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Distributed Computation for Sparse Recovery via
Continuous-Time Neurodynamic Approach
You Zhao, Xiaofeng Liao , Fellow, IEEE, Mingliang Zhou , and Xing He , Member, IEEE

Abstract—Sparsity has been extensively employed in
multimedia sensing and computing in consumer electronics,
signal and image processing, depth video codec, adaptive
sparse-type equalizer, blind speech separation, and machine
learning. Throughout this paper, we propose a novel distributed
projection neurodynamic approach for solving the Basis Pursuit
(BP) with flexible partition methods in a distributed manner.
The proposed neurodynamic approach requires only that the
network is undirected and connected, and no node can access the
entire matrix simultaneously. First, we equivalently formulate
the BP into a standard distributed optimization problem with a
flexible partition-by-blocks method to obtain global information,
and discuss the equivalence of their optimality conditions.
Then, we propose a distributed continuous-time neurodynamic
approach on the basis of primal-dual dynamical systems and
projection operators, and also study its global convergence
property. Finally, numerical experiments on sparse signals and
image recovery further verify the effectiveness and superiority
of our proposed neurodynamic approach.

Index Terms—Distributed computation, neurody-
namic approach, sparse recovery, continuous-time, global
convergence.

I. INTRODUCTION

IN MANY real-world scientific and technical problems,
such as signal and image processing for mass consumer

electronics (TVs, VCRs, VCRs, camcorders, radios, portable
digital cameras, and cameras on cell phones), and single-
pixel camera imaging, one is faced with the task of inferring
quantities of interest from measurement information. When
the information acquisition process is linear, the problem is
reduced to solving inverse problem of a linear system of equa-
tions. Mathematically, the observed data b ∈ R

m is connected
to the signal of interest x ∈ R

n in the form: b = Ax, where
m, denotes the amount of data measured. Actually, according
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to linear algebra theory, when m < n, the linear observation
b = Ax is underdetermined and there are infinitely many
solutions. In other words, without additional information, it is
impossible to recover a unique x from b for m < n. This fact is
also related to Shannon’s sampling theorem, which states that
the sampling rate of a continuous-time signal must be twice its
highest frequency to ensure reconstruction. It is surprising that
a unique x can be reconstructed exactly in the case m < n when
the signal has certain properties, and even more surprising
that efficient algorithms do exist for reconstruction. The basic
assumption that makes all this possible is sparsity (compressed
sensing theory). Sparse representation has attracted the interest
of many researchers and has a good reputation not only for
theoretical research, but also for practical applications, includ-
ing but not limited to adaptive sparse-type equalizer [1], [2],
blind speech separation [3], multichannel DRM30 receiver [4],
low complexity depth video codec [5], computer vision [6],
signal processing and image processing [7] and compressed
sensing [8] (see [9] for more applications). Mathematically,
the sparse reconstruction can be expressed as an optimization
problem:

min ‖x‖0, s.t. Ax = b, (1)

where the optimization variable x ∈ R
n, ‖·‖0 is the L0-

(pseudo) norm of vector x, and A ∈ R
m×n is measurement

matrix with m � n. The problem (1) is a nonconvex problem
owing to the L0-norm, which is NP-hard [10]. A popular
approach is to replace L0-norm with the convex L1-norm (i.e.,
‖x‖1 = |x1| + · · · + |xn|), which can provide a satisfactory
sparse solution under certain conditions [11]. Therefore, the
original problem (1) can be convexly relaxed into the following
convex optimization problem [12]:

min ‖x‖1, s.t. Ax = b, (2)

which is called Basis Pursuit (BP). In particular, the BP has
a key role in sparse recovery. There are many classical cen-
tralized discrete-time algorithms proposed to solve the BP (2),
which contain the matching pursuit (MP) algorithm [13] and
its variants orthogonal MP (OMP) algorithm [14], alternating
method of multiplier method (ADMM) [15], Lagrange dual
method [16], gradient projection method [17], etc. In addi-
tion, when the observation vector b is interrupted by noises,
there exist several strategies to address the variations of BP to
obtain sparse signals, namely, Lasso [18].

Neurodynamic approaches for sparse recovery in science
and engineering [19], [20], [21], [22], [23] have gained a
wide interest due to the following advantages: their dynamical
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behavior can be analyzed productively on the basis of the
stability of the system and optimization theories, the global
convergence and optimality of the neurodynamic approaches
can be guaranteed; they can be implemented in hardware
circuits and their parallel structure can eliminate the effects
of high dimensionality and large density; in addition, using
different discrete schemes, they can give rise to differ-
ent discrete algorithms. For example, Balavoine et al. [19]
proposed dynamical approach based on locally competi-
tive algorithm (LCA) to solve Lasso problem to recovery
sparse signals. Based on projection neural networks, Liu
and Wang [20] presented several projection neurodynamic
approaches in continuous-time to deal with BP (2) for recon-
structing sparse signals. In [21], Feng et al. proposed a
LPNN-LCA to tackle BP by incorporating Lagrange program-
ming neural network (LPNN) with LCA. In addition, to obtain
a faster convergence rate for sparse recovery, a dynamical
approach with finite-time convergence for Lasso [22]
and a projection neurodynamic approach with fixed-time
convergence for BP [23] are investigated by using sliding
mode technique. However, the proposed approaches (discrete-
time [14], [15], [16], [17], [18] and continuous-time [19],
[20], [21], [22], [23]) just are centralized, i.e., they require
a center to collect and process global information of (A, x)
in BP (2).

