ARIES: Autonomous Reasoning with Large Language Models on
Interactive Thought Graph Environments

Anonymous ACL submission

Abstract

Recent research has shown that LLM perfor-
mance on reasoning tasks can be enhanced
by scaling test-time compute. One promis-
ing approach, particularly with decomposable
problems, involves arranging intermediate so-
lutions as a graph on which transformations
are performed to explore the solution space.
However, prior works rely on pre-determined,
task-specific transformation schedules which
are subject to a set of searched hyperparam-
eters. In this work, we view thought graph
transformations as actions in a Markov decision
process, and implement policy agents to drive
effective action policies for the underlying rea-
soning LLM agent. In particular, we investigate
the ability for another LLLM to act as a policy
agent on thought graph environments and in-
troduce ARIES, a multi-agent architecture for
reasoning with LLMs. In ARIES, reasoning
LLM agents solve decomposed subproblems,
while policy LLM agents maintain visibility
of the thought graph states, and dynamically
adapt the problem-solving strategy. Through
extensive experiments, we observe that using
off-the-shelf LLMs as policy agents with no
supervised fine-tuning (SFT) can yield up to
29% higher accuracy on HumanEval relative
to static transformation schedules, as well as
reducing inference costs by 35% and avoid any
search requirements. We also conduct a thor-
ough analysis of observed failure modes, high-
lighting that limitations on LLM sizes and the
depth of problem decomposition can be seen as
challenges to scaling LLM-guided reasoning.

1 Introduction

Prior works have shown that Large Language Mod-
els (LLMs) are subject to the emergence of abilities
as their parameter count grows (Wei et al., 2022),
which spurred significant interest in training in-
creasingly larger models. However, recent work
showed that under a fixed compute budget for train-
ing and inference, LLM performance on reasoning

tasks can be enhanced by allocating a higher pro-
portion of compute to inference rather than training
(Snell et al., 2024). This shift towards inference-
time compute scaling can be intuitively understood
through the Dual Process Theory, which postulates
the existence of two distinct modes of reasoning
in humans - (1) a fast, intuitive mode and (2) a
slow, deliberate mode (Evans and Frankish, 2009).
While the autoregressive decoding procedure of
LLMs resembles System 1, prior works used LLMs
in System 2 reasoning by inducing models to thor-
oughly explore a problem, such as using chain of
thoughts, ahead of providing a solution to the user
query (Wei et al., 2023).

System 2 reasoning can be induced in LLMs by
querying models fine-tuned on extensive reason-
ing traces (Muennighoff et al., 2025). While such
single-query approaches have been shown effec-
tive in improving the quality of complex sequential
logic, an alternative approach involves performing
multiple queries with the same LLM and arranging
intermediate solutions (or “thoughts") in a specified
topology, i.e. topological reasoning (Besta et al.,
2024b). This approach yields benefits in problems
where intermediate solutions can be reliably scored
through a Process Reward Model (PRM) (Snell
et al., 2024) or using real feedback from external
environments (Yao et al., 2023a). Additionally, a
graph formulation has shown promising results in
problems displaying the property of decomposabil-
ity into subproblems that can be solved indepen-
dently then aggregated through a sequence of graph
transformations (Besta et al., 2024a). In this work,
we focus on problems with the decomposability
property and in environments where external feed-
back is viable and useful, such as using LL.Ms to
solve coding problems.

Despite the benefits of topological reasoning,
prior works rely on pre-determined traversal strate-
gies parametrized by a discrete set of hyperparam-
eters. This approach lacks generality, as these pa-

Action:split
Nodes: 0

,
[def make_palindrome(string: str) -> str
prefix_length = len(string)

postfix = longest_palindromic_postfix(string)
prefix_length -= len(postfix)

Reasoning prefix = get_prefix(string, prefix_length)

Agent

reversed_prefix = reverse_string(prefix)
return string + reversed_prefix

Action:solve
Nodes:1,2,3

Action:refine
Nodes:1

def longest_palindromic_postfix(string: str) -> str: ’_
—

Finds the longest postfix that is a palindrome.

def get_prefix(string: str, length: int) -> str:
> # Returns the prefix with a specified length. —

def reverse_string(string: str) -> str:

—> # Reverses a given string. —

Figure 1: ARIES workflow in answering the HumanEval prompt: "Find the shortest palindrome that begins with
a supplied string". The policy agent selects an action based on the thought graph state, which is executed by the
reasoning agent. First, the split action generates a skeleton implementation calling yet-to-implement subfunctions,
decomposing the problem. Then, the agent is instructed to generate a solution for each subfunction. Since one of
the solutions doesn’t pass its testcases, the reasoning agent is instructed to refine it based on execution feedback.

rameters must be tuned manually or through ex-
tensive Bayesian search to achieve high query ef-
ficiency, due to the varying characteristics of each
task. With this limitation in mind, we hypothe-
size that the generalization of artificial problem-
solving towards (or beyond) human-like abilities
in arbitrary domains requires a mechanism for
autonomous traversal of a solution space, falling
outside the constrained scope of static schedules
shown in Tree-of-Thoughts (Yao et al., 2023a) and
Graph-of-Thoughts (Besta et al., 2024a).

