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ABSTRACT

Conventional reconstruction losses for autoencoders such as mean squared error
(MSE) and binary cross-entropy (BCE) are poorly suited for sparse binary data.
These measures can achieve deceptively low loss by trivially predicting the domi-
nant zeros, while failing to capture the rare but informative non-zero entries. Prior
work has primarily focused on architectural modifications or training heuristics
to address this issue, leaving the design of loss functions largely overlooked. In
this work, we shift focus to the reconstruction loss itself, exploring sparsity-aware
reconstruction losses by extending focal loss, dice loss, and related formulations
to the autoencoder setting. We evaluate their effect on both reconstruction fidelity
and embedding quality across multiple sparse datasets, showing that these alter-
natives outperform MSE and BCE on metrics sensitive to rare events. Our results
demonstrate that the choice of loss function is a critical but underappreciated fac-
tor in learning effective representations from sparse binary data.

1 INTRODUCTION

Autoencoders (AEs) are a standard tool for representation learning, dimensionality reduction, and
generative modeling. Their effectiveness, however, depends critically on the reconstruction loss,
which determines what aspects of the data the model prioritizes. Standard objectives such as mean
squared error (MSE) and binary cross-entropy (BCE) are poorly aligned with the challenges of
sparse binary data: because zeros dominate, a model can minimize loss by trivially predicting the
majority class, suppressing the rare but informative positives that drive downstream performance.

While previous work has acknowledged the difficulty of training autoencoders on sparse data, most
approaches have targeted architectural or procedural modifications—such as denoising (Vincent
et al. (2008)), masked autoencoders (He et al. (2022)), and variational formulations (He et al.
(2022)). In contrast, the design of reconstruction losses has received little attention.

We address this gap by adapting imbalance-aware objectives that have proven effective in domains
such as object detection and medical image segmentation. Specifically, we extend focal loss (Lin
et al. (2017)), Dice loss (Sudre et al. (2017)), and weighted variants of MSE/BCE to the autoencoder
setting, and systematically evaluate their impact on both reconstruction fidelity and representation
quality.

Our contributions are as follows:

1. A formal analysis of how sparsity affects standard reconstruction objectives, highlighting
their insensitivity to rare positives.

2. Adaptation of sparsity-aware loss functions to the autoencoder setting as a simple, general
alternative to architectural modifications.

3. An empirical study across multiple sparse datasets, assessing reconstruction fidelity, em-
bedding structure, and downstream task performance.
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2 RELATED WORK

Autoencoders typically minimize MSE or BCE; the latter can be interpreted as a Bernoulli negative
log-likelihood (Kingma & Welling (2013)). To handle sparsity, prior work has emphasized architec-
tural or procedural variants, including denoising autoencoders (Vincent et al. (2008)) and masked
autoencoders (He et al. (2022)).

In contrast, other machine learning domains have emphasized loss design as a key mechanism for
handling imbalance. The focal loss (Lin et al. (2017)), introduced for dense object detection, down-
weights abundant “easy negatives” and increases the contribution of rare positives, improving learn-
ing under extreme imbalance. Dice loss (Sudre et al. (2017)) directly optimizes overlap between
prediction and ground truth. These examples demonstrate how tailoring loss functions to reflect
data imbalance can substantially improve performance.

Reconstruction losses also shape the geometry of the learned latent space. It is well-established
that objectives defined in a feature space, rather than pixel space, produce representations that better
align with semantic and perceptual similarity. Johnson et al. (2016) first showed that replacing pixel-
wise objectives with ”perceptual” losses derived from a pretrained network yields superior results in
image transformation tasks. More recent self-supervised methods have taken this concept further by
discarding pixel reconstruction entirely; contrastive frameworks (Chen et al. (2020)) learn powerful
representations by optimizing an objective solely within the embedding space. This dual role of the
objective, governing both reconstruction and representation, suggests that imbalance-aware losses
may benefit autoencoders beyond per-entry fidelity.

