
Under review as a conference paper at ICLR 2021

A FRAMEWORK FOR CONTRASTIVE SELF-
SUPERVISED LEARNING AND DESIGNING A NEW
APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Contrastive self-supervised learning (CSL) is an approach to learn useful represen-
tations by solving a pretext task which selects and compares anchor, negative and
positive (APN) features from an unlabeled dataset. We present a conceptual frame-
work which characterizes CSL approaches in five aspects (1) data augmentation
pipeline, (2) encoder selection, (3) representation extraction, (4) similarity measure,
and (5) loss function. We analyze three leading CSL approaches–AMDIM, CPC
and SimCLR–, and show that despite different motivations, they are special cases
under this framework. We show the utility of our framework by designing Yet
Another DIM (YADIM) which achieves competitive results on CIFAR-10, STL-10
and ImageNet, and is more robust to the choice of encoder and the representation
extraction strategy. To support ongoing CSL research, we release the PyTorch
implementation of this conceptual framework along with standardized implementa-
tions of AMDIM, CPC (V2), SimCLR, BYOL, Moco (V2) and YADIM.

1 INTRODUCTION

A goal of self-supervised learning is to learn to extract representations of an input using a large
amount of unlabelled data. This representation is used to solve downstream tasks which often
have only a few labelled instances. Self-supervised learning achieves this goal by solving a pretext
task which creates different types of supervision signals from unlabelled data based on careful
inspection of underlying regularities in the data. In computer vision, there has been a stream of novel
pretext tasks proposed over the past few years, including colorization (Zhang et al., 2016), patch
relatedness (Doersch et al., 2015; Isola et al., 2015), transformation prediction (Agrawal et al., 2015;
Gidaris et al., 2018), in-painting (Pathak et al., 2016) and self-supervised jigsaw puzzle (Noroozi
& Favaro, 2016). Recently, in computer vision, contrastive methods have achieved state-of-the-art
results on ImageNet (Hjelm et al., 2018; Hénaff et al., 2019; Chen et al., 2020a; Tian et al., 2019; He
et al., 2019). In natural language processing, BERT (Devlin et al., 2018) has become the de facto
standard in low-resource text classification (Liu et al., 2019).1 BERT is trained to predict (artificially)
missing words given surrounding context as a pretext task.

To understand the differences between the CSL approaches in computer vision, we formulate a
framework which characterizes CSL in five parts; (1) an encoder, (2) data augmentation pipeline, (3)
a representation extraction, (4) a similarity measure and (5) a loss function. We use our framework to
analyze three leading self-supervised learning approaches from which recent CSL approaches (Chen
et al., 2020a; Tian et al., 2019; He et al., 2019) build on; augmented multi-scale deep information
maximization (AMDIM; (Bachman et al., 2019; Hjelm et al., 2018)), contrastive predictive coding
(CPC; (Hénaff et al., 2019; Oord et al., 2018)) and a simple framework for contrastive learning of
visual representations (SimCLR; (Chen et al., 2020a)). AMDIM was designed to maximize the
mutual information (MI) between representations obtained from a single image while minimizing the
MI between representations obtained from two separate images. CPC, on the other hand, extracts
representations which can tell whether they come from the same or a different image. SimCLR, using
the same ideas of AMDIM, maximizes the similarity between representations obtained from a single
image, while minimizing the similarity between representations obtained from other images.

1see https://gluebenchmark.com/leaderboard.

1

https://gluebenchmark.com/leaderboard


Under review as a conference paper at ICLR 2021

Figure 1: (A) The contrastive self-supervised pretext task consists of finding ways to generate anchor,
positive and negative features used as training signals for unlabeled datasets. (B) The positive and
anchor pairs are pushed close together, and away from the negative features.

Our analysis finds that despite different motivations behind these approaches, existing CSL algorithms
are only slightly different from one another. We demonstrate the usefulness of the proposed framework
by formulating a new CSL variant that merges the data processing pipelines of AMDIM and CPC. Our
resulting approach, YADIM, produces comparable results on downstream tasks including CIFAR-10,
STL-10, and ImageNet, while improving the robustness to the choice of the encoder and sampling
task. These results suggest that this framework is capable of generating CSL variant that perform just
as well as the three leading approaches; AMDIM, CPC and SimCLR.

2 CONTRASTIVE SELF-SUPERVISED LEARNING

Contrastive self-supervised learning (CSL) has been recently found successful for semi-supervised
learning (SSL) (Hjelm et al., 2018; Hénaff et al., 2019; Chen et al., 2020a; Tian et al., 2019; He et al.,
2019). In CSL, the goal is to generate representations of instances such that similar instances are
near each other and far from dissimilar ones. In supervised learning, associative labels determine the
similarities among instances. Without labels however, we must develop methods to exploit similarities
implicitly embedded within instances. CSL does this by generating anchor, positive, and negative
samples from an unlabeled dataset.

Let D = {x1, x2, ..., xN} be an unlabeled dataset of size N . CSL builds on the assumption that each
instance defines and belongs to its own class (Dosovitskiy et al., 2014). This assumption implies that
we have N classes. To create samples that belong to the same class we generate two features (va, v+)
from the same example x ∈ D. We refer to va as an anchor feature and v+ as a positive feature.
To create an example from a different class, we generate a feature v− from a different example x′.
We call v− a negative feature. Depending on the task, such a feature can be a vector v ∈ Rn or a
multi-dimensional tensor v ∈ Rn×...×m. We propose the following five-part framework which lets
us easily characterize existing CSL approaches.

(1) Data Augmentation Pipeline The goal of the data augmentation pipeline is to generate anchor,
positive and negative (APN) features to be used in contrastive learning. Let an define a stochastic
input augmentation process such as random flip and random channel drop. Then, A = (a1, . . . , aN )
defines a pipeline that applies these augmentations sequentially. We can apply A to x to generate a
new sample vi which preserves the same underlying semantics as x. This strategy gives us a way
to generate multiple samples of the same class defined by the example x which we can use as a
supervisory signal.

To generate the anchor and positive features we can take many approaches. One way to generate
va and v+ is to sample two subsets of vectors from the same feature, va, v+ ⊆ vx. A second way
is to apply A to the same input twice, va ∼ A(x), v+ ∼ A(x), which produces two distinct sets of
features due to the stochastic nature of A. The negative feature, v− ∼ A(x′) is sampled via the same
process but taken from a different sample x′.