To this end, we propose viewing thought graphs
as an interactive environment where a sequence
of graph transformations is seen as actions in a
Markov Decision Process (MDP). Considering this
state-action formulation, an effective action policy
should explore the solution space to yield a solu-
tion while learning from external feedback. Such
a mechanism would present a step towards gen-
eral intelligent agents capable of leveraging ex-
isting world knowledge while adapting to out-of-
distribution tasks.

Motivated by recent improvements in LLM plan-
ning and reasoning (Wei et al., 2023; Yao et al.,
2023b), we aim to investigate whether existing
LLMs have the capability to act as autonomous
reasoning agents by formulating thought graphs as
interactive environments. We propose the use of
LLM policy agents (i.e. LLM-based action plan-
ners) to autonomously execute a set of transfor-
mations, including thought proposal, evaluation,
aggregation and refinement. As such, we consider
the following research questions: (1) Can LLMs
act as policy agents and effectively utilize feedback
from thought graph environments to dynamically

tune their exploration strategies? (2) Can this ap-
proach match the performance of static transforma-
tion schedules extensively optimized for a given
task? And finally, (3) What are the failure modes
of using existing LLMs as policy agents in guiding
thought graph exploration (i.e. factors affecting the
ability to produce coherent exploration plans)?

We investigate the aforementioned questions by
implementing ARIES, a multi-agent framework for
solving reasoning problems formulated as thought
graphs. Figure 1 provides a summary of our ap-
proach - in each iteration, the policy agent monitors
the thought graph state and samples from the action
space to choose a graph transformation. The rea-
soning agent then performs these transformations
and updates the thought graph state. In summary,
our contributions are as follows.

e We introduce ARIES, a novel formulation
to autonomous topological reasoning, mak-
ing the whole reasoning task LLM-guided.
We frame the topological reasoning task as
a collaboration between two agents within a
topological thought graph. The LLM policy
agent assesses states and determines the ac-
tions, while the LLM reasoning agent carries
out these actions, executing transformations
on the thought graph.

We show that LLLMs exhibit planning capac-
ity and can serve effectively as policy agents
on topological reasoning tasks, thus elimi-
nating the requirement for predefined, task-
specific scheduling of the reasoning agents, as
seen in Tree-of-Thoughts (ToT) and Graph-
of-Thoughts (GoT). Additionally, we identify

and discuss the limitations and failure modes
of their planning abilities.

* We perform carefully controlled experiments
against a number of benchmarks, showing that
LLM-guided thought graph exploration can
lead to up to 29% higher accuracy at 35%
lower inference cost, as well as obviating any
Bayesian search cost.

2 Related Work

2.1 Topological Reasoning

(Wei et al., 2023) pioneered the elicitation of step-
by-step logical reasoning, with subsequent work by
(Wang et al., 2023) demonstrating improved perfor-
mance through the sampling and arbitration along
multiple reasoning sequences. (Yao et al., 2023a)
formulate concurrent exploration of multiple rea-
soning paths by scoring reasoning steps, leveraging
tree search algorithms (ToT). Finally, (Besta et al.,
2024a) generalize problem space exploration by
formulating thoughts as a graph, enabling the use
of arbitrary transformations such as node refine-
ment and aggregation (GoT).

Several works have explored methods of improv-
ing the query efficiency of topological reasoning,
which suffers from high computational demand due
to iterative LLM prompting (Hu et al., 2023; Sel
et al., 2024; Ding et al., 2024). Despite improve-
ments, few works have targeted the generality of
this approach by exploring dynamic transforma-
tions. While (Yao et al., 2023a) leverage standard
tree search algorithms, (Long, 2023) hypothesize
that tree search can be enhanced through trained
policy networks to guide node backtracking. How-
ever, this idea is not explored fully and their evalu-
ation is focused on heuristics-based rules. As such,
our work presents the first effort towards gener-
alized topological reasoning through autonomous
thought graph exploration.

2.2 LLMs as Action Policy Agents

Significant research has focused on leveraging
LLMs for guiding action policies, such as in tasks
requiring coordination of heterogeneous model en-
sembles (Shen et al., 2023). LLMs have also been
deployed as action planners in interactive environ-
ments where feedback is provided to the action
scheduler, such as solving computer tasks (Kim
etal., 2023) and online shopping (Yao et al., 2023b).
However, some works have outlined the instability
in obtaining action plans over long-range horizons,

where LL.Ms have been shown to repeatedly gen-
erate invalid action plans (Xie et al., 2023). This
limitation has been tackled by works such as (Shinn
et al., 2023), which propose an episodic memory
buffer of previous trials. However, to our knowl-
edge, no prior work has investigated leveraging
LLM planning abilities in the context of topologi-
cal reasoning.

3 Topological Reasoning with Large
Language Models

We consider a reasoning problem to be stated
in language as an ordered tuple of tokens p =
(t1,...,tm), where each token t €) belongs
to a vocabulary space V. We define a thought
T = (t1,...,t;) as a sequence of tokens sampled
autoregressively from an LLM parametrized by 6,
ie. t; ~ P(t; | t1,...,ti—1;0). This consists of
a language representation of an intermediate step
towards the solution to the problem.

