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Abstract

The ability to infer pre- and postconditions of001
an action is vital for comprehending complex002
instructions, and is essential for applications003
such as autonomous instruction-guided agents004
and assistive AI that supports humans to per-005
form physical tasks. In this work, we propose a006
task dubbed action condition inference, which007
extracts mentions of preconditions and postcon-008
ditions of actions in instructional manuals. We009
propose a weakly supervised approach utiliz-010
ing automatically constructed large-scale train-011
ing instances from online instructions, and cu-012
rate a densely human-annotated and validated013
dataset to study how well the current NLP mod-014
els do on the proposed task. We design two015
types of models differ by whether contextual-016
ized and global information is leveraged, as017
well as various combinations of heuristics to018
construct the weak supervisions. Our exper-019
iments show a >20% F1-score improvement020
with considering the entire instruction contexts021
and a > 6% F1-score benefit with the proposed022
heuristics. However, the best performing model023
is still well-behind human performance.1024

1 Introduction025

When performing complex tasks (e.g. making a026

gourmet dish), instructional manuals are often re-027

ferred to as useful guidelines. To follow the in-028

structed actions, it is crucial to understand the pre-029

conditions, i.e. prerequisites before taking a partic-030

ular action, and the postconditions, i.e. the status031

supposed to be reached after performing the action.032

For autonomous agents or assistant AI that aids033

humans to accomplish tasks, understanding the con-034

ditions provides a structured view of a task (Linden,035

1994; Aeronautiques et al., 1998; Branavan et al.,036

2012a; Sharma and Kroemer, 2020) to help the037

agent correctly judge whether to proceed to the038

next action and evaluate the action completions.039

Knowledge of action-condition dependencies is040

1We will release dataset and codes upon paper publication.

1. Slice 500 grams of onion.

2. Heat the pan with olive oil.
Wait until the oil is sizzling.

3. Place onions in the frying pan.

4. Stir the onions. In a few minutes,
they should be caramelized.

Precondition

Postconditions

Precondition

Precondition Postcondition

Can I put
the onions 
in now?

Yes, your pan is already fried, onions are also sliced. 

Figure 1: The Action Condition Inference Task: We pro-
pose a task that probes models’ ability to infer both precon-
ditions and postconditions of an action from instructional
manuals. It has wide applications to e.g. assistive AI and task-
solving robots. ∗This instruction is simplified for illustration.

prevalent and inferable in many instructional texts. 041

For example, in Figure 1, before performing the 042

action “place onions" in step 3, both preconditions: 043

“heat the pan" (in step 2) and “slice onions" (in 044

step 1) have to be successfully accomplished. Like- 045

wise, executing “stir onions" (in step 4), leads to 046

its postcondition, “caramelized" (also in step 4). 047

However, no prior work has systematically stud- 048

ied automatically extracting pre- and postcondi- 049

tions from prevalent data resources. To this end, 050

we propose the action condition inference task on 051

real-world instructional manuals, where a dense 052

dependency graph is produced, as in Figure 1, 053

to denote the pre- and postconditions of actions. 054

Such a dependency graph provides a systematic 055

task execution plan that agents can closely follow. 056

We consider two online instruction resources, 057

WikiHow (Hadley et al.) and Instructables.com (In- 058

structables), to study the current NLP models’ ca- 059

pabilities of performing the proposed task. As 060

there is no densely annotated dataset on the desired 061

action-condition-dependencies from real-world in- 062

structions, and annotating a comprehensive depen- 063

dency structure of actions for long instruction con- 064
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Step 1: Prepare the line. The length and width of line you need varies based on your

trimmer. If you purchase the wrong width of line, the trimmer will not work correctly, so
don’t waste your money by simply guessing at the hardware store. If you are not sure

what size line your trimmer uses, check online—the manufacturer’s website often has

instructions, and if not the customer service department should be able to help you. …

Step 2: Make sure your trimmer’s engine is turned off. If it has a gearbox, make sure it is
cooled down. This will help prevent accidents.

Step 3: Remove the retaining cap from the trimmer head. This will probably involve

either unscrewing it, pressing one or multiple tabs, or a combination of the two. Some
models use different mechanisms for removing the spool.