2



Under review as a conference paper at ICLR 2021

(2) Encoder Let fθ define an encoder parameterized with θ. This encoder can be any function
approximator such as a fully-connected or convolutional neural network (CNN) (LeCun et al., 2004;
1990; Krizhevsky et al., 2012). The encoder maps an input v into a set of vectors r which we call
the representation of x. When x is an image with s input channels, width w, and height h, then
f performs the following mapping fθ : Rs×w×h → Rk×c. In other words the encoder returns k
c-dimensional feature vectors as the representation of the input. When the encoder is a convolutional
network, r is a set of vectors from a feature map m where m ∈ Rs×w×h.

(3) Representation extraction For contrastive learning we need to extract representations that can
be compared against one another. Let r+ = fθ(v

+) be the positive representation, ra = fθ(v
a) the

anchor representation and r− = fθ(v
−) the negative representation. Representations are extracted

from an encoder or a sequence of encoders applied to v·. There are many ways to perform the
representation extraction; one way is to generate a single d-dimensional vector as the final output of
the encoder for each representation r· ∈ Rd. Another way is to output a matrix for each representation
r· ∈ Rn×k and compare a subset of ra against another subset of r− to generate multiple negative
scores.

(4) Similarity measure Let Φ(ra, rb) measure the similarity between two representations, ra and
rb. This function outputs a scalar score s which measures the similarity between ra and rb. Examples
of similarity measures are the dot product, cosine similarity, or bi-linear transformations such as
s = r>a ·Wrb, in which case Φ has its own parameter W .

(5) Loss Function Refer to s+ = Φ(ra, r+) as the positive score and to s− = Φ(ra, r−) as the
negative score. We define a loss function as the combination of the positive and negative scores to
reflect the progress of learning. Minimizing this loss function corresponds to maximizing the positive
score and minimizing the negative scores.

Widely used loss functions include the noise contrastive estimation (NCE) loss (Mnih & Kavukcuoglu,
2013), the triplet loss (Schroff et al., 2015) and InfoNCE (Hénaff et al., 2019).

2.1 SPECIAL CASE 1: AUGMENTED MULTISCALE DEEP INFOMAX (AMDIM)

The first example of CSL that we describe under the proposed framework is AMDIM by Bachman
et al. (2019), which was recently proposed for self-supervised learning of image representations.
The motivation behind AMDIM is to maximize mutual information between features extracted from
intermediate layers of a CNN, generated from two views of the same image. AMDIM operates on a
dataset of d-channel images with width w and height h. Let D = {x1, x2, ..., xn} be a collection of
images x ∈ Rw×h×d.

The implementation details of AMDIM can be found in Appendix A.

(1) Data Augmentation Pipeline Let x be an example from D, and an a stochastic image aug-
mentation stage. The augmentation pipeline for x in AMDIM consists of five stages; random flip,
image jitter, color jitter, random gray scale and normalization of mean and standard deviation. We
refer the readers to Bachman et al. (2019) for the details of each. AMDIM generates the positive v+
and anchor va features by applying A twice to the same input x, va ∼ A(x) and v+ ∼ A(x). The
negative v− feature is generated by applying A to a different input v− ∼ A(x′).

(2) Encoder The encoder, fθ, in AMDIM is based on a residual network (ResNet) (He et al., 2016)
with three design considerations. The first ensures that the encoder design minimizes information
shared between two feature vectors from the same image. To achieve this, Bachman et al. (2019)
minimize the overlap between receptive fields and do not use batch normalization (Ioffe & Szegedy,
2015). Second, the encoder does not use padding in order to avoid learning artifacts introduced by
padding. Third, the number of channels in this modified ResNet is 5 times more than the number of
channels found in ResNet-34 which is the most similar commonly-used architecture. Specifically,
ResNet-34 has 64, 128, 256 and 512 feature maps, whereas the AMDIM ResNet has 320, 640, 1280
and 2560 feature maps, respectively. AMDIM was tested to work with this particular variant of a
ResNet.

3



Under review as a conference paper at ICLR 2021

(3) Representation extraction AMDIM draws (ra, r+, r−) triplets from feature maps extracted
at different scales. Here we offer a brief summary of this task. Let M = {m1,m2, ...,ml} = fθ(x)
define the set of all feature maps generated by an encoder from each layer l when applied to an input
x. Let Ma = fθ(v

a),M+ = fθ(v
+) and M− = fθ(v

−).

Let mj and mk be two feature maps at layers j and k. The anchor representation ra ∼ ma
j is taken

from ma
j ⊂Ma. Multiple positive representations R+ are used, where R = m+

k are taken from the
m+
k ⊂M+. To create the negative samples we use all the m−k generated from every other example.

These samples define the set of negative representations, R− =
⋃

mi∈Mx′

m−i . In other words, AMDIM

requires an encoder that returns representations of the inputs at multiple scales.

The final feature map mk ∈ R1×1 which corresponds to the global vector.

(4) Similarity Measure AMDIM uses a dot product between two vector representations with c
channels, Φ(a, b) = a · b to measure their similarity, where a ∈ Rc, b ∈ Rc and Φ(a, b) ∈ R. This
means that the dimensions of intermediate representations generated by the encoder must be the
same.

(5) Loss Function AMDIM uses an NCE lossNθ(ra, R+, R−) given a representation triplet (Mnih
& Kavukcuoglu, 2013):

Nθ(ra, R+, R−) =
∑

r+i ∈R+

− log
exp(Φ(ra, r+i ))

exp(Φ(ra, r+i )) +
∑
r−i ∈R−

exp(Φ(ra, r−i ))
. (1)

AMDIM minimizes the NCE loss above from the following combinations of the final three feature
maps obtained from the encoder:

LAMDIM = −1

3

[
Nθ(raj , R+

k−1, R
−
k−1) +Nθ(raj , R+

k−2, R
−
k−2) +Nθ(raj−1, R+

k−1, R
−
k−1)

]
, (2)

requiring an encoder that outputs at least three feature maps.