A thought sequence can be represented as an
ordered tuple of thoughts S = (71, 72,...,7%) of
length k, such that the final thought 7* represents a
candidate solution to the problem p. A thought tree
T can be represented as (V,£), where V is a set
of thought nodes and £ is a set of edges connecting
them. The tree can be parametrized with a depth
of d and a width of w, denoting the number of
nodes per level. Additionally, each thought 7% (j-
th thought at depth ©) has a value \(7%) such that
nodes with higher values yield valid solutions to
the problem with higher probability. Hence, tree-
based thought exploration involves finding a path
P C V that maximizes the cumulative value of
thoughts, as follows.

P* =argmax » (1) (1)

A thought graph G can also be represented via
the tuple (V,), with no imposed restriction on
the arrangement of thoughts and edges. Thought
graph exploration can be regarded as a sequence
of m graph transformations as follows, where each
¢; : GE — Gl modifies the set of nodes and
edges. The full set of considered transformations
and their formulations are shown in Table 6.

Gr = ¢m(..- (61(¢0(GY)))))

Table 1 summarizes the thought graph transfor-
mations we consider in the rest of this work. ¢ge.
decomposes a reasoning problem into subproblems

Table 1: Thought graph transformations used to solve
reasoning problems using a divide-and-conquer strategy.
See Appendix B for their complete definitions.

Transformation Symbol

Decompose Ddec
Solve Gsol
Refine Gref
Reduce Pred
Aggregate Dagg

to be solved individually, creating new nodes in the
thought graph. ¢, generates a candidate solution
to a subproblem. ¢, considers an incorrect sub-
problem solution, utilizing further LLM queries to
refine it. ¢,..q removes nodes in the graph accord-
ing to their values. Finally, ¢4, performs node
merging to aggregate subproblem solutions into a
coherent solution to the original problem.

Static Transformation Schedules: A static
transformation schedule can be parametrized by the
tuple (Req, Ref, S™, A™, RZ}) S A™ R
represents the multiplicity (i.e. number of attempts)
of the solve, aggregate and refine transformations,
respectively. R4, Ry € {0,1} indicate whether
the ¢r¢q and ¢,y transformations are applied after

aggregation.

Algorithm 1 Static Thought Graph Transformation
Schedule

Require: Starting graph GY, allow reduce R.q,
allow refine Ry
Require: Solve multiplicity S™, aggregate multi-
plicity A™, and refine multiplicity RY%
Giec — (bdeC(Gg)-a 17 {O}))
G = s (G0, 5™, A(GF€, GY))
Gggg — ¢agg(Gi0l7 Am, A(Gf.oz, Ggec))
if R, then
G:ed — (bTed(Gggg’ 1,A(G?99,G§01))
else
G:ed — G?—gg
end if
if . then
Grl e breg (G, RYy, MG, GF%))
G $rea(G 1L MG G5
else

Gt + Gred
end if
Return: G*

In Algorithm 1, each transformation is defined
as ¢(Gr,m,S), where G, = (V, E) is a thought
graph, S C V is a subset of nodes and m is the
multiplicity (number of attempts). Additionally, the
function A(G%, G%) outputs all nodes present in
the first graph G¢ = (V,, &€,) but not in the second
G = (Vy, &), defined formally as follows.

AGL,GY) ={vjveV & ve WV} (3)

Algorithm 1 represents a standard divide-and-
conquer strategy. The ¢, transformation decom-
poses the starting problem into B subproblems,
which are solved individually (¢4.;). The aggrega-
tion of the subproblem solutions is attempted A™
times, as the ¢44, transformation has a non-zero
probability of failure. If R.; = 1, a single aggre-
gation attempt is kept, while others are removed
from the graph. If R.; = 1, the remaining aggre-
gation attempts are then refined wth ¢, r, and the
highest-scoring attempt is kept as the final solution.

4 Thought Graph Exploration as a
Markov Decision Process

Beyond the fixed schedule shown in Algorithm 1,
the transformation of a thought graph can be gener-
alized as a Markov decision process (S, A, P,):

» State s, € S: represents an arrangement of
nodes and edges in the thought graph, with
the associated value of each node, i.e. s; =
WV, E,{\(v)|v € V}).

* Action a € A: indicates which transforma-
tion to perform on the thought graph, and
which nodes to perform it on, i.e. A =
{(Vs,0) | Vs C V, ¢ € Q}, where Q is the
set of transformations (Table 6).

* Transition probability P, (s, s'): represents
the probability that an action @ applied at state
s yields the expected new state s'.

The optimal transformation sequence @ is then
defined as the sequence of actions that maximize
the conditional probability of reaching a solution
state s*, i.e. ® = (¢p,...,P,) that solves the
following optimization problem.

max P(st|s% ®)
d
st. P <e

We bound the number of queries by the constant
€, as in the limit |®| — oo, P(s[s?, ®) — 1.

Policy Agent

Thought
Graph R ;

Reasoning Agent

Decompose the following list into f

! Action: solve |
i Nodes: [1,2] !
. Attempts: 5 1

Figure 2: Multi-agent framework for reasoning over thought graphs. First, (1) the policy agent an action and subset
of nodes given a prompt including (i-ii) general instructions and (iii-iv) an overview of the exploration state. The
sample is then (2) passed to the reasoning agent, which finally (3) updates the thought graph state.