In recent years, advances in data collection techniques
have enabled a rapid scaling of the amount of data avail-
able in data science. Sparse optimizations in many mod-
ern applications concern very large-scale data such that
they are no longer possible to deal with them on a sin-
gle workstation running single-threaded code. Processing on
a single workstation runs single-threaded code. It naturally
becomes a viable option to migrate to a distributed method.
Several approaches have been proposed to address general
optimization problems, including BP and Lasso in a distributed
manner. Gharesifard and Cortés [24] proposed a distributed
differential inclusion (i.e., subgradient) approach to solve dis-
tributed nonsmooth convex problems. Liu and Wang [25]
proposed a second-order neurodynamic approach for solving
distributed nonsmooth constrained convex problems with the
help of differential inclusion technique. Zhao et al. [26], [27]
attempted to design distributed continuous-time neurodynamic
approaches and their corresponding distributed discrete-time
neurodynamic approaches for solving BP under row parti-
tion and column partition cases of matrix A, respectively.
Later, Xu et al. [28] proposed a two-layer distributed pro-
jection neurodynamic approach for BP with row partition of
matrix A.

It is worth noting that the distributed strategies mentioned
above are either investigated only for row partition of matrix
A or only for column partition of matrix A. However, there
are very few researches on distributed algorithms or frame-
works that can deal with BP with row partition and column
partition of matrix A simultaneously. In our opinion, there are
two difficulties in studying this problem, i.e., the first issue
concerns how to equivalently convert BP into a standard dis-
tributed optimization problem; the second one is how to design

valid distributed neurodynamic approaches in a distributed
manner that can simultaneously deal with non-smooth objec-
tive functions, primal and dual variables consensus constraints
in the obtained distributed version of BP.

In this paper, we are motivated to study BP with block
partition of matrix A (a general version of the row and
column partition of matrix A) and propose a distributed
continuous-time neurodynamic approach, and analyze its opti-
mality and convergence properties. The summary of the main
contributions is as follows:

• Based on distributed consensus theorem, we reformulate
the original BP (2) in a standard distributed optimization
problem with flexible block partition of matrix A, which is
a generalization for the partition by rows and columns of
matrix A [26], [27], [28]. Specifically, for the issue caused
by the row partition of the matrix A, an equivalent trans-
formation is performed by using an optimization variable
consensus constraint, and for the challenge caused by col-
umn partition of matrix A, we introduce a supplementary
variable to equivalently decouple the original linear obser-
vation constraint into a standard distributed version. It
implies that the distributed approaches [26], [27], [28]
mentioned above can not be used directly to solve the
standard distributed optimization problem obtained by
general block partition of the matrix A.

• By combining derivative feedback technique of
optimization variable and the projection operators,
a novel distributed continuous-time projection neu-
rodynamic approach (DCPNA-B) is proposed, where
the projection operators are used to avoid the differ-
ential inclusion (subgradient calculation of L1-norm)
method [24], [25] to eliminate the difficulty of choosing
an appropriate subgradient at a non-differential point
(see Fig. 3); moreover, the primal-dual dynamics is
employed to cope with the consensus constraints and the
modified linear observation constraint, which avoids the
inverse operation of (AAT)−1 [28], which can reduce
the computational complexity of image and signal
reconstruction in consumer electronics.

• Two novel Lyapunov functions for rigorously proving the
global convergence of DCPNA-B are presented. Because
the projection operators are employed in DCPNA-B
instead of the differential inclusion (subgradient) and soft-
threshold methods, where the Lyapunov analysis tools
in [24], [25], [26], [27], [28] are not applicable.

The paper is organized as follows. Some essential nota-
tions and preliminaries are presented in Section II. The Basis
Pursuit (BP) is reformulated in a distributed optimization
problem with block partition of matrix A, which is presented
in Section III. In Section IV, a distributed continuous-time
projection neurodynamic approach (DCPNA-B) is proposed
to solve distributed version of BP, and the convergence and
optimality of DCPNA-B is also discussed. In Section V,
numerical experiments on sparse recovery are performed
to demonstrate the effectiveness and superiority of our
proposed DCPNA-B. Finally, a brief conclusion is given in
Section VI.
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II. PRELIMINARIES

A. Notations

Let R, R
np be the sets of real numbers, np-dimensional

column vectors, respectively. The superscript T means

transpose. Let |·| be the absolute value. ‖x‖ = (∑n
i=1 x2

i

) 1
2

is the Euclidean norm, ‖x‖1 = ∑n
i=1 |xi| represents the

L1-norm and ‖x‖0 is the 0-norm which calculates the number
of non-zero elements. In ∈ Rn×n is an identity matrix. The ⊗
is the Kronecker product. The δmax(A) means the maximum
singular value of matrix A ∈ R

m×n. For matrix L ∈ Rn×n,
denote ‖x‖2

L = xTLx. For any x ∈ R
n, the ẋ (the rate of

change of neuronal state of neuron x) represents the deriva-
tive of variable x (the state of neuron x) with respect to t, i.e.,

ẋ = dx
dt =

(
dx1
dt , . . . , dxn

dt

)T ∈ R
n.

B. Subdifferential

Definition 1: The function ϕ : Rnp → R is generally convex
(possible non-smooth) if the following condition holds

ϕ(w) ≥ ϕ(u) + ηT(w − u), ∀u ∈ R
np, (3)

where η ∈ ∂ϕ(w), η is the subgradient of ϕ at w.
Moreover, ∂ϕ(w) is subdifferential of ϕ at w, which is

given by

∂ϕ(w) = {
η|ϕ(u) − ϕ(w)

≥ ηT(u − w), ∀u ∈ R
np}. (4)

C. Projection Operator

Definition 2: Let Ω be a closed and convex set, then the
projection operator is

PΩ(u) = argmin
w∈Ω

‖u − w‖.
If Ω = [−1, 1]np = {u ∈ R

np|− 1 ≤ ui ≤ 1, i = 1, . . . , np},
then, for any i, the projection operator P[−1,1]np(ui)

(see the middle subfigure in Fig. 3) is

P[−1,1]np(ui) =
⎧
⎨

⎩

1, if ui > 1,

ui, if − 1 ≤ ui ≤ 1,

−1, if ui < −1,

i.e.,

P[−1,1]np(ui) = min{max{ui,−1}, 1}.
Lemma 1 [20]: For projection operator, the following

properties hold

(u − PΩ(u))T(PΩ(u) − w) ≥ 0,∀u ∈ R
np, w ∈ Ω,(5a)

‖w − u‖2 ≥ (w − u)T(PΩ(w) − PΩ(u))

≥ ‖PΩ(u) − PΩ(w)‖2,∀w, u ∈ R
np, (5b)

u = P[−1,1]np(u + w)

⇒ (ζ − u)T(−w) ≥ 0,∀ζ ∈ [−1, 1]np. (5c)

Lemma 2 [26]: The Bregman divergence of h at w and u
is given by Dh(w, u) = h(w) − h(u) − (w − u)T∇h(v). Let
h(w) = 1

2‖w‖2 − 1
2‖w − PΩ(w)‖2, one has

1): ∇wh(w) = PΩ(w).