2.2 SPECIAL CASE 2: CONTRASTIVE PREDICTIVE CODING (CPC)

The second example of CSL we describe under the proposed framework is contrastive predictive
coding (CPC) by Hénaff et al. (2019). CPC learns to extract representation by making the feature
vector of a patch from an image predictive of another patch spatially above the original patch. CPC
differs from AMDIM in the encoder design, data augmentation pipeline, sampling task and loss
function.

The implementation details can be found in Appendix B.

(1) Data Augmentation Pipeline The CPC data augmentation pipeline is the same as that of
AMDIM with the following new transformation stage a′ appended at the end. This stage a′ breaks
an input image x with width w, height h and channels d, into a list of p-many (q × q) overlapping
patches with d channels each. This transformation maps x : Rw×h×d → Rp×q×q×d. For example,
for a 256×256 image, patch size q = 64 with a 32-pixel overlap, x : R256×256×3 → R7×7×64×64×3.

Define v ∼ A(x) as the set of features for image x, and v′ the set of features for image x′.

(2) Encoder The encoder fθ in CPC is a modified version of the ResNet-101 (He et al., 2016). The
ResNet-101 has four stacks of residual blocks. Each residual block has three convolutional layers of
which the second one, the bottleneck layer, produces a fewer feature maps. CPC modifies the third
stack in three ways; 1) they double the number of residual blocks from 23 to 46, 2) they double the
bottleneck layer dimension from 256 to 512, and 3) they increase the number of feature maps from
1024 to 4096. CPC replaces all the batch normalization (Ioffe & Szegedy, 2015) layers with layer
normalization (Ba et al., 2016) to minimize information sharing between two feature vectors from the
same image.

4



Under review as a conference paper at ICLR 2021

(3) Representation extraction Let H = fθ(v) be the output of the encoder, where v ∼ A(x)
and H ∈ Rc×h×w. CPC frames representation extraction as predicting the feature vectors k units
spatially below at Hi+k,j based on the feature vectors in the neighbourhood of Hi,j .

For example, the vector at row 0 is used to predict the vectors at all the rows 1, 2, ..., h. This prediction
task first applies masked convolution to H via a context encoder gψ to generate C = gψ(H), where
C ∈ Rc×h×w. Each ci,j summarizes the context around every Hi,j . For each ci,j , the target is then
chosen from each row whose index is k > i. Prediction Ĥi+k,j = Wkci,j is finally generated using a
prediction matrix Wk.

This prediction ra = Ĥi+k,j is the anchor representation, the target to predict r+ = Hi+k,j the
positive representation, and all the other H\{hi,j} serve as the negative representations R−. This
task can be viewed as correctly picking Ĥi+k,j from the set which has the real Hi+k,j and distractors
H ′i+k,j , H

′
i+(k+1),j , . . . ,H

′
i+k+n,j .

(4) Similarity Measure CPC uses a dot product of Ĥi+k,j and Hi+k,j .

(5) Loss Function Just like AMDIM, CPC uses the NCE loss:

Lθ(ra, r+, R−) = − log
exp(Φ(ra, r+i ))

exp(Φ(ra, r+i )) +
∑
r−i ∈R−

exp(Φ(ra, r−i ))
. (3)

This loss drives the anchor and positive samples together while driving the anchor and negative
samples apart.

2.3 SPECIAL CASE 3: A SIMPLE FRAMEWORK FOR CONTRASTIVE LEARNING OF VISUAL
REPRESENTATIONS (SIMCLR)

The third example of CSL we describe under the proposed framework is a simple framework for
contrastive learning of visual representations (SimCLR) by (Chen et al., 2020a). SimCLR extracts
representation by maximizing the similarity between representations extracted from two views of the
same image, just like AMDIM does. SimCLR is similar to AMDIM with a series of a few minor
tweaks. First, it uses a non-customized, generic ResNet. Second, it uses a modified data augmentation
pipeline. Third, it adds a parametrized similarity measure using a projection head. Finally, it adds a
scaling coefficient (τ ) to the NCE loss.

The implementation details of SimCLR can be found in Appendix C.

(1) Data Augmentation Pipeline The augmentation pipeline of SimCLR follows the same ideas
introduced by AMDIM. This pipeline applies a stochastic augmentation pipeline twice, to the same
input va ∼ A(x), v+ ∼ A(x). The data augmentations consist of random resize and crop, random
horizontal flip, color jitter, random gray scale and Gaussian Blur. We refer the reader to Chen et al.
(2020a) for the details of each.

(2) Encoder The encoder fθ in SimCLR is a ResNet of varying width and depth. The ResNets in
SimCLR use batch normalization.

(3) Representation extraction Let r = fθ(v) be the output of an encoder, where r ∈ Rc×h×w.
We obtain vector by reshaping r : Rc×h×w → Rc·h·w. The representation ra = fθ(v

a) is the
anchor representation, r+ = h+ = fθ(v

+) the positive representation and R− the set of negative
representations generated from all the other samples x′.

(4) Similarity Measure SimCLR uses a projection head z = fφ to map the representation vector
from the encoder to another vector space, i.e., fφ : Rc → Rc. The cosine similarity between the
(zi, zj) pair is used as a similarity score. The composition of the projection and cosine similarity can
be viewed as a parametrized similarity measure.

5



Under review as a conference paper at ICLR 2021

(5) Loss Function SimCLR uses the NCE loss with a temperature τ ∈ R to adjust the scaling of
the similarity scores

Lθ(za, z+, Z−) = − log
exp(Φ(za, z+)/τ)∑

z−i ∈Z−
exp(Φ(za, z−i )/τ)

. (4)

This loss drives the anchor and positive samples together while driving the anchor and negative
samples apart.

3 FROM CPC AND AMDIM TO YADIM

In this section we show the usefulness of our conceptual framework by creating Yet Another variant
of DIM, called YADIM, which combines the ideas from both CPC and AMDIM. We first introduce the
general design principles behind YADIM. For the components that differ between CPC and AMDIM,
we perform ablations to determine which one to use. We end the section by summarizing the final
YADIM design.

