

Our proposed network architecture is summarized in Figure 2. For an input dataset X ∈ Rp×n and its
corresponding graph adjacency matrix A ∈ Rn×n, we first pass each feature through two sequential
stochastic gate layers T 1, T 2. The l0 penalty is conducted on the first STG layer, while the second
STG layer is regularized with the 0-1 penalty, consistent with the descriptions in the previous section.

After passing each feature, denote T̂ 2
i = 1− T 2

i , we have two intermediate embeddings defined by
X̃S1 = X ⊙ T 1 ⊙ T 2 and X̃S2 = X ⊙ T 1 ⊙ T̂ 2 respectively. Then these two embeddings are passed
through MLP1 (f ) and MLP2 (g) to generate Gaussian embeddings f(X̃S1), g(X̃S2) corresponding
to (5). For the design of function h, we consider two crucial elements: 1. an additional layer to
aggregate the information from different nodes in xN(i); 2. the injectivity of mappings f, g, h. Note
f, h in (5) are automatically enforced to be injective on interacting features to maximize the first term
of mTE, but g is not. Therefore, our final design of h is the composition of first applying g (enforcing
the injectivity of g), a mean aggregation layer without self-loop consistent with the GCN design (Kipf
and Welling, 2016) by multiplying the adjacency matrix A, and another MLP layer (MLP3). Finally,
we compute the minus empirical Gaussian mTE Î(f, g)− Î(f, h) and add the cross-entropy penalty
between the concatenated embedding distribution and a learnable Gaussian distribution.
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Figure 2: Illustration of the proposed GEASS network architecture.

3.3 OUTPUT INTERPRETATION

Upon the algorithm convergence, GEASS provides both outputs of active features (B0 ∪ B1) and
embeddings (f, g, h) produced by causally interacting features. In this paper, we emphasize the use
of the identified interacting features B0 ∪B1. The output of embeddings (f, g, h) may be complex
and nonlinear, potentially requiring additional architectures to maximize its interpretability.

By the construction of GEASS, we are able to get two separate sparse feature subsets as source
features B1 and sink features B0. These features may be used as inputs to further proper causal
analysis, such as LPCMCI (Gerhardus and Runge, 2020) for time-series data, which despite its
statistical power in depicting possible lags, identifying latent confounders, and allowing nonlinear
tests, can only work on data with moderate feature sizes. Also, these features may be used in other
machine learning models for improved model interpretability.

4 EXPERIMENTS

4.1 GAUSSIAN TIME-SERIES WITH POSSIBLE NONLINEARITY

In order to benchmark the method in time-series data, we consider two settings: 1. Minor effect of
latent processes, with autocorrelation present; 2. Significant effect of latent processes, with autocorre-
lation present. Both settings are modeled by Gaussian structural processes with an underlying causal
graph. Further details can be seen in Appendix C.1.

We test the false discovery rate (FDR) and F1 score between ground truth interacting features and
recovered features as two metrics for high-dimensional data causal discovery. We compare GEASS
with two categories of methods, namely conditional independence based (CI-based) methods and
Granger causality based (GC-based) methods respectively. The first method category includes
VAR-LINGAM (Hyvärinen et al., 2010), PCMCI (Runge et al., 2019b), and LPCMCI (Gerhardus
and Runge, 2020). Among them, despite the statistical power, LPCMCI is not included in our
experiment as it fails to converge in given time in our preliminary experiments. The second method
category includes a neural-network based generalized vector autoregression model GVAR Granger
(Marcinkevičs and Vogt, 2021), and Grid-net which generalizes the definition of Granger causality
to Directed Acyclic Graph (DAG) (Wu et al., 2021); moreover we include two state-of-the-art
approaches, DCM and NGM implemented in (Bellot et al., 2021) that use neural ODE to model
nonlinear dependence graph.

Table 1 shows our benchmarking results. Among the alternative methods, GVAR and GrID-net fail
in all settings as they are not designed for causal feature selection. VAR-LINGAM achieves high
accuracy in linear settings while fails in nonlinear settings. In contrast, PCMCI fails when latent
processes contribute to both true causally interacting features and nuisance features, creating spurious
correlations. Empirically we also observe that DCM and NGM achieves comparable performance
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when the dynamics are linear but performs worse in the nonlinear setting, where the dynamics are
more irregular. Finally, GEASS consistently gives accurate causal feature identifications (high F1)
and low false discovery rate (low FDR) in all settings considered.

Table 1: Comparison of methods on Gaussian linear / nonlinear time-series data with different feature
numbers and different nuisance feature settings.

Weak confounding interactions Strong confounding interactions

Linear nonlinear Linear nonlinear

Methods FDR F1 score FDR F1 score FDR F1 score FDR F1 score

LINGAM (CI) .00 (.00) .94 (.04) .83 (.00) .17 (.00) .00 (.00) .94 (.04) .83 (.00) .17 (.00)
PCMCI (CI) .17 (.01) .81 (.04) .12 (.08) .85 (.05) 1.0 (.00) .00 (.00) .63 (.23) .36 (.22)

GVAR (GC) .94 (.00) .11 (.00) .94 (.00) .11 (.00) .94 (.00) .11 (.00) .94 (.00) .11 (.00)
GrID-net (GC) 1.0 (.00) .00 (.00) 1.0 (.00) .00 (.00) 1.0 (.00) .00 (.00) 1.0 (.00) .00 (.00)
DCM (GC) .12 (.20) .88 (.20) .65 (.12) .35 (.12) .18 (.09) .82 (.09) .93 (.11) .07 (.11)
NGM (GC) .07 (.08) .88 (.04) .48 (.17) .50 (.17) .00 (.00) .91 (.00) .62 (.25) .38 (.25)
GEASS (Ours) .05 (.15) .97 (.10) .03 (.06) .92 (.05) .03 (.07) .90 (.04) .00 (.00) .91 (.00)

Figure 3: Running time compari-
son for methods on time-series data
with different feature sizes.