Fig. 1. The block of A with 0 < p ≤ n, 0 < q ≤ m, and p, q ∈ R.

2): Dh(w, u) is continuous and differentiable with respect
to w. Moreover, Dh(w, v) ≥ 1

2‖PΩ(w) −PΩ(v)‖2 implies that
function h is convex.

D. Graph Theory

Define an undirected graph as G = (V, E,A), where V =
(ν1, . . . , νn) is a set of vertexes or agents, E ⊆ V × V being
a set of edges, A = {aij} ∈ R

n×n is a weighted adjacency
matrix of G with aij > 0 if agent i and agent j are connected,
otherwise aij = 0. When there is a path between any pair of
distinct vertex/agnet i and vertex/agnet j, the graph G is called
connected. Correspondingly, the Laplacian matrix of G is Ln =
(lij)n×n = D − A, where D = diag{d1, d2, . . . , dn} ∈ R

n×n,
and d(vi) = ∑n

j=1 aij is the degree of vertex νi. Moreover, the
Laplacian matrix Ln is semi-positive definite with a simple
eigenvalue 0, i.e., Ln1n = 0n.

III. DISTRIBUTED BASIS PURSUIT (BP) PROBLEM BASED

ON BLOCK PARTITION OF MATRIX A

In this section, we show how to equivalently transformed
the original BP (2) into a standard distributed optimization
problem with block partition of matrix A.

We segment the matrix A by block according to the format
in Fig. 1 as follows:

where each block Aij ∈ R
mi×nj , i = 1, . . . , p; j = 1, . . . , q,∑p

i=1 mi = m and
∑q

j=1 ni = n. The variable b ∈ R
m is

correspondingly decomposed into (bT
1 , . . . , bT

p )T ∈ R
m.

Assumption 1: The matrix Aij ∈ R
m×n has row-full rank

and satisfies m � n.
Assumption 2: The communication graph Grow

i , Gcol
j with

any fixed i = 1, . . . , p; j = 1, . . . , q are undirected and
connected.

Every node ij only computes its local variable xij ∈ R
nj , and

they combine states of nodes ij, j = 1, . . . , q variables forming

xi =
[
xT

i1
, . . . , xT

iq

]T ∈ R
n. Moreover, all xi, i = 1, . . . , p

need to be consensus, i.e., xi = xl, i, l = 1, . . . , p or
xij = xlj , i, l = 1, . . . , p; j = 1, . . . , q. In addition, according
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to the block partition property of matrix A in Fig. 1, Ax = b
in BP (2) is formulated as

⎡

⎢
⎣

∑q
j=1 A1jx1j

...∑q
j=1 Apjxpj

⎤

⎥
⎦ =

⎡

⎢
⎣

b1
...

bp

⎤

⎥
⎦ = b ∈ R

m. (6)

Thus, the original BP (2) can be equivalently transformed into

min
x

p∑

i=1

q∑

j=1

∥∥xij

∥∥
1

s.t.
q∑

j=1

Aijxij = bi,

xij = xlj ,∀i, l = 1, . . . , p; j = 1, . . . , q. (7)

Note that the consensus constraints xij = xlj ,∀i, l =
1, . . . , p, j = 1, . . . , q in (7) can be converted to

p∑

l=1

b
j
il

(
xij − xlj

) = 0nj , i = 1, . . . , p; j = 1, . . . , q, (8)

by using the property of Laplace matrix property of Lcol.
It is worth noting that the equality constraint (6) is

globally coupled, in order to obtain the standard distributed
optimization problem of BP (2), the decoupling method for
the coupled constraints (6) is as follows:

For any fixed i = 1, . . . , p, we can decompose the variable
bi into bi = ∑q

j=1 bij ∈ R
mi with bij = 1

q bi ∈ R
mi .

Introducing a supplementary variable y ∈ R
mq and using

the property of Laplace matrix property of Lrow, the equa-
tions

∑q
j=1 Aijxij = bi, i = 1, . . . , p; j = 1, . . . , q in (7)

(i.e., Eq. (6)) is equivalently decoupled into the following
distributed form
⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

A11 x11 − b11 +∑q
k=1 a

1
1v

(
y11 − y1v

) = 0m1
...

A1q x1q − b1q +∑q
k=1 a

1
qv

(
y1q − y1v

) = 0m1

...

Ap1 xp1 − bp1 +∑q
k=1 a

p
1v

(
yp1 − ypv

) = 0mp
...