3.1 YADIM: YET ANOTHER DIM

When viewed under our framework, CPC and AMDIM are more similar than expected from their
different, underlying motivations. However, they do differ on the particular encoder design, data
augmentation pipeline, representation extraction, and the similarity measure, while using the same
loss. We formulate YADIM by empirically assessing the impact of each of these subtle design
differences on the performance of both AMDIM and CPC. When any particular design choice does
not have much impact on the performance, we choose the (simplified) union of both. We focus on
CPC and AMDIM, as we found SimCLR to be a minor variant of AMDIM. Below, we present the
general YADIM formulation.

(1) Data Augmentation Pipeline Recall the data augmentation pipeline of AMDIM which consists
of five stages; random flip, image jitter, color jitter, random gray scale and z-normalization. CPC
appends to this pipeline by AMDIM a transform which breaks an input image x with width w, height
h and channels d, into a list of p-many (q × q) overlapping patches with d channels each. This
transform maps x : Rw×h×d → Rp×q×q×d

The independent nature of each pipeline lends itself to a natural joint formulation that is the union
of the CPC and AMDIM pipelines. The YADIM pipeline applies all six transforms to an input in
sequence to generate two version of the same input, va ∼ A(x) and v+ ∼ A(x), and uses it to
generate the negative sample from a different input v− ∼ A(x′).

(2) Encoder CPC and AMDIM both use customized CNN encoders. For YADIM we use the same
encoder used by AMDIM.

(3) Representation extraction AMDIM compares the triplets of representations generated by the
encoder at different spatial scales, while CPC uses a context encoder to predict a representation
spatially lower in a feature map. These two tasks make specialized and unique domain assumptions
which makes them difficult to merge. Instead, we test variations of the AMDIM sampling task. For
YADIM, we eventually choose the task with the fewest assumptions while achieving the near-best
performance.

(4) Similarity measure AMDIM uses a dot product φ(a, b) = a · b, while CPC uses a parametrized
dot product between the representation Ĥi+k,j = Wkci,j and the target representation Hi+k,j . For
YADIM, we resort to using dot product, because the encoder can subsume linear transformation in
the parametrized measured used by CPC, if necessary.

(5) Loss Function YADIM uses the NCE loss which was used by both CPC and AMDIM.

6



Under review as a conference paper at ICLR 2021

Table 1: Encoder robustness on
CIFAR-10. (higher is better, bold re-
sults are the highest per ResNet). All
major ResNet architectures found in Py-
Torch (Paszke et al., 2019) are trained
with either AMDIM, CPC or proposed
YADIM. We pretrain each network on
CIFAR-10 without labels and train an
MLP with 1,024 hidden units on CIFAR-
10 with all labels on top of the pretrained
and frozen encoder. YADIM’s perfor-
mance remains stable across different
choice of encoders, as does CPC while
AMDIM performance suffers.

Network AMDIM CPC YADIM

Reported 93.10 - -
Our implementation 92.00 84.52 90.33
ResNet 18 63.25 83.14 85.51
ResNet 34 57.50 83.91 84.57
ResNet 50 61.43 83.76 85.83
ResNet 101 58.91 79.18 83.09
ResNet 152 53.40 84.21 85.03
ResNet 50 (32 x4d) 64.08 85.08 86.69
ResNet 101 (32 x8d) 59.37 83.65 86.62
Wide-ResNet 50 59.37 85.09 85.65
Wide-ResNet 101 60.07 84.15 85.60

3.2 SYSTEMATIC INVESTIGATION OF CPC AND AMDIM DESIGN DIFFERENCES

For the two main elements of CPC and AMDIM that differ, the encoder and representation extraction,
we perform ablative experiments on each and investigate how each alternative decision affects CPC,
AMDIM and YADIM.

Encoder Architecture CPC uses a modified ResNet-101 with wider layers, while AMDIM uses
a modified ResNet-34. In this ablation, we replace the encoder in each approach with 9 standard
ResNet architectures taken from the torchvision package.2 For the baseline YADIM, we use the wide
ResNet-34 which is the encoder from AMDIM. Table 1 shows the sensitivity of each approach to the
choice of encoder.

The first column demonstrates the drop in performance with AMDIM performance when using
standard ResNets as the encoder. The second column shows that CPC does not suffer from the same
drop in performance when using a standard ResNet. In the final column, we observe that YADIM is
less sensitive to the choice of encoder. These results suggest that the choice of encoder in YADIM and
CPC is less important than it was with AMDIM. Although It has recently been noted by Chen et al.
(2020a) that the network width has a significant impact on the performance, we do not observe such a
dramatic difference in performance at least with CPC and YADIM. Furthermore, in AMDIM, the
widest network (Wide-ResNet 101) performs worse than the smallest, non-wide network (ResNet-18).

Representation extraction AMDIM compares feature maps at different stages of an encoder,
while CPC simply uses the last feature map. To evaluate the impact of each comparison approach, we
evaluate AMDIM with a similar strategy and try two others that we design.

Let (j : k) denote comparing feature maps, ma
j and m+

k , and we use j = −1 to refer to the final
feature map generated by the encoder and j = −2 second to the last. With this notation, AMDIM
performs the comparison of (−1 : −2) + (−1 : −3) + (−2 : −2). To evaluate the sensitivity to the
choice of feature map locations, we define five comparison strategies: (1) the last feature maps only
(−1 : −1), (2) the AMDIM strategy (−1 : −2) + (−1 : −3) + (−2 : −2), (3) the last feature map
to a random feature map (−1 : k ∼ U(−1,−k)), and (4) the feature maps at all levels separately
(−1 : −1) + (−2 : −2) + (−3 : −3). In Table 2, we see that AMDIM is highly sensitive to the
particular representation extraction comparison, which is not the case with the proposed YADIM.

3.3 FINAL FORMULATION OF YADIM

Given the results of the ablations above, we finalize the design of the proposed YADIM in this section.

(1) Data Augmentation Pipeline We define a data augmentation pipeline for YADIM as the union
of the CPC and AMDIM pipelines. This new pipeline applies all six transforms sequentially to an

2https://pytorch.org/docs/stable/torchvision/index.html

7

https://pytorch.org/docs/stable/torchvision/index.html


Under review as a conference paper at ICLR 2021

Table 2: Robustness to the representation extraction approach on CIFAR-10: Here we show the
results of using a simple representation extraction for each approach. This task is to use only the last
feature map from the encoder for contrastive learning. The success of AMDIM depends heavily on
the particular task, whereas YADIM does not.