Postcondition 1

Precondition 2i

Precondition 1

Precondition 2ii

Postcondition 2

Instruction Manual

…, check online, the manufacturer ’s 

website often has instructions, … 

check

V

online

ARGM-LOC

the manufacturer ’s  website

ARG0

often

ARGM-TMP

has

V

instructions

ARG1

SRL Sample Extractions

Figure 2: Terminologies: (Left) shows a few exemplar actionables with their associated preconditions and postconditions .
Notice that an actionable can have multiple pre- or postconditions and they can span across different instruction steps (for
simplicity we do not show an exhausted set of text segments, and the actual instruction contexts are much longer). (Right) SRL
is used to postulate the text segments (actionables and conditions). We show a sample SRL extraction corresponding to one of the
dependency linkages on the left. The SRL ARG labels also provide useful information for designing our heuristics (Section 4).

texts can be extremely expensive and laborious, we065

collect human annotations on a subset of totally066

650 samples and benchmark models in either a067

zero-shot setting where no annotated data is used068

for training, or a low-resource/shot setting with069

limited amount of annotated training data.070

We also design the following heuristics and show071

that they can effectively construct large-scale weak072

supervisions: (1) Key entity tracing: Key repet-073

itive entity mentions (including co-references)074

across different instruction descriptions likely sug-075

gest a dependency. (2) Keywords: Certain key-076

words (e.g. the before in “do X before doing Y")077

can often imply the condition dependencies. (3)078

Temporal reasoning: We adopt a temporal rela-079

tion module (Han et al., 2021b) to alleviate the080

potential inconsistencies between the narrated or-081

ders of conditional events and their actual temporal082

orders to better utilize their temporally grounded083

nature (e.g. preconditions are prior to an action).084

We benchmark two strong baselines based on085

pretrained language models with or without instruc-086

tion contexts on our annotated held-out test-set,087

where the models are asked to make predictions088

exhaustively on every possible dependency. We089

observe that contextualized information is essen-090

tial (> 20% F1-score gain over non-contextualized091

counterparts), and that our proposed heuristics are092

able to augment an effective weakly-supervised093

training data to further improve the performance094

(> 6% F1-score gain) on the low-resource setting.095

However, the best results are still well below hu-096

man performance (> 20% F1-score difference).097

Our key contributions are three-fold: (1) We pro-098

pose an action-condition inference task and create099

a densely human-annotated evaluation dataset to100

spur research on structural instruction comprehen-101

sions. (2) We design linguistic-centric heuristics102

utilizing entity tracing, keywords, and temporal103

reasoning to construct effective large-scale weak 104

supervisions. (3) We benchmark models on the 105

proposed task to shed lights on future research. 106

2 Terminologies and Problem Definition 107

Our goal is to learn to infer action-condition depen- 108

dencies in real-world instructional manuals. We 109

first describe essential terminologies in details: 110

Actionable refers to a phrase that a person can fol- 111

low and execute in the real world (yellow colored 112

phrases in Figure 2). We also consider negated ac- 113

tions (e.g. do not ...) or actions warned to avoid 114

(e.g. if you purchase the wrong...) as they likely 115

also carry useful knowledge regarding the tasks.2 116

Precondition concerns the prerequisites to be met 117

for an actionable to be executable, which can be a 118

status, a condition, and/or another prior actionable 119

(blue colored phrases in Figure 2). It is worth not- 120

ing that humans can omit explicitly writing out cer- 121

tain condition statements because of their triviality 122

as long as the actions inducing them are mentioned 123

(e.g. heat the pan → pan is heated, the latter can 124

often be omitted). We thus generalize the conven- 125

tional precondition formulation, i.e. sets of state- 126

ments evaluated to true/false (Fikes and Nilsson, 127

1971), to a phrase that is either a passive condition 128

statement or an actionable that induces the prereq- 129

uisite conditions, as inspired by Linden (1994). 130

Postcondition is defined as the outcome caused by 131

the execution of an actionable, which often involves 132

status changes of certain objects (or the actor itself) 133

or certain effects emerged to the surroundings or 134

world state (green colored phrases in Figure 2). 135

Text segment in this paper refers to a textual seg- 136

ment of interest, which can be one of: {actionable, 137

precondition, postcondition}, in an article. 138

2We ask workers to single out the actual actionable phrases,
e.g. purchase the wrong line→ trimmer will not work.
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In reality, a valid actionable should have both pre-139