Furthermore, we evaluate different methods’ scalability with
respect to the feature size. (Experimental details can be seen
at Appendix C.1.2). As described before, we anticipate high
computational complexity of both conditional independence
based methods and neural network based methods with respect
to the feature size, which prohibits further use of these methods
for high-dimensional biological data analysis, where the fea-
ture number is typically at the scale of 103 − 104. Meanwhile,
GEASS constructs a single neural network with parameters
approximately proportional to p, thus largely reducing the com-
plexity in the high-dimensional regime. We benchmark PCMCI,
GVAR, GrID-net, NGM, GEASS, and an additional combina-
tion of GEASS with a downstream CI-test based causal graph
identification method LPCMCI. Our experimental result shows
the superior performance of GEASS as well as GEASS+LPCMCI in time complexity, consistent with
our qualitative analysis (Figure 3).

4.2 SIMULATED SPATIAL OMICS DATA WITH CELL TYPE CONFOUNDER

In order to jointly consider spatial confounders and corresponding autocorrelation patterns that
are potentially enriched in specific niches, we consider the case of spatial omics data, where the
autocorrelation is modeled by a higher likelihood of same type of cells in the neighborhood, and the
confounder (nuisance features) is modeled by a coherent shift of global gene expression for each cell
type. We first simulate scRNA-seq datasets, then each synthetic scRNA-seq dataset is assigned to a
fixed size grid with cell type labels simulated by Ising model simulation. We then add artificial genes
that are spatially correlated with neighboring cell’s given gene set. Finally each dataset is normalized
and log1p transformed as the standard pipeline in Scanpy (Wolf et al., 2018).

The majority of methods are not available as their focus is on time-series data. Therefore in order
to perform our benchmarking study, we compare GEASS with Lasso Granger, as well as our
implemented L1-regularized version of NCEM, an approach proposed to detect interactions in spatial
omics data (Fischer et al., 2021). Finally, we also implemented a method that maximizes over the
original transfer entropy to select causal features (TE).

As shown in Table 2, the original LASSO cannot identify causal features because of the strong
correlation between features. L1-NCEM alleviates the issue by conditioning on cell type labels in
regression. TE outperforms linear methods yet generates a number of false positives, as it may learn
spurious causations as discussed in Remark 3.3. Finally, GEASS consistently outperforms over other
methods in identifying causal features of data as shown by both high F1 score and low FDR.
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Table 2: Comparison of methods on simulated spatial transcriptomics data.

Linear nonlinear

Methods FDR F1 score FDR F1 score

Lasso 0.950±0.055 0.050±0.055 0.970±0.040 0.030±0.040
L1-NCEM 0.380±0.138 0.620±0.138 0.535±0.134 0.465±0.134
TE 0.190±0.127 0.767±0.070 0.141±0.087 0.761±0.060
GEASS (Ours) 0.095±0.128 0.787±0.088 0.000±0.000 0.775±0.110

4.3 SCRNA-SEQ PANCREATIC ENDOCRINOGENESIS TRAJECTORY

We test GEASS on the pancreatic endocrinogenesis trajectory data, which is a standard dataset for
scRNA-seq trajectory inference task (Bergen et al., 2020; Bastidas-Ponce et al., 2019). The pancreas
trajectory data contains 3696 cells and 27998 genes. After preprocessing, lowly-expressed genes are
filtered out as the standard pipeline in scVelo (Bergen et al., 2020), with remaining 2000 genes for
further analysis. We aim to use GEASS to identify causally-related genes along the developmental
trajectory to reveal underlying biology. (See Appendix C.3 for experimental details).

scRNA-seq data provides a snapshot of cell population distribution therefore time-series based
analysis methods cannot be directly applied. However, due to GEASS’s flexible setting in forward
operator W , we are able to define the time flow by RNA velocity analysis. RNA velocity analysis
uses the additional information of intron RNAs to infer the underlying dynamics of gene expression
change. Thus, we are able to define a velocity kernel matrix Avelo, which provides weighted adjacency
relationships of cells based on velocity direction and cell phenotypic proximity.

GEASS identifies 50 causally-related features with high biological relevance. For example, the gene
list includes the key transcriptional regulator NEUROG3, which is required for the specification
of a common precursor of the 4 pancreatic terminal states (uni, 2021). As the ground truth causal
interactions here are unknown, for further quantitative validation, we assume the underlying biological
process is driven by a causal cascade of gene interactions, meaning target genes activated in earlier
phases of the trajectory further cause downstream gene activation at later phases. In this case, the
higher a gene velocity is, the more likely the gene is associated with causal gene-gene relationships.
Our benchmarking result here suggests GEASS achieves the best performance in selecting genes
with high mean velocity likelihood, compared with alternative gene selection schemes with fixed
gene number (50) including high-expressed genes (HEG), highly-variable genes (HVG), and genes
having high correlation with inferred latent time (HCG) (Figure 4).

