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ABSTRACT

We propose residual denoising diffusion models (RDDM), a novel dual diffu-
sion process that decouples the traditional single denoising diffusion process into
residual diffusion and noise diffusion. This dual diffusion framework expands the
denoising-based diffusion models, initially uninterpretable for image restoration,
into a unified and interpretable model for both image generation and restoration
by introducing residuals. Specifically, our residual diffusion represents directional
diffusion from the target image to the degraded input image and explicitly guides
the reverse generation process for image restoration, while noise diffusion repre-
sents random perturbations in the diffusion process. The residual prioritizes cer-
tainty, while the noise emphasizes diversity, enabling RDDM to effectively unify
tasks with varying certainty or diversity requirements, such as image generation
and restoration. We demonstrate that our sampling process is consistent with that
of DDPM and DDIM through coefficient transformation, and propose a partially
path-independent generation process to better understand the reverse process. No-
tably, our RDDM enables a generic UNet, trained with only an ℓ1 loss and a batch
size of 1, to compete with state-of-the-art image restoration methods. We provide
code and pre-trained models to encourage further exploration, application, and
development of our innovative framework.

1 INTRODUCTION

In real-life scenarios, diffusion often occurs in complex forms involving multiple, concurrent pro-
cesses, such as the dispersion of multiple gases or the propagation of different types of waves or
fields. This leads us to ponder whether the denoising-based diffusion models (Ho et al., 2020;
Song et al., 2021a) have limitations in focusing solely on denoising. Current diffusion-based image
restoration methods (Lugmayr et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Jin et al.,
2022b; Özdenizci & Legenstein, 2023) extend the diffusion model to image restoration tasks by us-
ing degraded images as a condition input to implicitly guide the reverse generation process, without
modifying the original denoising diffusion process (Ho et al., 2020; Song et al., 2021a). However,
the reverse process starting from noise seems to be unnecessary, as the degraded image is already
known. The forward process is non-interpretability for image restoration, as the diffusion process
does not contain any information about the degraded image.

In this paper, we explore a novel dual diffusion process and propose Residual Denoising Diffusion
Models (RDDM), which can tackle the non-interpretability of a single denoising process for im-
age restoration. In RDDM, we decouple the previous diffusion process into residual diffusion and
noise diffusion. Residual diffusion prioritizes certainty and represents a directional diffusion from
the target image to the conditional input image, and noise diffusion emphasizes diversity and rep-
resents random perturbations in the diffusion process. Thus, our RDDM can unify different tasks
that require different certainty or diversity, e.g., image generation and restoration. Compared to
denoising-based diffusion models for image restoration, the residuals in RDDM clearly indicate the
forward diffusion direction and explicitly guide the reverse generation process for image restoration.

Specifically, we redefine a new forward process that allows simultaneous diffusion of residuals and
noise, wherein the target image progressively diffuses into a purely noisy image for image genera-
tion or a noise-carrying input image for image restoration, as shown in Fig. 1. Unlike the previous
denoising diffusion model (Ho et al., 2020; Song et al., 2021a), which uses one coefficient schedule
to control the mixing ratio of noise and images, our RDDM employs two independent coefficient
schedules to control the diffusion speed of residuals and noise. We found that this independent
diffusion property is also evident in the reverse generation process, e.g., readjusting the coefficient
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Figure 1: The proposed residual denoising diffusion model (RDDM) is a unified framework for im-
age generation and restoration (a shadow removal task is shown here). We introduce residuals (Ires)
in RDDM, redefining the forward diffusion process to involve simultaneous diffusion of residuals
and noise. The residuals (Ires = Iin − I0) diffusion represents the directional diffusion from the
target image I0 to the degraded input image Iin, while the noise (ϵ) diffusion represents the ran-
dom perturbations in the diffusion process. In RDDM, I0 gradually diffuses into IT = Iin + ϵ,
ϵ ∼ N (0, I). In the third columns, IT is a purely noisy image for image generation since Iin = 0,
and a noise-carrying degraded image for image restoration as Iin is the degraded image.

schedule within a certain range during testing does not affect the image generation results, and re-
moving the residuals firstly, followed by denoising, can also produce semantically consistent images.
Our RDDM is compatible with widely used denoising diffusion models, i.e., our sampling process is
consistent with that of DDPM (Ho et al., 2020) and DDIM (Song et al., 2021a) by transforming co-
efficient schedules. In addition, our RDDM natively supports conditional inputs, enabling networks
trained with only an ℓ1 loss and a batch size of 1 to compete with state-of-the-art image restoration
methods. We envision that our models can facilitate a unified and interpretable image-to-image dis-
tribution transformation methodology, highlighting that residuals and noise are equally important
for diffusion models, e.g., the residual prioritizes certainty while the noise emphasizes diversity.

2 BACKGROUND

Denoising diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) aim to learn a distribution
pθ(I0) :=

∫
pθ(I0:T )dI1:T

1 to approximate a target data distribution q(I0), where I0 are target
images and I1, . . . , IT (T = 1000) are latents of the same dimension as I0. In the forward process,
q(I0) is diffused into a Gaussian noise distribution using a fixed Markov chain,

q(I1:T |I0) :=
∏T

t=1q(It|It−1), q(It|It−1) := N (It;
√
αtIt−1, (1− αt)I), (1)

where α1:T ∈ (0, 1]T . q(It|It−1) can also be written as It =
√
αtIt−1 +

√
1− αtϵt−1. In fact, it is

simpler to sampling It from I0 by reparameterization (Kingma & Welling, 2014; 2019),

It =
√
ᾱtI0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), ᾱt :=

∏t
s=1αs. (2)

The reverse process is also a Markov chain starting at pθ(IT ) ∼ N (IT ;0, I),

pθ(I0:T ) := pθ(IT )
∏T

t=1pθ(It−1|It), pθ(It−1|It) := N (It−1;µθ(It, t),ΣtI), (3)

where pθ(It−1|It) is a learnable transfer probability (the variance schedule Σt is fixed). Ho
et al. (2020) derive a simplified loss function from the maximum likelihood of pθ(I0), i.e.,
L(θ) := EI0∼q(I0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(It, t)∥2

]
. The estimated noise ϵθ can be used to represent

µθ in pθ(It−1|It), thus It−1 can be sampled from pθ(It−1|It) step by step.

3 RESIDUAL DENOISING DIFFUSION MODELS

Our goal is to develop a dual diffusion process to unify and interpret image generation and restora-
tion. We modify the representation of IT = ϵ in traditional DDPM to IT = Iin + ϵ in our RDDM,
where Iin is a degraded image (e.g., a shadow, low-light, or blurred image) for image restoration
and is set to 0 for image generation. This modification is compatible with the widely used denoising
diffusion model, e.g., IT = 0 + ϵ is the pure noise (ϵ) for generation. For image restoration, IT is a

1To understand diffusion from an image perspective, we use I instead of x in DDPM (Ho et al., 2020).
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noisy-carrying degraded image (Iin + ϵ), as shown in the third column in Fig. 1. The modified for-
ward process from I0 to IT = Iin+ ϵ involves progressively degrading I0 to Iin, and injecting noise
ϵ. This naturally results in a dual diffusion process, a residual diffusion to model the transition from
I0 to Iin and a noise diffusion. For example, the forward diffusion process from the shadow-free
image I0 to the noisy carrying shadow image IT involves progressively adding shadows and noise,
as shown in the second row in Fig. 1.

In the following subsections, we detail the underlying theory and the methodology behind our
RDDM. Inspired by residual learning (He et al., 2016), we redefine each forward diffusion pro-
cess step in Section 3.1. For the reverse process, we present a training objective to predict the
residuals and noise injected in the forward process in Section 3.2. In Section 3.3, we propose three
sampling methods, i.e., residual prediction (SM-Res), noise prediction (SM-N), and “residual and
noise prediction” (SM-Res-N).

3.1 DIRECTIONAL RESIDUAL DIFFUSION PROCESS WITH PERTURBATION

To model the gradual degradation of image quality and the increment of noise, we define the single
forward process step in our RDDM as follows:

It = It−1 + Itres, Itres ∼ N (αtIres, β
2
t I), (4)

where Itres represents a directional mean shift (residual diffusion) with random perturbation (noise
diffusion) from state It−1 to state It, the residuals Ires in Itres is the difference between Iin and I0
(i.e., Ires = Iin − I0), and two independent coefficient schedules αt and βt control the residual and
noise diffusion, respectively. In fact, it is simpler to sample It from I0 (like Eq. 2),

It =It−1 + αtIres + βtϵt−1,where ϵt−1, ϵt−2 . . . ϵ ∼ N (0, I)

=It−2 + (αt−1 + αt)Ires + (
√
β2
t−1 + β2

t )ϵt−2

= . . .

=I0 + ᾱtIres + β̄tϵ,

(5)

where ᾱt =
∑t

i=1αi and β̄t =
√∑t

i=1β
2
i . If t = T , ᾱT = 1 and IT = Iin + β̄T ϵ. β̄T can control

the intensity of noise perturbation for image restoration (e.g., β̄2
T = 0.01 for shadow removal), while

β̄2
T = 1 for image generation. The newly defined diffusion process via Eq. 5 has the sum-constrained

variance, while DDPM has preserving variance (see Appendix A.4 and Fig. 7). From Eq. 4, the joint
probability distributions in the forward process can be defined as:

q(I1:T |I0, Ires) :=
∏T

t=1q(It|It−1, Ires), q(It|It−1, Ires) := N (It; It−1 + αtIres, β
2
t I). (6)

Eq. 5 defines the marginal probability distribution q(It|I0, Ires) = N (It; I0 + ᾱtIres, β̄
2
t I). In fact,

the forward diffusion of our RDDM is a mixture of three terms (i.e., I0, Ires, and ϵ), extending
beyond the widely used denoising diffusion model that is a mixture of two terms, i.e, I0 and ϵ. A
similar mixture form of three terms can be seen in several concurrent works, e.g., InDI (Delbracio
& Milanfar, 2023), I2SB (Liu et al., 2023a), and IR-SDE (Luo et al., 2023).

