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Abstract001

Recent research has shown that LLM perfor-002
mance on reasoning tasks can be enhanced003
by scaling test-time compute. One promis-004
ing approach, particularly with decomposable005
problems, involves arranging intermediate so-006
lutions as a graph on which transformations007
are performed to explore the solution space.008
However, prior works rely on pre-determined,009
task-specific transformation schedules which010
are subject to a set of searched hyperparam-011
eters. In this work, we view thought graph012
transformations as actions in a Markov decision013
process, and implement policy agents to drive014
effective action policies for the underlying rea-015
soning LLM agent. In particular, we investigate016
the ability for another LLM to act as a policy017
agent on thought graph environments and in-018
troduce ARIES, a multi-agent architecture for019
reasoning with LLMs. In ARIES, reasoning020
LLM agents solve decomposed subproblems,021
while policy LLM agents maintain visibility022
of the thought graph states, and dynamically023
adapt the problem-solving strategy. Through024
extensive experiments, we observe that using025
off-the-shelf LLMs as policy agents with no026
supervised fine-tuning (SFT) can yield up to027
29% higher accuracy on HumanEval relative028
to static transformation schedules, as well as029
reducing inference costs by 35% and avoid any030
search requirements. We also conduct a thor-031
ough analysis of observed failure modes, high-032
lighting that limitations on LLM sizes and the033
depth of problem decomposition can be seen as034
challenges to scaling LLM-guided reasoning.035

1 Introduction036

Prior works have shown that Large Language Mod-037

els (LLMs) are subject to the emergence of abilities038

as their parameter count grows (Wei et al., 2022),039

which spurred significant interest in training in-040

creasingly larger models. However, recent work041

showed that under a fixed compute budget for train-042

ing and inference, LLM performance on reasoning043

tasks can be enhanced by allocating a higher pro- 044

portion of compute to inference rather than training 045

(Snell et al., 2024). This shift towards inference- 046

time compute scaling can be intuitively understood 047

through the Dual Process Theory, which postulates 048

the existence of two distinct modes of reasoning 049

in humans - (1) a fast, intuitive mode and (2) a 050

slow, deliberate mode (Evans and Frankish, 2009). 051

While the autoregressive decoding procedure of 052

LLMs resembles System 1, prior works used LLMs 053

in System 2 reasoning by inducing models to thor- 054

oughly explore a problem, such as using chain of 055

thoughts, ahead of providing a solution to the user 056

query (Wei et al., 2023). 057

System 2 reasoning can be induced in LLMs by 058

querying models fine-tuned on extensive reason- 059

ing traces (Muennighoff et al., 2025). While such 060

single-query approaches have been shown effec- 061

tive in improving the quality of complex sequential 062

logic, an alternative approach involves performing 063

multiple queries with the same LLM and arranging 064

intermediate solutions (or “thoughts") in a specified 065

topology, i.e. topological reasoning (Besta et al., 066

2024b). This approach yields benefits in problems 067

where intermediate solutions can be reliably scored 068

through a Process Reward Model (PRM) (Snell 069

et al., 2024) or using real feedback from external 070

environments (Yao et al., 2023a). Additionally, a 071

graph formulation has shown promising results in 072

problems displaying the property of decomposabil- 073

ity into subproblems that can be solved indepen- 074

dently then aggregated through a sequence of graph 075

transformations (Besta et al., 2024a). In this work, 076

we focus on problems with the decomposability 077

property and in environments where external feed- 078

back is viable and useful, such as using LLMs to 079

solve coding problems. 080

Despite the benefits of topological reasoning, 081

prior works rely on pre-determined traversal strate- 082

gies parametrized by a discrete set of hyperparam- 083

eters. This approach lacks generality, as these pa- 084
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 def make_palindrome(string: str) -> str:
     prefix_length = len(string)
     postfix = longest_palindromic_postfix(string)
     prefix_length -= len(postfix)
     prefix = get_prefix(string, prefix_length)
     reversed_prefix = reverse_string(prefix)
     return string + reversed_prefix

 def longest_palindromic_postfix(string: str) -> str:
     # Finds the longest postfix that is a palindrome.
     ...

 def get_prefix(string: str, length: int) -> str:
     # Returns the prefix with a specified length.
     ...

 def reverse_string(string: str) -> str:
     # Reverses a given string.
     ...

Action:split
Nodes:0

Action:solve
Nodes:1,2,3

Action:refine
Nodes:1

Policy
Agent

Reasoning
Agent

...