Mean RNA velocity likelihood

HEG 0.0528
HVG 0.1753
HCG 0.1889

GEASS 0.2366

Figure 4: Visualization of pancreas trajectory dataset and comparisons of gene selection criterions.

4.4 MERFISH HUMAN CORTEX SINGLE-CELL LEVEL SPATIAL TRANSCRIPTOMICS

Spatial transcriptomics represent a wide category of method that can achieve spatial profiling of
gene expression in tissues (Moses and Pachter, 2022; Rao et al., 2021; Palla et al., 2022). By the
additional information of spatial locations, such measurements enable deeper understandings of
cellular interactions (Palla et al., 2022; Jerby-Arnon and Regev, 2022; Fischer et al., 2021). However,
current computational methods revealing interaction modules (Jerby-Arnon and Regev, 2022) or niche
effects (Fischer et al., 2021; Raredon et al., 2023) for spatial omics data lacks causal interpretation.
Applying GEASS, we aim to reveal underlying causal intercellular patterns to fully utilize the
potential of spatial omics data for biological discovery.
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Here we use GEASS on a recent published MERFISH dataset measuring spatially-resolved single-cell
gene expression of human cortex (Fang et al., 2022). The dataset we used comprises of 3044 cells and
4000 genes; each cell is annotated as one of the eight cell types: excitatory neurons (EXC), inhibitory
neurons (INC), astrocytes (ASC), microglial cells (MGC), oligodendrocytes (OGC), oligodendrocyte
progenitor cells (OPC), endothelial cells (ENDO), and mural cells (MURAL) as shown by the first
panel of Figure 6 in Appendix D. Our GEASS analysis selects 9 genes, namely FILIP1, SLC17A7,
MYH11, RP11-10j21.2, PIRT, C3ORF67, TRDMT1, RGS8, SPTLC2 (Appendix Figure 6), with further
experimental details available in Appendix C.4. Among these genes, MYH11, RP11-10j21.2, and
TRDMT1 are enriched at the endothelial cells adjacent with mural cells, corresponding to underlying
vascular structures (marked by ellipses in the first panel of Appendix Figure 6). We next aim to verify
if their expression difference with those of non-adjacent endothelial cells is statistically significant.
Indeed, by applying the Wilcoxon rank-sum test, we have found significant enrichments for both
MYH11 and TRDMT1, with p-values 0.003 and 0.015 respectively, while the p-value for the gene
RP11-10j21.2 is not significant (0.5) due to the gene expression sparsity. The finding is consistent
with the MERFISH images, which reveals rich cellular interactions between neuronal cells and the
blood vessels (Fang et al., 2022). Therefore, these identified marker genes of vascular structure may
encode underlying meaningful cellular interactions.

Figure 5: Normalized spatial expression
levels of genes C3orf67 and PIRT.

Next, we focus on two GEASS identified genes, C3ORF67
and PIRT, which are highly expressed at nearby spatial
locations. In order to confirm the possible causal relation-
ship between the two genes, we consider three models: 1.
the two genes are expressed in the same cell without spa-
tial causal relationships; 2. The expression of C3ORF67
in each cell causes the expression of PIRT in neighboring
cells (C3ORF67 → PIRT); 3. The expression of PIRT
in each cell causes the expression of C3ORF67 in neigh-
boring cells (PIRT → C3ORF67). To this end, we first
compare Pearson and Spearman p-values of intracellular
correlation (model 1), C3ORF67 to neighboring PIRT
(model 2), and PIRT to neighboring C3ORF67 (model 3). Our comparison shows for the p-values of
both correlation measures, model 3 is favored (0.004, 0.001) over model 1 (0.014, 0.003) and model
2 (0.049, 0.004). The validity of model 3 (PIRT → C3ORF67) is further supported by a linear model
predicting C3ORF67 expression by both intracellular and neighbor expression of PIRT, where the
neighboring cell effect coefficient is significant at the confidence level of 0.01 by bootstrap, while
the alternative model’s corresponding coefficient is not significant. Our finding is consistent with
the predicted role of PIRT in transmembrane transporter binding and phosphatidylinositol-mediated
signaling (Safran et al., 2021). As the role of C3ORF67 in human cortex remains unclear, this
revealed causal link may lead to novel biological discoveries with further experimental validations.

5 CONCLUSIONS

In this work, we present GEASS, a causal feature selection method based on information-theoretic
tools and neural networks. GEASS is able to scale to high dimensions and identify sparse interacting
features. We provide both theoretical gaurantees and empirical validations of GEASS on synthetic and
real biological data. Our results show GEASS can be integrated into high-dimensional spatiotemporal
data analysis pipelines to provide unique insights for further findings.

Limitations. GEASS is a method designed for nonlinear causal feature selection. GEASS does not
provide a causal graph itself as it optimizes a latent embedding corresponding to different causal
mechanisms. Therefore, in applications where a causal graph output is favored, constraint-based
methods may need to be applied after GEASS. Moreover, when underlying causal graph has a large
number of vertices, the sparsity assumption is violated and GEASS is not gauranteed to work. Also,
further efforts may be taken to incorporate lag selections for GEASS.

