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ABSTRACT

Neural architecture search (NAS) automatically designs effective network archi-
tectures. Differentiable NAS with supernets that encompass all potential archi-
tectures in a large graph cuts down search overhead to few GPU days or less.
However, these algorithms consume massive GPU memory, which will restrain
NAS from large batch sizes and large search spaces (e.g., more candidate oper-
ations, diverse cell structures, and large depth of supernets). In this paper, we
present binary neural architecture search (NASB) with consecutive model parallel
(CMP) to tackle the problem of insufficient GPU memory. CMP aggregates mem-
ory from multiple GPUs for supernets. It divides forward/backward phases into
several sub-tasks and executes the same type of sub-tasks together to reduce wait-
ing cycles. This approach improves the hardware utilization of model parallel,
but it utilizes large GPU memory. NASB is proposed to reduce memory foot-
print, which excludes inactive operations from computation graphs and computes
those operations on the fly for inactive architectural gradients in backward phases.
Experiments show that NASB-CMP runs 1.2× faster than other model parallel
approaches and outperforms state-of-the-art differentiable NAS. NASB can also
save twice GPU memory more than PC-DARTS. Finally, we apply NASB-CMP
to complicated supernet architectures. Although deep supernets with diverse cell
structures do not improve NAS performance, NASB-CMP shows its potential to
explore supernet architecture design in large search space 1.

1 INTRODUCTION

Neural architecture search (NAS) has revolutionized architecture designs of deep learning from
manually to automatically in various applications, such as image classification (Zoph & Le, 2016)
and semantic segmentation (Liu et al., 2019a). Reinforcement learning (Zoph & Le, 2016; Zoph
et al., 2018; Pham et al., 2018), evolutionary algorithms (Real et al., 2017; 2019), and differentiable
algorithms (Liu et al., 2019b; Cai et al., 2019) have been applied to discover the optimal architecture
from a large search space of candidate network structures. Supernets (Zoph et al., 2018; Pham et al.,
2018) comprising all possible networks reduce search spaces from complete network architectures
to cell structures. Recent acceleration techniques of differentiable NAS (Xie et al., 2019; Yao et al.,
2020; Chen et al., 2019; Xu et al., 2020) further diminish search costs to affordable computation
overheads (e.g., half GPU day). Prior work (Xu et al., 2020) randomly samples partial channels of
intermediate feature maps in the mixed operations.

However, supernets of differentiable NAS consume gigantic GPU memory, which constrains NAS
from using large batch sizes and imposes restrictions on supernet architectures’ complexity. For
example, NAS determines networks in shallow supernets (e.g., 8 layers) for deep compact networks
(e.g., 20 layers). The cell structures are also required to remain identical for the same type of
cells. Data parallelism can increase the search efficiency of NAS by using large batch sizes, such as
SNAS (Xie et al., 2019), but it requires supernet complexity low enough to fit in a single GPU. In
contrast, model parallelism can parallelize complex supernets, which distributes partial models to
multiple devices. Nevertheless, model parallelism suffers from low hardware utilization. Only one
device executes its model partition, while other devices stay idle. How to take advantage of multiple
GPUs for large supernets efficiently is an open problem.

1Search and evaluation code are released at link
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Figure 1: Consecutive model parallel (CMP) overlaps the two forward sub-tasks (FA and FW ) and
two backward sub-tasks (BW and BA). This new execution order empowers neural architecture
search (NAS) to search faster than using model parallel (MP). The right figure shows that CMP can
save two cycles from vanilla MP. Furthermore, CMP inherits MP’s advantages, like using large batch
sizes in the supernet, enlarging layer numbers of the supernet, and even diversifying cell architecture
across different layers.

In this paper, we propose a simple and efficient solution, binary neural architecture search (NASB)
using consecutive model parallel (CMP), to tackle the above limitations. Specifically, supernets have
two forward and two backward phases to learn architecture parameters and network weights. CMP
distributes several sub-tasks split from the four phases in multiple GPUs and executes the sub-tasks
of all forward/backward phases together. Figure 1 illustrates that sub-tasks of forward/backward
phases will be overlapped to reduce waiting cycles. Nevertheless, CMP consumes large GPU mem-
ory due to two computation graphs existing at the same time. Thus, we introduce NASB to declines
GPU memory occupation. NASB utilizes binary and sparse architecture parameters (1 or 0) for
mixed operations. It excludes inactive operations in the computation graph and computes feature
maps of inactive operations for architecture gradients during the back-propagation. In this way,
NASB-CMP can increase hardware utilization of model parallelism with efficient GPU memory in
differentiable NAS.