Figure 1: ARIES workflow in answering the HumanEval prompt: "Find the shortest palindrome that begins with
a supplied string". The policy agent selects an action based on the thought graph state, which is executed by the
reasoning agent. First, the split action generates a skeleton implementation calling yet-to-implement subfunctions,
decomposing the problem. Then, the agent is instructed to generate a solution for each subfunction. Since one of
the solutions doesn’t pass its testcases, the reasoning agent is instructed to refine it based on execution feedback.

rameters must be tuned manually or through ex-085

tensive Bayesian search to achieve high query ef-086

ficiency, due to the varying characteristics of each087

task. With this limitation in mind, we hypothe-088

size that the generalization of artificial problem-089

solving towards (or beyond) human-like abilities090

in arbitrary domains requires a mechanism for091

autonomous traversal of a solution space, falling092

outside the constrained scope of static schedules093

shown in Tree-of-Thoughts (Yao et al., 2023a) and094

Graph-of-Thoughts (Besta et al., 2024a).095

To this end, we propose viewing thought graphs096

as an interactive environment where a sequence097

of graph transformations is seen as actions in a098

Markov Decision Process (MDP). Considering this099

state-action formulation, an effective action policy100

should explore the solution space to yield a solu-101

tion while learning from external feedback. Such102

a mechanism would present a step towards gen-103

eral intelligent agents capable of leveraging ex-104

isting world knowledge while adapting to out-of-105

distribution tasks.106

Motivated by recent improvements in LLM plan-107

ning and reasoning (Wei et al., 2023; Yao et al.,108

2023b), we aim to investigate whether existing109

LLMs have the capability to act as autonomous110

reasoning agents by formulating thought graphs as111

interactive environments. We propose the use of112

LLM policy agents (i.e. LLM-based action plan-113

ners) to autonomously execute a set of transfor-114

mations, including thought proposal, evaluation,115

aggregation and refinement. As such, we consider116

the following research questions: (1) Can LLMs117

act as policy agents and effectively utilize feedback118

from thought graph environments to dynamically119

tune their exploration strategies? (2) Can this ap- 120

proach match the performance of static transforma- 121

tion schedules extensively optimized for a given 122

task? And finally, (3) What are the failure modes 123

of using existing LLMs as policy agents in guiding 124

thought graph exploration (i.e. factors affecting the 125

ability to produce coherent exploration plans)? 126

We investigate the aforementioned questions by 127

implementing ARIES, a multi-agent framework for 128

solving reasoning problems formulated as thought 129

graphs. Figure 1 provides a summary of our ap- 130

proach - in each iteration, the policy agent monitors 131

the thought graph state and samples from the action 132

space to choose a graph transformation. The rea- 133

soning agent then performs these transformations 134

and updates the thought graph state. In summary, 135

our contributions are as follows. 136

• We introduce ARIES, a novel formulation 137

to autonomous topological reasoning, mak- 138

ing the whole reasoning task LLM-guided. 139

We frame the topological reasoning task as 140

a collaboration between two agents within a 141

topological thought graph. The LLM policy 142

agent assesses states and determines the ac- 143

tions, while the LLM reasoning agent carries 144

out these actions, executing transformations 145

on the thought graph. 146

• We show that LLMs exhibit planning capac- 147

ity and can serve effectively as policy agents 148

on topological reasoning tasks, thus elimi- 149

nating the requirement for predefined, task- 150

specific scheduling of the reasoning agents, as 151

seen in Tree-of-Thoughts (ToT) and Graph- 152

of-Thoughts (GoT). Additionally, we identify 153
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and discuss the limitations and failure modes154