Broader impact. We anticipate a wide use of GEASS in high-dimensional graph-structured data,
especially for high-dimensional biological data such as single cell trajectories and spatial omics
measurements. Applying GEASS along with causal graph identification methods to a wider range of
real biological data may greatly facilitate downstream biological discoveries.
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APPENDIX

A PROOFS

A.1 PROOF OF PROPOSITION 2.2.

Proposition 2.2. ∀S1, S2 ⊂ {1, ..., p},mTEi(S1, S2) > 0 ⇒ TEi(S1, S2) > 0.

Proof. By standard properties of mutual information (Cover, 1999) we have

TEi(XS1
, XS2

) = I(Xi
S1
;X

j:(i,j)∈E
S2

|Xi
S2
)

= I(Xi
S1
;X

j:(i,j)∈E
S2

, Xi
S2
)− I(Xi

S1
;Xi

S2
)

= I(Xi
S1
;X

j:(i,j)∈E
S2

)− I(Xi
S1
;Xi

S2
) + I(Xi

S1
;Xi

S2
|Xj:(i,j)∈E

S2
).

(9)

Therefore TEi(S1, S2) ≥ mTEi(S1, S2) holds, thus mTEi(S1, S2) > 0 ⇒ TEi(S1, S2) > 0.

A.2 DISCUSSION OF ASSUMPTION A6.

Our assumption A6 is based on the concept of conditional mutual entropy, which aims to filter out
possible indirect causal relationships.

Here are two simple examples to see why TE/mTE can have problems with indirect causal interactions
in the time-series setting: consider the relationships: st → wt → vt+1; st → wt+1 → vt+1. Then in
both cases, we may have: I(st, vt+1)− I(st, vt) > 0 and I(st, vt+1|vt) > 0 although there are no
direct causal relationship between s and v. Note in our setting, we include the possibility of such
indirect interaction by allowing correlation between nuisance features and true interacting features.

The issue can be resolved by considering the conditional mutual information I(st, vt+1|wt) or
I(st, vt+1|wt+1), which equals 0. This insight is also addressed the concept of conditional transfer
entropy:

Definition (Conditional transfer entropy) (Shahsavari Baboukani et al., 2020). Assume X and Y
are the features of interest and the conditioning features are Z. Denote − as [1, 2, ..., t], then we have

cTEt(X,Y, Z) = I(Yt+1, X−|Y−, Z−).

The classical formulation of conditional transfer entropy is widely used in high-dimensional ob-
servational data to learn direct causal dependencies (Faes et al., 2016; Shahsavari Baboukani
et al., 2020). It implicitly assumes that, there is direct causal relationship between X and Y if
∀Z, t, cTEt(X,Y, Z) > 0. Here, we extend this assumption in the context of conditional mTE
covering both examples described above. The conditional mTEs are defined in analogy to cTE for
generalized graph-structured data in the Markovian model setting:

Definition (Two forms of conditional mTE). Assume X and Y are the feature sets of interest and
the conditioning features are Z. Then we have

cmTE1
i (X,Y, Z) = I(Xi, Y N(i)|Zi)− I(Xi, Y i|Zi);
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cmTE2
i (X,Y, Z) = I(Xi, Y N(i)|ZN(i))− I(Xi, Y i|Zi);

By controlling the two forms of conditional mTE to be larger than zero, we rule out both possi-
bilities of Xi → Zi → Y N(i) and Xi → ZN(i) → Y N(i), as mTE is a stricter version of the
original transfer entropy as discussed in Proposition 2.2. In summary, our A6 can be reformu-
lated as ∀Z, i, cmTE1

i (X,Y, Z) > 0; cmTE2
i (X,Y, Z) > 0 for ground truth interacting X,Y in

non-degenerating cases, where Z does not fully overlap with X/Y in the same point.

A.3 PROOF OF THEOREM 2.4.

Theorem 2.4. Given A1-A6, S∗ := (S∗
1 ∪ S∗

2 ) ⊆ {1, ...,m} (the index set of true interacting features
described in A5). Moreover, each feature in S∗ is connected to other features in the set S∗.

Proof. Step 1. First we prove S∗
1∩S∗

2 = ∅. If not, assume p is an overlapping element. For simplicity,
we denote N(i) := {j|(i, j) ∈ E}, A = XS∗

1
, B = XS∗

2
. Then we have

mTE(S∗
1 , S

∗
2 )−mTE(S∗

1 \ p, S∗
2 )

= I(Ai \ pi, pi;BN(i) \ pN(i), p{N(i)})− I(Ai, pi;Bi, pi)− I(Ai \ pi;BN(i) \ pN(i), pN(i))

+ I(Ai;Bi, pi)

= I(pi;BN(i) \ pN(i), pN(i)|Ai \ pi)− I(pi;Bi \ pi, pi|Ai \ pi) < 0.
(10)

Therefore removing p would increase the value of mTE, leading to a contradiction.