In our experiments on CIFAR-10, NASB-CMP runs 1.2× faster than using model parallel and
pipeline parallel, TorchGPipe (Kim et al., 2020) in a server with 4 GPUs 2. It can achieve the
test error of 2.53 ± 0.06% by searching for only 1.48 hours. Our contribution can be summarized
as follows:

• NASB-CMP is the first NAS algorithm that can parallelize large supernets with large batch
sizes. We analyze the acceleration ratio between CMP and traditional model parallelism.
Even though complex supernets (e.g., large layers and different cell structures) will not
boost NAS performance, NASB-CMP paves the way to explore the supernet architecture
design in the future.

• NASB utilizes binary architecture parameters and extra architecture gradients computation
to reduce GPU usage. It can save memory consumption by accepting twice batch sizes
larger than the other memory saving algorithm, PC-DARTS (Xu et al., 2020).

• We fairly compare NASB-CMP with state-of-the-art differentiable NAS in the same hard-
ware and search space. Extensive experiments show that NASB-CMP can achieve compet-
itive test error in short search time.

2NVIDIA GTX 1080 Ti.
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Figure 2: Illustration of Binary Neural Architecture Search (NASB). (a) is a supernet made up of
normal and reduce cells. (b) portrays the directed-acyclic-graph (DAG) used for cell structures. (c)
embodies the mixed operation in the solid red lines of the middle figure. NASB builds its supernet
with binary mixed operations mB

O, which replace architectural matrix A with binary matrix G. The
symbol n and o stand for nodes in DAG and candidate operations. Among rows associated with a
node (blue bracket) in A, the largest two values are set to 1 and the rest elements to 0. Only partial
operations are active during the search procedure of NASB.

2 METHODOLOGY

We first describe the fundamental concepts of one-shot neural architecture search (NAS) in Sec-
tion 2.1. We then portray the consecutive model parallel to enhance NAS search efficiency in mul-
tiple devices in Section 2.2. Finally, we explain how we binarize the architectural weights and
compute their gradients to cut down the GPU memory consumption in Section 2.3.

2.1 ONE-SHOT NEURAL ARCHITECTURE SEARCH

One-shot neural NAS (Zoph et al., 2018) is built on a supernet (a.k.a. meta graph) in which we
stack normal cells and reduce cells sequentially in Figure 2 (a). Normal cells are analogous to
convolutional layers to extract images features. Reduce cells are equivalent to pooling layers to
reduce the spatial dimension of feature maps. All normal cells share the same structure, but each
cell still has its network weights. So do all reduce cells. One-shot approaches are required to design
two cell structures instead of complete neural networks. Figure 2 (b) illustrates one popular cell
structure (Pham et al., 2018), an N -node directed-acyclic-graph (DAG) with total edges E, not
counting the “concat” node. In the h-th cell, the first two nodes are the (h − 2)-th and (h − 1)-th
cells having no inbound edges. The other nodes accept previous nodes whose index is lower than
the current index. Total edges E (red lines of Figure 2 (b)) is (N +1)(N −2)/2. We denote the h-th
cell’s output as yh = concat(nj), where 2 ≤ j ≤ N − 1 and nj is a DAG node signified in Eq. 1.

nj =


yh−2, if j = 0,

yh−1, j = 1,∑
i<j mO(ni), 2 ≤ j ≤ N − 1.

(1)

A mixed operation mO is the edge between node i and j in the DAG. Let O be a set of candidate
operations (e.g., convolution, pooling, identity, zero) and A ∈ RE×|O| be a matrix of architecture
parameters. Eq. 2 formulates the mixed operation mO from node i to j as the weighted sum of all
operations ok (Liu et al., 2019b).

mj
O(ni) =

|O|∑
k=1

Ae,kok(ni), j ≥ 2, i < j, (2)

where e = (j+1)(j− 2)/2+ i is the edge index. The mixed operations transform the cell structure
search to the problem of learning two matrices, AN and AR, for the normal and reduce cell.
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Given that Lval and Ltrain is the loss function L beyond a training and validation dataset, respec-
tively. Let A comprise AN and AR. Mathematically, one-shot NAS can be formulated in the
following optimization problem,

minA Lval(w
∗,A)

s.t. w∗ = argmin
w

Ltrain(w,A). (3)

NAS leverages the validation performance to choose well-trained networks that outperform others.
After training A, we derive the compact network by pruning unused operations in the supernet.
Since the whole paper follows the image classification setting (Liu et al., 2019b; Cai et al., 2019),
we assume each node is assigned two inputs and two operations. And we prune node inputs of cells
of the supernet by the largest two values of A associated with that node. For simplicity, we use A in
replace of A in the following discussion.