of their planning abilities.155

• We perform carefully controlled experiments156

against a number of benchmarks, showing that157

LLM-guided thought graph exploration can158

lead to up to 29% higher accuracy at 35%159

lower inference cost, as well as obviating any160

Bayesian search cost.161

2 Related Work162

2.1 Topological Reasoning163

(Wei et al., 2023) pioneered the elicitation of step-164

by-step logical reasoning, with subsequent work by165

(Wang et al., 2023) demonstrating improved perfor-166

mance through the sampling and arbitration along167

multiple reasoning sequences. (Yao et al., 2023a)168

formulate concurrent exploration of multiple rea-169

soning paths by scoring reasoning steps, leveraging170

tree search algorithms (ToT). Finally, (Besta et al.,171

2024a) generalize problem space exploration by172

formulating thoughts as a graph, enabling the use173

of arbitrary transformations such as node refine-174

ment and aggregation (GoT).175

Several works have explored methods of improv-176

ing the query efficiency of topological reasoning,177

which suffers from high computational demand due178

to iterative LLM prompting (Hu et al., 2023; Sel179

et al., 2024; Ding et al., 2024). Despite improve-180

ments, few works have targeted the generality of181

this approach by exploring dynamic transforma-182

tions. While (Yao et al., 2023a) leverage standard183

tree search algorithms, (Long, 2023) hypothesize184

that tree search can be enhanced through trained185

policy networks to guide node backtracking. How-186

ever, this idea is not explored fully and their evalu-187

ation is focused on heuristics-based rules. As such,188

our work presents the first effort towards gener-189

alized topological reasoning through autonomous190

thought graph exploration.191

2.2 LLMs as Action Policy Agents192

Significant research has focused on leveraging193

LLMs for guiding action policies, such as in tasks194

requiring coordination of heterogeneous model en-195

sembles (Shen et al., 2023). LLMs have also been196

deployed as action planners in interactive environ-197

ments where feedback is provided to the action198

scheduler, such as solving computer tasks (Kim199

et al., 2023) and online shopping (Yao et al., 2023b).200

However, some works have outlined the instability201

in obtaining action plans over long-range horizons,202

where LLMs have been shown to repeatedly gen- 203

erate invalid action plans (Xie et al., 2023). This 204

limitation has been tackled by works such as (Shinn 205

et al., 2023), which propose an episodic memory 206

buffer of previous trials. However, to our knowl- 207

edge, no prior work has investigated leveraging 208

LLM planning abilities in the context of topologi- 209

cal reasoning. 210

3 Topological Reasoning with Large 211

Language Models 212

We consider a reasoning problem to be stated 213

in language as an ordered tuple of tokens p = 214

(t1, . . . , tm), where each token t ∈ V belongs 215

to a vocabulary space V. We define a thought 216

τ = (t1, . . . , tj) as a sequence of tokens sampled 217

autoregressively from an LLM parametrized by θ, 218

i.e. ti ∼ P (ti | t1, . . . , ti−1; θ). This consists of 219

a language representation of an intermediate step 220

towards the solution to the problem. 221

A thought sequence can be represented as an 222

ordered tuple of thoughts S = (τ1, τ2, . . . , τk) of 223

length k, such that the final thought τk represents a 224

candidate solution to the problem p. A thought tree 225

Tτ can be represented as (V, E), where V is a set 226

of thought nodes and E is a set of edges connecting 227

them. The tree can be parametrized with a depth 228

of d and a width of w, denoting the number of 229

nodes per level. Additionally, each thought τ ij (j- 230

th thought at depth i) has a value λ(τ ij) such that 231

nodes with higher values yield valid solutions to 232

the problem with higher probability. Hence, tree- 233

based thought exploration involves finding a path 234

P ⊂ V that maximizes the cumulative value of 235

thoughts, as follows. 236

P ∗ = argmax
P

∑
τ∈P

λ(τ) (1) 237

A thought graph Gτ can also be represented via 238

the tuple (V, E), with no imposed restriction on 239

the arrangement of thoughts and edges. Thought 240

graph exploration can be regarded as a sequence 241

of m graph transformations as follows, where each 242

ϕi : Gi
τ → Gi+1

τ modifies the set of nodes and 243

edges. The full set of considered transformations 244

and their formulations are shown in Table 6. 245

G∗
τ = ϕm(. . . (ϕ1(ϕ0(G

0
τ )))) (2) 246

Table 1 summarizes the thought graph transfor- 247

mations we consider in the rest of this work. ϕdec 248

decomposes a reasoning problem into subproblems 249
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Table 1: Thought graph transformations used to solve
reasoning problems using a divide-and-conquer strategy.
See Appendix B for their complete definitions.

Transformation Symbol

Decompose ϕdec

Solve ϕsol

Refine ϕref

Reduce ϕred

Aggregate ϕagg

to be solved individually, creating new nodes in the250

thought graph. ϕsol generates a candidate solution251

to a subproblem. ϕref considers an incorrect sub-252

problem solution, utilizing further LLM queries to253

refine it. ϕred removes nodes in the graph accord-254

ing to their values. Finally, ϕagg performs node255

merging to aggregate subproblem solutions into a256

coherent solution to the original problem.257

Static Transformation Schedules: A static258

transformation schedule can be parametrized by the259

tuple (Red, Ref , S
m, Am, Rm

ef ). Sm, Am, Rm
ref260

represents the multiplicity (i.e. number of attempts)261

of the solve, aggregate and refine transformations,262

respectively. Red, Ref ∈ {0, 1} indicate whether263

the ϕred and ϕref transformations are applied after264

aggregation.265

Algorithm 1 Static Thought Graph Transformation
Schedule
Require: Starting graph G0

τ , allow reduce Red,
allow refine Ref

Require: Solve multiplicity Sm, aggregate multi-
plicity Am, and refine multiplicity Rm

ef

Gdec
τ ← ϕdec(G

0
τ , 1, {0}))

Gsol
τ ← ϕsol(G

dec
τ , Sm,∆(Gdec

τ , G0
τ ))

Gagg
τ ← ϕagg(G

sol
τ , Am,∆(Gsol

τ , Gdec
τ ))

if Red then
Gred

τ ← ϕred(G
agg
τ , 1,∆(Gagg

τ , Gsol
τ ))

else
Gred

τ ← Gagg
τ

end if
if Ref then

Gref
τ ← ϕref (G

red
τ , Rm

ef ,∆(Gred
τ , Gagg

τ ))

G∗
τ ← ϕred(G

ref
τ , 1,∆(Gref

τ , Gred
τ ))