Step 2. Now we prove nuisance signals cannot be in either S∗
1 or S∗

2 . Otherwise, first we assume a
set of nuisance signals U is in S∗

1 . Here we denote A := XS∗
1
, B := XS∗

2
. As U only interacts with

variables at the same time point, U can only interact with BN(i) via indirect links through a subset
of interacting features at i. Denote this feature set as PaU (B)i ⊆ {ti1, ..., tim}, and the difference
set Pa−U (B)i := PaU (B)i \ Bi. Then we first note Pa−U (B)i cannot be an empty set. Otherwise,
denote S1 := S∗

1 \ U , noting the non-overlapness between A and B we would have

mTE(S∗
1 , S

∗
2 )−mTE(S1, S

∗
2 )

= I(Ai \ U i, U i;BN(i))− I(Ai \ U i, U i;Bi)− I(Ai \ U i;BN(i))

+ I(Ai \ U i;Bi)

= I(U i;BN(i)|Ai \ U i)− I(U i;Bi|Ai \ U i)

= −h(U i|BN(i), Ai \ U i) + h(U i|Bi, Ai \ U i)

≤ −h(U i|BN(i), Ai \ U i) + h(U i|PaU (B)i, Ai \ U i) (Conditioning reduces entropy)
≤ 0.

(11)

This means (S1, S
∗
2 )’s mTE is not smaller than (S∗

1 , S
∗
2 )’s while having a smaller union size, leading

to a contradiction. Then because Pa−U (B) does not overlap with either U and B, with A6 we have

mTE(S∗
1 , S

∗
2 )−mTE(S∗

1 ∪ Index(Pa−U (B)), S∗
2 )

= I(Ai \ U i, U i;BN(i))− I(Ai \ U i, U i;Bi)− I(Ai \ U i, U i, Pa−U (B)i;BN(i))

+ I(Ai \ U i, U i, Pa−U (B)i;Bi)

= I(Pa−U (B)i;Bi|Ai)− I(Pa−U (B)i;BN(i)|Ai)
A6
≤ 0.

(12)
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The equal sign above is taken iff. Pa−U (B)i ⊆ Ai. Further we have

mTE(S∗
1 ∪ Index(Pa−U (B)), S∗

2 )−mTE(S1 ∪ Index(Pa−U (B)), S∗
2 )

= I(Ai \ U i, U i, Pa−U (B)i;BN(i))− I(Ai \ U i, U i, Pa−U (B)i;Bi)

− I(Ai \ U i, Pa−U (B)i;BN(i)) + I(Ai \ U i, Pa−U (B)i;Bi)

= I(U i;BN(i)|Pa−U (B)i, Ai \ U i)− I(U i;Bi|Pa−U (B)i, Ai \ U i)

= −h(U i|BN(i), Pa−U (B)i, Ai \ U i) + h(U i|Bi, Pa−U (B)i, Ai \ U i)

≤ −h(U i|BN(i), Pa−U (B)i, Ai \ U i) + h(U i|PaU (B)i, Ai \ U i) ≤ 0.

(13)

Therefore, in all possible cases, mTE(S1 ∪ Index(Pa−U (B)i), S∗
2 ) is either strictly larger than

mTE(S∗
1 , S

∗
2 ) or equal with mTE(S∗

1 , S
∗
2 ) but with smaller union size, leading to a contradiction.

Next, given the result above, we assume a nuisance signal set U is in S∗
2 , and S∗

1 does not include
any nuisance features. Then as U only interacts with variables at the same time point, UN(i) can
only interact with S∗

1 via indirect links through a subset of interacting features at N(i). Denote
the whole intermediate feature set for A as ChU (A)N(i) ⊆ {tN(i)

1 , ..., t
N(i)
m }, and Ch−

U (A)N(i) :=

ChU (A)N(i) \ AN(i). Then same as above, denote S2 = S∗
2 \ U , if Ch−

U (A) is an empty set we
would have

mTE(S∗
1 , S

∗
2 )−mTE(S∗

1 , S2)

= I(Ai;BN(i) \ UN(i), UN(i))− I(Ai;Bi \ U i, U i)− I(Ai;BN(i) \ UN(i))

+ I(Ai;Bi \ U i, U i)

= I(Ai;UN(i)|BN(i) \ UN(i))− I(Ai;U i|Bi \ U i)

= −h(UN(i)|BN(i) \ UN(i), Ai) + h(U i|Bi \ U i, Ai)

≤ −h(UN(i)|BN(i) \ UN(i), Ai) + h(U i|ChU (A)i, Bi \ U i) ≤ 0.

(14)

Above derivation holds due to stationarity (as |N(i)| ≡ 1 in the time series setting). Therefore
Ch−

U (A) cannot be an empty set. Because of the non-overlapness between Ch−
U (A) and either A or

U , with A6, we have

mTE(S∗
1 , S

∗
2 )−mTE(S∗

1 , S2 ∪ Index(Ch−
U (A)))

= I(Ai;BN(i) \ UN(i), UN(i))− I(Ai;Bi \ U i, U i)

− I(Ai;BN(i) \ UN(i), UN(i), Ch−
U (A)N(i)) + I(Ai;Bi \ U i, U i, Ch−

U (A)i)

= I(Ai;Ch−
U (A)i|Bi)− I(Ai;Ch−

U (A)N(i)|BN(i))
A6
≤ 0.