3.2 GENERATION PROCESS AND TRAINING OBJECTIVE

In the forward process (Eq. 5), residuals (Ires) and noise (ϵ) are gradually added to I0, and then
synthesized into It, while the reverse process from IT to I0 involves the estimation of the residuals
and noise injected in the forward process. We can train a residual network Iθres(It, t, Iin) to predict
Ires and a noise network ϵθ(It, t, Iin) to estimate ϵ. Using Eq. 5, we obtain the estimated target
images Iθ0 = It − ᾱtI

θ
res − β̄tϵθ. If Iθ0 and Iθres are given, the generation process is defined as,

pθ(It−1|It) := qσ(It−1|It, Iθ0 , Iθres), (7)

where the transfer probability qσ(It−1|It, I0, Ires)2 from It to It−1 is,

qσ(It−1|It, I0, Ires) = N (It−1; I0 + ᾱt−1Ires +
√

β̄2
t−1 − σ2

t

It − (I0 + ᾱtIres)

β̄t
, σ2

t I), (8)

2Eq. 8 does not change q(It|I0, Ires) in Appendix A.2.
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where σ2
t = ηβ2

t β̄
2
t−1/β̄

2
t and η controls whether the generation process is random (η = 1) or

deterministic (η = 0). Using Eq. 7 and Eq. 8, It−1 can be sampled from It via:

It−1 = It − (ᾱt − ᾱt−1)I
θ
res − (β̄t −

√
β̄2
t−1 − σ2

t )ϵθ + σtϵt,where ϵt ∼ N (0, I). (9)

When η = 0 (i.e., σt = 0), the sampling process is deterministic,
It−1 = It − (ᾱt − ᾱt−1)I

θ
res − (β̄t − β̄t−1)ϵθ. (10)

We derive the following simplified loss function for training (Appendix A.1):

Lres(θ) := E
[
λres

∥∥Ires − Iθres(It, t, Iin)
∥∥2] , Lϵ(θ) := E

[
λϵ ∥ϵ− ϵθ(It, t, Iin)∥2

]
, (11)

where the hyperparameters λres, λϵ ∈ {0, 1}, and the training input image It is synthesized using
I0, Ires, and ϵ by Eq. 5. It can also be synthesized using Iin (replace I0 in Eq. 5 by I0 = Iin−Ires),

It = Iin + (ᾱt − 1)Ires + β̄tϵ. (12)

3.3 SAMPLING METHOD SELECTION STRATEGIES

For the generation process (from It to It−1), It and Iin are known, and thus Ires and ϵ can represent
each other by Eq. 12. From Eq. 11 and Eq. 12, we propose three sampling methods as follows.
SM-Res. When λres = 1 and λϵ = 0, the residuals Iθres are predicted by a network, while the noise
ϵθ is represented as a transformation of Iθres using Eq. 12.
SM-N. When λres = 0 and λϵ = 1, the noise ϵθ is predicted by a network, while the residuals Iθres
are represented as a transformation of ϵθ using Eq. 12.
SM-Res-N. When λres = 1 and λϵ = 1, both the residuals and the noise are predicted.
To determine the optimal sampling method for real-world applications, we give empirical strategies
and automatic selection algorithms in the following.

Table 1: Sampling method analysis. The sampling steps are 10 on the CelebA 64 × 64 (Liu et al.,
2015) dataset, 5 on the ISTD (Wang et al., 2018) dataset, 2 on the LOL (Wei et al., 2018) dataset,
and 5 on the RainDrop (Qian et al., 2018) dataset.

Sampling Method Generation (CelebA) Shadow removal (ISTD) Low-light (LOL) Deraining (RainDrop)
FID (↓) IS (↑) MAE(↓) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)

SM-Res 31.47 1.73 4.76 30.72 0.959 25.39 0.937 19.15 0.7179
SM-N 23.25 2.05 81.01 11.34 0.175 16.30 0.649 31.96 0.9509
SM-Res-N 28.90 1.78 4.67 30.91 0.962 23.90 0.931 32.51 0.9563

Empirical Research. Table 1 presents that the SM-Res shows better results for image restoration
but offers a poorer FID for generation. On the other hand, the SM-N yields better frechet inception
distance (FID in Heusel et al. (2017)) and inception scores (IS), but is ineffective in image restoration
(e.g., PSNR 11.34 for shadow and 16.30 for low-light). This may be due to the inadequacy of using
ϵθ to represent Iθres in Eq. 12 for restoration tasks. We attribute these inconsistent results to the fact
that residual predictions prioritize certainty, whereas noise predictions emphasize diversity.
In our experiments, we use SM-Res for low-ligh enhancement, SM-N for image generation, and
SM-Res-N for other image restoration tasks. For an unknown new task, we empirically recommend
using SM-Res for tasks that demand higher certainty and SM-N for those requiring greater diversity.

Automatic Target Domain Prediction Strategies (ATDP). To automatically choose between SM-
Res or SM-N for an unknown task, we develop an automatic sampling selection algorithm in Ap-
pendix B.2. This algorithm requires only a single network and learns the hyperparameter in Eq. 11,
enabling a gradual transition from combined residual and noise training (akin to SM-Res-N) to
individual prediction (SM-Res or SM-N). This plug-and-play training strategy requires less than
1000 additional training iterations and is fully compatible with the current denoising-based diffu-
sion methods (Ho et al., 2020). Our RDDM using ATDP has the potential to provide a unified and
interpretable methodology for modeling, training, and inference pipelines for unknown target tasks.

Comparison with Other Prediction Methods. Our SM-N is similar to DDIM (Song et al., 2021a)
(or DDPM (Ho et al., 2020)), which only estimates the noise, and is consistent with DDPM and
DDIM by transforming the coefficient schedules in Eq. 9 (the proof in Appendix A.3),

ᾱt = 1−
√
ᾱt
DDIM

3, β̄t =
√

1− ᾱt
DDIM , σ2

t = σ2
t (DDIM). (13)

3ᾱt
DDIM here is αt of DDIM (Song et al., 2021a).
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In fact, current research has delved into numerous diffusion forms that extend beyond noise esti-
mation. For example, IDDPM (Nichol & Dhariwal, 2021) proposes that it is feasible to estimate
noise (ϵθ), clean target images (Iθ0 ), or the mean term (µθ) to represent the transfer probabilities
(i.e., pθ(It−1|It) in Eq. 3). The score-based generative model (SGM) (Song & Ermon, 2019) and
Schrödinger Bridge (I2SB (Liu et al., 2023a)) estimate the score of noisy data (i.e., the sum of resid-
uals and noise

∑t
i=1I

t
res). ColdDiffusion (Bansal et al., 2022), InDI (Delbracio & Milanfar, 2023),

and consistency models (Song et al., 2023) estimate the clean target images (I0). Rectified Flow (Liu
et al., 2023d) predicts the residuals (Ires) to align with the image linear interpolation process without
noise diffusion (i.e., IT = Iin). A detailed comparison can be found in Appendix A.5.

These previous/concurrent works choose to estimate the noise, the residual, the target image, or
its linear transformation term. In contrast, we introduce residual estimation while also embracing
noise for both generation and restoration. Residuals and noise have equal and independent status,
which is reflected in the forward process (Eq. 5), the reverse process (Eq. 10), and the loss function
(Eq. 11). This independence means that the noise diffusion can even be removed and only the
residual diffusion retained to model the image interpolation process (when β̄T = 0 in Eq. 5, RDDM
degenerates to Rectified Flow (Liu et al., 2023d)). In addition, this property derives an independent
dual diffusion framework in Section 4.

4 DECOUPLED DUAL DIFFUSION FRAMEWORK

Upon examining DDPM from the perspective of RDDM, we discover that DDPM indeed involves
the simultaneous diffusion of residuals and noise, which is evident as Eq. 43 becomes equivalent
to Eq. 39 in Appendix A.3. We find that it is possible to decouple these two types of diffusion.
Section 4.1 presents a decoupled forward diffusion process. In Section 4.2, we propose a partially
path-independent generation process and decouple the simultaneous sampling into first removing
the residuals and then removing noise (see Fig. 3(d) and Fig. 16). This decoupled dual diffusion
framework sheds light on the roles of deresidual and denoising in the DDPM generation process.

4.1 DECOUPLED FORWARD DIFFUSION PROCESS

Table 2: Coefficient schedules analysis on CelebA
(64 × 64) (Liu et al., 2015). In our RDDM, the
residual diffusion and noise diffusion are decou-
pled, so one may design a better schedule in the
decoupled coefficient space, e.g., αt (linearly de-
creasing), β2

t (linearly increasing). To be fair,
all coefficient schedules were retrained using the
same network structure, training, and evaluation.
The sampling method is SM-N with 10 sampling
steps using Eq. 10.

Schedules FID (↓) IS (↑)
Linear (DDIM Song et al. (2021a)) 28.394 2.05
Scaled linear (Rombach et al., 2022) 28.15 2.00
Squared cosine (Nichol & Dhariwal, 2021) 47.21 2.64
αt (mean), β2

t (mean) 38.35 2.22
αt (linearly increasing), β2

t (linearly increasing) 40.03 2.45
αt (linearly decreasing), β2

t (linearly decreasing) 27.82 2.26
αt (linearly decreasing), β2

t (linearly increasing) 23.25 2.05

Our defined coefficients (αt, β
2
t ) offer a distinct

physical interpretation. In the forward diffu-
sion process (Eq. 5), αt controls the speed of
residual diffusion and β2

t regulates the speed of
noise diffusion. In the reverse generation pro-
cess (Eq. 10), ᾱt and β̄t are associated with
the speed of removing residual and noise, re-
spectively. In fact, there are no constraints on
αt and β2

t in Eq. 5, meaning that the residual
diffusion and noise diffusion are independent
of each other. Utilizing this decoupled prop-
erty and the difference between these two dif-
fusion processes, we should be able to design
a better coefficient schedule, e.g., αt (linearly
decreasing) and β2

t (linearly increasing) in Ta-
ble 2. This aligns with the intuition that, dur-
ing the reverse generation process (from T to
0), the estimated residuals become increasingly
accurate while the estimated noise should also
weaken progressively. Therefore, when t is close to 0, the deresidual pace should be faster and the
denoising pace should be slower. Since our αt and β2

t represent the speed of diffusion, we name the
curve in Fig. 6 (b-d) (see Appendix A.3) the diffusion speed curve.

4Our RDDM is implemented based on the popular diffusion repository github.com/lucidrains/denoising-
diffusion-pytorch. Differences in network structure and training details may lead to poorer FID. We have
verified sampling consistency with DDIM (Song et al., 2021a) in Table 3(a) and Appendix A.3.
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Figure 2: Analysis of readjusting coefficient schedules. We find that changing the αt schedule barely
affects the denoising process in (g) and edited faces may have higher face scores when assessed using
AI face scoring software5. These images were generated using a pre-trained UNet on the CelebA
(256× 256) dataset (Liu et al., 2015) with 10 sampling steps.

4.2 PARTIALLY PATH-INDEPENDENT GENERATION PROCESS

In the original DDPM (Ho et al., 2020) or DDIM (Song et al., 2021a), when the αt
DDIM sched-

ule changes, it is necessary to retrain the denoising network because this alters the diffusion pro-
cess (Rombach et al., 2022; Nichol & Dhariwal, 2021). As shown in Fig. 2(c)(d), directly changing
the αt

DDIM schedule causes denoising to fail. Here, we propose a path-independent generation pro-
cess, i.e., modifying the diffusion speed curve does not cause the image generation process to fail.
We try to readjust the diffusion speed curve in the generation process. First, we convert the αt

DDIM
schedule of a pre-trained DDIM into the αt and β2

t schedules of our RDDM using Eq. 13 (from
Fig. 2(a) to Fig. 2(b). We then readjust the converted αt schedules using the normalized power func-
tion (P (x, a) in Fig. 2(f)), without touching the β2

t schedule that controls noise diffusion, as shown
in Fig. 2(g). P (x, a) is defined as (a is a parameter of the power function),

P (x, a) := xa/

∫ 1

0

xadx,where x = t/T. (14)

These schedule modifications shown in Fig. 2 lead to the following key findings.

1. Fig. 2(g) shows that modifying the residual diffusion speed curve (αt) leads to a drastic change in
the generation results, probably due to Iθres being represented as a transformation of ϵθ using Eq. 12.

2. As the time condition t represents the current noise intensity in the denoising network
(ϵθ(It, t, 0)), modifying the noise diffusion speed curve (β2

t ) causes t to deviate from accurately
indicating the current noise intensity, leading to denoising failure, as shown in Fig. 2(e).

Nonetheless, we believe that, corresponding to the decoupled forward diffusion process, there should
also be a path-independent reverse generation process. To develop a path-independent generation
process, we improve the generation process based on the above two key findings:

1. Two networks are used to estimate Iθres and ϵθ separately, i.e., SM-Res-N-2Net in Appendix B.2.

2. ᾱt and β̄t are used for the time conditions embedded in the network, i.e., Iθres(It, t, 0) →
Iθres(It, ᾱt · T, 0), ϵθ(It, t, 0)→ ϵθ(It, β̄t · T, 0).
These improvements lead to a partially path-independent generation process, as evidenced by the
results shown in Fig. 3(c).