Despite these advances in other fields, autoencoder research on sparse binary data has largely over-
looked loss design. Our work bridges this gap by systematically evaluating focal loss, Dice loss, and
weighted reconstruction objectives in this context.

3 LOSS AND SPARSITY

Sparse binary datasets pose unique challenges for autoencoder reconstruction. To analyze this, we
first formalize sparsity, its impact on standard loss objectives, and then introduce sparsity-aware
alternatives.

3.1 MEASURING SPARSITY

Let X ⊂ {0, 1}n×d denote a binary dataset with n samples and d features. For a feature j ∈ [d], the
probability of observing a 1 is pj and the probability of observing a 0 sj as defined by:

pj =
1

n

n∑
i=1

Xij ,

sj = 1− pj

(1)

The overall dataset sparsity is the average across features:

s (X) =
1

d

d∑
j=1

sj (2)

3.2 STANDARD RECONSTRUCTION LOSSES

For an autoencoder reconstruction x̂ ∈ X̂ from input x ∈ X , the expected loss for MSE and BCE
is:

E [MSE] =
1

d

d∑
j=1

(
pj (1− x̂j)

2
+ sj x̂2

j

)
(3)

E[BCE] = −1

d

d∑
j=1

(
pj log x̂j + sj log

(
1− x̂j

))
(4)
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As sparsity increases (sj → 1, pj → 0), x̂2 term dominates for MSE and log(1 − x̂j) term domi-
nates for BCE. Thus, both losses become insensitive to rare positives, by rewarding trivial all-zero
predictions.

3.3 SPARSITY-AWARE LOSSES

A natural first step to counter imbalance is to upweight the positive terms directly, yielding weighted
variants:

• WeightedMSE (WMSE):

WMSE (x, x̂) =
1

d

d∑
j=1

[α(1− x̂j)
2 + (1− xj) x̂j

2] (5)

• WeightedBCE (WBCE):

WBCE(x, x̂) = −1

d

d∑
j=1

[α(xj log x̂j) + (1− xj) log (1− x̂j)] (6)

Here, α scales positive contributions. We define α = β + log 1
pj
, β > 1.

Focal loss (Lin et al. (2017)) further addresses imbalance, adapting BCE to dynamically scale the
loss of easy-to-predict examples:

FocalLoss (x, x̂) = −1

d

d∑
j=1

[
α (1− x̂j)

γ
xj log x̂j + (1− α) x̂γ

j (1− xj) log (1− x̂j)
]

(7)

Where γ > 0 is the focusing parameter. The focusing parameter reduces the weight of confident
predictions, so that rare positives and harder cases dominate the gradient. For example, if x = 0
reconstructed correctly with high confidence (x̂ = 0.01), its contribution under BCE is log(0.99) ≈
–0.004, but with focal loss and γ = 2 the term is scaled by (0.01)2 = 0.0001, making it 100×
smaller. This shift suppresses the overwhelming influence of easy zeros, allowing rare positives to
guide learning.

Finally, Dice loss (Sudre et al. (2017)) originates in segmentation tasks with extreme class imbal-
ance:

DiceLoss (x, x̂) = 1−
2
∑d

j=1 xj x̂j + ϵ∑d
j=1 xj +

∑d
j=1 x̂j + ϵ

(8)

Dice directly optimizes overlap between predictions and true positives, ignoring true negatives en-
tirely. While this ensures rare positives remain influential, gradients may vanish at extreme sparsity
levels.

4 EXPERIMENTAL SETUP AND RESULTS

To assess our claims experimentally, we train AEs for each dataset on each loss. For all experiments,
we keep the architecture and hyperparameters of the AE fixed, as detailed in Appendix B, varying
only the reconstruction loss.

4.1 DATASETS

We select 5 binarized datasets that vary in sparsity (s ≈ 0.85–0.999), enabling us to test whether
sparsity-aware losses provide consistent benefits across both extreme and moderate sparsity regimes.
Table 1 (Appendix A) reports full statistics.

• Netflix (three variants) (s ≈ 0.97, 0.98, 0.999): Derived from the Netflix Prize dataset,
binarized to indicate whether a user has consumed an item (Netflix Inc. (2016)).