(15)

The equal sign above is taken iff. Ch−
U (A)i ⊆ Bi. Further we have

mTE(S∗
1 , S

∗
2 ∪ Index(Ch−

U (A)))−mTE(S∗
1 , S2 ∪ Index(Ch−

U (A)))

= I(Ai;BN(i) \ UN(i), UN(i), Ch−
U (A)N(i))− I(Ai;Bi \ U i, U i, Ch−

U (A)i)

− I(Ai;BN(i) \ UN(i), Ch−
U (A)N(i)) + I(Ai;Bi \ U i, Ch−

U (A)i)

= I(Ai;UN(i)|BN(i) \ UN(i), Ch−
U (A)N(i))− I(Ai;U i|Bi \ U i, Ch−

U (A)i) ≤ 0.

(16)

Therefore, in all possible cases, mTE(S∗
1 , S2 ∪ Index(Ch−

U (A))) is either strictly larger than
mTE(S∗

1 , S
∗
2 ) or equal with mTE(S∗

1 , S
∗
2 ) but with smaller union size, leading to a contradiction.

Step 3. Moreover, if there exists a component in S∗
1 ∪ S∗

2 not connected to any other feature
components, denote the feature as q. Then, in this case with A1-4, the feature q is independent of any
other features in S∗

1 ∪ S∗
2 . From step 1 it can be deduced that q cannot be in both S∗

1 , S
∗
2 . Therefore

in this case, we have mTE(S∗
1 − q, S∗

2 − q) = mTE(S∗
1 , S

∗
2 ) thus leading to the contradiction of

finding an (S1, S2) with the same mTE but smaller |S1 ∪ S2|.
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A.4 PROOF OF THEOREM 3.1.

Theorem 3.1. Assume A1-A6 holds and f, g, h define one-to-one mappings on X⊙1S1(for f) or X⊙
1S2(for g, h). Then ∃λ > 0, such that for (4), any solution (S∗

1 ∪ S∗
2 ) satisfies S∗ := (S∗

1 ∪ S∗
2 ) ⊆

{1, ...,m}. Moreover, each feature in S∗ is connected to other features in the set.

min
f,g,h,S1,S2

−(I(f(xi ⊙ 1S1
);h(xN(i) ⊙ 1S2

))− I(f(xi ⊙ 1S1
); g(xi ⊙ 1S2

))) + λ|S1 ∪ S2|

Proof. With A4 (ergodicity and stationarity), the optimization problem 4 is equivalent to

min
f,g,h,S1,S2

−(I(f(xi
S1
);h(x

N(i)
S2

))− I(f(xi
S1
); g(xi

S2
))) + λ|S1 ∪ S2|. (17)

Given the assumption that f, g, h define injective mappings on xi
S1
,xi

S2
respectively, and one-to-one

transformation does not change mutual information, we have the optimization problem is equivalent
to

min
S1,S2

−(I(xi
S1
;x

N(i)
S2

)− I(xi
S1
;xi

S2
)) + λ|S1 ∪ S2|. (18)

Using Theorem 2.4, a minimizer of the mTE term with the smallest union size satisfies S∗ :=
(S∗

1 ∪ S∗
2 ) ⊆ {1, ...,m}. Moreover, each feature in S∗

1 ∪ S∗
2 is connected to other features in the set.

Note that with our definition of optimal S1, S2, the minimal gap between mTE(S∗
1 , S

∗
2 ) and any

other value mTE(S1, S2) with smaller |S1 ∪ S2| size is larger than zero. Denote the minimal gap as
δ, and take λ < δ

|S∗
1∪S∗

2 |
, then for these other solutions, we have

−mTE(S1, S2) + λ|S1 ∪ S2|
≥ −mTE(S∗

1 , S
∗
2 ) + δ + λ|S1 ∪ S2|

≥ −mTE(S∗
1 , S

∗
2 ) + δ

> −mTE(S∗
1 , S

∗
2 ) + λ|S∗

1 ∪ S∗
2 |.

(19)

Meanwhile, for the (S1, S2) with larger union size, with the definition of the mTE, we have

−mTE(S1, S2) + λ|S1 ∪ S2|
≥ −mTE(S∗

1 , S
∗
2 ) + λ|S1 ∪ S2|

= −mTE(S∗
1 , S

∗
2 ) + λ(|S1 ∪ S2| − |S∗

1 ∪ S∗
2 |) + λ|S∗

1 ∪ S∗
2 |

> −mTE(S∗
1 , S

∗
2 ) + λ|S∗

1 ∪ S∗
2 |.

(20)

Therefore, when taking λ ∈ (0, δ
|S∗

1∪S∗
2 |
), the desired optimal S1, S2 by mTE is the optimal output of

the constructed optimization problem.

A.5 PROOF OF THEOREM 3.4.

Theorem 3.4. Assume A1-A6 and f, g, h are one-to-one Gaussian embeddings as described above.
Denote for the optimal solution of (5), a sample of stochastic gate is given by T 1, T 2 and denote the
ground truth interacting feature set as S, then there exists λ1, λ2 > 0 for (5) such that as n → ∞,

∀i ∈ {0, 1}, P(Bi ⊆ S)
a.s.−−→ 1, where Bi := {d|T 1

d > 0, T 2
d = i}.

Proof. In the following proof for simplicity we denote x̃S1
= x⊙T 1⊙T 2; x̃S2

= x⊙T 1⊙(1−T 2).