Analysis of Partially Path-independence via Green’s Theorem. “Path-independence” reminds us
of Green’s theorem in curve integration (Riley et al., 2006). From Eq. 10, we have:

It − It−1 = (ᾱt − ᾱt−1)I
θ
res + (β̄t − β̄t−1)ϵθ,

dI(t) = Iθres(I(t), ᾱ(t) · T, 0)dᾱ(t) + ϵθ(I(t), β̄(t) · T, 0)dβ̄(t),
(15)

5https://ux.xiaoice.com/beautyv3
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(c) Path Independence (Denoising(𝜖𝜃 𝐼𝑡 , ҧ𝛽𝑡𝑇, 0 )+Deresidual(𝐼𝑟𝑒𝑠
𝜃 𝐼𝑡 , ത𝛼𝑡𝑇, 0 ) 

(c2) 𝛼𝑡, 𝛽𝑡
2 →

𝑃 𝑥, 0

(c3) 𝛼𝑡, 𝛽𝑡
2 →

𝑃 1 − 𝑥, 1

(c4) 𝛼𝑡, 𝛽𝑡
2 →

𝑃 1 − 𝑥, 1.5

(c5) 𝛼𝐷𝐷𝐼𝑀
𝑡 →

scaled linear

(c1) Training: 

DDIM (linear)

(d) Decoupled Sampling (Denoising (𝜖𝜃 𝐼𝑡, ҧ𝛽𝑡𝑇, 0 ),Deresidual (𝐼𝑟𝑒𝑠
𝜃 𝐼𝑡, ത𝛼𝑡𝑇, 0 ) 

(d1) Remove 

residuals and noise 

(d3) First remove 

noise then residuals 

First remove 

residuals

Then remove 

noise

(d2) 

Figure 3: Partially path-independent generation process. (a1) We trained a denoising network using
the DDIM linear schedule (Song et al., 2021a). (a2-a3) We modified the αt and β2

t schedules during
testing. (b) We trained two networks to remove noise and residuals. In contrast to the sharply
varying images in (a2-a3) and the noisy images in (b2-b3), (c) shows that we constructed a path
independent generation process where modifications to the diffusion speed curve can generate a
noise-free image with little variation in image semantics. (d) The simultaneous sampling in (d1) or
(c) can be decomposed into first removing residuals and then noise (d2), or removing noise and then
residuals (d3). In (d3), diversity is significantly reduced because noise is removed first.

where I(t) = I(0) + ᾱ(t)Ires + β̄(t)ϵ. Given inputs I(t) and ᾱ(t), the denoising network learns to
approximate the noise ϵ in I(t) by estimating ϵθ. If this network is trained well and robust enough,
it should be able to avoid the interference of the residual terms ᾱ(t)Ires in I(t). This also applies to
a robust residual estimation network. Thus, we have

∂Iθres(I(t), ᾱ(t) · T )
∂β̄(t)

≈ 0,
∂ϵθ(I(t), β̄(t) · T )

∂ᾱ(t)
≈ 0. (16)

If the equation in Formula 16 holds true, it serves as a necessary and sufficient condition for path in-
dependence in curve integration, which provides an explanation for why Fig. 3(c) achieves a partially
path-independent generation process. The path-independent property is related to the network’s re-
silience to disturbances and applies to disturbances that vary within a certain range. However, ex-
cessive disturbances can lead to visual inconsistencies, e.g., readjusting αt and β2

t to P (x, 5). Thus,
we refer to this generative property as partially path-independent. We also investigated two reverse
paths to gain insight into the implications of the proposed partial path independence. In the first

case, the residuals are removed first, followed by the noise: I(T ) −Ires→ I(0) + β̄T ϵ
−β̄T ϵ→ I(0). The

second case involves removing the noise first and then the residuals: I(T )
−β̄T ϵ→ Iin

−Ires→ I(0).
The first case (Fig. 3(d2)) shows that removing residuals controls semantic transitions, while the
second case (Fig. 3(d3)) shows that diversity is significantly reduced because noise is removed first.
Fig. 3(d) validates our argument that residuals control directional semantic drift (certainty) and noise
controls random perturbation (diversity). See Appendix B.4 for more details.

5 EXPERIMENTS

Image Generation. We can convert a pre-trained6 DDIM (Song et al., 2021a) to RDDM by coeffi-
cient transformation using Eq. 13, and generate images by Eq. 9. Table 3(a) verifies that the quality
of the generated images before and after the conversion is nearly the same7. We show the generated
face images with 10 sampling steps in Fig. 4(a).

Image Restoration. We extensively evaluate our method on several image restoration tasks, in-
cluding shadow removal, low-light enhancement, deraining, and deblurring on 5 datasets. Notably,

6https://huggingface.co/google/ddpm-celebahq-256
7The subtle differences in larger sampling steps may stem from errors introduced by numerical representa-

tion limitations during coefficient transformation, which may accumulate and amplify in larger sampling steps.
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Input DSC FusionNet BMNet DMTN Ours (RDDM) Ground Truth

Input KinD++  SNR-Aware LLFormer LLFlow Ours (RDDM) Ground Truth

(b)

(c)

(a)

Input Input+Noise Ours Ground Truth Input Input+Noise Ours Ground Truth

(d)

(e)

First remove residuals Then remove noiseInput+Noise

Figure 4: Application of our RDDM. (a) Image generation on the CelebA dataset (Liu et al., 2015).
(b) Shadow removal on the ISTD dataset (Wang et al., 2018). (c) Low-light enhancement on the
LOL dataset (Wei et al., 2018). (d) Image inpainting (center and irregular mask). (e) The image
translation process can be regarded as first translating the semantics and then generating the details.

Table 3: Quantitative comparison results of image generation on the CelebA (256 × 256) dataset
(Liu et al., 2015), shadow removal on the ISTD dataset (Wang et al., 2018), low-light enhancement
on the LOL (Wei et al., 2018) dataset, and deraining on the RainDrop (Qian et al., 2018) dataset. “S,
NS, ALL” in (b) denote shadow area (S), non-shadow area (NS) and whole image (ALL).

(a) CelebA DDIM DDIM→RDDM (b) Shadow Removal MAE(↓) SSIM(↑) PSNR(↑)
(FID) S NS ALL S NS ALL S NS ALL
5 steps 69.60 69.60 DSC (Hu et al., 2020) ¶ 9.48 6.14 6.67 0.967 - - 33.45 - -
10 steps 40.45 40.41 FusionNet (Fu et al., 2021) 7.77 5.56 5.92 0.975 0.880 0.945 34.71 28.61 27.19
15 steps 32.67 32.71 BMNet (Zhu et al., 2022a) 7.60 4.59 5.02 0.988 0.976 0.959 35.61 32.80 30.28
20 steps 30.61 30.77 DMTN (Liu et al., 2023b) 7.00 4.28 4.72 0.990 0.979 0.965 35.83 33.01 30.42
100 steps 23.66 24.92 Ours (RDDM) 6.67 4.27 4.67 0.988 0.979 0.962 36.74 33.18 30.91
(c) Low-light PSNR(↑)SSIM(↑)LPIPS (↓) (d) Deraining PSNR(↑)SSIM(↑)
KinD++ (Zhang et al., 2021) 17.752 0.760 0.198 AttnGAN (Qian et al., 2018) 31.59 0.9170
KinD++-SKF (Yuhui et al., 2023) 20.363 0.805 0.201 DuRN (Liu et al., 2019) 31.24 0.9259
DCC-Net (Zhang et al., 2022) 22.72 0.81 - RainAttn (Quan et al., 2019) 31.44 0.9263
SNR-Aware (Xu et al., 2022) 24.608 0.840 0.151 IDT (Xiao et al., 2022) 31.87 0.9313
LLFlow (Wang et al., 2022a) 25.19 0.93 0.11 RainDiff64 (Özdenizci & Legenstein, 2023) 32.29 0.9422
LLFormer (Wang et al., 2023) 23.649 0.816 0.169 RainDiff128 (Özdenizci & Legenstein, 2023) 32.43 0.9334
Ours (RDDM) 25.392 0.937 0.134 Ours (RDDM) 32.51 0.9563

our RDDM uses an identical UNet and is trained with a batch size of 1 for all these tasks. In con-
trast, SOAT methods often involve elaborate network architectures, such as multi-stage (Fu et al.,
2021; Zhu et al., 2022b; Wang et al., 2022a), multi-branch (Cun et al., 2020), Transformer (Wang
et al., 2023), and GAN (Kupyn et al., 2019), or sophisticated loss functions like the chromaticity (Jin
et al., 2021), texture similarity (Zhang et al., 2019), and edge loss (Zamir et al., 2021). Table 3 and
Fig. 4(b-c) show that our RDDM is competitive with the SOTA restoration methods. See Appendix B
for more training details and comparison results.

We extend DDPM (Ho et al., 2020)/DDIM (Song et al., 2021a), initially uninterpretable for image
restoration, into a unified and interpretable diffusion model for both image generation and restora-
tion by introducing residuals. However, the residual diffusion process represents the directional
diffusion from target images to conditional input images, which does not involve a priori informa-
tion about the image restoration task, and therefore is not limited to it. Beyond image generation
and restoration, we show examples of image inpainting and image translation to verify that our

8
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RDDM has the potential to be a unified and interpretable methodology for image-to-image distribu-
tion transformation. We do not intend to achieve optimal performance on all tasks by tuning all
hyperparameters. The current experimental results show that RDDM 1) achieves consistent image
generation performance with DDIM after coefficient transformation, 2) competes with state-of-the-
art image restoration methods using a generic UNet with only an ℓ1 loss, a batch size of 1, and
fewer than 5 sampling steps, and 3) has satisfactory visual results of image inpainting and image
translation (see Fig. 4(d-e), Fig. 13, or Fig. 14), which have successfully validated the effectiveness
of our RDDM.

6 RELATED WORK

Denoising diffusion models (e.g., DDPM (Ho et al., 2020), SGM (Song & Ermon, 2019; Song et al.,
2021b), and DDIM (Song et al., 2021a)) were initially developed for image generation. Subsequent
image restoration methods (Lugmayr et al., 2022; Rombach et al., 2022; Guo et al., 2023) based
on DDPM and DDIM feed a degraded image as a conditional input to a denoising network, e.g.,
DvSR (Whang et al., 2022), SR3 (Saharia et al., 2022), and WeatherDiffusion (Özdenizci & Legen-
stein, 2023), which typically require large sampling steps and batch sizes. Additionally, the reverse
process starting from noise in these methods seems unnecessary and inefficient for image restoration
tasks. Thus, SDEdit (Meng et al., 2021a), ColdDiffusion (Bansal et al., 2022), InDI (Delbracio &
Milanfar, 2023), and I2SB (Liu et al., 2023a) propose generating a clear image directly from a de-
graded image or noise-carrying degraded image. InDI (Delbracio & Milanfar, 2023) and I2SB (Liu
et al., 2023a), which also present unified image generation and restoration frameworks, are the most
closely related to our proposed RDDM. Specifically, the forward diffusion of InDI, I2SB, and our
RDDM consistently employs a mixture of three terms (i.e., input images Iin, target images I0, and
noise ϵ), extending beyond the denoising-based diffusion model (Ho et al., 2020; Song et al., 2021a)
which incorporates a mixture of two terms (i.e., I0 and ϵ). However, InDI (Delbracio & Milanfar,
2023) and I2SB (Liu et al., 2023a) opt for estimating the target image or its linear transformation
term to replace the noise estimation, akin to a special case of our RDDM (SM-Res). In contrast, we
introduce residual estimation while also embracing noise for both generation and restoration tasks.
Our RDDM can further extend DDPM (Ho et al., 2020), DDIM (Song et al., 2021a), InDI (Del-
bracio & Milanfar, 2023), and I2SB (Liu et al., 2023a) to independent double diffusion processes,
and pave the way for the multi-dimensional diffusion process. We highlight that residuals and noise
are equally important, e.g., the residual prioritizes certainty while the noise emphasizes diversity.
In addition, our work is related to coefficient schedule design (Rombach et al., 2022; Nichol &
Dhariwal, 2021), variance strategy optimization (Kingma et al., 2021; Nichol & Dhariwal, 2021;
Bao et al., 2022b;a), superimposed image decomposition (Zou et al., 2020; Duan et al., 2022), curve
integration (Riley et al., 2006), stochastic differential equations (Song et al., 2021b), and residual
learning (He et al., 2016) for image restoration (Zhang et al., 2017; 2020; Anwar & Barnes, 2020;
Zamir et al., 2021; Tu et al., 2022; Liu et al., 2023c). See Appendix A.5 for detailed comparison.