else
G∗

τ ← Gred
τ

end if
Return: G∗

τ

In Algorithm 1, each transformation is defined 266

as ϕ(Gτ ,m, S), where Gτ = (V,E) is a thought 267

graph, S ⊂ V is a subset of nodes and m is the 268

multiplicity (number of attempts). Additionally, the 269

function ∆(Ga
τ , G

b
τ ) outputs all nodes present in 270

the first graph Ga
τ = (Va, Ea) but not in the second 271

Gb
τ = (Vb, Eb), defined formally as follows. 272

∆(Ga
τ , G

b
τ ) = {v|v ∈ V1 & v /∈ V2} (3) 273

Algorithm 1 represents a standard divide-and- 274

conquer strategy. The ϕdec transformation decom- 275

poses the starting problem into B subproblems, 276

which are solved individually (ϕsol). The aggrega- 277

tion of the subproblem solutions is attempted Am 278

times, as the ϕagg transformation has a non-zero 279

probability of failure. If Red = 1, a single aggre- 280

gation attempt is kept, while others are removed 281

from the graph. If Ref = 1, the remaining aggre- 282

gation attempts are then refined wth ϕref , and the 283

highest-scoring attempt is kept as the final solution. 284

4 Thought Graph Exploration as a 285

Markov Decision Process 286

Beyond the fixed schedule shown in Algorithm 1, 287

the transformation of a thought graph can be gener- 288

alized as a Markov decision process (S,A,Pa): 289

• State st ∈ S: represents an arrangement of 290

nodes and edges in the thought graph, with 291

the associated value of each node, i.e. st = 292

(V, E , {λ(v)|v ∈ V}). 293

• Action a ∈ A: indicates which transforma- 294

tion to perform on the thought graph, and 295

which nodes to perform it on, i.e. A = 296

{(Vs, ϕ) | Vs ⊂ V, ϕ ∈ Ω}, where Ω is the 297

set of transformations (Table 6). 298

• Transition probability Pa(s, s′): represents 299

the probability that an action a applied at state 300

s yields the expected new state s′. 301

The optimal transformation sequence Φ is then 302

defined as the sequence of actions that maximize 303

the conditional probability of reaching a solution 304

state s+, i.e. Φ = (ϕ0, . . . , ϕn) that solves the 305

following optimization problem. 306

max
Φ

P (s+ | s0,Φ) 307

s.t. |Φ| < ϵ 308

We bound the number of queries by the constant 309

ϵ, as in the limit |Φ| → ∞, P (s+|s0,Φ)→ 1. 310
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1

2

3

LLM

(i) System Prompt

(ii) Action Space

(iii) Thought Graph State

Policy Prompt Template Decompose the following list into
smaller sublists: [2,6,3,9,5,2,5,1]

Sort the following list: [2, 6, 3, 9]

Policy Agent Reasoning Agent

LLM

Thought
Graph

List 1: [2,6,3,9], List 2: [5,2,5,1]

[2, 3, 6, 9]
(iv) Action History

Action: solve
Nodes: [1, 2]
Attempts: 5

Figure 2: Multi-agent framework for reasoning over thought graphs. First, (1) the policy agent an action and subset
of nodes given a prompt including (i-ii) general instructions and (iii-iv) an overview of the exploration state. The
sample is then (2) passed to the reasoning agent, which finally (3) updates the thought graph state.

4.1 Multi-Agent Reasoning311

In this work, we hypothesize that LLMs can approx-312

imate a solution to the stated optimization problem313

by acting as policy agents. We develop an inter-314

active framework consisting of a policy agent and315

a reasoning agent, as shown in Figure 2. In each316

iteration, (1) the policy agent selects an action from317

the action space, (i.e. the transformations in Table318

6). The policy agent then (2) directs the reasoning319

agent to perform the selected action. Finally, (3)320

the reasoning agent updates the thought graph. The321

process is repeated until a solution is found or a322

maximum number of iterations is reached.323

The policy agent is invoked using the prompt324

template shown in Figure 2. (i) The system prompt325

outlines the problem setting, input format and ex-326

pected behaviour from the policy agent. (ii) A task-327

specific list of actions, describing the preconditions328

and effects of each transformation, provides a se-329

mantic understanding of the action space. (iii) The330

current state of the graph is provided in a textual331

format, enumerating all nodes and edges. Finally,332

(iv) the action history in the current trial is included,333

promoting continuity in the strategies outlined in334

previous steps.335

4.2 In-Context Action Selection336

Prior work has shown that reasoning abilities of337

LLMs are enhanced when prompted to output a338

verbose sequence of steps before the solution (Wei339

et al., 2023; Wang et al., 2023). This mecha-340

nism can be seen as enabling in-context task learn-341

ing from some extracted innate world knowledge.342

Hence, our policy agent is instructed to generate a343

detailed analysis on the state of the thought graph344

and exploration history before sampling the action345

space. The analysis includes the following: 346

1. Describe the action history and how each ac- 347

tion relates to an exploration strategy. 348

2. Describe the thought graph state, and how 349

each node corresponds to previous actions. 350

3. Discuss the outlined strategy, stating whether 351

it is successful, unsucessful, or pending. 352

4. Outline a number of options for the next ac- 353

tion, detailing the expected outcome of each. 354

4.3 Policy Agent Ensembles 355

Given the stochastic nature of token prediction in 356

LLMs, we observe high variability in the chosen 357

action over several invocations of a policy agent 358

under the same thought graph state. Given the 359

preconditions and effects of each action are repre- 360

sented via text rather than any rigorous formulation, 361

actions selected by the policy agent can display 362

flawed understanding of the problem constraints, 363

leading to ineffective exploration of the thought 364

graph. To overcome this limitation, we democra- 365

tize action selection over an ensemble of agents, 366

meaning a parametrizable number of LLM queries 367

are performed concurrently at every iteration. The 368

selected action is takes as the most frequent pro- 369

posal among the ensemble. See Section 6 for abla- 370

tion studies on the impact of policy agent ensemble 371

size on reasoning performance. 372

5 Experiments 373

Through a range of controlled experiments, we 374

evaluate the performance of LLM policy agents on 375

interactive thought graphs. In Appendix D and Sec- 376

tion 5.2, we define the benchmarks and baselines. 377
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We present the core results across each benchmark378