Step 1. Given f, g, h projects input distributions into joint Gaussian distributions with fixed dimen-
sionality, by convergence of Gaussian covariance matrices, we have:

Σ̂(f(x̃i
S1
), h(x̃

N(i)
S2

)) =
1

n

n∑
i=1

[f(x̃i
S1
);h(x̃

N(i)
S2

)][f(x̃i
S1
);h(x̃

N(i)
S2

)]T
a.s.−−→ Σ

f(x̃i
S1

),h(x̃
N(i)
S2

)
;

Σ̂(f(x̃i
S1
), g(x̃i

S2
)) =

1

n

n∑
i=1

[f(x̃i
S1
); g(x̃i

S2
)][f(x̃i

S1
); g(x̃i

S2
)]T

a.s.−−→ Σf(x̃i
S1

),g(x̃i
S2

). (21)
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As in the Gaussian case, the mutual information between jointly Gaussian r.v.s is a function of the
covariance matrix, we have

Î(f(x̃i
S1
);h(x̃

N(i)
S2

))
a.s.−−→ I(f(x̃i

S1
);h(x̃

N(i)
S2

)) = I(x̃i
S1
; x̃

N(i)
S2

);

Î(f(x̃i
S1
); g(x̃i

S2
))

a.s.−−→ I(f(x̃i
S1
); g(x̃i

S2
)) = I(x̃i

S1
; x̃i

S2
);

P( lim
N→∞

Empirical mTE = mTE) = 1.

(22)

Step 2. Importantly, in our formulation eq (5), the T1, T2 are sampled once in one epoch, mean-
ing they are fixed across features for computing mTE. Further note that

∑p
d=1 P(T 1

d > 0) =
E||T 1||0;

∑p
d=1 P(T 2

d ∈ (0, 1)) = E||1T 2∈(0,1)||0. This means denoting the value of eq (5) as L,
we have

L
a.s.−−→ ET 1,T 2 [−mTE(1T 1⊙T 2>0,1T 1⊙(1−T 2)>0) + λ1||T 1||0 + λ2||1T 2∈(0,1)||0]
≥ min

T 1,T 2
−mTE(1T 1⊙T 2>0,1T 1⊙(1−T 2)>0) + λ1||T 1||0 + λ2||1T 2∈(0,1)||0.

(23)

Note with step 1 of the proof of theorem 2.4, for any T1 we have

−mTE(1T 1⊙T 2>0,1T 1⊙(1−T 2)>0) + λ1||T 1||0 + λ2||1T 2∈(0,1)||0
≥ −mTE(1T 1⊙T 2>0,1T 1⊙(1−T 2)>0) + λ1||T 1||0,

(24)

which is taken when ∀d,P(T 2
d = 1) = 0/1,P(T 2

d = 0) = 1/0. In this case,

||T 1||0 = ||T 1 ⊙ T 2||0 + ||T 1 ⊙ (1− T 2)||0.

Applying theorem 3.1, we have for λ1 = λ in theorem 3.1,

min
T 1,T 2

−mTE(1T 1⊙T 2>0,1T 1⊙(1−T 2)>0) + λ1||T 1||0 + λ2||1T 2∈(0,1)||0

= −mTE(S∗
1 , S

∗
2 ) + λ|S∗

1 ∪ S∗
2 | := L∗.

(25)

Here (S∗
1 , S

∗
2 ) satisfies properties described by theorem 3.1. Note the minimizer may not be unique,

denote the set containing all minimizers as {(S∗
1 , S

∗
2 )}. Then the equal sign in eq (23) holds

if and only if P((1T 1⊙T 2>0,1T 1⊙(1−T 2)>0) ∈ {(S∗
1 , S

∗
2 )}) = 1. Further noting ∀d,P(T 2

d =

1) = 0/1,P(T 2
d = 0) = 1/0, and our analysis above holds as n → ∞ with probability 1 by a.s.

convergence, we finally have

P( lim
N→∞

P(B1 ⊆ S) = 1) = 1; P( lim
N→∞

P(B0 ⊆ S) = 1) = 1

holds.

B GATE INITIALIZATION

Our proposed initialization scheme is based on analysis of the linear case. Assume

f(XS1
) = Xa, g(XS2

) = Xb,

where a, b ∈ Rp represents two feature loadings. Then:

1. a, b should be non-overlapping, therefore we expect |aT b| to be small.

2. We should have f(X) ≈ Wg(X) to maximize the mTE.

The constraint can be formulated into a regression problem WXb = Xa, therefore a nat-
ural solution is given by a = X†WXb = (XTX)−1XTWXb. In this case, ||aT b|| =
||bT (XTX)−1XTWXb|| = ||b||2(XTX)−1XTWX . Given b is normalized, it can be shown that the
optimal b corresponds to the eigenvector with least absolute eigenvalue of matrix (XTX)−1XTWX .

After getting a, b, we select a quantile threshold over a/(a + b) to initialize the second stochastic
gate layer. The first stochastic gate layer is initialized with uniform weights.
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C EXPERIMENTAL DETAILS

C.1 TIME-SERIES BENCHMARKING STUDY

In the study the causal processes is simulated with Python package Tigramite. Among the total
100 features, there are 6 interacting features {1, 2, 3, 4, 5, 6}. The causal links are: 1->2 with time
lag 2, 2->3 with time lag 1, 5->4 with time lag 1, 1->5 with time lag 1, 3->6 with time lag 3.
These features also have autocorrelations with time lags ranging from 1 to 3. There is also a latent
confounder modeled by Tigramite interacting with feature 0 and feature 2. In the case of strong
latent process, the latent confounder also have effects on other 43 features. All other features (93/50)
not mentioned above are nuisance features with white noise dynamics. The forward operator is
defined by 5-neighbor lower triangular matrix.