7 CONCLUSIONS AND DISCUSSIONS

We present a unified dual diffusion model called Residual Denoising Diffusion Models (RDDM) for
image restoration and image generation. This is a three-term mixture framework beyond the previous
denoising diffusion framework with two-term mixture. We demonstrate that our sampling process is
consistent with that of DDPM and DDIM through coefficient schedule transformation, and propose
a partially path-independent generation process. Our experimental results on four different image
restoration tasks show that RDDM achieves SOTA performance in no more than five sampling steps.
We believe that our model and framework hold the potential to provide a unified methodology for
image-to-image distribution transformation and pave the way for the multi-dimensional diffusion
process. However, there are certain limitations and areas for further investigation that should be
addressed: (a) a deeper understanding of the relationship between our RDDM and curve/multivariate
integration, (b) a diffusion model trained with one set of pre-trained parameters to handle several
different tasks, (c) implementing adaptive learning coefficient schedules to reduce the sampling steps
while improving the quality of the generated images, and (d) constructing multi-dimensional latent
diffusion models for multimodal fusion and exploring interpretable text-to-image frameworks.
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APPENDIX

A DERIVATIONS AND PROOFS

A.1 PERTURBED GENERATION PROCESS

Noise domain

Target 

domain

(a) DDPM

Input domain

Noise 

domain

Target 

domain

Residual + Noise

Residual

Noise-carrying input 

domain

(b) Ours

Figure 5: Denoising diffusion process - DDPM (Ho et al., 2020) (a) and our residual denoising dif-
fusion process (b). For image restoration, we introduce residual diffusion to represent the diffusion
direction from the target image to the input image.

Fig. 5 shows the difference between the forward diffusion process of DDPM (Ho et al., 2020) and
our RDDM. Unlike the noise diffusion of DDPM (Ho et al., 2020), ours is a directional residual
diffusion process with perturbation. Next, we derive the reverse sampling formula.

For the reverse generation process from It to It−1, we can represent the transfer probabilities
q(It−1|It, I0, Ires) by Bayes’ rule:

q(It−1|It, I0, Ires) = q(It|It−1, I0, Ires)
q(It−1|I0, Ires)
q(It|I0, Ires)

, (17)

where q(It−1|I0, Ires) = N (It−1; I0 + ᾱt−1Ires, β̄
2
t−1I) from Eq. 5, and q(It|It−1, I0, Ires) =

q(It|It−1, Ires)
8= N (It; It−1 + αtIres, β

2
t I) from Eq. 6. Thus, we have (considering only the

exponential term)

q(It−1|It, I0, Ires) = N (It−1;µt(xt, I0, Ires),Σt(xt, I0, Ires)I)

∝ exp

(
−1

2
(
(It − It−1 − αtIres)

2

β2
t

+
(It−1 − I0 − ᾱt−1Ires)

2

β̄2
t−1

)− (It − I0 − ᾱtIres)
2

β̄2
t

)

)
= exp

(
−1

2
((

β̄2
t

β2
t β̄

2
t−1

)I2t−1 − 2(
It − αtIres

β2
t

+
ᾱt−1Ires + I0

β̄2
t−1

)It−1 + C(It, I0, Ires))

)
,

(18)

where the C(It, I0, Ires) term is not related to It−1. From Eq. 18, µt(xt, I0, Ires) and
Σt(xt, I0, Ires) are represented as follows,

µt(xt, I0, Ires) = (
It − αtIres

β2
t

+
ᾱt−1Ires + I0

β̄2
t−1

)/
β̄2
t

β2
t β̄

2
t−1

(19)

=
β̄2
t−1

β̄2
t

It +
β2
t ᾱt−1 − β̄2

t−1αt

β̄2
t

Ires +
β2
t

β̄2
t

I0 (20)

= It − αtIres −
β2
t

β̄t
ϵ, (21)

Σt(xt, I0, Ires) =
β2
t β̄

2
t−1

β̄2
t

. (22)

8Each step in Eq. 5 adds a new random Gaussian noise in the random forward diffusion. Thus for simplicity,
we assume q(It|It−1, I0, Ires) = q(It|It−1, Ires), it follows that I0 is not important for It when It−1 presents
as a condition.
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Eq. 5 is used for the derivation from Eq. 20 to Eq. 21. Then, we define the generation process to
start from pθ(IT ) ∼ N (IT ;0, I),

pθ(It−1|It) = q(It−1|It, Iθ0 , Iθres), (23)

where Iθ0 = It − ᾱtI
θ
res − β̄tϵθ by Eq. 5. Here we only consider Lt−1 in (Ho et al., 2020),

Lt−1 = DKL(q(It−1|It, I0, Ires)||pθ(It−1|It)) (24)

= E

[∥∥∥∥It − αtIres −
β2
t

β̄t
ϵ− (It − αtI

θ
res −

β2
t

β̄t
ϵθ)

∥∥∥∥2
]
, (25)

where DKL denotes KL divergence. Ignoring the coefficients and the cross term < Ires − Iθres, ϵ−
ϵθ >, we obtain the following simplified training objective,

Lres(θ) + Lϵ(θ), (26)

where (repeat Eq. 11 here)

Lres(θ) := E
[
λres

∥∥Ires − Iθres(It, t, Iin)
∥∥2] , Lϵ(θ) := E

[
λϵ ∥ϵ− ϵθ(It, t, Iin)∥2

]
, (27)

and λres, λϵ ∈ {0, 1}.

A.2 DETERMINISTIC IMPLICIT SAMPLING

If qσ(It−1|It, I0, Ires) is defined in Eq. 8, we have:

q(It|I0, Ires) = N (It; I0 + ᾱtIres, β̄
2
t I). (28)

Proof. Similar to the evolution from DDPM (Ho et al., 2020) to DDIM (Song et al., 2021a), we can
prove the statement with an induction argument for t from T to 1. Assuming that Eq. 28 holds at T ,
we just need to verify q(It−1|I0, Ires) = N (It−1; I0+ ᾱt−1Ires, β̄

2
t−1I) at t− 1 from q(It|I0, Ires)

at t using Eq. 28. Given:

q(It|I0, Ires) = N (It; I0 + ᾱtIres, β̄
2
t I), (29)

qσ(It−1|It, I0, Ires) = N (It−1; I0 + ᾱt−1Ires +
√
β̄2
t−1 − σ2

t

It − (I0 + ᾱtIres)

β̄t
, σ2

t I), (30)

q(It−1|I0, Ires) := N (µ̃t−1, Σ̃t−1) (31)

Similar to obtaining p(y) from p(x) and p(y|x) using Eq.2.113-Eq.2.115 in (Bishop & Nasrabadi,
2006), the values of µ̃t−1 and Σ̃t−1 are derived as following:

µ̃t−1 = I0 + ᾱt−1Ires +
√
β̄2
t−1 − σ2

t

(I0 + ᾱtIres)− (I0 + ᾱtIres)

β̄t
= I0 + ᾱt−1Ires, (32)

Σ̃t−1 = σ2
t I+ (

√
β̄2
t−1 − σ2

t

β̄t
)2β̄2

t I = β2
t−1I. (33)

Therefore, q(It−1|I0, Ires) = N (It−1; I0 + ᾱt−1Ires, β̄
2
t−1I). In fact, the case (t = T ) already

holds, thus Eq. 28 holds for all t.

Simplifying Eq. 8. Eq. 8 can also be written as:

It−1 = I0 + ᾱt−1Ires +
√

β̄2
t−1 − σ2

t

It − (I0 + ᾱtIres)

β̄t
+ σtϵt, (34)

=

√
β̄2
t−1 − σ2

t

β̄t
It + (1−

√
β̄2
t−1 − σ2

t

β̄t
)I0 + (ᾱt−1 −

√
ᾱtβ̄2

t−1 − σ2
t

β̄t
)Ires + σtϵt (35)

= It − (ᾱt − ᾱt−1)Ires − (β̄t −
√
β̄2
t−1 − σ2

t )ϵ+ σtϵt, (36)

where ϵt ∼ N (0, I). Eq. 36 is consistent with Eq. 9, and Eq. 5 is used for the derivation from Eq. 35
to Eq. 36.

15



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
t

0.90

0.92

0.94

0.96

0.98

1.00

t D
D

IM

(a) t
DDIM

DDIM (linear)
DDIM (scaled linear)
DDIM (squared cos)

0 200 400 600 800 1000
t

0.0

0.5

1.0

1.5

2.0

2.5

t

1e 3

(b) t
DDIM t

DDIM (linear)
DDIM (scaled linear)
DDIM (squared cos)

0 200 400 600 800 1000
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 t

1e 3

(c) t
DDIM

2
t

DDIM (linear)
DDIM (scaled linear)
DDIM (squared cos)

0 200 400 600 800 1000
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t,
2 t

1e 3

(d) t, 2
t

mean
linearly decreasing
linearly increasing

Figure 6: Coefficient transformation from DDIM (Song et al., 2021a) to RDDM using Eq. 13. (a)
We show several schedules for αt

DDIM , e.g., linear (Song et al., 2021a), scaled linear (Rombach
et al., 2022), and squared cosine (Nichol & Dhariwal, 2021). (b) We transform αt

DDIM into αt in
our RDDM. (c) We transform αt

DDIM into β2
t in our RDDM. (d) A few simple schedules. Using

Eq. 14, ”mean”, ”linearly increasing”, and ”linearly decreasing” can be denoted as P (x, 0), P (x, 1)
and P (1− x, 1), respectively. See Algorithm 1 in Appendix A.3 for more details of (b) and (c).

A.3 COEFFICIENT TRANSFORMATION

For image generation, Iin = 0, thus Eq. 12 can also be written as:
It = (ᾱt − 1)Ires + β̄tϵ (37)

Ires =
It − β̄tϵ

ᾱt − 1
. (38)

If the residuals Iθres are represented as a transformation of ϵθ using Eq. 38, Eq. 9 is simplified to

It−1 = It − (ᾱt − ᾱt−1)I
θ
res − (β̄t −

√
β̄2
t−1 − σ2

t )ϵθ + σtϵt (39)

= It − (ᾱt − ᾱt−1)
It − β̄tϵθ
ᾱt − 1

− (β̄t −
√
β̄2
t−1 − σ2

t )ϵθ + σtϵt (40)

=
1− ᾱt−1

1− ᾱt
It − (

1− ᾱt−1

1− ᾱt
β̄t −

√
β̄2
t−1 − σ2

t )ϵθ + σtϵt (41)

=

√
ᾱt−1
DDIM√

ᾱt
DDIM

It − (

√
ᾱt−1
DDIM

√
1− ᾱt

DDIM√
ᾱt
DDIM

−
√
1− ᾱt−1

DDIM − σ2
t )ϵθ + σtϵt (42)

=
√
ᾱt−1
DDIM

(
It −

√
1− ᾱt

DDIM ϵθ√
ᾱt
DDIM

)
+
√
1− ᾱt−1

DDIM − σ2
t ϵθ + σtϵt. (43)

Eq. 43 is consistent with Eq.12 in DDIM (Song et al., 2021a) by replacing σ2
t with σ2

t (DDIM),
and Eq. 13 is used for the derivation from Eq. 41 to Eq. 42. Thus, our sampling process is consistent
with that of DDPM (Song et al., 2021a) and DDIM (Ho et al., 2020) by transforming coefficient
schedules.