3
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Figure 1: Expected loss values of a randomly generated tensor x̂ against a highly sparse target
x (s(x) ≈ 0.999) for different reconstruction losses as reconstruction sparsity increases (s(x̂) ∈
[0.5, 0.999]). MSE/BCE degrade faster with sparsity, as compared to their modified variants. Dice
loss remains largely invariant to sparsity.

• IMDB (s ≈ 0.999): One-hot encoded content metadata (language, country, content type).
Downstream task: predict real-valued IMDB ratings (Narayan (2022)).

• Rheumatic (s ≈ 0.85): Binary symptom questionnaires from an online symptom checker.
Downstream task: predict self-reported outcomes (SpA, PMR, APs) (”Rheumatic?”
(2024)).

4.2 EVALUATION METRICS

To assess the claim that sparsity-aware losses can improve autoencoder performance, we evaluate
across 3 critera:

1. Reconstruction quality:
(a) Average Precision (AP): Evaluating reconstruction against inputs computed on recon-

structions compared to the original data.
(b) Non-trivial Pairwise Contingency Score: Evaluating whether non-trivial feature de-

pendencies are preserved by comparing normalized contingency tables between the
original and reconstructed data1. The adapted score (Dat (2025)) is restricted to rows
with at least one non-zero entry. For real data R and reconstructed data S, the score is
defined as follows:

I = {i | Ri,A ̸= 0 or Ri,B ̸= 0}

ContingencyScore = 1− 1
2

∑
α∈A

∑
β∈B

∣∣S′
α,β −R′

α,β

∣∣ (9)

2. Embedding Structure:
(a) Calinski–Harabasz (CH) Score (Caliński & Harabasz (1974)): Measures clustering

quality applied in the embedding space, by balancing intra-cluster compactness and
inter-cluster separation.

1For the contingency score, the outputs of the models were binarized using a threshold t = 0.5
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i. CH Score (DBScan clusters): Computed using cluster labels assigned by DBScan
(Ester et al. (1996)), a density-based clustering algorithm Higher scores indicate
that embeddings yield clusters that are both compact and well separated.

ii. CH Score (sparsity groups): Same score, but applied to clusters defined by per-
sample sparsity (fraction of zeros per input). This evaluates whether embeddings
preserve the natural grouping induced by sparsity levels.

(b) Trustworthiness (Venna & Kaski (2001)): Quantifies local neighborhood preserva-
tion between input and embedding spaces, measured by comparing neighborhoods in
the original space versus the learned embedding. A high score indicates that near-
est neighbors in the original space remain close in the embedding, reflecting faithful
retention of fine-grained relationships.

3. Downstream Utility
(a) Regression: Linear regression on embeddings for predicting ratings on the IMDB

dataset, evaluated with R2 .
(b) Classification: Logistic regression on embeddings for predicting self-reported diagno-

sis on the Rheumatic dataset, evaluated with Average Precision (AP) across diagnostic
labels.

4.3 RESULTS

4.3.1 RECONSTRUCTION QUALITY

Sparsity-aware losses better preserve feature dependencies, while MSE and BCE achieve higher AP
(Fig. 2). The reconstruction distributions of MSE and BCE are more sharply concentrated near 0
(Fig. 3), leading to fewer ambiguous mid-range values and thus more decisive rankings when com-
puting AP. By contrast, sparsity-aware losses place more probability mass in the intermediate region,
specifically in the region where x̂ > t = 0.5, which lowers the AP but improves the Pairwise Con-
tingency Score (Fig. 2b), indicating better preservation of dependencies between features. Notably,
all models achieve their highest contingency scores on the IMDB dataset, likely because its one-hot
metadata features form strong, low-noise dependencies (e.g., language–country pairs) that are easier
to reconstruct even under high sparsity.

Figure 2: Reconstruction quality across datasets and sparsity levels. The best performing losses
are marked with stripes for each dataset and metric. (a) Average Precision scores and (b) Pairwise
Contingency scores for AE reconstruction using different loss functions.