Apq xpq − bpq +∑q
k=1 a

p
qv
(
ypq − ypv

) = 0mp

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

∈ R
mq. (9)

Combining with (7), (8) and (9), the BP (2) can be
equivalently transformed as a standard distributed optimization
problem

min
x,y

p∑

i=1

q∑

j=1

∥∥xij

∥∥
1

s.t. Aij xij − bij +
q∑

v=1

ai
jv

(
yij − yiv

) = 0mi ,

p∑

l=1

b
j
il

(
xij − xlj

) = 0nj , i = 1, . . . , p; j = 1, . . . , q, (10)

and the compact form of the distributed problem (10) is

min
x,y

‖x‖1

s.t. Ax − b − Lcy = 0mq,

Lrx = 0np, (11)

Fig. 2. The matrices of A1, Ap, A1, Ap and A.

where x = [
x11 , . . . , x1q , . . . , xp1 , . . . , xpq

] ∈ R
np,

y ∈ R
mq, Lc = blkdiag {Lcol ⊗ Im1 , . . . , Lcol ⊗ Imp} ∈

R
mq×mq, Lr = Lrow ⊗ In ∈ R

np×np. Moreover, A =
bldiag {A1, A2, . . . , Ap} ∈ R

mq×np is a block diagonal
matrix, where A1 = blkdiag {A1} ∈ R

m1q×n, . . . , Ap =
blkdiag {Ap} ∈ R

mpq×n and A1 = (A11, A12 , . . . , A1q) ∈
R

m1×n, . . . ,Ap = {Ap1, Ap2 , . . . , Apq} ∈ R
mp×n with∑p

i=1 mi = m, which are shown in Fig 2.

IV. DISTRIBUTED PROJECTION NEURODYNAMIC

APPROACHES FOR PROBLEM (11)

In this section, distributed projection neurodynamic
approach in continuous-time is proposed to deal with the
problem (11) with block partition case of matrix A.

A. Distributed Continuous-Time Projection Neurodynamic
Approach for Problem (11)

For any fixed i = 1, . . . , p and j = 1, . . . , q, we propose a
distributed continuous-time projection neurodynamic approach
(named as DCPNA-B) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋij = −P[−1,1]nj

(
xij + zij

)− AT
ij
λij

−∑p
l=1 b

j
il

(
uij − ulj

)
,

żij = − 1
2 zij + 1

2 P[−1,1]mi

(
xij + zij

)
,

ẏij = ∑q
v=1 a

i
jv

(
λij − λiv

)
,

λ̇ij = Aij

(
xij + ẋij

)− bij
−∑q

v=1 a
i
jv

(
yij + λij − yiv − λiv

)
,

u̇ij = ∑p
l=1 b

i
jl

(
xij + ẋij − xlj − ẋlj

)
,

(12)

correspondingly, the compact form of (12) is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = −P[−1,1]np(x + z) − ATλ − Lru,

ż = − 1
2 z + 1

2 P[−1,1]np(x + z),
ẏ = Lcλ,

λ̇ = A(x + ẋ) − b − Lc(y + λ),

u̇ = Lr(x + ẋ),

(13)

Lemma 3: For any given initial values (x0, z0, u0, λ0, y0) ∈
R

np × [ − 1, 1]np ×R
np ×R

mq ×R
mq, the DCPNA-B (13) has

a unique solution.
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Proof: Let y1 = (x1, z1, u1, λ1, y1) and y2 =
(x2, z2, u2, λ2, y2) ∈ R

np×[−1, 1]np×R
np×R

mq×R
mq be any

two solutions of DCPNA-B (13) with the same initial value
y0 = (x0, z0, u0, λ0, y0). If y1 �= y2, then there exist τ > 0
and � > 0, such that y1(t) �= y2(t) with any t ∈ [τ, τ + � ].
Define

F(y) =

⎛

⎜⎜
⎜⎜
⎝

−P[−1,1]np(x + z) − ATλ − Lru
− 1

2 z + 1
2 P[−1,1]np(x + z)

Lcλ

A(x + ẋ) − b − Lc(y + λ)

Lr(x + ẋ)

⎞

⎟⎟
⎟⎟
⎠

.

Since F(y) is Lipschitz continuous on t ∈ [0, τ + � ], i.e.,
there exists a Lipschitz constant such that

∥∥∥F
(

y1
)

− F
(

y2
)∥∥∥

≤
(

5

2
+ δmax(A) + δmax(Lr)

)∥
∥∥z2 − z1

∥
∥∥

+ (2 + 2δmax(A) + 2δmax(Lr))

∥∥
∥x2 − x1

∥∥
∥

+ δmax(Lc)

∥∥∥y2 − y1
∥∥∥+ (δmax(A) + 2δmax(Lc)

+ δmax(A)2 + δmax(Lr)δmax(A)
)∥∥∥λ2 − λ1

∥
∥∥

+ (δmax(Lr) + δmax(Lr)
2

+ δmax(A)δmax(Lr))

∥
∥∥u2 − u1

∥
∥∥

≤
(

9

2
+ (4 + δmax(A) + 2δmax(Lr))δmax(A)

+ 4δmax(Lr) + 3δmax(Lc) + δmax(Lr)
2
)∥∥∥y1 − y2

∥∥∥,

where l =
(

9
2 + (4 + δmax(A) + 2δmax(Lr))δmax(A) + 4δmax

(Lr) + 3δmax(Lc) + δmax(Lr)
2
)

is a Lipschitz constant, which
yields

d

dt

1

2
‖y1(t) − y2(t)‖2

=
(

y1(t) − y2(t)
)T(

G
(

y1(t)
)

− G
(

y2(t)
))

≤ l‖y1(t) − y2(t)‖2,∀t ∈ [0, τ + � ].

Integrating the above inequality from 0 to τ +� , it follows
that y1 �= y2,∀t ∈ [0, τ + � ] with the same initial values
y0 = (x0, z0, u0, λ0, y0). This leads to a contradiction. Thus,
the proof is thereby completed.