We present the pipeline of coefficient transformation in Algorithm 1. Fig. 6 shows the result of
coefficient transformation. In Eq. 13, in addition to the coefficient ᾱt, β̄

2
t being replaced by ᾱt

DDIM ,
the variance σ2

t is also replaced with σ2
t (DDIM) to be consistent with DDIM (Song et al., 2021a)

(η = 0) and DDPM (Ho et al., 2020) (η = 1). In fact, for DDIM (Song et al., 2021a) (η = 0),
the variance is equal to 0 and does not need to be converted. Therefore, we analyze the difference
between the variance of our RDDM and the variance of DDPM (Ho et al., 2020) in Appendix A.4.

A.4 PERTURBED GENERATION PROCESS WITH SUM-CONSTRAINED VARIANCE

From Eq. 9, the variance of our RDDM (η = 1) is

σ2
t (RDDM) = η

β2
t β̄

2
t−1

β̄2
t

. (44)

We replace β̄2
t by ᾱt

DDIM using Eq. 13 and replace β2
t by β̄2

t − β̄2
t−1,

σ2
t (RDDM) = ηᾱt−1

DDIM

(1− ᾱt−1
DDIM )

1− ᾱt
DDIM

(1− ᾱt
DDIM

ᾱt−1
DDIM

), (45)
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Algorithm 1: Coefficient initialization, transformation, and adjustment.

Input : The initial conditions ᾱT = 1, β̄2
T > 0, T = 1000, and t ∈ {1, 2, . . . T}. The

hyperparameter η = 1 for the random generation process and η = 0 for deterministic
implicit sampling. Variance modes have “DDIM” and “DDIM→RDDM”. The
coefficient adjustment mode Adjust=“Alpha”, “Beta”, or “Alpha+Beta”.

Output: The adjusted coefficients ᾱ∗
t , β̄∗

t and σ∗
t .

// (a) Coefficient initialization of DDIM (Song et al., 2021a)
1 βt

DDIM ← Linspace (0.0001, 0.02, T ) ▷ linear schedule (Song et al., 2021a)
2 αt

DDIM ← 1− βt
DDIM

3 ᾱt
DDIM ← Cumprod (αt

DDIM ) ▷ cumulative multiplication

4 σ2
t (DDIM)← η

(1−ᾱt−1
DDIM )

1−ᾱt
DDIM

(1− ᾱt
DDIM

ᾱt−1
DDIM

)

// (b) Coefficient transformation from DDIM (Song et al.,
2021a) to our RDDM

5 ᾱt ← 1−
√
ᾱt
DDIM ▷ Eq. 13

6 β̄t ←
√
1− ᾱt

DDIM ▷ Eq. 13

7 σ2
t (RDDM)← η

(β̄2
t−β̄2

t−1)β̄
2
t−1

β̄2
t

// (c) Select variance schedule
8 if Variance==“DDIM” then
9 σ∗

t ←
√
σ2
t (DDIM) ▷ consistent sampling process with DDIM (Song et al., 2021a) and

DDPM (Ho et al., 2020)
10 else if Variance==“DDIM→RDDM” then
11 σ∗

t ←
√
σ2
t (RDDM) ▷ sum-constrained variance schedule

12 end
// (d) Coefficient adjustment

13 αt ←Power (1− t/T , 1) ▷ linearly decreasing by Eq. 14
14 β2

t ←Power (t/T , 1)·β̄2
T ▷ control the noise intensity in IT by β̄2

T
15 if Adjust==“Alpha” then
16 ᾱ∗

t ←Cumsum (αt), β̄∗
t ← β̄t ▷ cumulative sum

17 else if Adjust==“Beta” then
18 ᾱ∗

t ← ᾱt, β̄∗
t ←

√
Cumsum(β2

t ) ▷ cumulative sum
19 else if Adjust==“Alpha+Beta” then
20 ᾱ∗

t ←Cumsum (αt), β̄∗
t ←

√
Cumsum(β2

t ) ▷ coefficient reinitialization
21 else
22 ᾱ∗

t ← ᾱt, β̄∗
t ← β̄t

23 end
24 return ᾱ∗

t , β̄∗
t , σ∗

t ▷ sampling with adjusted coefficients by Eq. 9

while the variance of DDPM (Ho et al., 2020) (η = 1) is

σ2
t (DDIM) = η

(1− ᾱt−1
DDIM )

1− ᾱt
DDIM

(1− ᾱt
DDIM

ᾱt−1
DDIM

). (46)

Our variance is much smaller than the variance of DDPM (Ho et al., 2020) because 0 < ᾱt−1
DDIM <

α1
DDIM < 1 (e.g., α1

DDIM = 0.02 in linear schedule (Song et al., 2021a)). Compared to
σ2
t (DDIM) ≈ 1 (Song et al., 2021b), the variance of our RDDM is sum-constrained,

T∑
i=1

σ2
t (RDDM) =

T∑
i=1

ηβ2
t

β̄2
t−1

β̄2
t

≤
T∑

i=1

β2
t ≤ 1, (47)

where
∑T

i=1 β
2
t = β̄2

T = 1 for image generation. This is also consistent with the directional residual
diffusion process with perturbation defined in Eq. 5. A qualitative comparison of our RDDM (η = 1)
with DDIM (Song et al., 2021a) (η = 0) and DDPM (Ho et al., 2020) (η = 1) is shown in Fig. 7.
Notably, for η = 0, our RDDM is consistent with DDIM (Song et al., 2021a) (in Fig. 2(a)(b)).
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Figure 7: Perturbed generation process with sum-constrained variance on the CelebA 64×64
dataset (Liu et al., 2015). When the coefficients (ᾱt, β̄t) are the same, RDDM (η = 0) is the same
as DDIM (η = 0), but RDDM (η = 1) is different from DDPM (η = 1) due to different variances
(σ2

t ). At different sampling steps, our RDDM has the same total noise, while ddpm has a different
total noise. Notably, all the results in Fig. 7 can be generated from the same pre-trained model via
variance transformation in Appendix A.3. In other words, the RDDM provides a sum-constrained
variance strategy, which can be used directly in the pre-trained DDPM without re-training the model.

A.5 COMPARISON WITH OTHER METHODS

The main difference is that to adapt the denoising diffusion, score, flow, or Schrödinger’s bridge
to image restoration, they choose the noise (Shadow Diffusion (Guo et al., 2023), SR3 (Saharia
et al., 2022), and WeatherDiffusion (Özdenizci & Legenstein, 2023)), the residual (DvSR (Whang
et al., 2022) and Rectified Flow (Liu et al., 2023d)), the target image (ColdDiffusion (Bansal et al.,
2022), InDI (Delbracio & Milanfar, 2023), and consistency models (Song et al., 2023)), or its linear
transformation term (I2SB (Liu et al., 2023a)), which is similar to a special case of our RDDM
when it only predicts noise (SM-N) or residuals (SM-Res), while we introduce residual estimation
but also embrace noise both for generation and restoration (SM-Res-N). We highlight that residuals
and noise are equally important, e.g., the residual prioritizes certainty while the noise emphasizes
diversity.

Differences from DDPM (Ho et al., 2020). 1) DDPM is not interpretable for image restoration,
while our RDDM is a unified, interpretable diffusion model for both image generation and restora-
tion. 2) Differences in the definition of the forward process lead to different variance strategies. Our
RDDM has sum-constrained variance (much smaller than the variance of DDPM), while DDPM has
preserving variance (Song et al., 2021b), as shown in Fig. 2(a)(b).

Differences from IDDPM (Nichol & Dhariwal, 2021). In the original DDPM (Ho et al., 2020),
for the transfer probabilities pθ(It−1|It) in Eq. 3, the mean µθ(It, t) is learnable, while the variance
Σt is fixed. IDDPM (Nichol & Dhariwal, 2021) highlights the importance of estimating both the
mean and variance, demonstrating that learning variances allow for fewer sampling steps with
negligible differences in sample quality. However, IDDPM (Nichol & Dhariwal, 2021) still only
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involves denoising procedures, and crucially, IDDPM, like DDPM, is thus not interpretable for
image restoration. In addition, IDDPM (Nichol & Dhariwal, 2021) proposes three alternative ways
to parameterize µθ(It, t), i.e., predict mean µθ(It, t) directly with a neural network, predict noise ϵ,
or predict clean image I0. IDDPM (Nichol & Dhariwal, 2021) does not predict the clean image I0
and noise ϵ at the same time, while both the residuals and the noise are predicted for our SM-Res-N.

The essential difference is that, our RDDM contains a mixture of three terms (i.e., input images
Iin, target images I0, and noise ϵ) beyond DDPM/IDDPM (a mixture of two terms, i.e, I0 and ϵ).
We emphasize that residuals and noise are equally important: the residual prioritizes certainty,
while the noise emphasizes diversity. Furthermore, our RDDM preserves the original DDPM gener-
ation framework by coefficient transformation (Eq. 13), enabling seamless transfer of improvement
techniques from DDPM, such as variance optimization from IDDPM.

Differences from ColdDiffusion (Bansal et al., 2022). 1) ColdDiffusion aims to remove the ran-
dom noise entirely from the diffusion model, and replace it with other transforms (e.g., blur, mask-
ing), while our RDDM still embraces noise diffusion. Notably, we argue that noise is necessary for
generative tasks that emphasize diversity (see Table 1). In fact, since ColdDiffusion discards random
noise, extra noise injection is required to improve generation diversity. 2) To simulate the degrada-
tion process for different restoration tasks, ColdDiffusion attempts to use a Gaussian blur operation
for deblurring, a snowification transform for snow removal., etc. These explorations may lose gen-
erality and differ fundamentally from our residual learning. RDDM represents directional diffusion
from target images to input images using residuals, without designing specific degradation operators
for each task. Additionally, RDDM provides solid theoretical derivation, while ColdDiffusion lacks
theoretical justification.

Differences from DvSR (Whang et al., 2022). Whang et al. (2022) indeed use residual. But they
1) predict the initial clean image from a blurring image via a traditional (non-diffusion) network,
calculate the residuals between the ground truth of the clean image and the predicted clean image
2) use denoising-based diffusion models predict noise like DDPM (Ho et al., 2020) and use a linear
transformation of the noise to represent the residuals. They treat the residual predictions as an
image generation task, aiming to produce diverse and plausible outputs based on the initial predicted
clean image. Beyond simply building a diffusion model on top of residuals, we redefine a new
forward process that allows simultaneous diffusion of residuals and noise, wherein the target image
progressively diffuses into a purely noise or a noise-carrying input image.