task in Section 5.3. We profile the transition proba-379

bilities of each thought graph transformation across380

tasks in Section 5.4. In Section 5.5, we provide381

empirical results demonstrating two main failure382

modes of LLMs as policy agents, namely model383

size and decomposition depth.384

Experimental Setup: We evaluate Llama-3.1-385

70B and Llama-3.1-405B as policy and reason-386

ing agents, hosted with SGLang at a temperature387

of 1. Llama-3.1-70B was hosted with 8× A6000388

GPUs. Llama-3.1-405B was hosted using 16×389

H100 GPUs distributed over 4 nodes. The total390

cost was approximately 3k GPU hours.391

5.1 Benchmarks392

We run our main evaluation on HumanEval, a393

widely used benchmark for assessing the functional394

correctness of code generation models through a395

set of Python programming problems with corre-396

sponding test cases (Chen et al., 2021).397

Additionally, we consider two popular tasks398

for topological reasoning with LLMs, list sort-399

ing and set intersection. Despite their simplicity,400

prior works have shown that these tasks are ex-401

tremely challenging for LLMs with direct prompt-402

ing (Besta et al., 2024a), benefitting from a divide-403

and-conquer strategy (i.e. decomposition, solving404

subproblems and merging). We evaluate these at405

various levels of difficulty (quantified by the size406

of the lists and sets), resulting in six benchmarks:407

sorting32/64/128 and set-intersection32/64/128.408

For HumanEval, we report the task accuracy,409

while for list sorting and set intersection we report410

error function value E . Details on the definition for411

the error function for each task can be found in Ap-412

pendix D. Additionally, we report both the search413

Cs and inference cost Ci. We measure cost by the414

number of queries since we observe a low standard415

deviation in the number of generated tokens across416

all LLM queries during our experiments.417

5.2 Baselines418

We use static transformation schedules as the base-419

line, following (Besta et al., 2024a). As previ-420

ously noted, static schedules require extensive, task-421

dependent hyperparameter tuning. For each indi-422

vidual task, we carefully tune the hyperparame-423

ters using Bayesian optimization resulting in three424

variants: GoT25%, GoT50% and GoT100%. Here,425

the percentage corresponds to the number of trials426

spent until the hyperparameter search converges.427

Table 2: Task accuracy (↑), search and inference costs
(↓) on Human Eval. Cost is measured as the number
of LLM queries. IO refers to direct prompting. Llama-
405b was used for the reasoning and policy agents.

Accuracy Search Inference
Method [%] Cost (Cs) Cost (Ci)

IO 77.4 0 1
GoT25% 66.3 1160 34.8
GoT50% 67.5 2368 24.3
GoT100% 60.1 4742 8.17
ARIES 89.0 0 5.3

As such, we compare against baselines with sev- 428

eral search compute budgets. See Appendix C for 429

details on the full search methodology. We also 430

consider an Direct IO (Input-Output) baseline, i.e. 431

reasoning via direct LLM prompting. 432

5.3 Evaluation 433

Replacing static transformation schedules with 434

LLM policy agents offers generalization to arbi- 435

trary tasks at no tuning cost. However, performance 436

may be constrained by the LLM’s planning capa- 437

bilities. As such, we evaluate ARIES against the 438

aforementioned benchmarks, demonstrating its ad- 439

vantages and identifying potential failure modes. 440

We set the policy agent ensemble size to 5 in all 441

experiments, as explained in Section 6. 442

5.3.1 HumanEval 443

Our key findings for autonomous policy agents 444

in the context of a coding task are shown in Ta- 445

ble 2. It can be seen that by formulating this 446

code generation task as a Markov decision pro- 447

cess with an off-the-shelf LLM policy agent, we 448

achieve up to 28.9% higher accuracy than the most 449

query-efficient static schedule baseline. We also ob- 450

serve that as further trials are expended in the GoT 451

baseline search, the query efficiency is increased, 452

i.e. hyperparameter configurations are found that 453

achieve similar performance levels at lower query 454

counts. Nevertheless, we achieve 54% lower infer- 455

ence cost on average compared to even the most 456

optimized GoT baseline, and also avoids any search 457

time requirement. 458

5.3.2 Set Intersection 459

In Figure 3, we plot a Pareto curve showing viable 460

trade-off points in task error and query cost for 461

the set intersection task. Our approach extends the 462

existing Pareto frontier constructed by considering 463
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Figure 3: Pareto frontiers in total query cost (Cs+i) and task error (E) for set intersection tasks at various difficulty
levels. The total cost is the number of queries expended at search and inference time. Llama-3.1-405B was used for
the reasoning and policy agents. Our results (ARIES) have pushed the Pareto frontiers forward in each task.

Table 3: Esimated transition probabilities for each
thought graph transformation, taken as the number of
successful state transitions in a static schedule.