and postcondition dependencies, however, we do140

not enforce this in this work as conditions can oc-141

casionally be omitted by human authors.142

Problem Formulation. Given an input instruc-143

tional manual and some text segments of interest144

extracted from it, a model is asked to predict the145

directed relation between a pair of segments, where146

the relation should be one of the followings: NULL147

(no relation), precondition, or postcondition.148

3 Datasets and Human Annotations149

As the condition-dependency knowledge we are150

interested in is prevalent in real-world instructions,151

we consider two popular online resources, Wiki-152

How and Instructables.com, both consist of de-153

tailed multi-step task instructions, to support our154

investigation. For WikiHow, we use the provided155

dataset from Wu et al. (2022); for Instructables, we156

scrape the contents directly from their website.157

Since densely annotating large-scale instruction158

sources for the desired dependencies is extremely159

expensive and laborious, we mainly annotate a test-160

set and propose to train the models via weakly or161

self-supervised methods. We hence provide a small162

subset of the human-annotated data to adapt mod-163

els to the problem domain. To this end, we collect164

comprehensive human annotations on a selected165

subset in each dataset to serve as our annotated-166

set, and particularly the subsets used to evaluate167

the models as the annotated-test-set.3 In total, our168

densely annotated-set has 500 samples in WikiHow169

and 150 samples in Instructables, spanning 7,191170

distinct actions (defined by main predicate-object171

phrases) for diversity. In Section 6.2, we will de-172

scribe how the annotated-set is split to facilitate the173

low-resource training. We also collect the human174

performance on the annotated-test-set to gauge the175

human upper bound of our proposed task. More176

dataset details are in Append. Sec. A.177

3.1 Annotations and Task Specifications178

Dataset Structure. The desired structure of the179

constructed data, as in Figure 2, features two main180

components: (1) text segment of interest (see Sec-181

tion 2), and (2) condition linkage, a directed and182

relational link connecting a pair of text segments.183

Annotation Process. We conduct the annotated-184

set construction via Amazon Mechanical Turk185

(MTurk). Each worker is asked to carefully read186

3Following Wu et al. (2022), we first choose from physical
categories and then sample a manually inspected subset.

over thoroughly a prompted complex multi-step 187

instructional manual, where the annotation process 188

consists of three main steps: (1) Text segments 189

highlighting: To facilitate this step (and postu- 190

lating the text segments for constructing weak- 191

supervisions in Section 4), we pre-highlight several 192

text segments extracted by semantic role labelling 193

(SRL) for workers to choose from.4 They can also 194

freely annotate (highlight by cursor) their more de- 195

sirable segments. (2) Linking: We encourage the 196

workers to annotate all the possible segments of 197

interest, and then they are asked to connect certain 198

pairs of segments that are likely to have dependen- 199

cies with a directed edge. (3) Labelling: Finally, 200

each directed edge drawn will need to be labelled 201

as either a pre- or postcondition (NULL relations 202

do not need to be explicitly annotated). 203

In general, for each article a worker is required 204

to consider on average >500 pairwise relations 205

with all associated article contexts (>300 tokens), 206

which is a decently laborious task. Comparisons 207

on the linkage annotations from different workers 208

are as well made on every pair of their respective 209

annotated text segments with the actual candidate- 210

consideration from the entire rest of article. 211

Since the agreements among workers on both 212

text segments and condition linkages are suffi- 213

ciently high5 given the complexity of the anno- 214

tation task, our final human annotated-set retains 215

the majority voted segments and linkages. 216

Variants of Tasks. Although proper machine ex- 217

traction of the text segments of interest as a span- 218

based prediction can be a valid and interesting task, 219

we find that our automatic SRL extraction is already 220

sufficiently reliable.6 In this paper, we thus mainly 221

focus on the more essential linkage prediction (and 222

their labels) task assuming that these text segments 223

are given, and leave the possible end-to-end system 224

with the (refined) text segment extraction, as the 225

future work. Our proposed task and the associated 226

annotated-set can be approached by a zero-shot or 227

low-resource setting: the former involves no train- 228

4SRL V and ARGs are connected alongside intermediate
words to form contiguous segments (see Append. Sec. C.1.1).