Theorem 1: Under Assumptions 1, 2, (x∗, z∗, u∗, λ∗, y∗) ∈
R

np × [ − 1, 1]np × R
np × R

mq × R
mq is an equilibrium of

DCPNA-B (13) if and only if x∗ ∈ R
np is an optimal solution

of problem (11).
Proof:
(i) Necessity: if x∗ ∈ R

np is an optimal solution of
problem (11), according to the Karush-Kuhn-Tucker (KKT)
conditions, there exist y∗, λ∗, such that

0np ∈ ∂
∥
∥x∗∥∥

1 + ATλ∗ + Lru∗, (14a)

0np = Lrx∗, (14b)

0mq = Ax∗ − b − Lcy∗, (14c)

0mq = Lcλ
∗. (14d)

Let z∗ = ∂‖x∗‖1 = (∂|x∗
111

|, . . . , ∂|x∗
pqnq

|)T ∈ R
np with

i = 1, . . . , p; j = 1, . . . , q; r = 1, . . . , nj and it contains

z∗
ijr

= ∂

∣∣
∣x∗

ijr

∣∣
∣ =

⎧
⎪⎨

⎪⎩

1, x∗
ijr

> 0,

[−1, 1], x∗
ijr

= 0,

−1, x∗
ijr

< 0,

(15)

The equation (15) is equivalent to (see Fig. 3)

z∗ = P[−1,1]np
(
x∗ + z∗) = ∂

∥∥x∗∥∥
1. (16)

According to (16), the Eq. (14a) can be equivalently written
as 0np = P[−1,1]np(x∗ + z∗) + ATλ∗ + Lru∗. It means that
(x∗, z∗, u∗, λ∗, y∗) ∈ R

np × [ − 1, 1]np × R
np × R

mq × R
mq is

an equilibrium of DCPNA-B (13).
(ii) Sufficiency: when (x∗, z∗, u∗, λ∗, y∗) is an equilibrium

of DCPNA-B (13), one has

0np = −P[−1,1]np

(
x∗ + z∗)− ATλ∗ − Lru∗, (17a)

0np = −z∗ + P[−1,1]np

(
x∗ + z∗), (17b)

0np = Lrx∗, (17c)

0mq = Ax∗ − b − Lc
(
y∗ + λ∗), (17d)

0mq = Lcλ
∗, (17e)

where the Eq. (17d) becomes 0mq = Ax∗−b−Lcy∗ according
to (17e), and the Eq. (17a) reduces to 0np = P[−1,1]np(x∗ +
z∗)+ ATλ∗ + Lru∗, which combines (17b) with (16) to obtain
0np ∈ ∂‖x∗‖1 + ATλ∗ + Lru∗. To sum up, we can obtain that
x∗ ∈ R

np is an optimal solution of the problem (11).
Next, we will show the convergence results of the DCPNA-

B (13). Let (x∗, z∗, u∗, λ∗, y∗) be an equilibrium of DCPNA-
B (13). Define a Lyapunov function as V(x, z, y, λ, u) =
V0(x, z, y) + V1(x) + V2(z) + V3(y) + V4(λ) + V5(u) with

V0(x, z, y) = h(x + z) − h
(
x∗ + z∗)

+ (Ax − b − Lcy)Tλ∗ − (
z − z∗)Tz∗

− (
x − x∗)TLru∗,

V1(x) = 1

2

∥∥x − x∗∥∥2
, V2(z) = 1

2

∥∥z − z∗∥∥2
,

V3(y) = 1

2

∥∥y − y∗∥∥2
, V4(λ) = 1

2

∥∥λ − λ∗∥∥2
,

V5(u) = 1

2

∥∥u − u∗∥∥2
, (18)

where h(x + z) = − 1
2‖x + z − P[−1,1]np(x + z)‖2 + 1

2‖x + z‖2.
The function h is convex and differentiable of x and z, i.e.,
∇xh(x + z) = P[−1,1]np(x + z), ∇zh(x + z) = P[−1,1]np(x + z)
from Lemma 2.

By using the convexity of h(x + z) with respect to x and z,
one has

1

2

∥∥x − x∗∥∥2 + 1

2

∥∥z − z∗∥∥2 + h(x + z) − h
(
x∗ + z∗)

≥ (
x − x∗)Tz∗ + (

z − z∗)Tz∗ + 1

2

∥∥x − x∗∥∥2

+ 1

2

∥
∥z − z∗∥∥2 + (

z − z∗)T

× (
P[−1,1]np

(
x + z∗)− P[−1,1]np

(
x∗ + z∗))

≥ (
x − x∗)Tz∗ + (

z − z∗)Tz∗, (19)

where the last inequality holds due to the Young inequality.
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Fig. 3. The relationship between the projection operator P[−1,1](x
∗
ijr

+ ∂|x∗
ijr

|) and subgradient ∂|x∗
ijr

|.

Theorem 2: Suppose Assumptions 1, 2 hold. For any
(x0, z0, u0, λ0, y0) ∈ R

np × [ − 1, 1]np × R
np × R

mq × R
mq,

i): V(x, z, y, λ, u) is positive definite, radically unbounded,
and V(x, z, y, λ, u) = 0 holds if and only if (x, z, y, λ, u) =
(x∗, z∗, y∗, λ∗, u∗).

ii): The trajectories of (x(t), z(t), y(t), λ(t), u(t)) are
bounded ∀t ∈ [t0,+∞), or more precisely, z(t) ∈ [ − 1, 1]np,
and (x∗, z∗, y∗, λ∗, u∗) of DCPNA-B (13) is Lyapunov stable.

iii): The trajectories of (x(t), z(t), y(t), λ(t), u(t)) are glob-
ally convergent and x(t) globally converges to a consensus
optimal solution of the problem (11).

Proof:
For i): According to the definition of V0(x, z, y), V1(x) and

V2(x), we have

V0(x, z, y) + V1(x) + V2(z)

= h(x + z) − h
(
x∗ + z∗)− (

z − z∗)Tz∗

+ (Ax − b − Lcy)Tλ∗ − (
x − x∗)TLru∗

+ 1

2

∥∥x − x∗∥∥2 + 1

2

∥∥z − z∗∥∥2

≥ (
x − x∗)T(P[−1,1]np

(
x∗ + z∗)+ ATλ∗ + Lru∗)

= 0, (20)

where the inequality holds from (20) and last equality is
satisfied according to (17a). Thus, it is easy to obtain
V(x, z, y, λ, u) = 0 if (x, z, y, λ, u) = (x∗, z∗, y∗, λ∗, u∗);
V(x, z, y, λ, u) > 0, otherwise, which means V(x, z, y, λ, u) is
positive definite. Moreover, we also obtain V(x, z, y, λ, u) →
∞ as ‖(x, z, y, λ, u)‖ → ∞, i.e., V(x, z, y, λ, u) is radically
unbounded.