4.1 Multi-Agent Reasoning

In this work, we hypothesize that LLMs can approx-
imate a solution to the stated optimization problem
by acting as policy agents. We develop an inter-
active framework consisting of a policy agent and
a reasoning agent, as shown in Figure 2. In each
iteration, (1) the policy agent selects an action from
the action space, (i.e. the transformations in Table
6). The policy agent then (2) directs the reasoning
agent to perform the selected action. Finally, (3)
the reasoning agent updates the thought graph. The
process is repeated until a solution is found or a
maximum number of iterations is reached.

The policy agent is invoked using the prompt
template shown in Figure 2. (i) The system prompt
outlines the problem setting, input format and ex-
pected behaviour from the policy agent. (ii) A task-
specific list of actions, describing the preconditions
and effects of each transformation, provides a se-
mantic understanding of the action space. (iii) The
current state of the graph is provided in a textual
format, enumerating all nodes and edges. Finally,
(iv) the action history in the current trial is included,
promoting continuity in the strategies outlined in
previous steps.

4.2 In-Context Action Selection

Prior work has shown that reasoning abilities of
LLMs are enhanced when prompted to output a
verbose sequence of steps before the solution (Wei
et al., 2023; Wang et al., 2023). This mecha-
nism can be seen as enabling in-context task learn-
ing from some extracted innate world knowledge.
Hence, our policy agent is instructed to generate a
detailed analysis on the state of the thought graph
and exploration history before sampling the action

space. The analysis includes the following:

1. Describe the action history and how each ac-
tion relates to an exploration strategy.

2. Describe the thought graph state, and how
each node corresponds to previous actions.

3. Discuss the outlined strategy, stating whether
it is successful, unsucessful, or pending.

4. Outline a number of options for the next ac-
tion, detailing the expected outcome of each.

4.3 Policy Agent Ensembles

Given the stochastic nature of token prediction in
LLMs, we observe high variability in the chosen
action over several invocations of a policy agent
under the same thought graph state. Given the
preconditions and effects of each action are repre-
sented via text rather than any rigorous formulation,
actions selected by the policy agent can display
flawed understanding of the problem constraints,
leading to ineffective exploration of the thought
graph. To overcome this limitation, we democra-
tize action selection over an ensemble of agents,
meaning a parametrizable number of LLM queries
are performed concurrently at every iteration. The
selected action is takes as the most frequent pro-
posal among the ensemble. See Section 6 for abla-
tion studies on the impact of policy agent ensemble
size on reasoning performance.

S Experiments

Through a range of controlled experiments, we
evaluate the performance of LLM policy agents on
interactive thought graphs. In Appendix D and Sec-
tion 5.2, we define the benchmarks and baselines.

We present the core results across each benchmark
task in Section 5.3. We profile the transition proba-
bilities of each thought graph transformation across
tasks in Section 5.4. In Section 5.5, we provide
empirical results demonstrating two main failure
modes of LLMs as policy agents, namely model
size and decomposition depth.

Experimental Setup: We evaluate Llama-3.1-
70B and Llama-3.1-405B as policy and reason-
ing agents, hosted with SGLang at a temperature
of 1. Llama-3.1-70B was hosted with 8x A6000
GPUs. Llama-3.1-405B was hosted using 16x
H100 GPUs distributed over 4 nodes. The total
cost was approximately 3k GPU hours.

5.1 Benchmarks

We run our main evaluation on HumanEval, a
widely used benchmark for assessing the functional
correctness of code generation models through a
set of Python programming problems with corre-
sponding test cases (Chen et al., 2021).

Additionally, we consider two popular tasks
for topological reasoning with LLMs, list sort-
ing and set intersection. Despite their simplicity,
prior works have shown that these tasks are ex-
tremely challenging for LLMs with direct prompt-
ing (Besta et al., 2024a), benefitting from a divide-
and-conquer strategy (i.e. decomposition, solving
subproblems and merging). We evaluate these at
various levels of difficulty (quantified by the size
of the lists and sets), resulting in six benchmarks:
sorting32/64/128 and set-intersection32/64/128.

For HumanEval, we report the task accuracy,
while for list sorting and set intersection we report
error function value £. Details on the definition for
the error function for each task can be found in Ap-
pendix D. Additionally, we report both the search
C; and inference cost C;. We measure cost by the
number of queries since we observe a low standard
deviation in the number of generated tokens across
all LLM queries during our experiments.

5.2 Baselines

We use static transformation schedules as the base-
line, following (Besta et al., 2024a). As previ-
ously noted, static schedules require extensive, task-
dependent hyperparameter tuning. For each indi-
vidual task, we carefully tune the hyperparame-
ters using Bayesian optimization resulting in three
variants: GoTg5;, GoTgge, and GoTygge,. Here,
the percentage corresponds to the number of trials
spent until the hyperparameter search converges.

Table 2: Task accuracy (1), search and inference costs
({) on Human Eval. Cost is measured as the number
of LLM queries. 10 refers to direct prompting. Llama-
405b was used for the reasoning and policy agents.

Accuracy Search Inference
Method (%] Cost (Cs) Cost (C;)
10 77.4 0 1
GoTos, 66.3 1160 34.8
GoTj5g9, 67.5 2368 243
GoT1g0% 60.1 4742 8.17
ARIES 89.0 0 5.3

As such, we compare against baselines with sev-
eral search compute budgets. See Appendix C for
details on the full search methodology. We also
consider an Direct IO (Input-Output) baseline, i.e.
reasoning via direct LLM prompting.