2.2 CONSECUTIVE MODEL PARALLEL

Data parallelism can scale up supernets with large batch sizes, but it cannot handle large supernets
(e.g., deep supernets with different cell structures). Model parallelism (MP) is able to amortize
such large supernets across multiple GPUs, but its hardware utilization is low. MP would generate
unwanted waiting cycles across devices. Figure 1 displays that the first device becomes idle until
the second device finishes its forward and backward phases. The parallelization gets worse as we
use large available GPUs.

Motivated by pipeline parallelism (Huang et al., 2019), we propose consecutive model parallel
(CMP) to decrease GPU idle time. Let FA and BA signify the forward and backward phase to
update A, and Fw and Bw be two phases to update w. CMP divides the four phases into several
sub-tasks and performs sub-tasks of FA and Fw consecutively, followed by sub-tasks of Bw and
BA. Figure 1 illustrates that the execution order change by CMP overlaps sub-tasks without waiting
for others to finish. Given the number of available GPUs M , Eq. 4 reveals the ratio of execution
time between CMP and MP in theory.

Time of CMP
Time of MP

=
1
M [4M − 2(M − 1)]

4
= 1− M − 1

2M
. (4)

We assume FA, BA, Fw, and Bw take the same time unit. MP will complete an iteration in 4 units.
For CMP, the total sub-tasks is 4M , and 2(M − 1) sub-tasks can be overlapped. If a sub-task takes
1/M ideally, CMP will finish an iteration in 1/M(4M − 2(M − 1)) units. According to Eq. 4, CMP
with two devices could reduce (2-1)/(2*2)=25% time from MP. In practice, Experiment 3.1 demon-
strates that NASB-CMP runs 1.2× faster than model parallelism without sacrificing test error. The
theoretical value for 4 GPU is 1.6 (or reduce 37.5% time). We believe communication overhead and
uneven model balance cause the deviation. Communication overhead comes from the intermediate
tensors transfer from one to another GPU when models are split into different GPUs. Moreover,
the main thread is responsible for loading data and backward propagation. The GPU with the main
thread always consumes the most GPU memory, which causes uneven model balance.

CMP is a general model parallel approach for any existing differentiable NAS algorithm. However,
runningBA andBw consecutively asks for two computation graphs, which doubles GPU utilization
and deteriorates CMP efficiency. To address the problem of great GPU consumption, we introduce
a memory-efficient NAS to CMP, called binary neural architecture search (NASB).

2.3 BINARY NEURAL ARCHITECTURE SEARCH

Binary neural architecture search (NASB) harnesses binary mixed operations mB
O (Yao et al., 2020)

that convert the real-valued A into sparse binary matrix G, as illustrated in Figure 2. Among rows
Ae,: associate node j, mB

O enforces the two largest elements to 1 (active) and the rest elements to
0 (inactive). The row indexes of active elements indicate selected edges to node j, while column
indexes indicate chosen operations. Notice that NASB does not directly multiply G with candidate
operations in Eq. 5. Instead, NASB constructs a set of active operations O(active) based on active
elements in G. Only those active operations oa ∈ O(active) are included in the forward phase. This
technique could stop inactive operations being stored in the computation graph and decrease roughly
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Algorithm 1: NASB - Consecutive Model Parallel
1: Initialize architecture weights A and network weights w
2: while not stopped do
3: Gt = binarize(At)
4: Create mB

O using Gt and Eq. 5
5: Compute Lvalid(wt,Gt) and Ltrain(wt,Gt) consecutively // model parallel
6: Compute∇wLtrain(wt,Gt) and∇ALvalid(wt,Gt) consecutively // model parallel
7: Update wt+1 by descending∇wLtrain(wt,Gt)
8: Update At+1 by descending∇ALvalid(wt,Gt)
9: end while

|O| times GPU memory compared to using the multiplication by G.