5The mean inter-annotator agreements (IAAs) per Fleiss
Kappa for (segments, linkages) are (0.90, 0.57) and (0.88,
0.58) for WikiHow and Instructables. Note that the Kappa
agreement measures the extent to which the observed amount
of agreement among raters exceeds what would be expected
if all raters made their ratings completely randomly, so the
agreement is high. See Append. Sec. B.1 for more details.

6∼58% of the time SRL-proposed segments were directly
used, with others mostly being few-word-span refinements.
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Heuristics Examples Descriptions

Entity-Tracing
& Coref.

… Slice 500 grams of onions. …… Heat the pan with olive oil. …

… Place them in the frying pan. …Precondition 1 Precondition 2

The shared entities are pan and onions
(linked via co-references to them).

Keywords
… Make sure everything is dry before you fill your flowerpot with dirt. …

Precondition

… If you’re using a machine punch, stick the rivet through the hole. …
Precondition

Keywords are used to link the segments
they separate. If the keyword is at the be-
ginning (2nd example), the (1st) comma
is used to segment the sentences.

Postcondition

Postcondition

… the oil is sizzling. …… Warm a pan with oil over medium heat…
Postcondition

… Do not pour water into your lock …… the water will be frozen solid …
SRL Tags:   ARGM-MOD       V           ARG2

Certain linguistic hints (e.g. SRL tags)
are utilized to propose plausible (and
likely) postcondition text segments.

Temporal
… pry off the back side of the tire first …

… Step down hard on the rubber part of the tire …
AFTER

Precondition The action prying should occur prior to
stepping, but these two segments are re-
versely narrated in the contexts.

Table 1: Heuristics used for determining condition linkages between text segments, with sample use-cases and descriptions.