5.3 Evaluation

Replacing static transformation schedules with
LLM policy agents offers generalization to arbi-
trary tasks at no tuning cost. However, performance
may be constrained by the LLM’s planning capa-
bilities. As such, we evaluate ARIES against the
aforementioned benchmarks, demonstrating its ad-
vantages and identifying potential failure modes.
We set the policy agent ensemble size to 5 in all
experiments, as explained in Section 6.

5.3.1 HumanEval

Our key findings for autonomous policy agents
in the context of a coding task are shown in Ta-
ble 2. It can be seen that by formulating this
code generation task as a Markov decision pro-
cess with an off-the-shelf LLM policy agent, we
achieve up to 28.9% higher accuracy than the most
query-efficient static schedule baseline. We also ob-
serve that as further trials are expended in the GoT
baseline search, the query efficiency is increased,
i.e. hyperparameter configurations are found that
achieve similar performance levels at lower query
counts. Nevertheless, we achieve 54% lower infer-
ence cost on average compared to even the most
optimized GoT baseline, and also avoids any search
time requirement.

5.3.2 Set Intersection

In Figure 3, we plot a Pareto curve showing viable
trade-off points in task error and query cost for
the set intersection task. Our approach extends the
existing Pareto frontier constructed by considering

set-intersection32

set-intersection64

set-intersection128

GoT_T00% CoT_100% GoT_100%
e - 70007 T o Io e - o 10
5000 6000 @ GoT25% 8000 ® GoT25%
o o ® GoT50% ® GoT50%
GoT 100% @ GoT 100%
_ ® GoT25% —~ 5000 ® _
= 4000 ® GoT 50% 3 @ ARIES 3 6000 @ ARIES
& @ GoT 100% & 4000 ---- Pareto Frontier [R T Pareto Frontier
+ 30001 . GoT 50% @ ARIES + GoT_50% + GoT_50%
2 'Y) 2 ° 2 ®
O . ----- Pareto Frontier O 3000 Il O 4000 “
E2000{ z E g 4
= g GoT_25% 2 20001 i GoT 25% = L GoT 25%
| Sy o 2000119
1000 e 1000 e | T
ARIES el ARES e ARES Tl
of e 8 of e -8 0) -8
0.0 0.1 0.2 0.3 1 2 3 4 5 0 10 20
Error (&) Error (&) Error (&)

Figure 3: Pareto frontiers in total query cost (Cs4;) and task error (£) for set intersection tasks at various difficulty
levels. The total cost is the number of queries expended at search and inference time. Llama-3.1-405B was used for
the reasoning and policy agents. Our results (ARIES) have pushed the Pareto frontiers forward in each task.

Table 3: Esimated transition probabilities for each
thought graph transformation, taken as the number of
successful state transitions in a static schedule.

¢sol (bref d)red d)agg
HumanEval 0.77 0.29 1 1
sorting32 0.57 0.12 1 0.60
set-intersection32 0.75 0.71 1 1

static schedule baselines and direct prompting. In
the set-intersection32 task, we achieve a 2.3 x error
reduction relative to GoTy5 while also achieving
116 x lower overall cost.

5.4 Transition Probability Profiling

In this section, we estimate the transition probabili-
ties for each thought graph transformation across
a number of tasks to gain insight into factors im-
pacting a thought graph formulation of each rea-
soning problem. For ¢,.r, we define a success-
ful transition when £ = 0 for the resulting node,
considering only cases when the transformation is
executed on nodes previously containing errors. In
transformations requiring LLLM calls, the transition
probability between two states is a random process
governed by the token distribution parametrized by
the LLM. When LLM calls are not required, i.e.
the transformation is implemented through simple
node manipulation, the transition probability is 1.
The results are summarized in Table 3. We ob-
serve the refinement transformation has notably
low success probability, particularly in coding and
sorting tasks. Additionally, sorting is the only task
with non-deterministic aggregation, which is a po-
tential error source. We note that the performance

of a thought graph formulation depends on the abil-
ity of the policy agent to capture the success profile
of various transformations for a task, and adapt the
exploration strategy accordingly.

5.5 Failure Modes

In this section, we perform a number of empiri-
cal studies aiming to understand the main limiting
factors impacting the performance of LLM policy
agents on interactive thought graphs. We find there
are two major failure modes, described as follows.
% Failure mode 1: LLM Parameter Count

We find that LLMs with insufficiently large parame-
ter sizes exhibit limited performance when utilized
as policy agents on thought graph environments.
We deploy Llama-3.1-70B as policy and reasoning
agents in sorting and set intersection tasks, against
which the larger LLM (Llama-405B) was shown
to perform well as a policy agent. As shown in Ta-
ble 4, LLM-guided graph exploration (ARIES) did
not outperform static schedule baselines in this sce-
nario. These findings are consistent with (Wei et al.,
2022), which demonstrated that zero-shot chain-
of-thought reasoning abilities emerges in models
beyond 175B parameters.