mB
O(ni) =

|O|∑
k=1

Ge,kok(ni) = oa(ni). (5)

NASB computes gradients of network weights w using standard back-propagation in the supernet.
For the gradients of A, NASB estimates ∂L/∂A approximately by ∂L/∂G:

∂L
∂Ae,k

=
∂L
∂mO

∂mO
∂Ae,k

≈ ∂L
∂mB
O

∂mB
O

∂Ge,k
=

∂L
∂mB
O
× ok(n) =

∂L
∂Ge,k

. (6)

Eq. 6 states that gradients of elements in A come from ∂L/∂mB
O × ok(n). However, inactive

operations are not in the computation graph. NASB saves inputs of inactive operations n in PyTorch
Context that is used for backward computation. During the backward phase, NASB will compute
inactive operations ok′(n) on the fly and multiply the results with the ∂L/∂mB

O.

Apart from saving unneeded GPU FLOPS and memory, mB
O can avoid performance bias between

supernets and compact networks. Supernets using mO assume that the performance of supernets
can represent derived compact networks, but non-linear operations (e.g., ReLU-Conv-BN) break the
representation that causes performance bias (Xie et al., 2019). Instead, the sparse matrix of mB

O
activates one operation. The performance of supernets during the search is only for one compact
network. Thus, NASB can mitigate the bias caused by non-linear operations.

Algorithm 1 describes how CMP works with NASB. Note that NASB-CMP does not update any
parameter (including A and w) until FA, BA, Fw, and Bw complete. Ltrain will use the current
binary architecture matrix Gt rather than updated Gt+1, which is the major difference from the
alternate algorithm (See Appendix A). Experiment 3.2 demonstrates NASB could save substantial
GPU memory than PC-DARTS (Xu et al., 2020), which reduces GPU memory by partial channels
of feature maps in mixed operations.

Comparison with other methods. NASP (Yao et al., 2020) binarizes A based on A itself, while
ProxylessNAS (Cai et al., 2019) binarizes A based on the softmax results of A. The two bina-
rization approaches are equivalent, but how they handle binary mixed operations (Eq. 5) is different.
NASP multiplies G with all operations (i.e., saving active and inactive operations in the computation
graph). ProxylessNAS selects two sampled operations (paths) in the computation graph according
to multinomial distribution. NASB utilizes the same binarization as NASP but only keeps one active
operation in the computation graph according to G.

3 EXPERIMENTS

We compare NASB-CMP with other parallelisms on the CIFAR-10 in Section 3.1. We then inspect
the quality of NASB and compare NASB-CMP with state-of-the-art NAS in Section 3.2. Finally,
we investigate the design of supernet architectures using large layers and different cell structures in
Section 3.3, which cannot be conducted without saving GPU consumption or model parallel.

Dataset. CIFAR-10 Krizhevsky & Hinton (2009) is a color-image dataset for image classification,
composed of 50,000 training images and 10,000 test images for 10 classes. The dataset preparation
can be found in Append E.
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Search Space. The DAG (See Section 2.1) has N = 6 intermediate nodes and E = 14 total edges.
The set of candidate operations follows NASP (Yao et al., 2020), where normal operations |ON |=8
and reduce operations |OR|=5. Notice that our baselines also use the same operation sets rather than
their original one (|ON | = |OR| = 8). All operations are included in Appendix F.

# GPU # GPU

%hours Search Cost Test Error

Figure 3: Performance comparison between different parallel approaches in NAS (best viewed in
color). GPipe (Huang et al., 2019) is an approach of pipeline model parallel. Among the three
model parallel approaches (blue, red, yellow), consecutive model parallel (CMP) outperforms them
in terms of search cost and test error (lower is better). While the data parallel (green) is the fastest
parallel method, but its test errors are not as low as CMP.

3.1 PARALLELISM COMPARISON ON CIFAR-10

The performance of NASB-CMP is compared with other parallel approaches on CIFAR-10, includ-
ing data parallelism, model parallelism, and GPipe (Huang et al., 2019), the state-of-the-art model
parallel that pipelines chunks of data into several model partitions. The implementation of Parallel
NASB is written in Appendix B, and the search and evaluation settings are in Appendix C and D.