ing on any of the annotated data and a heuristically229

constructed training set can be utilized (Section 4),230

while the latter allows models to be finetuned on a231

limited annotated-subset (Section 5.3).232

4 Training With Weak Supervision233

As mentioned in Section 3, our proposed task can234

be approached via a zero-shot setting, where the235

vast amount of un-annotated instruction data can236

be transformed into useful training resources (same237

dataset structure as described in Section 3.1). More-238

over, it is proven that in many low-resource NLP239

tasks, constructing a much larger heuristic-based240

weakly supervised data can be beneficial (Plank241

and Agić, 2018; Nidhi et al., 2018).242

4.1 Linking Heuristics243

The goal of designing certain heuristics is to per-244

form a rule-based determination of the linkage (its245

direction and the condition label). Our design in-246

tuition is to harness dependency knowledge by247

exploiting relations between actions and entities248

(entity-level), certain linguistic patterns (phrase-249

level), and event-level information, which should250

be widely applicable to all kinds of instructional251

data. Concretely, we design four types of heuristics:252

(1) Keywords: certain keywords are hypothesized253

to show strong implication of conditions such as if,254

before, after; (2) Key entity tracing: text segments255

that share the same key entities are likely indicat-256

ing dependencies; (3) Co-reference resolution is257

adopted to supplement (2); (4) Event temporal258

relation resolution technique is incorporated to259

handle the inconsistencies between narrative order260

and the actual temporal order of the events.261

Without access to human refinements (Section262

3.1), we leverage SRL to postulate all the segments263

of interests to construct the weakly-supervised set.264

4.1.1 Keywords 265

Table 2 lists the major keywords that are consid- 266

ered in this work. Denote a text segment as ai, key- 267

words are utilized so as the text segments separated 268

with respect to them, i.e. a1 and a2, can be prop- 269

erly linked. Different keywords and their positions 270

within sentences can lead to different directions of 271

the linkages, i.e. a1 ⇄ a2 (see second row of Table 272

1, note that here condition labels are not yet deter- 273

mined). For example, keywords before and after 274

intuitively can lead to different directions if they 275

are placed at non-beginning positions. We follow 276

the rules listed in Table 2 to decide the directions. 277

4.1.2 Key Entity Tracing 278

It is intuitive to assume that if the two text seg- 279

ments mention the same entity, a dependency be- 280

tween them likely exists, and hence a trace of the 281

same mentioned entity can postulate potential link- 282

ages. As exemplified in the first row of Table 1, 283

that heating the pan being a necessary precondi- 284

tion to placing onions in the pan can be inferred 285

by the shared mention “pan”. We adopt two ways 286

to propose the candidate entities: (1) We extract 287

all the noun phrases within the SRL segments 288

(mostly ARG-tags), (2) Inspired by (Bosselut et al., 289

2018), a model is learned to predict potential enti- 290

ties involved that are not explicitly mentioned (e.g. 291

fry the chicken may imply a pan is involved) in the 292

context (more details see Append. Sec. C.1.4). 293

Co-References. Humans often use pronouns to 294

refer to the same entity to alternate the mentions 295

in articles, as exemplified by the mentions onions 296

and them, in the first row of Table 1. Therefore, 297

a straightforward augmentation to the aforemen- 298

tioned entity tracing is incorporating co-references 299

of certain entities. We utilize a co-reference reso- 300
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Keywords Begin. Within Sent.

before, until, in order to, so a1 −→ a2 a1 ←− a2

requires — a1 −→ a2

after, once, if a1 ←− a2 a1 −→ a2

Table 2: Keywords for deciding a potential linkage: If a
keyword is at the beginning of a sentence, we use the (first)
comma of that sentence to separate it to two segments and
link them accordingly, while the keyword itself is used as the
separator otherwise. The segments are then either refined with
SRL or kept as they are if SRL does not detect a valid verb.

lution model (Lee et al., 2018) to propose possible301

co-referred terms of extracted entities of each seg-302

ment within the same step description (we do not303

consider cross-step co-references for simplicity).304

4.2 Linking Algorithm305

After applying the aforementioned linking heuris-306

tics, each text segment ai, can have M linked seg-307

ments: {ali1 , ..., a
li
M}. For linkages that are traced308

by entity mentions (and co-references), their direc-309

tions always start from priorly narrated segments310

to the later ones, while linkages determined by the311

keywords follow Table 2 for deciding their direc-312

tions. However, the text segments that are narrated313

too much distant away from ai are less likely to314

have direct dependencies. We therefore truncate315

the linked segments by ensuring any alij is narrated316

no more than “S step” ahead of ai, where S is317

empirically chosen to be 2 in this work.318

4.2.1 Incorporating Temporal Relations319

As hinted in Section 2, the conditions with respect320

to an actionable imply their temporal relations.321

The direction of an entity-trace-induced linkage is322

naively determined by the narrated order of text seg-323

ments within contexts, however, in some circum-324

stances (e.g. fourth row in Table 1), the narrative325

order can be inconsistent with the actual temporal326

order of the events. To alleviate such inconsis-327

tency, we apply an event temporal relation predic-328

tion model (Han et al., 2021b) to fix the linkage329

directions.7 The utilized model predicts temporal330

relations (before/after/vague) of each pair of event331

triggers (extracted by SRL, i.e. verbs/predicates),332

and then we invert the direction of an entity-trace-333

induced linkage, alij → ai, if their predicted tempo-334

ral relation is opposite to their narrated order.335

4.2.2 Labelling The Linkages336

It is rather straightforward to label precondition337

linkages as a simple heuristic can be used: for338

a given segment, any segments that linked to the339

7These do not include linkages decided by the keywords.