¢ Failure mode 2: Decomposition Depth

We examine the impact of decomposition depth by
analyzing the results in the sorting task, shown in
Table 5. We observe LLM policy agents lead to a
21% performance improvement relative to the most
optimized static baseline in sorting32, which has a
decomposition depth of 2. However, as discussed
in Section 5.4, the sorting task presents a particular
challenge due to the lower success probability of
the aggregation transformation. As the complex-
ity and decomposition depth of a task increases,

Table 4: Failure mode 1 results. Mean value of the error £ ({) for benchmarks with low decomposition depth.
Llama-3.1-70B was used for the reasoning and policy agents.

Method ‘ Direct Prompting GoTs5, GoTsp, GoTyggy, ARIES
sorting32 2.2 0.82 0.95 0.73 1.29
set-intersection32 1.05 0.41 0.0 0.37 1.22

Table 5: Failure mode 2 results. Mean value of the error £ ({) and search cost C' in terms of number of queries ({).
Both the reasoning and policy agents are LLaMA-405B.

Method | Direct Prompting GoTy59 GoT50 GoTygp% ARIES
Metrics & C & C & C & C & C
sorting32 0.6 1 0.74 825 | 0.82 1650 | 0.28 3300 | 0.22 20
sorting64 | 5.07 1 222 1671 | 274 3343 | 346 6687 | 9.15 48
sorting128 | 12.75 1 13.96 2444 | 12.65 4888 | 18.65 9776 | 32.74 48

the policy agent is required to apply a higher num-
ber of aggregation transformations. Therefore, we

) ol & o —e— sorting32 (CoT)
qbserye up to 4..12>< and 2.6>.< performance 'dete sorting64 (CoT)
rioration in sorting64 and sorting128, respectively. 25 > -se- sorting32 (I0)

Through empirical analysis, we observe that in
the latter tasks, the ¢4, transformation constitutes
86% and 68% of all policy agent errors, respec-
tively. As such, we conclude that high decompo- 0]
sition depths present a significant failure mode for
LLM-guided thought graph exploration, particu-

-=- sorting64 (10)

larly in tasks with low success transition probabili- p=— . : ; ; : :
. . . 2 4 6 8 10 12 14
ties for the aggregation transformation. Ensemble Size
6 Ablation Studies Figure 4: Mean error (y-axis) obtained in the sorting32

task over a sweep of ensemble sizes (x-axis). Llama-

As discussed in Section 4, two factors that impact 3.1-70B was used as the policy agent.

the performance of LLMs as policy agents in in-
teractive thought graph environments are the size 7 (Conclusion

of the ensemble and the use of chain of thought

reasoning to enhance the planning abilities of the We introduce ARIES, a multi-agent architecture for
policy agent. In this section, we aim to understand ~ topological reasoning. By viewing thought graph
the impact of each factor by evaluating sorting tasks transformations as actions in a Markov decision
over a range of ensemble sizes from 1 to 15, with ~ Process, we show off-the-shelf LLMs can drive
and without CoT prompting in the policy agent. efficient action policies without task-specific tun-
ing. We show up to 29% higher accuracy on Hu-
manEval while reducing inference costs by 35%
compared to static schedules. We identified two key
limitations: insufficient model size and excessive
decomposition depth on the task at hand. These
constraints indicate that while LLMs show promise
as reasoning agents, their effectiveness depends on
parameter count and task complexity.

As shown in Figure 4, as the ensemble size in-
creases to 5, CoT prompting leads to large perfor-
mance improvements, though the benefits start di-
minishing beyond this point. Without CoT prompt-
ing, the trend is less consistent, and larger ensemble
sizes sometimes yield worse performance. Addi-
tionally, errors without CoT are higher for both
tasks at any ensemble size. This highlights the ne-
cessity of CoT prompting in enhancing the LLM
policy agent’s ability to adapt from feedback and
drive thought graph transformations.

References

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024a. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682—17690.

Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert
Gerstenberger, Guangyuan Piao, Nils Blach, Piotr
Nyczyk, Marcin Copik, Grzegorz Kwasniewski, Jiir-
gen Miiller, Lukas Gianinazzi, Ales Kubicek, Hubert
Niewiadomski, Aidan O’Mahony, Onur Mutlu, and
Torsten Hoefler. 2024b. Demystifying chains, trees,
and graphs of thoughts. Preprint, arXiv:2401.14295.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu,
Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan,
Qingwei Lin, and Dongmei Zhang. 2024. Everything
of thoughts: Defying the law of penrose triangle for
thought generation. Preprint, arXiv:2311.04254.

Jonathan Evans and Keith Frankish. 2009. In two minds:
Dual processes and beyond. Oxford University Press.

Pengbo Hu, Ji Qi, Xingyu Li, Hong Li, Xinqi Wang,
Bing Quan, Ruiyu Wang, and Yi Zhou. 2023.
Tree-of-mixed-thought: Combining fast and slow
thinking for multi-hop visual reasoning. Preprint,
arXiv:2308.09658.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
Preprint, arXiv:2303.17491.