Figure 3 compares the performance of different parallelizations in NASB in varied GPUs. CMP runs
1.2× faster than model parallel (MP) and GPipe especially running in 3 and 4 GPUs. According to
Eq. 4, four GPUs should run 1.6X faster (or reduce 37.5% search time) than MP. In practice, com-
munication overhead and uneven model partitions reduce the ideal speedup ratio. Compared with
all parallel approaches, CMP’s execution order change does not degrade the test error. Data parallel
takes the lowest search cost, but it does not generate as low test error as other model parallel ap-
proaches. The reason might be that model replicas in data parallel utilize partial batches to compute
architectural gradients, while model parallel can make use of the whole batches. Therefore, CMP is
an efficient model parallel approach that helps NAS to utilize large batches.

Despite the competitive performance, the scalability of CMP is inferior. CMP disallows batch sizes
from linearly scaling up as large GPUs are involved. For example, 2 GPUs should use 448 (we used
416 instead) if 1 GPU uses 224. Besides, 1-GPU NASB can utilize batch size 448, but NASB-CMP
needs 4 GPUs to double batch sizes. The main reason is that CMP keeps two computation graphs (for
BA and Bw) simultaneously for overlapping computations, resulting in twice GPU consumption.
We believe that a mixed parallel combining CMP and data parallel can mitigate the drawback by
merging two advantages, accuracy of CMP and scalability of data parallel.

3.2 STATE-OF-THE-ART NAS COMPARISON ON CIFAR-10

Following experiment settings in Appendix C and D, we compare NASB and NASB-CMP with sev-
eral NAS algorithms on CIFAR-10. DARTS (Liu et al., 2019b), SNAS (Xie et al., 2019), NASP (Yao
et al., 2020), and PC-DARTS (Xu et al., 2020) are selected as our baselines. DARTS is the pioneer
of differentiable NAS. SNAS points out the performance bias between a supernet and derived net-
works in DARTS. Both NASP and PC-DARTS reduce GPU memory, which overlaps the scope of
this paper. We should select ProxylessNAS (Cai et al., 2019) as a baseline, but their search code on
CIFAR-10 is not released. We prefer not to ruin their performance with improper implementation.
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Table 1: Comparison with state-of-the-art NAS on CIFAR-10

Model Test Error
(%)

Params
(M)

Search Cost
(GPU hours)

Search
Batch Size

DenseNet-BC Huang et al. (2017) 3.46 25.6 - -
NASNet-A + c/o (Zoph et al., 2018) 2.65 3.3 43200 -
AmoebaNet-B + c/o (Real et al., 2019) 2.55± 0.05 2.8 75600 -
ENAS + c/o (Pham et al., 2018) 2.89 4.6 12 -
ProxylessNAS-G + c/o (Cai et al., 2019) 2.08 5.7 - -
NAONet-WS + c/o (Luo et al., 2018) 2.93 2.5 7.2 -
AlphaX + c/o (Wang et al., 2019) 2.06 9.36 360 -
DARTS (2nd order) + c/o (Liu et al., 2019b) 2.83± 0.06 3.4 96 64
SNAS-moderate + c/o (Xie et al., 2019) 2.85± 0.02 2.8 36 64
NASP + c/o (Yao et al., 2020) 2.44± 0.04 7.4 4.8 64
PC-DARTS + c/o (Xu et al., 2020) 2.57± 0.07 3.6 2.4 256
DARTS (2nd order) + c/o (Liu et al., 2019b) 7.25± 4.20 1.8± 0.6 53.62± 5.06 60
SNAS + c/o (Xie et al., 2019) 2.58± 0.08 8.8± 0.5 11.06± 0.2 60
NASP + c/o (Yao et al., 2020) 2.76± 0.35 5.5± 0.8 6.44± 0.12 60
PC-DARTS + c/o (Xu et al., 2020) 2.59± 0.05 6.5± 0.9 8.96± 0.08 60
NASB + c/o 2.64± 0.09 5.4± 1.2 3.92± 0.38 60
PC-DARTS + c/o (Xu et al., 2020) 2.60± 0.17 5.5± 1.2 4.10± 0.03 224
NASB + c/o 2.49± 0.07 6.9± 1.5 1.64± 0.06 448
NASB + CMP + c/o 2.53± 0.06 6.9± 0.7 (1.48± 0.02)× 4 896

Instead of directly using their reported results, we re-run the baselines from scratch to ensure their
hardware and search space are the same. So, we can fairly compare them in terms of test error and
search cost.