4.3.2 EMBEDDING STRUCTURE

Sparsity-aware losses have better results on the embedding space metrics when compared to MSE or
BCE (Fig. 4). Focal loss is particularly effective, balancing local neighborhood preservation (trust-
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Figure 3: Distribution of reconstruction values across different loss functions on multiple datasets.
Each curve shows the histogram density (log-scaled) of per-entry reconstructions, with the dashed
line marking the threshold t = 0.5. The legend reports the mass right to the threshold. As sparsity
increases, the distribution across experiments becomes less smooth. In high sparsity datasets (s ≈
1), Dice only predicts values close to 0 or 1.

worthiness) with global cluster separation (CH score). WBCE and WMSE also perform strongly
and reliably across both metrics, while Dice emphasizes global grouping but can be less stable for
local structure. The IMDB dataset naturally clusters by metadata categories (e.g., language–country
pairs), which align closely with sparsity patterns. This makes sparsity-defined clusters more separa-
ble in the embedding space, boosting CH scores across all losses.

Figure 4: Embedding space evaluation across losses. The best performing losses are marked with
stripes for each dataset and metric. a) Trustworthiness: Scale from 0 (worst) to 1 (best). b) CH Score
on labels from unsupervised clustering (DBScan) of the embedding space, score is scaled from 0
to 100, each value is represented as a percentage of the maximum score achieved for its respective
dataset. c) CH Score on sparsity labels, where the labels are generated by calculating how sparse a
sample is. Scaled similarly to b).

4.3.3 DOWNSTREAM UTILITY

Sparsity-aware losses, specifically WBCE and WMSE, outperform BCE and MSE across both re-
gression (R2) and classification (AP) tasks (Fig. 5). They yield embeddings that generalize better to
real-valued prediction and capture label-specific structure more effectively.

6
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Figure 5: Downstream performance on (a) IMDB, fitting a linear regression model on embeddings
to predict ratings. (b) Reuma fitting a logistic classifier on embeddings to predict self reported
diagnosis of APS (Antiphospholipid Syndrome), SpA (Spondyloarthritis) and PMR (Polymyalgia
Rheumatica). The best performing losses are marked for each dataset.

Figure 6: Summary of which reconstruction loss achieves the best performance for each
dataset–metric combination. Each cell marks the top-performing loss, allowing direct comparison
across reconstruction, embedding, and downstream tasks.

5 CONCLUSION

This work demonstrates that, for AEs trained on sparse binary data, the reconstruction loss itself
provides a critical inductive bias. The key insight is not the discovery of a single loss function
that universally outperforms MSE or BCE, but rather that incorporating sparsity-awareness into the
objective consistently improves both reconstruction and representation quality.

Empirically, we find that MSE and BCE achieve the strongest per-entry recovery (AP), but sys-
tematically underperform on relational metrics, embedding structure, and downstream utility. In
contrast, sparsity-aware losses (WBCE, WMSE, Focal, Dice) yield embeddings that are more trust-
worthy, better clustered, and more effective for prediction tasks (Fig. 6). These results suggest that
loss functions emphasizing rare positives implicitly encourage the model to preserve higher-order
dependencies that are overlooked by elementwise objectives.

The relatively modest margins observed are not surprising: all objectives optimize reconstruction,
and with sufficient capacity, AEs can fit sparse data regardless of the loss. However, the value of
sparsity-aware objectives lies in their consistent inductive bias, observed across datasets ranging
from extreme sparsity (s ≈ 0.999) to moderate sparsity (s ≈ 0.85). By amplifying rare but in-
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formative signals, they steer representations toward capturing both local dependencies and global
structure.

From a theoretical perspective, these findings confirm that loss functions can shape the geometry of
the embedding space as much as they affect reconstruction fidelity (Johnson et al. (2016)). In sparse
regimes, objectives that overweight positives act as regularizers against trivial all-zero solutions,
redistributing gradient signal across rare but meaningful events.