Differences from InDI (Delbracio & Milanfar, 2023) and I2SB (Liu et al., 2023a). We can
conclude that the forward diffusion of InDI, I2SB, and our RDDM is consistent in the form of a
mixture of three terms (i.e., input images Iin, target images I0, and noise ϵ) beyond the denoising-
based diffusion (a mixture of two terms, i.e, I0 and ϵ). Substituting Ires = Iin − I0 into Eq. 12
results in It = ᾱtIin + (1 − ᾱt)I0 + β̄tϵ. This resulted It has the same format as Eq.8 in InD
(xt = ty+(1− t)x+

√
tϵtηt), and is the same format as Eq.11 in I2SB. Similar to Eq. 13 (from our

RDDM to DDPM/DDIM), transforming coefficients leads to complete consistency. However, our
RDDM can further extend DDPM/DDIM, InD, and I2SB to independent double diffusion processes,
and holds the potential to pave the way for the multi-dimensional diffusion process. From the initial
stages of constructing a new forward process, our RDDM uses independent coefficient schedules
to control the diffusion of residuals and noise. This provides a more general, flexible, and scalable
framework, and inspires our partially path-independent generation process, demonstrated in Fig. 3
and Fig. 15(b-f) with stable generation across various diffusion rates and path variations.

B EXPERIMENTS

B.1 TRAINING DETAILS

We use a UNet architecture9 for both residual prediction and noise prediction in our RDDM. The
UNet settings remain consistent across all tasks, including the channel size (64) and channel multi-
plier (1,2,4,8). Detailed experimental settings can be found in Table 4. Training and testing for all
experiments in Table 4 can be conducted on a single Nvidia GTX 3090.

9Our RDDM is implemented by modifying https://github.com/lucidrains/denoising-diffusion-pytorch
repository.
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Table 4: Experimental settings for training our RDDM.“SM-Res-N-2Net” is described in Ap-
pendix B.2. Two optimizers can be implemented in Lres, Lϵ.

Tasks Image Restoration Image Image Image
Shadow Removal Low-light Deblurring Deraining Generation Inpainting Translation

Datasets ISTD LOL GoPro RainDrop CelebA CelebA-HQ CelebA-HQ
SID-RGB AFHQ

Batch size 1 1 1 1 128 64 64
Image size 256 256 256 256 64 64 64
β̄2
T 0.01 1 0.01 1 1 1 1

Iin Iin Iin Iin Iin 0 0 0
Sampling steps 5 2 2 5 10 10 10
Loss type ℓ1 ℓ1 ℓ1 ℓ1 ℓ2 ℓ2 ℓ2
Loss Lres + Lϵ Lres Lres + Lϵ Lres + Lϵ Lϵ Lres, Lϵ Lres, Lϵ

Sampling Method SM-Res-N-2Net SM-Res SM-Res-N-2NetSM-Res-N-2Net SM-N SM-Res-N-2NetSM-Res-N-2Net
Optimizer Adam Adam Adam Adam RAdam RAdam RAdam
Learning rate 8e-5 8e-5 8e-5 8e-5 2e-4 2e-4 2e-4
Training iterations 80k 80k 400k 120k 100k 100k 100k

Schedules αt : P (1− x, 1) αt : P (1− x, 1)αt : P (1− x, 1)αt : P (1− x, 1)αt
DDIM →αt : P (1− x, 1) αt

DDIM →
β2
t : P (x, 1) β2

t : P (x, 1) β2
t : P (x, 1) β2

t : P (x, 1) αt, β
2
t β2

t : P (x, 1) αt, β
2
t

Image Generation. For comparison with DDIM Song et al. (2021a), we convert the αt
DDIM sched-

ule of DDIM Song et al. (2021a) into the αt and β2
t schedules of our RDDM using Eq. 13 in Section

4.2 and Section 5. In fact, a better coefficient schedule can be used in our RDDM, e.g., αt (linearly
decreasing) and β2

t (linearly increasing) in Table 2.

Image Restoration. We extensively evaluate our method on several image restoration tasks, includ-
ing shadow removal, low-light enhancement, image deraining, and image deblurring on 5 different
datasets. For fair comparisons, the results of other SOTA methods are provided from the original
papers whenever possible. For all image restoration tasks, the images are resized to 256, and the
networks are trained with a batch size of 1. We use shadow masks and shadow images as conditions
for shadow removal (similar to (Le & Samaras, 2019; Zhu et al., 2022a)), while other image restora-
tion tasks use the degraded image as condition inputs. For low-light enhancement, we use histogram
equalization for pre-processing. To cope with the varying tasks and dataset sizes, we only modified
the number of training iterations, β̄2

T and sampling steps (5 steps for shadow removal and deraining,
2 steps for low-light and deblurring) as shown in Table 4. αt is initialized using a linearly decreasing
schedule (i.e., P (1 − x, 1) in Eq. 14), while β2

t is initialized using a linearly decreasing schedule
(i.e., P (x, 1)). The quantitative results were evaluated by the peak signal to noise ratio (PSNR),
structural similarity (SSIM), and learned perceptual image patch similarity (LPIPS) (Zhang et al.,
2018).

Notably, our RDDM uses an identical UNet architecture and is trained with a batch size of 1 for
all these tasks. In contrast, SOAT methods often involve elaborate network architectures, such as
multi-stage (Fu et al., 2021; Zamir et al., 2021; Zhu et al., 2022b), multi-branch (Cun et al., 2020),
and GAN (Wang et al., 2018; Kupyn et al., 2019; Qian et al., 2018), or sophisticated loss functions
like the chromaticity (Jin et al., 2021), texture similarity (Zhang et al., 2019), and edge loss (Zamir
et al., 2021).

Image Inpainting and Image Translation. To increase the diversity of the generated images,
conditional input images were not fed into the deresidual and denoising network (see Fig. 18).

B.2 SAMPLING DETAILS

SM-Res or SM-N. We present the motivation, conceptualization, and implementation pipeline (Al-
gorithm 2) of the Automatic Target Domain Prediction Algorithm (ATDP) as follows:

Step 1. At the initial simultaneous training (similar to SM-Res-N), we do not know whether the
network output (Iout) is residual or noise. Therefore, we set λθ

res = 0.5 to denote the probability that
the output is residual (Iθres), and 1− λθ

res is the probability that the output is noise (ϵθ).

Step 2. We then impose loss constraints on both residual and noise estimation weighted by the
learned parameter (λθ

res), as follows:

Lauto(θ) := λθ
resE

[∥∥Ires − Iθres(It, t, Iin)
∥∥2]+ (1− λθ

res)E
[
∥ϵ− ϵθ(It, t, Iin)∥2

]
. (48)
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Algorithm 2: Training Pipeline Using ATDP.
Input : A degraded input image Iin and its corresponding ground truth image I0. Gaussian

noise ϵ. Time condition t. Coefficient schedules ᾱ and β̄t. The initial learnable
parameters λθ

res = 0.5. Network G with parameters θ. The initial learning rate l. n is
the training iterations number. m is the iterations number of ATDP. The threshold of
shifting training strategies, δ = 0.01.

Output: Trained well parameters, θ, λθ
res.

1 θ ← InitWight (G) ▷ initialize network parameters
2 for i← 1 to n+m do
3 t ∼Uniform ({1, 2, ..., T}), ϵ ∼ N (0, I), Ires ← Iin − I0
4 It ← I0 + ᾱtIres + β̄tϵ ▷ synthesize It by Eq. 5
5 Iout ← G(It, t, Iin)

6 Iθres ← λθ
res × Iout + (1− λθ

res)× fϵ→res(Iout) ▷ fϵ→res(·): from ϵ to Ires using Eq. 12
7 ϵθ ← λθ

res × fres→ϵ(Iout) + (1− λθ
res)× Iout ▷ fres→ϵ(·): from Ires to ϵ using Eq. 12

8 Lauto ←Loss (Iθres, Ires, ϵθ, ϵ) ▷ based on Eq. 48

9 θ, λθ
res

+←−∇θ,λθ
res

(Lauto, l) ▷ updating gradient
10 if abs (λθ

res − 0.5) < δ then
11 pass ▷ adversarial-like training
12 else
13 λθ

res ←Detach (λθ
res) ▷ halt the gradient updates

14 θ ← InitWight (G) ▷ reinitialize network parameters
15 if λθ

res > 0.5 then
16 λθ

res ← 1 ▷ SM-Res
17 else
18 λθ

res ← 0 ▷ SM-N
19 end
20 end
21 end

Table 5: Ablation studies of sampling methods and network structures. “SM-Res-N-1Net”+”one
network” denotes to output 6 channels using a network, where the 0-3-th channels are residual and
the 3-6-th channels are noise.

Sampling Method Network MAE(↓) SSIM(↑) PSNR(↑)
SM-Res Residual network 4.76 0.959 30.72
SM-Res-N-2Net Residual network+noise network 4.67 0.962 30.91
SM-Res-N-1Net One network, only shared encoder 4.72 0.959 30.73
SM-Res-N-1Net One network 4.57 0.963 31.10

The joint loss functions Lauto(θ) drive the network to gradually favor either residuals or noise based
on the input. For example, in the image restoration task with deterministic input, it should be simpler
for the network to estimate a clear image than noise. In contrast, for the image generation task with
random noise input, it is simpler for the network to estimate the noise than a clear image.

Step 3. To enable learning of λθ
res, we then include it in the network computation, allowing gradient

transmission. Since λθ
res denotes the probability that the output is residual, the estimated residual

Iθres can be represented as λθ
res × Iout + (1 − λθ

res) × fϵ→res(Iout). fϵ→res(·) represents the
transformation from ϵ to Ires using Eq. 12. Similarly, ϵθ can be represented as λθ

res×fres→ϵ(Iout)+
(1− λθ

res)× Iout. This is very similar to the cross-entropy loss function.

Step 4. As training approaches are completed, our objective should be to estimate only noise (SM-
N) or residuals (SM-Res). By utilizing the learned λθ

res, we can determine when to switch from
an adversarial-like process (residuals vs. noise in Step 2) to a single prediction (residuals or noise).
This transition can be controlled, for instance, by setting a condition such as abs(λθ

res−0.5) ≥ 0.01.
When the network’s tendency to estimate residuals surpasses 51% probability, we set λθ

res to 1 and
halt the gradient updates for λθ

res.
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The experimental results were consistent with the empirical analysis in Section 3.3 and verified the
effectiveness of ATDP. For instance, the initial simultaneous training switches to residual learning
(SM-Res) for shadow removal and low-light enhancement in approximately 300 iterations, and to
denoising learning (SM-N) for image generation in approximately 1000 iterations. To summarize,
ATDP achieves the same inference cost as the current denoising-based diffusion methods (Ho et al.,
2020) with the plug-and-play training strategy.

SM-Res-N. Both the residuals and the noise are predicted, which can be implemented with two
or one networks. SM-Res-N-2Net. If computational resources are sufficient, two separate net-
works can be trained for noise and residual predictions, and the optimal sampling method can be
determined during testing. This setting easily obtains a well-suited network for the target task, and
facilitates the exploration of the decoupled diffusion process and the partially path-independent gen-
eration process in Section 4. SM-Res-N-1Net. To avoid training two separate networks, another
solution is to simply use a joint network (i.e., a shared encoder and decoder) to output 6 channels
where the 0-3-th channels are residual and the 3-6-th channels are noise. This setting loses the
decoupling property of RDDM, but can achieve dual prediction with a slight cost. Table 5 shows
that the joint network (i.e., SM-Res-N-1Net+One network) achieves the best shadow removal results
(MAE 4.57), even better than two independent networks (4.67). A network with the shared encoder
(MAE 4.72) has a slight performance degradation compared to the independent two networks (4.67).

Input DSC FusionNet BMNet DMTN Ours (RDDM) Ground Truth

Figure 8: More visual comparison results for shadow removal on the ISTD dataset (Wang et al.,
2018).