The test error and search cost on CIFAR-10 are stated in Table 1, where “c/o” signifies Cutout (De-
Vries & Taylor, 2017) used in the evaluation phase. The first row (human designed networks) and
the second group of rows are extracted from their papers. The third group compares NASB with
differentiable NAS baselines. The fourth group compares NAS algorithms using large batch sizes.
Notably, ProxylessNAS attains the outstanding test error, but its supernet structure and search space
are different from what we use, which might bias the comparison.

In the third group, NASB significantly takes the cheapest search cost, roughly 4 hours, to reach
a comparable test error of 2.64% with SNAS 2.58% and PC-DARTS 2.59%, not to mention the
search cost is smaller than the second group. NASB and NASP use similar mixed binary operations,
but NASB outperforms NASP in both search cost (3.92 versus 6.44) and test error (2.64 versus
2.76). The GPU memory utilization of NASB and NASP is 2,117 MB and 9,587 MB, respectively.
These three comparisons indicate that the additional gradient computation for inactive operations
is a useful technique. Notice that DARTS, SNAS, and PC-DARTS use different search space (See
Appendix F), so the original test errors (second group) differ from what we report in the third group
of Table 1. Especially, DARTS tends to overfit the validation set by selecting “skip connect” in our
search space. Its results are not as good as their original search space. Even though NASP uses the
same search space, the different batch sizes and random seeds for the search and retrain setting still
lead to different results.

The fourth group points out that NASB can considerably reduce GPU memory by using twice batch
sizes larger than PC-DARTS within 1.64 hours to attain a test error of 2.49. PC-DARTS, how-
ever, becomes worse when using large batch sizes. We consider that the Hessian approximation in
PC-DARTS fluctuates greatly with large batch sizes, which misleads PC-DARTS to easily select
“skip connect”. NASB-CMP using four GPUs enables twice batch sizes for NASB to finish its
search in 1.48 hours without severe test error degradation. Its test error 2.53% also performs better
than other differentiable NAS. The empirical results in the third and fourth groups demonstrate the
high efficient NASB with significant memory saving and the strong performance of NASB-CMP.

3.3 LARGE SUPERNETS ON CIFAR-10

One-shot NAS embraces two limitations, (1) searching 8-layer supernets for 20-layer compact net-
works and (2) same cell structures (Liu et al., 2019b; Pham et al., 2018). We hypothesize that
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Table 2: Compare test error with different supernets on CIFAR-10

Cell Structure Same Different
# Layers 8 20 8 20
NASB 2.59 2.78 2.52 2.82

NASB-CMP 2.58 2.78 2.76 2.68

20-layer supernets with different cell structures can build suitable compact networks. Thanks to
NASB and NASB-CMP that reduce GPU utilization and exploit multiple GPUs, we can examine
how supernet architectures affect NAS. The search and retrain setting follow Appendix C and D.
Table 2 shows test errors on CIFAR-10 with various supernet architectures, where the 1st and 2nd
rows indicate cell diversity and layers (cells) numbers. Since 8-layer supernets could have six vary-
ing normal cells, we magnify each normal cell three times to construct compact networks.

First, supernets with large layers do not benefit NAS to discover high-quality compact networks.
Test errors in NASB (3rd row) and NASB-CMP (4th row) show that most 8-layer supernets can
generate lower test errors than 20-layer supernets. The reason is 20-layer supernets have numerous
architecture parameters and network weights, and they should ask for more search epochs than 8-
layer supernets to train. Insufficient search epochs for deep supernets do not help NAS reach strong
compact networks. Furthermore, supernets with different cell structures are not beneficial for NAS
as well. When we compare results in 2nd and 4th columns (or 3rd and 5th columns), most super-
nets using the same cell structures can generate similar or lower test errors than using different cell
structures. The reason is close to the previous one. Different cell structures demand extra search
epochs to train high-dimensional architecture parameters compared to homogeneous cell structures.
Not enough epochs for different cell structures do not produce low test error. Although the results
contradict the hypothesis, NASB-CMP shows its potential to explore complicated supernet architec-
tures, which paves the way for designing supernet architectures.