Looking forward, we expect larger performance gaps to emerge when sparsity-aware objectives are
paired with complementary advances. In future work, we will extend sparsity-aware losses to sparse
non-binary domains (e.g., sparse count matrices).

REPRODUCIBILITY

All datasets used in this work are cited with details listed in Appendix A. The details of the autoen-
coders and experiments are listed in Appendix B. The details of the evaluation experiments are listed
in Appendix C.
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A APPENDIX: DATASETS

Table 1: Benchmark dataset descriptions.

Dataset Sparsity # of Features Train Size Test Size Val. Size Downstream Task

Netflix 1.0 0.9987 4498 144827 48277 48278 N/A
Netflix 0.97 0.97 470 34600 4325 4324 N/A
Netflix 0.98 0.98 675 25840 3230 3231 N/A
IMDB 1.0 0.99965 2265 7164 895 896 Regression:

Predicting ratings on IMDB
Reuma 0.85 0.85 488 16136 2017 2017 Prediction:

Predicting self-reported outcomes

Table 2: Descriptions for benchmark datasets. See Table 1 for additional information.

Dataset Description

Netflix 1.0 Binarized version of the Netflix Prize dataset. Rows are
users, columns are content, a 1 indicates if a user has
watched the content.

Netflix 0.97 Filtered version of Netflix 1.0. Features and samples are
iteratively removed at random to reduce sparsity.

Netflix 0.98 Similar to Netflix 0.97.
IMDB 1.0 Binarized dataset of content descriptions. Features are one

hot encoded for language, country and content type.
Reuma 0.85 Questionnaire responses from a symptom checker. Rows are

users, columns are yes or no questions.

B APPENDIX: EXPERIMENT DETAILS

Parameters for focal loss: α = 0.75, γ = 2

Hyper-Parameters for autoencoders (shared across all experiments):

• Input/Output layers: Match the dimensionality of the dataset.
• Activation functions: ReLU for all layers except the final output layer, which uses a sig-

moid activation.
• Architecture:

– Encoder hidden layer: 200 units
– Latent dimension: 50
– Decoder hidden layer: 200 units

• Normalization: Batch normalization applied between layers.
• Optimizer: Adam with a learning rate of 1× 10−6.
• Initialization: Xavier uniform initialization.

All models were trained on the train split of the datasets, with early stopping based on the validation
split. All evaluations were done on the test split of the respective datasets.
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C APPENDIX: EVALUATION DETAILS

This appendix provides additional details on how the evaluation metrics described in Section 4.2
were applied in our experiments.

C.1 RECONSTRUCTION QUALITY

• Average Precision (AP): Reconstructions were treated as probabilistic predictions of bi-
nary inputs. Each input dimension was evaluated as a binary classification problem, with
AP computed by ranking reconstructed values against the ground truth.

• Pairwise Contingency Score: Reconstructions were binarized with threshold t = 0.5.
For each dataset, we computed normalized contingency tables between original and recon-
structed features, restricted to rows with at least one non-zero entry. The final score is 1
minus the ℓ1 distance between normalized contingency tables.

C.2 EMBEDDING STRUCTURE

• Trustworthiness: Computed by comparing k-nearest neighbors (k = 15) in the original
input space versus the learned embedding space. Higher scores indicate greater preserva-
tion of local neighborhoods.

• Calinski–Harabasz (CH) Score:
– DBScan clusters: CH scores were computed on cluster labels obtained by DBScan

applied to the embedding space.
– Sparsity groups: CH scores were computed on clusters defined by per-sample sparsity.

For each dataset, the sparsity of each sample was calculated as the fraction of zero
entries, and samples were then binned into 10 equally spaced groups.

C.3 DOWNSTREAM UTILITY

• Regression (IMDB): A linear regression model was trained on embeddings to predict real-
valued IMDB ratings. Performance was measured by R2.

• Classification (Rheumatic): Logistic regression was trained on embeddings to predict
diagnostic outcomes (APS, SpA, PMR). Performance was measured by Average Precision
(AP) across labels.
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