Table 6: Shadow removal results on the ISTD dataset (Wang et al., 2018). We report the MAE,
SSIM and PSNR in the shadow area (S), non-shadow area (NS), and whole image (ALL).

Method MAE(↓) SSIM(↑) PSNR(↑) LPIPS(↓)
S NS ALL S NS ALL S NS ALL

ST-CGAN (Wang et al., 2018) 10.33 6.93 7.47 0.981 0.958 0.929 33.74 29.51 27.44 -
DSC (Hu et al., 2020) ¶ 9.48 6.14 6.67 0.967 - - 33.45 - - -
DHAN (Cun et al., 2020) 8.14 6.04 6.37 0.983 - - 34.50 - - -
CANet (Chen et al., 2021) 8.86 6.07 6.15 - - - - - - -
LG-ShadowNet (Liu et al., 2021b) 10.23 5.38 6.18 0.979 0.967 0.936 31.53 29.47 26.62 -
FusionNet (Fu et al., 2021) 7.77 5.56 5.92 0.975 0.880 0.945 34.71 28.61 27.19 0.1204
UnfoldingNet (Zhu et al., 2022b) 7.87 4.72 5.22 0.987 0.978 0.960 36.95 31.54 29.85 -
BMNet (Zhu et al., 2022a) 7.60 4.59 5.02 0.988 0.976 0.959 35.61 32.80 30.28 0.0377
DMTN (Liu et al., 2023b) 7.00 4.28 4.72 0.990 0.979 0.965 35.83 33.01 30.42 0.0368
Ours (RDDM) 6.67 4.27 4.67 0.988 0.979 0.962 36.74 33.18 30.91 0.0305
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Input DRBN Zero-DCE++ KinD++ SNR-Aware Ours (RDDM) Ground Truth

Figure 9: More visual comparison results for Low-light enhancement on the LOL dataset (Wei et al.,
2018).

Table 7: Quantitative comparison results of Low-light enhancement on the SID-RGB dataset (Xu
et al., 2020) and deblurring on the GoPro dataset (Nah et al., 2017). The results of MIR-Net are
reported by (Zheng et al., 2021).

(a) Low-light (SID-RGB) PSNR(↑) SSIM(↑) LPIPS(↓) (b) Deblurring (GoPro) PSNR(↑) SSIM(↑) LPIPS(↓)
SID (Chen et al., 2018) 21.16 0.6398 0.4026 Deblurgan-v2 (Kupyn et al., 2019) 29.55 0.934 0.117
D&E (Xu et al., 2020) 22.13 0.7172 0.3794 Suin et al. (Suin et al., 2020) 31.85 0.948 -
MIR-Net(Zamir et al., 2020; 2022) 22.34 0.7031 0.3562 MPRNet (Zamir et al., 2021) 32.66 0.959 0.089
UTVNet (Zheng et al., 2021) 22.69 0.7179 0.3417 DvSR (Whang et al., 2022) 31.66 0.948 0.059
SNR-Aware (Xu et al., 2022) 22.87 0.625 - Uformer-B (Wang et al., 2022b) 32.97 0.967 0.0089
Our RDDM (2 step) 23.97 0.8392 0.2433 Our RDDM (2 step) 32.40 0.963 0.0415
Our RDDM (5 step) 23.80 0.8378 0.2289 Our RDDM (10 step) 31.67 0.950 0.0379

B.3 MORE RESULTS

Shadow removal. We compare RDDM with DSC (Hu et al., 2020), FusionNet (Fu et al., 2021),
BMNet (Zhu et al., 2022a) and DMTN (Liu et al., 2023b) on the ISTD dataset (Wang et al., 2018).
The ISTD dataset (Wang et al., 2018) contains shadow images, shadow masks, and shadow-free
image triplets (1,330 for training; 540 for testing). Table 3(b), Fig. 4(b), and Fig. 8 demonstrate the
superiority of our method. In addition, we compare RDDM with more shadow removal methods
(e.g., ST-CGAN (Wang et al., 2018), DHAN (Cun et al., 2020), CANet (Chen et al., 2021), LG-
ShadowNet (Liu et al., 2021b), UnfoldingNet (Zhu et al., 2022b)) in Table 6.

Low-light enhancement. We evaluate our RDDM on the LOL (Wei et al., 2018) (500 images)
and SID-RGB (Xu et al., 2020) datasets (5,094 images), and compare our method with the current
SOTA methods (Zhang et al., 2021; Liu et al., 2021a; Yuhui et al., 2023; Zhang et al., 2022; Xu
et al., 2022; Zamir et al., 2022; Zheng et al., 2021). To unify and simplify the data loading pipeline
for training, we only evaluate the RGB low-light image dataset (Wei et al., 2018; Xu et al., 2020),
not the RAW datasets (e.g., FiveK (Bychkovsky et al., 2011)). Table 3(c), Fig. 4(c), and Fig. 9
show that our RDDM achieves the best SSIM and LPIPS (Zhang et al., 2018) and can recover better
visual quality on the LOL (Wei et al., 2018) dataset. Table 7(a) shows the low-light enhancement
results on the SID-RGB (Xu et al., 2020) dataset of different methods. Our RDDM outperforms the
state-of-the-art SNR-Aware (Xu et al., 2022) by a 4.8% PSNR and a 34.2% SSIM improvement on
the SID-RGB (Xu et al., 2020) dataset. Fig. 10 shows that our RDDM outperforms competitors in
detail recovery (sharper text of 1st row), and color vibrancy (2nd & 3rd rows), avoiding issues like
gray shading and detail blurring.
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Input D&E UTVNet Ours (RDDM) Ground TruthHistogram Equalization

Figure 10: More visual comparison results for Low-light enhancement on the SID-RGB dataset (Xu
et al., 2020).

Input AttentiveGAN RainDropDiff128 Ours (RDDM) Ground Truth

Figure 11: More visual comparison results for deraining on the RainDrop (Qian et al., 2018) dataset.

Image deraining. We make a fair comparison with the current SOTA diffusion-based image restora-
tion method - RainDiff128 (Özdenizci & Legenstein, 2023) (“128” denotes the 128×128 patch size
for training) on the RainDrop dataset (Qian et al., 2018) (1119 images). RainDiff128 (Özdenizci &
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Input Deblurgan-v2 Uformer-B Ours (RDDM) Ground Truth

Figure 12: More visual comparison results for deblurring on the GoPro (Nah et al., 2017) dataset.

Input Input+Noise Ours Ground Truth

Figure 13: More visual results for image inpainting on the CelebA-HQ (Karras et al., 2018) dataset.
The image resolution is resized to 64.

Legenstein, 2023) feeds the degraded input image as a condition to the denoising network, which re-
quires 50 sampling steps to generate a clear image from the noise, while our RDDM requires only 5
sampling steps to recover the degraded image from the noise-carrying input image and outperforms
RainDiff128 (Özdenizci & Legenstein, 2023), as shown in Table 3(d) and Fig. 11.
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(a) Male→Female (b) Dog→Cat (b) Male→Cat

Figure 14: More visual results for image translation on the CelebA-HQ (Karras et al., 2018) and
AFHQ (Choi et al., 2020) datasets. The image resolution is resized to 64.

(b) DDIM

(linear)

(a) Path

(d) 𝛼𝑡 → 𝑃 1 − 𝑥, 1
𝛽𝑡
2 → 𝛽𝑡

2

(c) 𝛼𝑡 → 𝑃 1 − 𝑥, 0
𝛽𝑡
2 → 𝑃 1 − 𝑥, 0

(e) 𝛼𝑡 → 𝑃 1 − 𝑥, 3
𝛽𝑡
2 → 𝛽𝑡

2

(f) 𝛼𝑡 → 𝛼𝑡
𝛽𝑡
2 → 𝑃 1 − 𝑥, 1

(g) 𝛼𝑡 → 𝑥, 5
𝛽𝑡
2 → 𝑃 𝑥, 5

(h) 𝛼𝑡 → 1 − 𝑥, 5
𝛽𝑡
2 → 𝛽𝑡

2
(i) 𝛼𝑡 → 1 − 𝑥, 15

𝛽𝑡
2 → 𝛽𝑡

2

Figure 15: More visual results for the partially path-independent generation process. Two networks
are used to estimate residuals and noise separately, i.e., Iθres(It, ᾱt · T ) and ϵθ(It, β̄t · T ) (η = 0).

Image deblurring. We evaluate our method on the widely used deblurring dataset - GoPro (Nah
et al., 2017) (3,214 images). Table 7(b) and Fig. 12 show that our method is competitive with the
SOTA deblurring methods (e.g, MPRNet (Zamir et al., 2021), and Uformer-B (Wang et al., 2022b)).

Image Inpainting and Image Translation. We show more qualitative results of image inpainting
(Fig. 13) and translation (Fig. 14(e)).

B.4 PARTIALLY PATH-INDEPENDENT GENERATION PROCESS

Fig. 15(b-f) provides evidence supporting the partially path-independent generation process, demon-
strating the robustness of the generative process within a certain range of diffusion rates (step size
per step) and path variation, e.g., converting DDIM (Song et al., 2021a) to a uniform diffusion speed
in Fig. 15(c). However, excessive disturbances can result in visual inconsistencies, as depicted in
Fig. 15(h)(i). Furthermore, Fig. 15(c) and Fig. 15(g) illustrate that even when the paths are the same,
the variation in diffusion speed significantly impacts the quality of the generated images. This high-
lights the importance of carefully considering and controlling the diffusion speed and generation
path during the generation process.
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(a) Remove residuals and noise simultaneously (c) First remove noise then residuals 

(b) First remove residuals then noise (d) First remove noise

(b1) First remove 

residuals

(b2) Then remove 

noise

Figure 16: Special paths of the partially path-independent generation process. Two networks are
used to estimate residuals and noise separately, i.e., Iθres(It, ᾱt · T ), ϵθ(It, β̄t · T ) (η = 0).

We also investigated two reverse paths to gain insight into the implications of the proposed par-
tial path independence. In the first case, the residuals are removed first, followed by the noise:

I(T )
−Ires→ I(0) + β̄T ϵ

−β̄T ϵ→ I(0), as shown in Fig. 16(b1)(b2). The second case involves removing

the noise first and then the residuals: I(T )
−β̄T ϵ→ Iin

−Ires→ I(0). In the first case, images are success-
fully generated (as shown in Fig. 16(b)) which exhibit a striking similarity to the default images in
Fig. 16(a). However, the second case shown in Fig. 16(c) fails to go from Iin to I(0) due to Iin = 0
in the generation task. Figure 16(d) shows the intermediate visualization results of removing the
noise first.

B.5 ABLATION STUDIES

We have analyzed the sampling method in Table 1, the coefficient schedule in Table 2, and the
network structure for SM-Res-N in Table 5.

Sampling Methods. We present the results for noise predictions only (SM-N) in Fig. 17. Fig. 17
(b) and (c) illustrate that estimating only the noise poses challenges as colors are distorted, and it
becomes difficult to retain information from the input shadow image. We found that increasing
sampling steps does not lead to improved results from Fig. 17 (b) to Fig. 17 (c), which may be an
inherent limitation when estimating only the noise for image restoration. Actually, this is also re-
flected in DeS3 (Jin et al., 2022a) (a shadow removal method based on a denoising diffusion model),
where DeS3 (Jin et al., 2022a) specifically designs the loss against color bias. Additionaly, training
with batch size 1 may contribute to poor results of only predicting noise. However, estimating only
the residuals (SM-Res) with batch size 1 does not exhibit such problems for image restoration, as

27



Under review as a conference paper at ICLR 2024

demonstrated in Fig. 17 (d)&(e) and Table 1, further demonstrating the merits of our RDDM. For im-
age inpainting, SM-Res-N can generate more realistic face images compared to SM-N and SM-Res,
as shown in Fig. 18(d-f). If computational resources are sufficient, to obtain better image quality
for an unknown task, we suggest that two separate networks can be trained for noise and residual
predictions, and the optimal sampling method can be determined during testing. If computational
resources are limited, the sampling method can be determined empirically (see Section 3.3).