4 RELATED WORK

Parallelism has been applied to NAS for acceleration (Zoph & Le, 2016; Xie et al., 2019; Cai et al.,
2019; Mei et al., 2019). Parameter servers in NAS (Zoph & Le, 2016) train several child networks
in parallel to speed up the learning process of the controller. ProxylessNAS (Cai et al., 2019) speed
up its retrain phase by a distributed framework, Horovod (Sergeev & Del Balso, 2018). SNAS (Xie
et al., 2019) and AtomNAS (Mei et al., 2019) have accelerated the search phase by data parallelism.
Data parallelism runs data partitions simultaneously across multiple devices, but it cannot parallelize
large models exceeding the memory of a single device, especially complicated supernets with large
batch sizes. In contrast, model parallelism (Lee et al., 2014; Harlap et al., 2018; Huang et al., 2019;
Kim et al., 2020) excels at parallelizing large models. GPipe (Huang et al., 2019) splits mini-batches
to micro-batches and execute micro-batches in the pipeline of model partitions. The pipeline manner
mitigates low hardware utilization in model parallelism. Consecutive model parallel is motivated by
pipeline parallelism to overlap sub-tasks of forward/backward phases. We found that batch splitting
and re-materialization (Chen et al., 2016) of GPipe increase NAS search time because frequently
updating A and w intensifies extra computation. To the best of our knowledge, CMP is the most
efficient model parallelism for NAS.

Reducing GPU utilization to enlarge search batch sizes is another acceleration techniques (Xu et al.,
2020; Chen et al., 2019; Xie et al., 2019; Yao et al., 2020; Cai et al., 2019). PC-DARTS (Xu et al.,
2020) samples channels of feature maps in mixed operations. P-DARTS (Chen et al., 2019) reduce
search space as it progressively increases layers of supernets in the search phase. ProxylessNAS (Cai
et al., 2019) and NASP (Yao et al., 2020) binarize A to reduce all operations saved in GPU. NASB
uses the same binarization as NASP but saves one active operation in the mixed operations. Thus,
NASB can reduce GPU consumption substantially and give CMP more space to keep two computa-
tion graphs in GPUs.
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5 CONCLUSION

We proposed a simple and efficient model parallel approach, NASB-CMP, which overlaps sub-tasks
of forward and backward phases to reduce idle time across GPUs and utilize binary architecture
parameters to reduce GPU utilization for heavy supernets. Experiments on CIFAR-10 show NASB-
CMP runs 1.2× faster with a large batch size of 896 than other model parallel approaches in 4 GPUs
and only took 1.48 hours to attain a test error of 2.53, surpassing state-of-the-art differentiable NAS.
Moreover, NASB-CMP is able to accommodate high complicated supernets for search, which paves
the way for supernet network architecture design. In the future, we will combine the data parallel
with NASB-CMP to overcome its inferior scalability, investigate effective and complicated supernet
architectures, and analyze the communication overhead of NASB-CMP in a multi-node GPU cluster.
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A ALTERNATE ALGORITHM OF BINARY NEURAL ARCHITECTURE SEARCH

Algorithm 2 displays the alternate fashion to update A and w in the NAS: updating A with fixed
w and then updating w with fixed A. Note that Line 9 of Algorithm 2 computes the gradients
∇wLtrain with updated Gt+1, which is different from the consecutive algorithm (Algorithm 1).

Algorithm 2: NASB
1: Initialize architecture weights A and network weights w
2: while not stopped do
3: Gt = binarize(At)
4: Create mB

O using Gt and Eq. 5
5: Compute∇ALvalid(wt,Gt) using Eq. 6 // handle the gradients of inactive elements
6: Update At+1 by descending∇ALvalid(wt,Gt)
7: Gt+1 = binarize(At+1)
8: Create mB

O using Gt+1 and Eq 5
9: Compute∇wLtrain(wt,Gt+1) // standard back-propagation

10: Update wt+1 by descending ∇wLtrain(wt,Gt+1)
11: end while

B IMPLEMENTATION OF PARALLEL NAS

The data parallel leverages PyTorch (Paszke et al., 2017) distributed module providing commu-
nication interfaces to update parameter tensors between multiple processes. Model parallel and
CMP are implemented in multi-threading. Each GPU has a specialized thread responsible for its
model partition. Those threads enable different model partitions to run simultaneously. Without
multi-threading, only assigning model partitions to specific devices do not automatically overlap
sub-tasks. For GPipe, we adopt the corresponding PyTorch package, torchgpipe (Kim et al., 2020),
in replace of GPipe, since GPipe is written in Tensorflow. The chunk setting to split mini-batch size
to micro-batch size is disabled in the experiment, because enabling the setting increases the search
cost.