C.1.1 ALGORITHM IMPLEMENTATION

If not particularly mentioned, default settings of the algorithms are used throughout.

• VAR-LINGAM. The VAR-LINGAM algorithm is implemented in the Python package
LINGAM, available at https://github.com/cdt15/lingam. VAR-LINGAM gives a weighted
matrix as output. Therefore in our benchmarking study, we choose the most significant edge
corresponding features with the number matching the sparsity level.

• PCMCI. The PCMCI algorithm is implemented in the Python package Tigramite, which
gives a weighted matrix as output. We choose the most significant edge corresponding
features with the number matching the sparsity level.

• GVAR. The GVAR algorithm is implemented at https://github.com/i6092467/GVAR. The
sparsity parameter is set to be 1. We use the stable training option in GVAR, which trains the
first and second half of the time series respectively to optimize over edge selection sparsity
level then train on the whole time series, giving a binary output and no threshold selection is
needed.

• Grid-net. The Grid-net algorithm is implemented at https://github.com/alexw16/gridnet.
The parameter set: order=5, hidden_layer_size = 10, end_epoch=50, batch_size = 50,
lmbd=1 is used throughout our study. After the training finishes, we choose the most
significant edge corresponding features with the number matching the sparsity level.

• DCM, NGM. The two algorithms are both implemented at https://github.com/alexisbellot/
Graphical-modelling-continuous-time. For DCM, the default setting is used, and we use
hidden dim = 10 for NGM. After both training finishes, we choose the most significant edge
corresponding features with the number matching the sparsity level.

• GEASS. We use the same training parameters in all time-series settings, with the key
sparsity regularization parameter λ1 set with 0.04/0.05 based on a validation set, and the
rest parameter settings are consistent with default.

C.1.2 SCALABILITY ANALYSIS

We test PCMCI, GVAR, GrID-net, NGM, GEASS, GEASS+LPCMCI’s running time with con-
sistent settings described in the above section. (LPCMCI’s setting is consistent with PCMCI’s
setting). We use the same data generation pipeline and select the set of the total feature numbers as
[100, 200, 400, 800, 1600].

C.2 SIMULATED SPATIAL OMICS DATA BENCHMARKING STUDY

In the study the spatial omics data is simulated with Python package Scsim (Kotliar et al., 2019).
1000 genes are simulated in total, while 990 genes are cell-type-specificly expressed. The rest 10
genes each has a functional relationship (linear/nonlinear) with one cell-type-specific genes plus the
noise term in order to model the cell-type-specific interactions. The data is then normalized and
log-transformed according to the standard Scanpy pipeline (Wolf et al., 2018). The forward operator
is defined by 4-neighbor adjacency matrix.
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C.2.1 ALGORITHM IMPLEMENTATION

If not particularly mentioned, default settings of the algorithms are used throughout.

• Lasso Granger. The Lasso algorithm is implemented by Scipy with tuned α (0.12) to match
the sparsity level.

• NCEM. NCEM (Linear) is a linear graph neural network, which in the grid case corresponds
to a standard linear regression based on neighbors and the cell type label. Based on the
original work, we implemented our equivalent version by Lasso regression with α = 0.019
to match the sparsity level.

• GEASS. We use the same training parameters in all settings, with the key sparsity regu-
larization parameter λ1 set with 0.02 based on a validation set, and the latent dimension
number is set to be 64.

• TE. To give a fair comparison, we use the same architecture as GEASS except for the loss
function is changed. We use the same training parameters in all time-series settings, with
the key sparsity regularization parameter λ1 set with 0.05 based on a validation set, and the
latent dimension number is set to be 64 consistent with GEASS.

C.3 SCRNA-SEQ PANCREAS TRAJECTORY

The data preprocessing is consistent with the scVelo tutorial: https://scvelo.readthedocs.io/ Veloc-
ityBasics/ (Bergen et al., 2020). The parameter set: λ1 = 0.06, λ2 = 0.1. Here because the gene
regulatory network is fully connected and activated in cascade along the developmental trajectory, we
consider the opposite initialization with b be the largest eigenvalues corresponding eigenvectors of
the matrix (XTX)−1XTWX .

C.4 MERFISH SPATIAL TRANSCRIPTOMICS DATA

The data is downloaded from Dryad and preprocessed with the standard Scanpy pipeline (Wolf et al.,
2018): first normalize and log-transform the data by default functions in Scanpy then select 1000
highly variable genes by default functions in Scanpy (Wolf et al., 2018). The forward operator is
defined by 5-neighbor adjacency matrix. The GEASS parameter set is consistent with those used in
the spatial omics benchmarking.

D ADDITIONAL EXPERIMENTAL RESULTS

Figure 6: Spatial profiling of MERFISH human cortex slice, colored by cell type annotation and
GEASS identified gene expressions. The ellipses in the first panel represent examples of vascular
structures.
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