For ii): The derivative of Lyapunov function V(x, z, y, λ, u)

along the trajectory of DCPNA-B (12) or (13) with Eq (17)
satisfies

V̇0(x, z, y)

= −∥∥P[−1,1]np(x + z) + ATλ + Lru
∥∥2

− (
u − u∗)TLrẋ − (

λ − λ∗)TAẋ

− 1

2

(
z∗)T(P[−1,1]np(x + z) − z

)

+ 1

2
P[−1,1]np(x + z)T(P[−1,1]np(x + z) − z

)
, (21)

V̇1(x) = (
x − x∗)T ẋ

= (
x − x∗)TLr

(
u∗ − u

)

+ (
λ∗ − λ

)TA
(
x − x∗)+ (

x − x∗)T

× (
P[−1,1]np

(
x∗ + z∗)− P[−1,1]np(x + z)

)
, (22)

V̇2(z) = (
z − z∗)T ż

= 1

2

(−z + P[−1,1]np(x + z)
)T

× (
z − P[−1,1]np(x + z) + P[−1,1]np(x + z) − z∗)

= −1

2

∥
∥z − P[−1,1]np(x + z)

∥
∥2

− 1

2

(
P[−1,1]np(x + z) − z∗)T

× (
z − P[−1,1]np

(
xij + zij

))
, (23)

V̇3(y) = (
y − y∗)T ẏ = (

y − y∗)TLcλ, (24)

V̇4(λ) = (
λ − λ∗)T λ̇

= (
λ − λ∗)T(A(x + ẋ) − b − Lc(y + λ))

= (
λ − λ∗)TA

(
x − x∗)− λTLcλ,

+ (
λ − λ∗)TAẋ + λTLc

(
y∗ − y

)
, (25)

and

V̇5(u) = (
u − u∗)T u̇

= (
u − u∗)TLrx + (

u − u∗)TLrẋ. (26)

Combining with (21), (22), (23), (24), (25) and (26), one
can obtain

V̇(x, z, y, λ, u)

= −∥∥P[−1,1]np(x + z) + ATλ + Lru
∥∥2

− 1

2

∥∥z − P[−1,1]np(x + z)
∥∥2

+ 1

2

(
P[−1,1]np(x + z) − z∗)T

× (
P[−1,1]np(x + z) − z

)

− λTLcλ + (
x − x∗)T

× (
z∗ − P[−1,1]np(x + z)

)

+ 1

2

(
P[−1,1]np(x + z) − z∗)T

× (
P[−1,1]np(x + z) − z

)

= −∥∥P[−1,1]np(x + z) + ATλ + Lru
∥∥2

− 1

2

∥∥z − P[−1,1]np(x + z)
∥∥2 − λTLcλ
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+ (
P[−1,1]np(x + z) − z∗)T

× (
P[−1,1]np(x + z) − z − x + x∗)

≤ −∥∥P[−1,1]np(x + z) + ATλ + Lru
∥∥2

− 1

2

∥∥z − P[−1,1]np(x + z)
∥∥2 − λTLcλ

≤ 0, (27)

where the first inequality is satisfied by using the following
projection inequality in Lemma 1
(
P[−1,1]np(x + z) − z∗)T(x + z − P[−1,1]np(x + z)

) ≥ 0,

and variational inequalities
(
P[−1,1]np(x + z) − z∗)T(−x∗) ≥ 0.

The last inequality holds due to the semi-positive charac-
terization of the matrix Lc and Lr.

From (27), one has V(x(t), z(t), y(t), λ(t), u(t))
≤ V(x0, z0, y0, λ0, u0) < +∞, which means the tra-
jectories of (x(t), z(t), y(t), λ(t), u(t)) are bounded and
(x∗, z∗, y∗, λ∗, u∗) of DCPNA-B (13) is Lyapunov stable.

For the ż(t) + 1
2 z(t) = 1

2 P[−1,1]np(x(t) + z(t)) in DCPNA-
B (13), by a simple integration procedure, we have

z(t) = e− t
2 z0 + e− t

2

∫ t

t0
P[−1,1]np(x(s) + z(s))e− s

2 ds,

which is equivalent to

z(t) = e− t
2 z0

+
(

1 − e− t
2

) ∫ t

t0

e− s
2

e− t
2 − 1

P[−1,1]np(x(s) + z(s))ds. (28)

Since e− s
2

e− t
2 −1

> 0, P[−1,1]np(x(s)+z(s)) ∈ [−1, 1]np, ∀ t0 ≤
s ≤ t and [ − 1, 1]np is a closed and convex set, one has

∫ t

t0

e− s
2

e− t
2 − 1

P[−1,1]np(x(s) + z(s))ds ∈ [−1, 1]np.

Since z0 ∈ [ − 1, 1]np, which means z(t) ∈ [ − 1, 1]np,∀ t ∈
[t0,+∞).

For iii): Define

R = {
(x, z, y, λ, u) : V̇(x(tT), z(tT), y(tT),

λ(tT), u(tT))= 0}
⊆ {

(x, z, y, λ, u) : ẋ = 0np, ż = 0np, ẏ = 0mq
}
. (29)

Let M be the largest invariant set of R. According
to the LaSalle’s invariance principle of differential equa-
tion, (x(t), z(t), y(t), λ(t), u(t)) → M as t → ∞.
Assume (x̄(t), z̄(t), ȳ(t), λ̄(t), ū(t)) is a trajectory of DCPNA-
B (13) with (x̄(tT), z̄(tT), ȳ(tT), λ̄(tT), ū(tT)) ∈ M. Then,
(x̄(t), z̄(t), ȳ(t), λ̄(t), ū(t)) ∈ M, ∀ t ≥ tT. Therefore, for any
t ≥ tT, ẋ(t) ≡ 0np, ż(t) ≡ 0np, ẏ(t) ≡ 0mq and

˙̄u(t) ≡ Lrx̄(tT) ≡ D, (30a)
˙̄λ(t) ≡ Ax̄(tT) − b − Lc(y(tT) + λ(tT)) ≡ C. (30b)

If D �= 0np and C �= 0mq, then ū(t) and λ̄(t) are unbounded,
which leads to a contradiction. Therefore,

M ⊆ {
(x, z, y, λ, u) : ẋ = 0np, ż = 0np,

ẏ = 0mq, λ̇ = 0mq, u̇ = 0np
}
, (31)

which implies the following trajectories of
(x(t), z(t), y(t), λ(t), u(t)) globally converge the equilib-
rium point of problem (11). From Theorem 1, we obtain that
x(t) globally converges to a consensus optimal solution of
the problem (11). Thus, the proof is completed.