C SEARCH DETAILS ON CIFAR-10

Our platform is a server with 4 GPUs of NVIDIA GTX 1080 Ti, in which all search experiments are
executed. Supernets consist of 8 cells in which the 3rd and 6th cells are reduce cells, and others are
normal cells with initial channels 16. The optimizer for network weights w is momentum SGD with
moment 0.9, L2 penalty 3e − 4, and cosine anneal learning rate initialized by 0.025 and minimal
0.001. The optimizer for architecture parameter A is Adam with learning rate 3e − 4, L2 penalty
1e− 3, and (β1, β2) = (0.5, 0.999). PC-DARTS with large batch sizes (Xu et al., 2020) has unique
configurations: initial learning rate 0.1 and minimal 0.0 for SGD optimizer and learning rate 6e− 4
for Adam optimizer.

All NAS algorithms will search networks for 50 epochs with varied batch sizes and random seeds.
In Experiment 3.1, NABS-CMP is specified search batch size 224, 416, 512, 896 for 1, 2, 3, 4
GPUs, respectively It random seed is 2. In Experiment 3.2, The batch size is 60 determined by
DARTS because DARTS consumes the largest GPU memory. We want all NAS algorithms to use
the same batch size in order to compare each other fairly. Since PC-DARTS is proposed to reduce
GPU memory consumption, we also compare the performance of PC-DARTS using a large batch
size 224 with NASB and NASB-CMP. NASB is specified with its allowable maximal batch size 448
in a single GPU, and NASB-CMP uses a batch size of 896 in 4 GPUs. All NAS baselines and NASB
use 2, 3, 4, 5, 6 as random seeds, and NASP-CMP uses 2, 3, 9, 11, 18 instead. In Experiment 3.3,
NASB and NASB-CMP exploit batch size 160 and 256, respectively, for 50 epochs. We ran search
experiments twice using random seed 2 and 3 and reported the average test error among the two
searches in Table 2.
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D EVALUATION DETAILS ON CIFAR-10

The compact networks used in the retrain (evaluation) phase have 20 cells (layers), where the one-
third and two-thirds of the depth are reduce cells and others are normal cells. We retrain the compact
networks from scratch for 600 epochs with the batch size 96, dropout path of probability 0.2, and
initial channels of 36. We also add the auxiliary layer in the network with a loss weight 0.4. During
the evaluation phase, the cutout length 16 is additionally applied for image transformation. The
optimizer setting for network weights w is the same as the searching setting. The retrain random
seed is assigned to 0, which is different from the search seeds.

E PRE-PROCESSING SUMMARY ON CIFAR-10

We preprocess the training images in the following techniques: padding 32×32 images with 4 pixels,
and then randomly cropping them back to 32 × 32; randomly flipping images in the horizontal
direction; normalizing image pixels by the channel mean and standard deviation. The processed
training set is split evenly: the first half serves as the final training set, and the other serves as the
validation set. SNAS merely relies on the training set to search, so its training set is not split.

F CANDIDATE OPERATIONS ON CIFAR-10

Table 3 summarizes candidate operations for mixed operations used in NAS papers. Experiment 3
makes use of the first row of Table 3 as its search space on CIFRAR-10. “skip connect” sym-
bolizes identity operation if stride size is 1 or ReLU-Conv-Conv-BN operation. “conv”, “sep”, and
“dil conv” signifies convolution, depthwise-separable convolutions, and dilated depthwise-separable
convolutions, respectively. “none” means the zero operation. Note that differentiable NAS baselines
(DARTS, SNAS, PC-DARTS) also utilize the first row of Table 3 as their search space.

Table 3: Candidate operations for normal and reduce cells

Normal Cell Reduce Cell

NASB-CMP
NASB

NASP (Yao et al., 2020)

skip connect (identity)
conv 3x1 1x3
dil conv 3x3

conv 1x1
conv 3x3
sep 3x3
sep 5x5
sep 7x7

skip connect (identity)
avg pool 3x3
max pool 3x3
max pool 5x5
max pool 7x7

DARTS (Liu et al., 2019b)
SNAS (Xie et al., 2019)

PC-DARTS (Xu et al., 2020)

none (zero)
max pool 3x3
avg pool 3x3

skip connect (identity)
sep 3x3
sep 5x5

dil conv 3x3
dil conv 5x5
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