ϕsol ϕref ϕred ϕagg

HumanEval 0.77 0.29 1 1
sorting32 0.57 0.12 1 0.60

set-intersection32 0.75 0.71 1 1

static schedule baselines and direct prompting. In464

the set-intersection32 task, we achieve a 2.3× error465

reduction relative to GoT25 while also achieving466

116× lower overall cost.467

5.4 Transition Probability Profiling468

In this section, we estimate the transition probabili-469

ties for each thought graph transformation across470

a number of tasks to gain insight into factors im-471

pacting a thought graph formulation of each rea-472

soning problem. For ϕref , we define a success-473

ful transition when E = 0 for the resulting node,474

considering only cases when the transformation is475

executed on nodes previously containing errors. In476

transformations requiring LLM calls, the transition477

probability between two states is a random process478

governed by the token distribution parametrized by479

the LLM. When LLM calls are not required, i.e.480

the transformation is implemented through simple481

node manipulation, the transition probability is 1.482

The results are summarized in Table 3. We ob-483

serve the refinement transformation has notably484

low success probability, particularly in coding and485

sorting tasks. Additionally, sorting is the only task486

with non-deterministic aggregation, which is a po-487

tential error source. We note that the performance488

of a thought graph formulation depends on the abil- 489

ity of the policy agent to capture the success profile 490

of various transformations for a task, and adapt the 491

exploration strategy accordingly. 492

5.5 Failure Modes 493

In this section, we perform a number of empiri- 494

cal studies aiming to understand the main limiting 495

factors impacting the performance of LLM policy 496

agents on interactive thought graphs. We find there 497

are two major failure modes, described as follows. 498

Failure mode 1: LLM Parameter Count 499

We find that LLMs with insufficiently large parame- 500

ter sizes exhibit limited performance when utilized 501

as policy agents on thought graph environments. 502

We deploy Llama-3.1-70B as policy and reasoning 503

agents in sorting and set intersection tasks, against 504

which the larger LLM (Llama-405B) was shown 505

to perform well as a policy agent. As shown in Ta- 506

ble 4, LLM-guided graph exploration (ARIES) did 507

not outperform static schedule baselines in this sce- 508

nario. These findings are consistent with (Wei et al., 509

2022), which demonstrated that zero-shot chain- 510

of-thought reasoning abilities emerges in models 511

beyond 175B parameters. 512

Failure mode 2: Decomposition Depth 513

We examine the impact of decomposition depth by 514

analyzing the results in the sorting task, shown in 515

Table 5. We observe LLM policy agents lead to a 516

21% performance improvement relative to the most 517

optimized static baseline in sorting32, which has a 518

decomposition depth of 2. However, as discussed 519

in Section 5.4, the sorting task presents a particular 520

challenge due to the lower success probability of 521

the aggregation transformation. As the complex- 522

ity and decomposition depth of a task increases, 523

7



Table 4: Failure mode 1 results. Mean value of the error E (↓) for benchmarks with low decomposition depth.
Llama-3.1-70B was used for the reasoning and policy agents.

Method Direct Prompting GoT25% GoT50% GoT100% ARIES

sorting32 2.2 0.82 0.95 0.73 1.29
set-intersection32 1.05 0.41 0.0 0.37 1.22

Table 5: Failure mode 2 results. Mean value of the error E (↓) and search cost C in terms of number of queries (↓).
Both the reasoning and policy agents are LLaMA-405B.

Method Direct Prompting GoT25% GoT50% GoT100% ARIES
Metrics E C E C E C E C E C

sorting32 0.6 1 0.74 825 0.82 1650 0.28 3300 0.22 20
sorting64 5.07 1 2.22 1671 2.74 3343 3.46 6687 9.15 48

sorting128 12.75 1 13.96 2444 12.65 4888 18.65 9776 32.74 48

the policy agent is required to apply a higher num-524

ber of aggregation transformations. Therefore, we525

observe up to 4.12× and 2.6× performance dete-526

rioration in sorting64 and sorting128, respectively.527

Through empirical analysis, we observe that in528

the latter tasks, the ϕagg transformation constitutes529

86% and 68% of all policy agent errors, respec-530

tively. As such, we conclude that high decompo-531

sition depths present a significant failure mode for532

LLM-guided thought graph exploration, particu-533

larly in tasks with low success transition probabili-534

ties for the aggregation transformation.535

6 Ablation Studies536

As discussed in Section 4, two factors that impact537

the performance of LLMs as policy agents in in-538

teractive thought graph environments are the size539

of the ensemble and the use of chain of thought540

reasoning to enhance the planning abilities of the541

policy agent. In this section, we aim to understand542

the impact of each factor by evaluating sorting tasks543

over a range of ensemble sizes from 1 to 15, with544

and without CoT prompting in the policy agent.545

As shown in Figure 4, as the ensemble size in-546

creases to 5, CoT prompting leads to large perfor-547

mance improvements, though the benefits start di-548

minishing beyond this point. Without CoT prompt-549

ing, the trend is less consistent, and larger ensemble550

sizes sometimes yield worse performance. Addi-551

tionally, errors without CoT are higher for both552

tasks at any ensemble size. This highlights the ne-553

cessity of CoT prompting in enhancing the LLM554

policy agent’s ability to adapt from feedback and555

drive thought graph transformations.556

Figure 4: Mean error (y-axis) obtained in the sorting32
task over a sweep of ensemble sizes (x-axis). Llama-
3.1-70B was used as the policy agent.