V. NUMERICAL SIMULATIONS

In this section, numerical experiments on sparse signal and
image recovery are performed to show the effectiveness of
our proposed DCPNA-B (13), and the flowcharts of DCPNA-
B (13) for sparse signal and image recovery are given in Fig. 4.

A. Sparse Signal Recovery

For DCPNA-B (13): Let measurement matrix be A ∈
R

50×100, and x be a real sparse signal with 10 sparsity, i.e.,
S = 10, which are randomly generalized. The observation
vector b is obtained by Ax = b. Separating the matrix A
into blocks with p = 5 and q = 4, that is, 5 by rows and
4 by columns. The communication graphs on Grow and Gcol

are given in Fig. 5 (top: left). Accordingly, the Laplacian

matrices are Lrow =

⎡

⎢⎢⎢⎢
⎣

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2

⎤

⎥⎥⎥⎥
⎦

and

Lcol =

⎡

⎢
⎢
⎣

3 −1 −1 −1
−1 2 −1 −1
−1 −1 3 −1
−1 −1 −1 2

⎤

⎥
⎥
⎦ As can be seen from Fig. 5

(top: right) that DCPNA-B (13) can efficiently recover the
sparse signal in a distributed manner.

The results of convergence and effectiveness of trajectories
x(t) and λ(t) of the DCPNA-B (13) are displayed in the bottom
left and right subplots of Fig. 5, respectively. Fig. 5 (bottom:
left) illustrates that the trajectory x(t) of the proposed DCPNA-
B (13) is globally asymptotically stable, and their optimal
solution is almost the same to the original sparse signal. As
shown in Fig. 5 (bottom: left), it is observed that the λ(t)
of DCPNA-B (13) is globally and uniformly asymptotically
stable as t increases.

B. Comparative Tests of Sparse Recovery

In addition, in order to show the superiority of DCPNA-
B (13), we compare it with distributed continuous-time
neurodynamic approaches including CNA-R [26], DCPNA-
B [27] and TLDAN [28] in Fig. 6 (left) in the case of
matrix A row partition with a communication graph on
Grow in Fig. 5 (top:left), and compare it to state-of-the-art
distributed continuous-time neurodynamic approaches which
contain CNA-C [26] and DCPNA-C [27] in Fig. 6 (right)
with matrix A column partition and a communication graph
on Gcol in Fig. 5 (top:left). As can be seen from Fig. 6 (left)
that the DCPNA-B (13) with q = 1 has the fastest conver-
gence rate because it contains two derivative feedback terms
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Fig. 4. The flowcharts of DCPNA-B (13) for sparse signal and image recovery.

and has more communication, moreover, DCPNA-B [27] and
TLDAN [28] have faster convergence rate than CNA-R [26]
due to they have less few projection calculations. It can be seen
from Fig. 6 (right) that DCPNA-B (13) with p = 1 provides
a relatively faster convergence rate compared to CNA-C [26]
and DCPNA-C [27].

To better demonstrate the superiority of the DCPNA-B
(13), we compare DCPNA-B (13) with state-of-the-art neu-
rodynamic approaches, including, distributed neurodynamic
approaches: DCPNA-R [27], CNA-R [26], TLDAN [28],

DCPNA-C [27], CNA-C [26], centralized neurodynamic
approaches: PNNSR [20] and LPNN-LCA [21]. The compar-
ison results are shown in TABLE I.

In TABLE I, we gauge the performance of the neurody-
namic approaches by the relative error (RelErr= ‖x∗−xo‖

‖xo‖ ,
where x∗ is the recovered signal and xo means original
signal) between the reconstructed sparse signal and the
original signal, where the bold values in each rank denote
the best results on RelErr. From TABLE I, we can obtain
that the proposed DCPNA-B (13) has the best performance at
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Fig. 5. (top: left) DCPNA-B (13) for problem (11) with p = 5 and q = 4. (top: right) Recovery performance of x. (bottom: left) States transition curves of
x. (bottom: right) States transition curves of λ.

Fig. 6. Convergence rate for problem (11) with various distributed neurodynamic approaches. (left) Matrix A row partition; (right) Matrix A column partition.

TABLE I
COMPARISON OF DCPNA-B (13), DCPNA-R [27], CNA-R [26], TLDAN [28], DCPNA-C [27], CNA-C [26], PNNSR [20]

AND LPNN-LCA [21] WHEN m = n
2 AND S = m

8

n = 64, 128 and 1024. When n = 256 and 512, the
performance of LPNN-LCA [21] is best. The DCPNA-B
(13) outperforms distributed neurodynamic approaches

DCPNA-R [27], TLDAN [28], CNA-C [26] and centralized
neurodynamic approach PNNSR [20] because DCPNA-
R [27], TLDAN [28], CNA-C [26] and PNNSR [20] contain
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Fig. 7. Image: Text, m = 240. (a) Original image. (b) Recovered image of DCPNA-B (13). (c) Recovered image of DCPNA-R [27]. (d) Recovered image
of PNNSR [20]. (e) Recovered image of OMP [14].