current one that are either narrated or temporally 340

prior to it are plausible candidates for being pre- 341

conditions. For determining postconditions, where 342

they are mostly descriptions of status (changes), 343

we therefore make use of certain linguistic cues 344

that likely indicate human written status, e.g. the 345

water will be frozen and the oil is sizzling. Specif- 346

ically, we consider: (1) be-verbs followed by 347

present-progressive tenses if the subject is an en- 348

tity, and (2) segments whose SRL tags start with 349

ARGM as exemplified in Table 1. 350

5 Models 351

Our proposed heuristics do not assume specific 352

model architecture to be applicable, and to bench- 353

mark the proposed task, we mainly consider two 354

types of base models: (1) Non-contextualized 355

model takes only the two text segments of interest at 356

a time and make the pairwise trinary (directed) rela- 357

tion predictions, i.e. NULL, precondition, and post- 358

condition; (2) Contextualized model also makes 359

the relation predictions for every pair of input seg- 360

ments, but the inputs include the whole instruction 361

article so the contexts are preserved. The two mod- 362

els are both based off pretrained language models 363

(the non-contextualized model is essentially a stan- 364

dard transformer-based language model finetuned 365

for classification tasks), and the relation prediction 366

modules are multi-layer perceptrons (MLPs) added 367

on top of the language models’ outputs. Cross- 368

entropy loss is used for training. 369

5.1 Non-Contextualized Model 370

The non-contextualized model takes two separately 371

extracted text segments, ai and aj , as inputs and 372

is trained similarly to the next sentence prediction 373

in BERT (Devlin et al., 2019) (i.e. the order of 374

the segments matters, which will be considered in 375

determining their relations), as shown in Figure 3a. 376

5.2 Contextualized Model 377

The architecture of the contextualized model is 378

as depicted in Figure 3b. Denote the tokens of 379

the instruction text as {ti} and the tokens of i- 380

th text segment of interest (either automatically 381

extracted by SRL or annotated by humans) as 382

{aij}. A special start and end of segment to- 383

ken, <a> and </a>, is wrapped around each 384

text segment and hence the input tokens become: 385

"t1, ..., tk,<a> ai1, ai2, ..., aiK </a>, ...". The 386

contextualized segment representation is then ob- 387

tained by applying a mean pooling over the lan- 388

guage model output representations of each of its 389

tokens, i.e. denote the output representation of aij 390
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[CLS] Turn on the stove. [SEP] Oil is hot. [SEP]

Pre-Trained Language Model (RoBERTa)

• NULL
• Precondition
• Postcondition

(a) Non-Contextualized Model

… <a> Cut up the onions </a>. <a> Turn on the stove. </a> Once the <a> oil is hot enough </a> …

Pre-Trained Language Model (RoBERTa)

⇒ NULL ⇒ Postcondition

Label Balanced Sampling

(b) Contextualized Model

Figure 3: Model architectures: (a) Non-contextualized model: The model only considers a pair of given text segments. (b)
Contextualized model: The model takes the whole instruction paragraphs (i.e. contexts) and wrap each text segment with our
special tokens (<a>), where each segment representation is obtained by taking an average over its token representations. The
ordered concatenated segment representations will then be fed into an MLP to make the final predictions.