Jieyi Long. 2023. Large language model guided tree-of-
thought. Preprint, arXiv:2305.08291.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar,
Ruoxi Jia, and Ming Jin. 2024. Algorithm of
thoughts: Enhancing exploration of ideas in large
language models. Preprint, arXiv:2308.10379.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face. Preprint, arXiv:2303.17580.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. Preprint, arXiv:2303.11366.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Preprint,
arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Yagqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural lan-
guage to planning goals with large-language models.
Preprint, arXiv:2302.05128.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2401.14295
https://arxiv.org/abs/2401.14295
https://arxiv.org/abs/2401.14295
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2311.04254
https://arxiv.org/abs/2311.04254
https://arxiv.org/abs/2311.04254
https://arxiv.org/abs/2311.04254
https://arxiv.org/abs/2311.04254
https://doi.org/10.1093/acprof:oso/9780199230167.001.0001
https://doi.org/10.1093/acprof:oso/9780199230167.001.0001
https://doi.org/10.1093/acprof:oso/9780199230167.001.0001
https://arxiv.org/abs/2308.09658
https://arxiv.org/abs/2308.09658
https://arxiv.org/abs/2308.09658
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2305.08291
https://arxiv.org/abs/2305.08291
https://arxiv.org/abs/2305.08291
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2308.10379
https://arxiv.org/abs/2308.10379
https://arxiv.org/abs/2308.10379
https://arxiv.org/abs/2308.10379
https://arxiv.org/abs/2308.10379
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2302.05128
https://arxiv.org/abs/2302.05128
https://arxiv.org/abs/2302.05128
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

A Limitations

A.1 Assumptions and Robustness

The ARIES framework introduces a novel approach
to reasoning with large language models (LLMs)
through interactive thought graph environments.
However, several strong assumptions underlie our
methodology. Firstly, we assume that thought
graph transformations can be effectively modeled
as a Markov decision process (MDP) with well-
defined state transitions. While this formulation en-
ables structured reasoning, it may not fully capture
the complexities of more ambiguous or highly in-
terconnected problems. Additionally, our approach
assumes that off-the-shelf LLMs can act as reli-
able policy agents without additional fine-tuning.
This assumption holds for certain problem domains
but may degrade in tasks requiring domain-specific
knowledge or long-horizon planning.

Our empirical evaluation is constrained to spe-
cific reasoning tasks, including HumanEval, list
sorting, and set intersection. While these bench-
marks serve as valuable test cases for structured
reasoning, they do not necessarily generalize to all
problem types, particularly those with weakly de-
fined intermediate states or multi-modal reasoning
requirements. Furthermore, our evaluation primar-
ily focuses on LLaMA-3.1 models, and results may
not be directly transferable to other architectures.

A.2 Potential Risks

The ARIES framework introduces both opportuni-
ties and challenges in autonomous reasoning. One
primary risk is the potential for incorrect or bi-
ased reasoning paths due to the stochastic nature
of LLM-generated decisions. Although our policy
agent ensembles mitigate some of this variability,
they do not fully eliminate erroneous transforma-
tions, particularly in deeper decomposition settings.
The framework’s reliance on existing LLMs also
means that any biases present in the underlying
models could propagate into the reasoning pro-
cess, potentially leading to unfair or misleading
outcomes.

Another concern is the environmental impact as-
sociated with inference-heavy approaches. While
ARIES improves query efficiency relative to static
transformation schedules, it still necessitates a sig-
nificant number of LLM queries to achieve high
accuracy. As LLMs scale, the energy consump-
tion required for these inference tasks could be-
come a sustainability concern, particularly in high-

10

throughput applications.

A.3 Failure Modes

Our empirical findings highlight two major failure
modes: (1) inadequate LLLM parameter sizes and
(2) increasing decomposition depth. Smaller mod-
els (e.g., LLaMA-3.1-70B) struggle to act as policy
agents effectively, demonstrating subpar reasoning
capabilities compared to larger counterparts. This
suggests that autonomous policy-driven thought
graph exploration may require models beyond a
certain scale threshold to function reliably. Addi-
tionally, as the depth of problem decomposition in-
creases, ARIES exhibits a decline in performance,
primarily due to errors in aggregating intermedi-
ate solutions. This limitation indicates that current
LLMs may have difficulties managing extended
reasoning chains, which presents a barrier to scala-
bility.

B Thought Graph Transformations

The full set of considered transformations is shown
in Table 6.

C Static Schedule Parameter Search

As described in Section 3, a static transformation
can be characterized using a set of discrete param-
eters. We ran bayesian search using using Tree-
structured Parzen Estimator (TPE) sampling to de-
termine each parameter, establishing strong base-
lines for each task.

The search space is shown in Table 7. We run
multi-objective search to concurrently minimize
the task-specific error function £ (Section D) and
associated cost, measured as |®(w)| where ®(w)
(o, - - -, ¢m) is a tuple enumerating thought graph
transformations, as a function of the schedule pa-
rameters w € (), where (2 is the search space. Note
that |®(w)| correlates with the number of LLM
queries, meaning this formulation aims to mini-
mize exploration cost.

In selecting parameter configurations, we use
the cost function in Equation 4, such that the objec-
tives of cost and error minimization are balanced
through the scalar constant o € (0,1). We aim
to assign equal importance to the cost and error
objectives by tuning « independently for each task
such that the mean value of the first term matches
the second term, i.e. aE [£] = (1 —a)E [|P(w)])],

E[|®(w)]]

or equivalently o = BT)] where E denotes

the expected value. The expectations are obtained

Table 6: Thought graph transformations. Each transformation is defined as ¢(G,,m,S) = (VUVT\V~, EU
Et\ E7), where G, = (V, E) is a thought graph, S C V is a subset of nodes, m is the multiplicity (number of
attempts), and £, R, A represent arbitrary functions for node expansion, refinement and aggregation, respectively.