Representation extraction AMDIM YADIM
Reported 90.00 91.98

AMDIM task 90.00 92.40
Last only 64.00 91.98
Last + random 79.00 92.20
Same level 82.00 92.22

input twice to generate two version of the same input va ∼ A(x), v+ ∼ A(x). The same pipeline
generates the negative sample from a different input v− ∼ A(x′).

(2) Encoder We use the wide ResNet-34 from AMDIM, although the choice of any other encoder
would not have a significant impact the final performance.

(3) Representation Extraction YADIM compares the triplets from the last feature maps generated
by the encoder (ra−1, r

+
−1, R

−
−1), unlike AMDIM.

(4) Similarity measure YADIM uses a dot product φ(a, b) = a · b without any extra parameter,
unlike CPC.

4 EXPERIMENTAL SETUP

Datasets We use four standard image classification datasets to thoroughly evaluate the proposed
approach together with AMDIM and CPC:

• CIFAR-10 (Krizhevsky et al., 2009) consists of 32x32 images categorized into 10 classes. It
has 50,000 training images and 10,000 test images. We use a 45,000/5,000 training/validation
split. We report results on the 10,000 test images.

• STL-10 (Coates et al., 2011) consists of 96x96 images categorized into 10 classes. We
downsample each image to be 64x64 following Bachman et al. (2019). The training set
has 100,000 unlabeled and 5,000 labeled training examples. The test set has 8,000 labeled
examples. We train our model and baselines using the unlabeled training examples, while
using 500 labeled ones for validation.

• ImageNet (ILSCRV-12) (Deng et al., 2009) has images of varying sizes categorized into
1,000 classes. We downsample each image to be 128x128 following the protocol from Bach-
man et al. (2019). The dataset has approximately 1.3 million images in the training set and
50,000 images in the official validation set. We make our own 50,000 image validation set
from the training set and use the official validation set as the test set.

Optimization and Hyperparameters We use Adam (Kingma & Ba, 2014) and search for the
optimal learning rate via grid search based on the loss function computed on the unlabeled training
examples. We fix the other hyperparameters of Adam to the same values used in (Bachman et al.,
2019). For SimCLR, we use LARS (You et al., 2017), as originally used by the authors, with a
learning rate of 10−6.

Finetuning In Kolesnikov et al. (2019), the authors conducted extensive study on how to evaluate
self-supervised learning algorithms for image representation. We thus follow their evaluation protocol
in our experiments: 1) choose a dataset, 2) drop all labels, 3) pretrain the encoder on these unlabeled
examples, 4) freeze the encoder, and 5) train a separate neural network on top of this frozen encoder
using a subset of labeled examples.

8



Under review as a conference paper at ICLR 2021

We use a multi-layer perceptron (MLP) with a single hidden layer consisting of 1,024 ReLU (Nair &
Hinton, 2010) units. Our results differ slightly from those reported because different CSL approaches
use different variants of MLP or ResNet. We however find it more informative for comparison to use
the same MLP across all CSL approaches.

Compute Infrastructure We use multiple NVIDIA V100 GPUs with 32G memory each, for each
experiment. We use two V100 GPUs for up to 24 hours on CIFAR-10. We use eight V100 GPUs
for up to 72 hours on STL-10. We use 96 V100 GPUs for up to 72 hours on ImageNet when
AMDIM is used and 32 V100 GPUs for 21+ days when CPC was used. YADIM trained for 14 days
using 256 V100 GPUs to cope with the increased memory requirement incurred by the use of both
non-overlapping patches and double applications of data augmentation.

4.1 IMPLEMENTATION

The CSL approaches often use different evaluation protocols and do not re-implement individual
approaches for rigorous comparison (Hénaff et al., 2019; Tian et al., 2019; Hjelm et al., 2018; Chen
et al., 2020a). To avoid any inconsistency arising from different implementations and protocols, we
re-implement AMDIM, CPC, SimCLR, Moco and CMC using PyTorch Lightning.

PyTorch Lightning PyTorch Lightning (PL) (Falcon, 2019) is a framework which decouples
scientific components and engineering details in the code written for PyTorch (Paszke et al., 2019).
PL enables our implementations of the CSL approaches to be hardware agnostic, more easily readable,
and accessible to researchers with lower computational resources since it enables running the same
code on arbitrary hardware. In addition, it allows us to use the exactly same dataset splits, same
fine-tuning protocol, early-stopping criterion and transformation pipelines to ensure the consistency
across various experimental settings.

Negative samples Through our experiments, we observe that CSL performance positively correlates
with the number of negative samples. There are multiple ways to achieve this. One way is to build a
memory bank that stores pre-computed representations for k consecutive samples (Tian et al., 2019;
Chen et al., 2020a). Another way is to share data across training processes, where all the batches
across GPUs can be used for the denominator of softmax (Falcon, 2019; Miller et al., 2017).

For our experiments we use distributed softmax via PyTorch Lightning, which splits a batch of
samples across GPUs on the machine and aggregates them on a single machine for an effective large
denominator for softmax.

CSL reproducibility As will be evident from the results later, we have largely reproduced AMDIM
and CPC which we attribute to the open-sourced code of AMDIM provided by its authors and helpful
discussion with the authors of CPC, respectively. Due to the limitation on available computational
resources, however, we were not able to perform thorough hyperparameter search with CPC and
AMDIM, which prevented us from fully reproducing their reported results on ImageNet.

5 RESULTS AND ANALYSIS

In this section we verify our implementations. To our knowledge, this is the first comparison between
AMDIM, CPC and SimCLR using the same standardized implementation and evaluation protocol.

Class Separability In this set of experiments, we test whether representations capture class separa-
tion without observing the actual class labels. To measure this, we apply the fine-tuning protocol we
describe in 4. For training a classifier, we use the all the labels of CIFAR-10, STL-10 and ImageNet.

Table 3 compares the class separability of the representations from AMDIM, CPC, SimCLR and
YADIM. Our implementation of AMDIM achieves the performance close to that reported by Bach-
man et al. on CIFAR-10 and STL-10. On ImageNet, our implementation lags behind the latest
reported accuracy but is still on par with the original accuracy from the earlier version of Bachman
et al. (2019).