as o(aij), the segment representation of o(ai) is391

AvgPool(
∑K

j=1 o(aij)). To determine the relation392

between segment i and j, we feed their ordered con-393

catenated representation, concat(o(ai), o(aj)), to394

an MLP for the relation prediction.395

5.3 Learning396

Multi-Staged Training. For different variants of397

our task (Section 3.1), we can utilize different com-398

binations of the heuristically constructed dataset399

and the annotated-train-set. For the low-resource400

setting, our models can thus be firstly trained on401

the constructed training set, and then finetuned402

on the annotated-set. Furthermore, following the403

self-training paradigm (Xie et al., 2020; Du et al.,404

2021), the previously obtained model predictions405

can be utilized to either augment (i.e. adding link-406

ages) or correct (i.e. revising linkages) the original407

heuristically constructed data. And hence a second-408

stage finetuning can be conducted on this model-409

self-annotated data for improved performance.410

Label Balancing. It is obvious that most of the rela-411

tions between randomly sampled text segment pairs412

will be NULL, and therefore the training labels are413

imbalanced. To alleviate this, we downsample the414

negative samples when training the models. Specif-415

ically, we fill each training mini-batch with equal416

amount of positive (relations are not NULL) and417

negative pairs, where the negatives are constructed418

by either inverting the positive pairs or replacing419

one of the segment with another randomly sampled420

unrelated segment within the same article.421

6 Experiments and Analysis422

Our experiments seek to answer these questions:423

(1) How well can the models and humans perform424

on the proposed task? (2) Is instructional context425

information useful? (3) Are the proposed heuristics426

and the second-stage self-training effective?427

6.1 Training and Implementation Details 428

For both non-contextualized and contextualized 429

models, we adopt the pretrained RoBERTa (-large) 430

language model (Liu et al., 2019) as the base model. 431

All the linguistic features, i.e. SRL (Shi and Lin, 432

2019), co-references, POS-tags, are extracted using 433

models implemented by AllenNLP (Gardner et al., 434

2017). We truncate the input texts at maximum 435

length of 500 while ensuring all the text segments 436

within this length is preserved completely. 437

6.2 Experimental Setups 438

Data Splits. The primary benchmark of WikiHow 439

annotated-set is partitioned into train (30%), de- 440

velopment (10%), and test (60%) set, respectively, 441

resulting in 150, 50, and 300 data samples, for low- 442

resource setting. We mainly consider the Instructa- 443

bles annotated-set in a zero-shot setting where we 444

hypothesize the models trained on WikiHow can be 445

well-transferred to it. For training conducted on the 446

heuristically constructed data, including the second- 447

stage self-training, we use respective held-out de- 448

velopment sets to select the checkpoints around 449

performance convergence for finetuning. 450

Evaluation Metrics. We ask the models to predict 451

the relations on every pair of text segments in a 452

given instruction, and compute the average preci- 453

sion (Prec.), recall, and F-1 scores separately with 454

respect to each (pre/post) condition labels. 455

Baselines. There is no immediate baseline we 456

are aware of for the proposed action condition in- 457

ference task. However, we note that Dalvi et al. 458

(2019)’s dependency graph prediction on scientific 459

procedures (Mishra et al., 2018) shares high-level 460

similarities to specifically our precondition infer- 461

ence task. Our non-contextualized model (without 462

the second-stage self-training) with only the noun- 463

phrase-based entity tracing heuristic resembles the 464

KB-induced prior dependency likelihood, gkb, in 465
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Model Heus. Finetuned/Self
WikiHow Annotated-Test-Set Instructables Annotated-Test-Set

Precondition Postcondition Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1

Prob. Random — N/N 3.55 4.42 3.54 0.61 0.86 0.68 2.94 3.88 3.04 0.46 0.46 0.42
Prompt. GPT-3 — N/N 3.87 73.46 7.35 4.90 77.08 9.21 3.14 64.25 5.99 1.37 34.33 2.65
Adapt.-XPAD — Y/N 6.21 58.38 10.64 9.47 13.83 10.45 5.11 57.53 8.92 7.74 9.00 7.89

Non-Context. Y Y/N 8.21 79.52 14.32 15.43 44.99 20.56 6.49 65.05 11.31 13.64 43.50 18.65
Y Y/Y 8.56 81.19 14.91 26.53 65.95 34.31 6.64 67.13 11.54 24.53 61.93 31.78

Context.

N Y/N 34.01 58.33 39.27 34.44 43.15 36.79 26.93 53.43 32.92 32.16 41.39 34.42
N Y/Y 42.26 58.45 45.41 40.99 46.51 42.32 38.16 55.77 42.23 42.57 48.00 44.07
Y N/N 10.69 34.79 15.05 10.34 11.88 10.49 10.34 16.17 11.42 4.52 4.15 4.15
Y Y/N 47.92 64.63 51.38 51.15 57.64 52.59 40.70 58.97 45.17 47.92 56.51 50.06
Y Y/Y 49.42 68.40 53.51 52.39 57.35 53.42 43.81 62.71 48.34 53.41 60.51 55.17

Human — — 83.91 83.86 83.55 77.39 84.81 78.81 84.74 81.32 82.78 71.90 82.51 75.53

Table 3: Annotated-test-set performance: The best performance is achieved by applying all of the proposed heuristics (heus.)
and undergoing the two-stage training: finetuned on the annotated-train-set first and then perform the self-training. Note that for
the Instructables, both Finetuned and Self are done on the WikiHow training sets and a zero-shot transfer is performed.

Heuristics.
WikiHow Annotated-Test-Set Instructables Annotated-Test-Set

Precondition Postcondition Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1

– temporal – coref. - keywords 45.60 61.22 48.59 43.71 47.56 44.35 39.35 57.03 43.49 38.45 42.96 39.39
– temporal – coref. 43.43 64.43 48.04 46.27 51.27 47.22 37.06 59.95 42.56 38.41 44.54 39.83

– temporal 45.83 62.48 49.17 47.72 52.70 48.81 39.39 59.53 44.23 46.81 52.15 48.23

Table 4: Heuristics ablations: The models used here are contextualized models without the second-stage self-training for both
datasets, and "–" indicates exclusion (from using all). In general, each of the designed heuristics give incremental performance
gain to both datasets, where the temporal component is particularly effective in postcondition predictions (compare to Table 3).