Fig. 8. Image: Phantom, m = 210. (a) Original image. (b) Recovered image of DCPNA-B (13). (c) Recovered image of DCPNA-R [27]. (d) Recovered
image of PNNSR [20]. (e) Recovered image of OMP [14].

Fig. 9. Image: X-ray, m = 240. (a) Original image. (b) Recovered image of DCPNA-B (13). (c) Recovered image of DCPNA-R [27]. (d) Recovered image
of PNNSR [20]. (e) Recovered image of OMP [14].

the projection matrix AT(AAT)−1A (contains the inverse of
the matrix), which affects the accuracy of the recovered
sparse signal.

C. Image Recovery

Image reconstruction has been widely used in the field of
engineering and science. The Gaussian matrix A ∈ R

150×256

acts as measurement matrix, the communication graphs of
Grow and Gcol are shown in Fig. 5 (left) and the noise ratio
(PSNR) is used to measure the quality of the reconstructed
image, PSNR is given by

PSNR = 10 log10
2552

MSE
,

MSE = 1

n × n

∑

i,j

(
x̂(i, j) − x(i, j)

)2
,

where x̂(i, j), x(i, j) represent the pixels of the original image
and the recovered image, respectively.

“In order to further verify the effectiveness of the proposed
neurodynamic approach, we applied DCPNA-B (13) to the
reconstruction of three different types of images, i.e., binary
image (“Text” in Fig. 7 (a)), multivalue image (“Phantom”
in Fig. 8 (a)) and natural image (“X-ray” in Fig. 9 (a)) but
of the same size “256 × 256”. The restoration results for
binary image (“Text”) of a test when m = 240 in Fig. 7, the

recovered results of multivalue image (“Phantom”) of a test
when m = 210 is displayed in Fig. 8 and the restored image
results of natural image (“X-ray”) of a test when m = 240
is shown in Fig. 9. Moreover, the mean PSNR value of 20
times are displayed in TABLE II, which is used to measure
the reconstructed effect of the proposed DCPNA-B (13). The
results in TABLE II and Figs. 7–9 illustrate that the mean
PSNR values of DCPNA-B (13) are the best compared to
distributed neurodynamic approach: DCPNA-R [27], central-
ized neurodynamic approaches: PNNSR [20] and OMP [14],
which is probably due to the fact that DCPNA-B (13) has no
matrix inverse operation (there are round-off errors) and guar-
antees convergence to the global optimal solution based on
optimization theory.

Remark 1: This paper focuses on distributed sparse theory
and distributed approach that enable accurate reconstruction
of sparse signals and images in noise-free condition, and pro-
vides theoretical and technical support for processing signals
and images in mass-market consumer electronics (televisions,
video recorders, VCRs, camcorders, radios, portable digi-
tal cameras, cameras on cell phones, etc.). We extend the
theory of compressed sensing and provide new ideas for
the development of single-pixel cameras based on the the-
ory of compressed sensing (the core technology is sparse
reconstruction problems and algorithms). For example, based
on compressed sensing theory, the authors in [5] proposed
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TABLE II
MEAN PSNR FOR THREE DIFFERENT TYPES OF IMAGES WITH DIFFERENT OBSERVED VALUE m

a low-complexity depth video codec to efficiently compress
depth video; inspired by the sparse representability of high-
resolution images, the authors in [30] proposed a sparse-based
super-resolution method based on dictionary learning, it can
address the issue of limited resolution in electronic imaging
devices, where the sparse representation is associated with a
sparse optimization problem, and the method they use involves
sparse reconstruction.

Remark 2: According to the compressive sensing theory
in [31], the sparse signal can be effectively reconstructed, the
sampling value m needs to satisfy a certain condition, i.e.,
m ≥ Cδ−2s ln

( eN
s

)
in which C > 0 does not depend on s, m

and N, e is the natural number, δ is depended on RIP con-
dition. It is practically impossible to give the exact values of
C > 0 and δ due to the complexity of their calculation. From
m ≥ Cδ−2s ln

( eN
s

)
, it is easy to see that the sampling value

m is basically proportional to the sparsity s (where ln
( eN

s

)

has a very small effect compared to s), that is, when the
sparsity s is fixed (in image reconstruction), the larger the sam-
pling value m to satisfy the condition m ≥ Cδ−2s ln

( eN
s

)
, the

greater the probability to accurately reconstruct the sparse sig-
nal, to get better reconstruction performance (see TABLE II),
we must choose suitable sampling value m. However, when
the choice of m is small, that is, it does not satisfy the for-
mula m ≥ Cδ−2s ln

( eN
s

)
, the sparse signal can not be well

reconstructed and therefore lead to worse image reconstruction
results (see TABLE II).

VI. CONCLUSION

This paper has proposed a novel projection neurodynamic
approach in continuous-time (named as DCPNA-B) for sparse
recovery by solving BP problem with block partition of
matrix A, which is a general model of BP with row par-
tition and column partition of matrix A. First, a standard
distributed BP problem based on the observation matrix block
partition was obtained by using the distributed consensus

theory and supplement variables method. Then, a DCPNA-
B was presented in the form of projection operator and the
primal-dual dynamics, and the optimality and convergence of
the DCPNA-B were also analyzed theoretically. Last, sim-
ulation results with sparse signal and image recovery have
demonstrated the effectiveness and superiority of DCPNA-B.
Considering that the communication topology between agents
in practice is sometimes a directed graph, we plan to study dis-
tributed sparse signal reconstruction models and corresponding
distributed neurodynamic approaches under directed commu-
nication topology in future work. Compared to Basis Pursuit
problem (L1-norm model), nonconvex sparse signal models
such as Lp, (1 > p > 0)-norm, L1−2-hybrid norm models
have the advantages of less sampling and promote sparsity.
Therefore the distributed nonconvex sparse signal problems
and the corresponding distributed neurodynamic approaches
will be investigated in our future work. In addition, designing
distributed neurodynamic approaches for solving sparse recov-
ery problems that can denoise and apply them to multimedia
sensing image reconstruction in consumer electronics will be
part of our future research program.
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