9



Under review as a conference paper at ICLR 2021

Table 3: Class separability Test accuracies are computed from finetuning a 1,024-unit MLP on top
of a frozen, pretrained encoder. The encoder was trained on each dataset without labels. We underline
the best accuracy per dataset inclusive of previously reported ones, and bold-face the best accuracy
among our own implementations. (1,2) reported in the first and second versions of (Bachman et al.,
2019), respectively. Due to computational constraints we could not complete experiments using our
own implementation of SimCLR on ImageNet. † our own implementation. ? reported in Hénaff et al.
(2019).

Method CIFAR-10 STL-10 ImageNet

AMDIM(1) 93.10 93.80 60.20
AMDIM(2) 93.10 93.80 68.10
CPC? – – 64.03
SimCLR? 93.70 – 71.70
AMDIM† 92.10 91.50 60.08
CPC† 84.52 78.36 54.82
SimCLR† 87.60 – –
YADIM 91.30 92.15 59.19

Our CPC implementation sets new state-of-the-art scores on STL-10 self-supervised pretrained
models. On ImageNet our CPC implementation achieves close to the reported result, but due to
computational constraints we cannot train the model fully to achieve the accuracy reported by Hénaff
et al. (2019). Our SimCLR implementation is trained on a single V100 for 14 hours and achieves
87.60 accuracy which is reasonably close to the reported 93.70. Finally, the proposed YADIM
achieves comparable accuracy on CIFAR-10, SLT-10 and ImageNet to both AMDIM and CPC.

6 RELATED WORK

Pretext tasks for self-supervised learning have been studied extensively over the past few years. In
Doersch et al. (2015) the authors sample two neighboring patches within an image, then train a siamese
network to predict the relative location of the patches. Isola et al. (2015) use a similar approach but
instead predict whether patches were taken from nearby locations in the image or not. Pathak et al.
(2016) attempt to learn representations by inpainting (Bertalmio et al., 2000). Noroozi et al. (Noroozi
& Favaro, 2016) train a CNN to solve jigsaw puzzles. In a different approach, Zhang et al. (2016) use
the gray components of an image to predict the color components of the same image. More recently,
Gidaris et al. (2018) train CNNs to detect a 2d rotation applied to the input image.

Unlike the ones above which are specific to images, there have been a class of self-supervised
learning algorithms that are less specific to images and are more generally applicable. They include
AMDIM (Hjelm et al., 2018), CPC (Hénaff et al., 2019), SimCLR (Chen et al., 2020a), CMC (Tian
et al., 2019) and MOCO (Chen et al., 2020b; He et al., 2019). We refer to them as contrastive
self-supervised learning (CSL). In this paper we attempt at providing a unified framework behind
these CSL algorithms.

Dosovitskiy et al. (2014) introduce the idea of generating multiple views of the same data by applying
a stochastic augmentation pipeline to the same image multiple times. AMDIM pairs this idea with
comparisons of feature maps generated from intermediate layers of an encoder. However, in this
work we showed that the particular choice of which feature maps to compare is highly subjective
and that performance deteriorates as the strategy changes. CPC on the other hand introduces the
idea of generating positive pairs by taking patches within the same image and then predicts patches
well-separated spatially. However, we observe that removing the context encoder of this task results
in trivial solutions for both CPC and SimCLR.

CMC uses the same ideas from AMDIM but differs in two key aspects. First, the NCE loss is
regularized by a discriminator (Goodfellow et al., 2014). Second, a memory bank is used to increase
the number of negative samples, which leads to the increase in the memory requirement of the system.
SimCLR differs from AMDIM in three key aspects. First, it adds random resize and crop to the data
augmentation pipeline. Second, it parametrizes the similarity metric with a non-linear transformation

10



Under review as a conference paper at ICLR 2021

of the representation followed by dot product. MOCO (v2) modifies the SimCLR projection head
gθ(x) and the data augmentation pipeline.

Hjelm et al. (2018) demonstrated, CSL approaches outperform other approaches such as autoen-
coders Rumelhalt et al. (1986); Baldi & Hornik (1989) and generative adversarial networks (GAN)
Goodfellow et al. (2014). Zhang et al. (2016) similarly showed that representations learned by GANs
and autoencoders do not transfer well to other tasks including image classification, although these
models excel at image denoising and image synthesis.

7 CONCLUSION

In this work we proposed a conceptual framework to more easily characterize various CSL approaches.
We showed that AMDIM, CPC and SimCLR are special cases of our framework. We evaluated each
key design choice of AMDIM and CPC, which are two representative CSL algorithms, and used our
framework to construct a new approach to which we refer as YADIM (Yet another DIM). YADIM
performs just as well as CPC and AMDIM on CIFAR-10, STL-10 and ImageNet but has two key
advantages. First, it is robust to the choice of the encoder architecture. Second, it uses a simpler
representation extraction strategy.

By comparing the proposed YADIM against AMDIM and CPC, we have learned three lessons. First,
the choice of encoder is not important as long as it is wide with many feature maps at each layer.
Second, it is enough to use a simple contrastive loss, consisting of noise contrastive loss with dot
product without any extra parameter. Third, it is largely a strong data augmentation pipeline that
leads to strong downstream task results, even with a simple representation extraction strategy or a
simple encoder architecture. Furthermore, we find that SimCLR, CMC and MOCO do not differ
much from each other and from both CPC and AMDIM, and the design choices they make are easily
interpreted under the proposed conceptual framework.

Finally, we release all the code for implementing these contrastive self-supervised learning approaches
under PyTorch Lightning. We hope this release enables objective and clear comparison between all
approaches and encourages researchers to push the frontier of contrastive self-supervised learning
further.

ACKNOWLEDGEMENT

WF thanks Facebook AI Research, DeepMind and NSF for their support. In addition, thank you to
Stephen Roller, Margaret Li, Shubho Sengupta, Ananya Harsh Jha, Cinjon Resnick, Tullie Murrell,
Carl Doersch, Devon Hjelm, Eero Simoncelli and Yann LeCun for helpful discussions. KC thanks
support by CIFAR, NVIDIA, eBay, Google and Naver.