The sets V1,V ~, ET, E~ are defined as follows.

Transformation Symbol \A \'% E* E-
Decompose bgee {EW)NveSy 0 {(u,v)|lueS,veVT} 0
Solve bt {SW)|veSt 0 {(u,v)|ueSveVT} 0
Refine dref {R@)teS 0 {(u,v)lueSveVt} 0
Reduce ODred 0 S 0 {(uw,v)lue SvveS}
Aggregate Pagg A(S) 0 {(u,v)lueSveVt} 0

Table 7: Search space for each parameter characterizing
a static transformation.

Search
Parameter Space
Req Allow reduction {0,1}
Ry Allow refinement {0,1}
Sm Solve multiplicity {1,5,10,15,20}
A™ Aggregate multiplicity {1, 5,10, 15,20}

Z} Refine multiplicity {1,5,10, 15,20}

with random sampling.
min [a€ + (1 — a)[®(w)]])

Search was conducted separately on Llama-3.1-
70B and Llama-3.1-405B. For sorting and set in-
tersection tasks, search is conducted separately
for each difficulty level, ensuring the chosen pa-
rameters are adapted to the task. Note that we
present three search checkpoints GoT,, for n €
{25,50, 100}, where n corresponds to the percent-
age of trials until convergence. We define the
convergeance point as the first iteration where a
rolling window J of size 20 matches the condition
J* = J*=1_ This enables comparing our proposed
LLM-guided approach to optimized search sched-
ules at various search budgets.

Table 8: Results from GoT static schedule parameter
search on Llama-3.1-405B.

Task Alpha (a) GOTZS GOT50 GOT]()()
sorting32 0.99 0.38 0.38 0.37
sorting64 0.96 4.85 4.49 3.84

sorting128 0.84 28.76 25.76 24.36
set32 0.99 0.16 0.16 0.12
set64 0.99 0.71 0.51 0.31
set128 0.98 3.51 351 2.99

The complete search results for Llama-3.1-405B
are shown in Table 8. It can be seen that tasks with
higher decomposition depth incur lower values of
a due to the higher magnitude of the error function.
sorting64, sorting128 and set-intersection64 show
a smooth decline in the cost function, while the
remaining tasks remain at local minima until close
to the end of the search. The non-convexity of
the search space highlights the cost associated to
optimize the parameter set associated with static
transformations.

D Benchmarks

We choose two popular tasks for topological rea-
soning with LLMs, which are amenable to a divide-
and-conquer strategy (i.e. decomposition, solving
subproblems and merging): list sorting and set in-
tersection. Despite their simplicity, prior works
have shown that these tasks are extremely challeng-
ing for LLMs with direct prompting (Besta et al.,
2024a).

Sorting: involves sorting a list of numbers be-
tween 0 and 9 in ascending order. The error func-
tion £ = X + Y has its subterms defined in Equa-
tion 5, where a is the input list and b is a candi-
date solution. X corresponds to the number of
incorrectly sorted pairs, while Y corresponds to
the frequency difference between a and b for each
digit.

m—1
X = Z sign(max(b; — b;j11,0))
i=1

.)
Y =) |l{by: by =i} — [{ag : ag = i}

i=0
Set Intersection: involves finding the intersec-

tion of sets A and B. The error function is defined
in Equation 6, where C'is the candidate solution.

Table 9: Core results for topological reasoning across all tasks and models. We show the mean value of the score
function £ ({), which is defined for each task in Section 5. GoT1¢g, GoT5g, GoTs5 represent the obtained values
from static schedule parameters obtained at convergeance, 50% and 25% of convergeance trials, respectively.

Task Llama-70b Llama-405b
‘ GOT25 GOT50 GOT100 GOTLLM ‘ GOT25 GOT50 GOT100 GOTLLM
sorting32 0.82 0.95 0.73 1.29 0.74 0.82 0.28 0.22
sorting64 4.73 4.73 4.64 10.04 2.22 2.74 3.46 9.15
sorting128 16.18 13.86 16.07 31.79 1396 12.65 18.65 32.74

set-intersection32 0.41 0.0 0.37 1.22 0.07 0.0 0.09 0.03
set-intersection64 3.40 2.66 1.27 7.34 0.67 0.64 0.72 1.08
set-intersection128 | 13.23 12.92 12.73 22.98 1.07 0 2.54 4.62

The first and second terms correspond to missing
and extra elements, respectively.

£ =|(ANB)\C|+[C\ (4N B)

(6)

12

	Introduction
	Related Work
	Topological Reasoning
	LLMs as Action Policy Agents

	Topological Reasoning with Large Language Models
	Thought Graph Exploration as a Markov Decision Process
	Multi-Agent Reasoning
	In-Context Action Selection
	Policy Agent Ensembles

	Experiments
	Benchmarks
	Baselines
	Evaluation
	HumanEval
	Set Intersection

	Transition Probability Profiling
	Failure Modes

	Ablation Studies
	Conclusion
	Limitations
	Assumptions and Robustness
	Potential Risks
	Failure Modes

	Thought Graph Transformations
	Static Schedule Parameter Search
	Benchmarks