7 Conclusion 557

We introduce ARIES, a multi-agent architecture for 558

topological reasoning. By viewing thought graph 559

transformations as actions in a Markov decision 560

process, we show off-the-shelf LLMs can drive 561

efficient action policies without task-specific tun- 562

ing. We show up to 29% higher accuracy on Hu- 563

manEval while reducing inference costs by 35% 564

compared to static schedules. We identified two key 565

limitations: insufficient model size and excessive 566

decomposition depth on the task at hand. These 567

constraints indicate that while LLMs show promise 568

as reasoning agents, their effectiveness depends on 569

parameter count and task complexity. 570
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A Limitations662

A.1 Assumptions and Robustness663

The ARIES framework introduces a novel approach664

to reasoning with large language models (LLMs)665

through interactive thought graph environments.666

However, several strong assumptions underlie our667

methodology. Firstly, we assume that thought668

graph transformations can be effectively modeled669

as a Markov decision process (MDP) with well-670

defined state transitions. While this formulation en-671

ables structured reasoning, it may not fully capture672

the complexities of more ambiguous or highly in-673

terconnected problems. Additionally, our approach674

assumes that off-the-shelf LLMs can act as reli-675

able policy agents without additional fine-tuning.676

This assumption holds for certain problem domains677

but may degrade in tasks requiring domain-specific678

knowledge or long-horizon planning.679

Our empirical evaluation is constrained to spe-680

cific reasoning tasks, including HumanEval, list681

sorting, and set intersection. While these bench-682

marks serve as valuable test cases for structured683

reasoning, they do not necessarily generalize to all684

problem types, particularly those with weakly de-685

fined intermediate states or multi-modal reasoning686

requirements. Furthermore, our evaluation primar-687

ily focuses on LLaMA-3.1 models, and results may688

not be directly transferable to other architectures.689

A.2 Potential Risks690

The ARIES framework introduces both opportuni-691

ties and challenges in autonomous reasoning. One692

primary risk is the potential for incorrect or bi-693

ased reasoning paths due to the stochastic nature694

of LLM-generated decisions. Although our policy695

agent ensembles mitigate some of this variability,696

they do not fully eliminate erroneous transforma-697

tions, particularly in deeper decomposition settings.698

The framework’s reliance on existing LLMs also699

means that any biases present in the underlying700

models could propagate into the reasoning pro-701

cess, potentially leading to unfair or misleading702

outcomes.703

Another concern is the environmental impact as-704

sociated with inference-heavy approaches. While705

ARIES improves query efficiency relative to static706

transformation schedules, it still necessitates a sig-707

nificant number of LLM queries to achieve high708

accuracy. As LLMs scale, the energy consump-709

tion required for these inference tasks could be-710

come a sustainability concern, particularly in high-711

throughput applications. 712

A.3 Failure Modes 713

Our empirical findings highlight two major failure 714

modes: (1) inadequate LLM parameter sizes and 715

(2) increasing decomposition depth. Smaller mod- 716

els (e.g., LLaMA-3.1-70B) struggle to act as policy 717

agents effectively, demonstrating subpar reasoning 718

capabilities compared to larger counterparts. This 719

suggests that autonomous policy-driven thought 720

graph exploration may require models beyond a 721

certain scale threshold to function reliably. Addi- 722

tionally, as the depth of problem decomposition in- 723

creases, ARIES exhibits a decline in performance, 724

primarily due to errors in aggregating intermedi- 725

ate solutions. This limitation indicates that current 726

LLMs may have difficulties managing extended 727

reasoning chains, which presents a barrier to scala- 728

bility. 729

B Thought Graph Transformations 730

The full set of considered transformations is shown 731

in Table 6. 732

C Static Schedule Parameter Search 733

As described in Section 3, a static transformation 734

can be characterized using a set of discrete param- 735

eters. We ran bayesian search using using Tree- 736

structured Parzen Estimator (TPE) sampling to de- 737

termine each parameter, establishing strong base- 738

lines for each task. 739

The search space is shown in Table 7. We run 740

multi-objective search to concurrently minimize 741

the task-specific error function E (Section D) and 742

associated cost, measured as |Φ(ω)|where Φ(ω) = 743

(ϕ0, . . . , ϕm) is a tuple enumerating thought graph 744

transformations, as a function of the schedule pa- 745

rameters ω ∈ Ω, where Ω is the search space. Note 746

that |Φ(ω)| correlates with the number of LLM 747

queries, meaning this formulation aims to mini- 748

mize exploration cost. 749

In selecting parameter configurations, we use 750

the cost function in Equation 4, such that the objec- 751

tives of cost and error minimization are balanced 752

through the scalar constant α ∈ (0, 1). We aim 753

to assign equal importance to the cost and error 754

objectives by tuning α independently for each task 755

such that the mean value of the first term matches 756

the second term, i.e. αE [E ] = (1−α)E [|Φ(ω)|)], 757

or equivalently α = E[|Φ(ω)|]
E[E+|Φ(ω)|] where E denotes 758

the expected value. The expectations are obtained 759
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Table 6: Thought graph transformations. Each transformation is defined as ϕ(Gτ ,m, S) = (V ∪ V + \ V −, E ∪
E+ \ E−), where Gτ = (V,E) is a thought graph, S ⊂ V is a subset of nodes, m is the multiplicity (number of
attempts), and E ,R, A represent arbitrary functions for node expansion, refinement and aggregation, respectively.
The sets V +, V −, E+, E− are defined as follows.