REFERENCES

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 37–45, 2015.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. arXiv preprint arXiv:1906.00910, 2019.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting. In
Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp.
417–424. ACM Press/Addison-Wesley Publishing Co., 2000.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020a.

11



Under review as a conference paper at ICLR 2021

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223, 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE International Conference on Computer Vision, pp.
1422–1430, 2015.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discrimina-
tive unsupervised feature learning with convolutional neural networks. In Advances in neural
information processing systems, pp. 766–774, 2014.

WA Falcon. Pytorch lightning. GitHub. Note: https://github. com/williamFalcon/pytorch-lightning
Cited by, 3, 2019.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient
image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272, 2019.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler, and
Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H Adelson. Learning visual groups from
co-occurrences in space and time. arXiv preprint arXiv:1511.06811, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual representa-
tion learning. arXiv preprint arXiv:1901.09005, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

12



Under review as a conference paper at ICLR 2021

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-propagation network.
In Advances in neural information processing systems, pp. 396–404, 1990.

Yann LeCun, Fu Jie Huang, Leon Bottou, et al. Learning methods for generic object recognition with
invariance to pose and lighting. In CVPR (2), pp. 97–104. Citeseer, 2004.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh, and J. Weston. Parlai: A
dialog research software platform. arXiv preprint arXiv:1705.06476, 2017.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive
estimation. In Advances in neural information processing systems, pp. 2265–2273, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision, pp. 69–84. Springer, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2536–2544, 2016.

D Rumelhalt et al. Learning internal representation by error propogation, parallel distributed
processing: Explorations in the microstructure of cognition (vol. 1), 1986.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European
Conference on Computer Vision, pp. 649–666. Springer, 2016.

13



Under review as a conference paper at ICLR 2021

A AMDIM BOLTS IMPLEMENTATION CODE

A.1 ENCODER

from p l _ b o l t s . models . s e l f _ s u p e r v i s e d . amdim import AMDIMEncoder

A.2 TRANSFORMS

from p l _ b o l t s . models . s e l f _ s u p e r v i s e d . amdim
import AMDIMEvalTransformsSTL10

d a t a s e t = STL10 ( t r a n s f o r m s =AMDIMEvalTransformsSTL10 ( ) )

A.3 REPRESENTATION EXTRACTION

from p l _ b o l t s . l o s s e s . s e l f _ s u p e r v i s e d _ l e a r n i n g
import F e a t u r e M a p C o n t r a s t i v e T a s k

amdim_task = F e a t u r e M a p C o n t r a s t i v e T a s k ( ’ 01 , 02 , 11 ’ )

A.4 LOSS

from p l _ b o l t s . l o s s e s . s e l f _ s u p e r v i s e d _ l e a r n i n g import AmdimNCELoss

def c o n t r a s t i v e _ t a s k _ f o r w a r d (M1, M2 ) :
( ma0 , ma1 , ma2 ) = M1
( mb0 , mb1 , mb2 ) = M2

01 _ l o s s = AmdimNCELoss ( ma0 , mb1 ) + AmdimNCELoss ( mb0 , ma1 )
02 _ l o s s = AmdimNCELoss ( ma0 , mb2 ) + AmdimNCELoss ( mb0 , ma2 )
11 _ l o s s = AmdimNCELoss ( ma1 , mb1 ) + AmdimNCELoss ( mb1 , ma1 )
re turn 01 _ l o s s + 02 _ l o s s + 11 _ l o s s

A.5 FULL AMDIM PSEUDOCODE

The PyTorch Lightning implementation of AMDIM can be summarized by:

def t r a i n i n g _ s t e p ( s e l f , ba t ch , b a t c h _ i d x ) :
x , _ = b a t c h
xa = a u g m e n t a t i o n s ( x )
xb = a u g m e n t a t i o n s ( x )

( ma0 , ma1 , ma2 ) = e n c o d e r ( xa )
( mb0 , mb1 , mb2 ) = e n c o d e r ( xb )

l o s s = c o n t r a s t i v e _ t a s k (
( ma0 , ma1 , ma2 ) ,
( mb0 , mb1 , mb2 )

)

B CPC BOLTS IMPLEMENTATION CODE

B.1 ENCODER

from p l _ b o l t s . models . s e l f _ s u p e r v i s e d . cpc import AMDIMEncoder

B.2 TRANSFORMS

from p l _ b o l t s . models . s e l f _ s u p e r v i s e d . cpc

14



Under review as a conference paper at ICLR 2021

import CPCEvalTransformsSTL10

d a t a s e t = STL10 ( t r a n s f o r m s =CPCEvalTransformsSTL10 ( ) )

B.3 REPRESENTATION EXTRACTION

from p l _ b o l t s . l o s s e s . s e l f _ s u p e r v i s e d _ l e a r n i n g import CPCTask

def c p c _ t a s k _ f o r w a r d ( Z ) :
l o s s e s = [ ]

c o n t e x t = c o n t e x t _ c n n ( Z )
t a r g e t s = t a r g e t _ c n n ( Z )

_ , _ , h , w = Z . shape

# f u t u r e p r e d i c t i o n
p r e d s = pred_cnn ( c o n t e x t )
f o r s t e p s _ t o _ i g n o r e in range ( h − 1 ) :

f o r i in range ( s t e p s _ t o _ i g n o r e + 1 , h ) :
l o s s = c o m p u t e _ l o s s _ h ( t a r g e t s , p reds , i )
i f not t o r c h . i s n a n ( l o s s ) :

l o s s e s . append ( l o s s )

l o s s = t o r c h . s t a c k ( l o s s e s ) . sum ( )
re turn l o s s

B.4 LOSS

def c o m p u t e _ l o s s _ h ( t a r g e t s , p reds , i ) :
b , c , h , w = t a r g e t s . shape

# ( b , c , h , w) −> ( num_vec tors , emb_dim )
# e v e r y v e c t o r ( c−dim ) i s a t a r g e t
t a r g e t s = t a r g e t s . pe rmute ( 0 , 2 , 3 , 1 )

. c o n t i g u o u s ( )

. r e s h a p e ([−1 , c ] )