(a) Input (b) Only noise 

step 5

(c) Only noise 

step 50

(d) Only res 

step 5

(e) Res+noise

step 5

(f) Ground 

truth

Figure 17: Visualizing ablation studies of sampling methods.

SM-Res-N (𝜖𝜃(𝐼𝑡, ത𝛼𝑡 ∙ 𝑇, 0), 𝐼𝑟𝑒𝑠
𝜃 (𝐼𝑡, ത𝛼𝑡 ∙ 𝑇, 0))

(g) (h) (i)

(j) (k) (l)

SM-Res-N (𝜖𝜃(𝐼𝑡, ത𝛼𝑡 ∙ 𝑇, 𝐼𝑖𝑛), 𝐼𝑟𝑒𝑠
𝜃 (𝐼𝑡, ത𝛼𝑡 ∙ 𝑇, 𝐼𝑖𝑛))

(b) Input+Noise (c) Ground Truth(a) Input

(f) SM-Res-N(d) SM-N 

(𝜖𝜃(𝐼𝑡, ത𝛼𝑡 ∙ 𝑇, 0))
(e) SM-Res 

(𝐼𝑟𝑒𝑠
𝜃 (𝐼𝑡, ത𝛼𝑡 ∙ 𝑇, 0))

Figure 18: Visualizing ablation studies of sampling methods for image inpainting on the CelebA-
HQ (Karras et al., 2018) dataset. (g-i) The conditional input image (a) is not used as an input to the
deresidual and denoising network in the generation process from (b) to (f). Compared to (g-i), the
diversity of the generated images in (j-l) decreases. The image resolution is resized to 64.
Certainty and diversity. Indeed, feeding conditional input images (Fig. 18(a)) into the deresid-
ual and denoising network enhances the certainty of the generated images, while diminishing di-
versity, as shown in Fig. 18(j-l). Generating a clear target image directly from a noisy-carrying
degraded image (Fig. 18(b)) without any conditions increases diversity, but changes non-missing
regions (Fig. 18(f)).

Noise Perturbation Intensity. Table 8 shows that for image restoration, our RDDM with SM-Res
or SM-Res-N is not sensitive to the noise intensity β̄2

T . For image generation, the diversity of the

Table 8: Experiment with varying β̄2
T for shadow removal on the ISTD dataset (Wang et al., 2018)

and low-light enhancement on the SID-RGB dataset (Xu et al., 2020).

Dataset Sampling β̄2
T PSNR SSIM

ISTD SM-Res-N 0.01 30.91 0.962
1 30.85 0.961

SID-RGB SM-Res 0.01 24.07 0.830
1 23.83 0.833
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Figure 19: Visualizing ablation studies of noise perturbation intensity (β̄2
T ). (a) We change the

variance (β̄2
T ) during testing, specifically by coefficient transformation via Algorithm 1. (b-c) When

β̄2
T decreases from 1 in (c) to 0.01 in (b), the diversity of the generated images decreases significantly.

(d-g) We visualize each step in the generation process. β̄2
T = 0.01 in (d), β̄2

T = 0.1 in (e), β̄2
T = 0.5

in (f), and β̄2
T = 1 in (g). The sampling method is SM-Res-N-2Net with 10 sampling steps.

SM-Res

SM-Res-N

SM-N

ҧ𝛽𝑇
2 = 1 ҧ𝛽𝑇

2: 1 → 0.01 ҧ𝛽𝑇
2 = 0.01

Figure 20: Visualizing ablation studies of sampling methods with different intensities of noise per-
turbation (β̄2

T ). “β̄2
T : 1 → 0.01” denotes that the variance (β̄2

T ) is changed during testing by
coefficient transformation via Algorithm 1. For β̄2

T = 1 and β̄2
T = 0.01, the variance (β̄2

T ) is the
same for training and testing. The sampling steps are 10.

generated images decreases significantly as β̄2
T decreases from 1 in Fig. 19(c) to 0.01 in Fig. 19(b).

The experiment is related to the mean face (Wilson et al., 2002; Loffler et al., 2005; Hu & Hu,
2021; Meng et al., 2021b) and could provide useful insights to better understand the generative
process. Fig. 20 shows that modifying β̄2

T during testing (β̄2
T : 1 → 0.01) causes SM-N to fail to

generate meaningful faces. SM-Res-N including deresidual and denoising networks can generate
meaningful face images like SM-Res, indicating that the denoising network can perform denoising
when modifying β̄2

T , but cannot obtain robust residuals (Iθres) in the sampling process by Eq. 12. In
summary, the deresidual network is relatively robust to noise variations compared to the denoising
network.

Resource efficiency. Due to fewer sampling steps, our RDDM inference time and performance is
comparable to lllflow (Wang et al., 2022a), and LLFormer (Wang et al., 2023) (not diffusion-based).
Compared to SR3 (Saharia et al., 2022), our RDDM (only res in Table 9(b)) has 10x fewer training it-
erations, 10x fewer parameters, 10x faster inference time, and 10% improvement in PSNR and SSIM
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Table 9: Resource efficiency and performance analysis by THOP. “MAC” means multiply-
accumulate operation. (a) Low-light enhancement on the LoL dataset (Wei et al., 2018). (b) Shadow
removal on the ISTD dataset (Wang et al., 2018). For a fair comparison, a priori shadow mask are
used in SR3 with a batch size of 1. (c) Deraining on the RainDrop dataset (Qian et al., 2018).

(a) Low-light PSNR(↑) SSIM(↑) LPIPS(↓) Params(M) MACs(G)×Steps Inference Time(s)

LLformer 23.649 0.816 0.169 24.51 22.0×1 = 22.0 0.09×1 = 0.09
LLFlow 25.19 0.93 0.11 17.42 286.33×1 = 286.3 0.18×1 = 0.18
Ours(RDDM) 25.392 0.937 0.134 7.73 32.9×2 = 65.8 0.03×2 = 0.06

(b) Shadow Removal MAE(↓) PSNR(↑) SSIM(↑) Params(M) MACs(G) × Steps Inference Time(s)

Shadow Diffusion 4.12 32.33 0.969 - - -
SR3 Saharia et al. (2022) (80k) 14.22 25.33 0.780 155.29 155.3×100=15530.0 0.02×100 = 2.00
SR3 Saharia et al. (2022) (500K) 13.38 26.03 0.820 155.29 155.3×100=15530.0 0.02×100 = 2.00
SR3 Saharia et al. (2022) (1000K) 11.61 27.49 0.871 155.29 155.3×100=15530.0 0.02×100 = 2.00
Ours (only res, 80k) 4.76 30.72 0.959 7.74 33.5×5 = 167.7 0.03×5 = 0.16
Ours (80k) 4.67 30.91 0.962 15.49 67.1×5 = 335.5 0.06×5 = 0.32

(c) Deraining PSNR(↑) SSIM(↑) Params(M) MACs(G) × Steps Inference Time(s)

RainDiff64[28] 32.29 0.9422 109.68 252.4×10 = 2524.2 0.03×10 = 0.38
RainDiff128[28] 32.43 0.9334 109.68 248.4×50 = 12420.0 0.038×50 = 1.91
Ours (only res) 31.96 0.9509 7.73 32.9×5 = 164.7 0.032×5 = 0.16
Ours 32.51 0.9563 15.47 65.8×5 = 329.3 0.07×5 = 0.35

(a1) Input (a2) BMNet (a3) Ours (a4) Ground truth

(b1) Input (b2) Histogram 

Equalization

(b3) Ours (b4) Ground truth

(c1) Input (c2) Ours (c3) Ground truth (d)

Figure 21: Failure cases. (a1-a4) Shadow removal on the ISTD dataset (Wang et al., 2018). (b1-
b4) Low-light enhancement on the SID-RGB dataset (Xu et al., 2020). (c1-c3) Deblurring on the
GoPro (Nah et al., 2017) dataset. (d) Image translation (male/dog→cat) on the CelebA-HQ (Karras
et al., 2018) and AFHQ (Choi et al., 2020) datasets.

on the ISTD (Wang et al., 2018) dataset (shadow removal). For a fair comparison, priori shadow
masks are used in SR3 (Saharia et al., 2022) with a batch size of 1. ShadowDiffusion (Guo et al.,
2023) uses SR3 (Saharia et al., 2022) and Uformer (Wang et al., 2022b), which has a higher PSNR
but is also expected to be more computationally expensive. Our RDDM with SM-Res requires
only 4.8G of GPU memory for training. Experiments in shadow removal and low-light enhance-
ment demonstrate the effectiveness of RDDM, enabling computationally-constrained researchers to
utilize diffusion modeling for image restoration tasks.
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Accelerating Convergence. The residual prediction in our RDDM helps the diffusion process to
be more certain, which can accelerate the convergence process, e.g., fewer training iterations and
higher performance in Table 9(b).

Failure case. We present some failure cases in Fig. 21.

C DISCUSSIONS, LIMITATIONS, AND FURTHER WORK

Limitations. Our primary focus has been on developing a unified prototype model for image restora-
tion and generation, which may result in certain performance limitations when compared to task-
specific state-of-the-art methods. To further improve the performance of a specific task, potential
avenues for exploration include using a UNet with a larger number of parameters, increasing the
batch size, conducting more iterations, and implementing more effective training strategies, such as
learning rate adjustments customized for different tasks. For the image generation task, although
Table 2 showcases the development of an improved coefficient schedule, attaining state-of-the-art
performance in image generation necessitates further investigation and experimentation. In sum-
mary, while we recognize the existing performance limitations for specific tasks, we are confident
that our unified prototype model serves as a robust foundation for image restoration and generation.

Further Work. Here are some interesting ways to extend our RDDM.

1. In-depth analysis of the relationship between RDDM and curve/multivariate integration.
2. Development of a diffusion model trained with one set of pre-trained parameters to handle

several different tasks.
3. Implementing adaptive learning coefficient schedules to reduce the sampling steps while

improving the quality of the generated images.
4. Constructing interpretable multi-dimensional latent diffusion models for multimodal fu-

sion, e.g., generating images using text and images as conditions.
5. Adaptive learning noise intensity (β2

T ) for an unknown new task.

Broader Impacts. Our work establishes a seamless connection between denoising-based diffusion
models and image restoration tasks, which serves the broader impact and potential of diffusion
models in various fields. By introducing a directional residual diffusion approach with perturbations,
our method holds promise for fine-tuning generation tasks. For instance, it can be applied to fine-
tune classic clothing styles, model temporal variations with perturbations during face sculpting, or
simulate realistic device aging processes. Furthermore, deterministic implicit sampling techniques
(similar to DDIM (Song et al., 2021a) and GANs) can be employed to explore data compression and
encryption.

Nevertheless, it is important to acknowledge the potential misuse and ethical concerns associated
with data generation and encryption. For example, fake image videos of high-profile individuals
raise ethical concerns, as they can be exploited to deceive, manipulate, or spread false information.
Additionally, when it comes to encrypted data, our approach poses regulatory challenges. Encryp-
tion plays a crucial role in safeguarding sensitive information, but it can also hinder regulatory efforts
aimed at combating illicit activities or ensuring public safety.
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