Transformation Symbol V+ V− E+ E−

Decompose ϕdec {E(v)|v ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Solve ϕsol {S(v)|v ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Refine ϕref {R(t)|t ∈ S} ∅ {(u, v)|u ∈ S, v ∈ V +} ∅
Reduce ϕred ∅ S ∅ {(u, v)|u ∈ S ∨ v ∈ S}
Aggregate ϕagg A(S) ∅ {(u, v)|u ∈ S, v ∈ V +} ∅

Table 7: Search space for each parameter characterizing
a static transformation.

Search
Parameter Space

Red Allow reduction {0, 1}
Ref Allow refinement {0, 1}
Sm Solve multiplicity {1, 5, 10, 15, 20}
Am Aggregate multiplicity {1, 5, 10, 15, 20}
Rm

ef Refine multiplicity {1, 5, 10, 15, 20}

with random sampling.760

min
ω

[αE + (1− α)|Φ(ω)|] (4)761

Search was conducted separately on Llama-3.1-762

70B and Llama-3.1-405B. For sorting and set in-763

tersection tasks, search is conducted separately764

for each difficulty level, ensuring the chosen pa-765

rameters are adapted to the task. Note that we766

present three search checkpoints GoTn for n ∈767

{25, 50, 100}, where n corresponds to the percent-768

age of trials until convergence. We define the769

convergeance point as the first iteration where a770

rolling window J of size 20 matches the condition771

Jk = Jk−1. This enables comparing our proposed772

LLM-guided approach to optimized search sched-773

ules at various search budgets.774

Table 8: Results from GoT static schedule parameter
search on Llama-3.1-405B.

Task Alpha (α) GoT25 GoT50 GoT100

sorting32 0.99 0.38 0.38 0.37
sorting64 0.96 4.85 4.49 3.84
sorting128 0.84 28.76 25.76 24.36

set32 0.99 0.16 0.16 0.12
set64 0.99 0.71 0.51 0.31
set128 0.98 3.51 3.51 2.99

The complete search results for Llama-3.1-405B 775

are shown in Table 8. It can be seen that tasks with 776

higher decomposition depth incur lower values of 777

α due to the higher magnitude of the error function. 778

sorting64, sorting128 and set-intersection64 show 779

a smooth decline in the cost function, while the 780

remaining tasks remain at local minima until close 781

to the end of the search. The non-convexity of 782

the search space highlights the cost associated to 783

optimize the parameter set associated with static 784

transformations. 785

D Benchmarks 786

We choose two popular tasks for topological rea- 787

soning with LLMs, which are amenable to a divide- 788

and-conquer strategy (i.e. decomposition, solving 789

subproblems and merging): list sorting and set in- 790

tersection. Despite their simplicity, prior works 791

have shown that these tasks are extremely challeng- 792

ing for LLMs with direct prompting (Besta et al., 793

2024a). 794

Sorting: involves sorting a list of numbers be- 795

tween 0 and 9 in ascending order. The error func- 796

tion E = X + Y has its subterms defined in Equa- 797

tion 5, where a is the input list and b is a candi- 798

date solution. X corresponds to the number of 799

incorrectly sorted pairs, while Y corresponds to 800

the frequency difference between a and b for each 801

digit. 802

X =
m−1∑
i=1

sign(max(bi − bi+1, 0))

Y =

9∑
i=0

||{bp : bp = i}| − |{aq : aq = i}||

(5) 803

Set Intersection: involves finding the intersec- 804

tion of sets A and B. The error function is defined 805

in Equation 6, where C is the candidate solution. 806
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Table 9: Core results for topological reasoning across all tasks and models. We show the mean value of the score
function E (↓), which is defined for each task in Section 5. GoT100, GoT50, GoT25 represent the obtained values
from static schedule parameters obtained at convergeance, 50% and 25% of convergeance trials, respectively.

Task Llama-70b Llama-405b

GoT25 GoT50 GoT100 GoTLLM GoT25 GoT50 GoT100 GoTLLM

sorting32 0.82 0.95 0.73 1.29 0.74 0.82 0.28 0.22
sorting64 4.73 4.73 4.64 10.04 2.22 2.74 3.46 9.15
sorting128 16.18 13.86 16.07 31.79 13.96 12.65 18.65 32.74

set-intersection32 0.41 0.0 0.37 1.22 0.07 0.0 0.09 0.03
set-intersection64 3.40 2.66 1.27 7.34 0.67 0.64 0.72 1.08
set-intersection128 13.23 12.92 12.73 22.98 1.07 0 2.54 4.62

The first and second terms correspond to missing807

and extra elements, respectively.808

E = |(A ∩B) \ C|+ |C \ (A ∩B)| (6)809
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