# s e l e c t t h e f u t u r e ( s o u t h ) t a r g e t s t o p r e d i c t
# s e l e c t s a l l o f t h e ones s o u t h o f t h e c u r r e n t s o u r c e
embed_sca le = 0 . 1
p r e d s _ i = p r e d s [ : , : , :−( i + 1 ) , : ] ∗ embed_sca le

# ( b , c , h , w) −> ( b∗w∗h , c ) ( a l l f e a t u r e s )
# t h i s o r d e r i n g matches t h e t a r g e t s
p r e d s _ i = p r e d s _ i . pe rmute ( 0 , 2 , 3 , 1 )

. r e s h a p e ([−1 , s e l f . t a r g e t _ d i m ] )

# c a l c u l a t e t h e s t r e n g t h s c o r e s
l o g i t s = t o r c h . matmul ( p r e d s _ i , t a r g e t s . t r a n s p o s e (−1 , −2))

# g e n e r a t e t h e l a b e l s
n = b ∗ ( h − i − 1) ∗ w
b1 = t o r c h . a r a n g e ( n ) / / ( ( h − i − 1) ∗ w)
c1 = t o r c h . a r a n g e ( n ) % ( ( h − i − 1) ∗ w)
l a b e l s = b1 ∗ h ∗ w + ( i + 1 ) ∗ w + c1

l o s s = c r o s s _ e n t r o p y ( l o g i t s , l a b e l s )
re turn l o s s

15



Under review as a conference paper at ICLR 2021

B.5 FULL CPC PSEUDOCODE

def t r a i n i n g _ s t e p ( s e l f , ba t ch , batch_num ) :
x , y = b a t c h

# t r a n s f o r m
x = a u g m e n t a t i o n s ( x )
x = p a t c h _ a u g m e n t a t i o n ( x )

# L a t e n t f e a t u r e s
Z = e n c o d e r ( x )

# infoNCE l o s s
n c e _ l o s s = s e l f . c o n t r a s t i v e _ t a s k ( Z )
l o s s = n c e _ l o s s
re turn l o s s

C SIMCLR BOLTS IMPLEMENTATION CODE

C.1 ENCODER

from p l _ b o l t s . models . s e l f _ s u p e r v i s e d . r e s n e t s import r e s n e t 5 0 _ b n

C.2 TRANSFORMS

from p l _ b o l t s . models . s e l f _ s u p e r v i s e d . cpc
import SimCLREvalTransformsSTL10

d a t a s e t = STL10 ( t r a n s f o r m s =SimCLREvalTransformsSTL10 ( ) )

C.3 REPRESENTATION EXTRACTION

def t r a i n i n g _ s t e p ( s e l f , ba t ch , b a t c h _ i d x ) :
( img1 , img2 ) , y = b a t c h

# ENCODE
# encode −> r e p r e s e n t a t i o n s
# ( b , 3 , 32 , 32) −> ( b , 2048 , 2 , 2 )
h1 = s e l f . e n c o d e r ( img1 )
h2 = s e l f . e n c o d e r ( img2 )

C.4 LOSS

def n t _ x e n t _ l o s s ( z1 , z2 , t e m p e r a t u r e ) :
" " "
Loss used i n SimCLR
" " "
o u t = t o r c h . c a t ( [ z1 , z2 ] , dim =0)
n_samples = l e n ( o u t )

# F u l l s i m i l a r i t y m a t r i x
cov = t o r c h .mm( out , o u t . t ( ) . c o n t i g u o u s ( ) )
sim = t o r c h . exp ( cov / t e m p e r a t u r e )

# N e g a t i v e s i m i l a r i t y
mask = ~ t o r c h . eye ( n_samples , d e v i c e =sim . d e v i c e ) . bool ( )
neg = sim . m a s k e d _ s e l e c t ( mask ) . view ( n_samples , −1).sum ( dim=−1)

# P o s i t i v e s i m i l a r i t y :

16



Under review as a conference paper at ICLR 2021

pos = t o r c h . exp ( t o r c h . sum ( ou t_1 ∗ out_2 , dim =−1)/ t e m p e r a t u r e )
pos = t o r c h . c a t ( [ pos , pos ] , dim =0)
l o s s = − t o r c h . l o g ( pos / neg ) . mean ( )

re turn l o s s

C.5 FULL SIMCLR PSEUDOCODE

def t r a i n i n g _ s t e p ( s e l f , ba t ch , b a t c h _ i d x ) :
( img1 , img2 ) , y = b a t c h

# ENCODE
# encode −> r e p r e s e n t a t i o n s
# ( b , 3 , 32 , 32) −> ( b , 2048 , 2 , 2 )
h1 = s e l f . e n c o d e r ( img1 )
h2 = s e l f . e n c o d e r ( img2 )

# t h e b o l t s r e s n e t s r e t u r n a l i s t o f f e a t u r e maps
i f i s i n s t a n c e ( h1 , l i s t ) :

h1 = h1 [−1]
h2 = h2 [−1]

# PROJECT
# img −> E −> h −> | | −> z
# ( b , 2048 , 2 , 2 ) −> ( b , 128)
z1 = s e l f . p r o j e c t i o n ( h1 )
z2 = s e l f . p r o j e c t i o n ( h2 )

l o s s = s e l f . n t _ x e n t _ l o s s ( z1 , z2 , s e l f . hparams
. l o s s _ t e m p e r a t u r e )

re turn l o s s

17


	Introduction
	Contrastive self-supervised learning
	Special Case 1: Augmented Multiscale Deep InfoMax (AMDIM)
	Special Case 2: Contrastive Predictive Coding (CPC)
	Special Case 3: A Simple Framework for Contrastive Learning of Visual Representations (SimCLR)

	From CPC and AMDIM to YADIM
	YADIM: Yet Another DIM
	Systematic investigation of CPC and AMDIM design differences
	Final formulation of YADIM

	Experimental setup
	Implementation

	Results and analysis
	Related work
	Conclusion
	AMDIM bolts implementation code
	Encoder
	Transforms
	Representation Extraction
	Loss
	Full AMDIM pseudocode

	CPC bolts implementation code
	Encoder
	Transforms
	Representation extraction
	Loss
	Full CPC pseudocode

	SimCLR bolts implementation code
	Encoder
	Transforms
	Representation extraction
	Loss
	Full SimCLR pseudocode