Train Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1

10% 41.34 61.71 46.06 45.24 55.56 47.95
20% 45.60 67.55 50.78 49.30 58.02 51.62
30% 57.38 64.46 57.53 50.49 54.57 51.09
40% 49.61 73.09 55.14 50.45 57.77 52.27
50% 54.27 70.89 57.84 51.35 55.85 52.23
60% 53.21 69.36 56.42 53.68 58.09 54.46

Table 5: Varying annotated-train-set size: on WikiHow
(test-set size is fixed at 30%). We use the (best) model trained
with all the proposed heuristics and the self-training paradigm.

their proposed XPAD framework.8466

Beside this adapted-XPAD, we also evaluate our467

task with (1) probabilistic random-guess baseline468

(random guesses proportional to the training-set469

label ratio), and (2) zero-shot GPT-3 (Brown et al.,470

2020) where the prompts feature exemplar data471

instances as the task definition (contextualized,472

see Append. Sec. C.2 for prompts used), to setup473

and justify challenges our task poses.474

6.3 Experimental Results475

Table 3 left half summarizes both the human and476

model performance on our standard split (30%477

train, 60% test) of WikiHow annotated-set. Con-478

textualized model obviously outperforms the non-479

contextualized counterpart greatly, and all learned480

models perform well-above random baseline. Sig-481

nificant improvements on both pre- and postcondi-482

8With all entity-state-related components excluded (irrele-
vant to our task) and encoder replaced by RoBERTa model.

tion inferences can be noticed when heuristically 483

constructed data is utilized, especially when no 484

second-stage self-training is involved. The best per- 485

formance is achieved by applying all the heuris- 486

tics we design, where further improvements are 487

made by augmenting with second-stage pseudo 488

supervisions. Similar performance trends can be 489

observed in Table 3 right half where a zero-shot 490

transfer from models trained on WikiHow data to 491

Instructables is conducted. 492

Notice that the zero-shot GPT-3 performs quite 493

poorly compared to our best low-resource training 494

setting, and generally worse than our zero-shot con- 495

textualized model utilizing only the heuristically 496

constructed data, justifying the effectiveness of our 497

proposed training paradigm and the difficulty of our 498

task. Nevertheless, there are still large rooms for 499

improvement as the best model falls well-behind 500

human performance (>20% F1-score gap). 501

Heuristics Ablations. Table 4 features ablation 502

studies on the designed heuristics. One can observe 503

that keywords are mostly effective on inferring the 504

postconditions, and co-references are significantly 505

beneficial in the Instructables data, which can hy- 506

pothetically be attributed to the writing style of the 507

datasets (i.e. authors of Instructables might use co- 508

referred terms more). Temporal relation resolution 509

is consistently helpful across pre- and postcondi- 510

tions as well as datasets, suggesting only relying on 511
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Type Example Description

Heus.
Overfit … look for a blade …

… use a sharp blade to cut …
Precondition

Precondition Overfits on
entity trace
heuristic.

Lacking
Causal
Reason

… body start leaning …
… decrease pedal resistance …NULL

Precondition

… can’t completely dry…
… bacteria could form …NULL

Postcondition

Knowledge-
enhanced
causal rea-
soning can
be helpful.

Table 6: Sample model errors. The second row are from
distant segments not link-able even via the keyword heuristic.

narrated orders could degenerate the performance.512

Error Analysis. Our (best) models perform well513

on linkages that exhibit similar concepts to the514

designed heuristics and generalize beyond their sur-515

face forms. However, they can sometimes overfit516

to certain heuristic concepts (Table 6 first row, a517

food preparation context). Another improvement518

the models can enjoy is better causal understand-519

ing, which is currently not explicitly handled by520

our heuristics and can be an interesting future work521

(Table 6 second row, biking and cleaning contexts).522

6.3.1 The Effect of Training Set Size523

Table 3 shows that with a little amount of data for524

training, our models can perform significantly bet-525

ter than the zero-shot setting. This arouses a ques-526

tion – how would the performance change with527

respect to the training set size, i.e. do we just need528

more data? To quantify the effect of training size529

on model performance, we conduct an experiment530

where we vary the sample size in the training set531

while fixing the development (10%) and test (30%)532

set for consistency consideration. We use the best533

settings in Table 3, i.e. with all the heuristics and534

self-training paradigm, for this study. We can ob-535

serve, from Table 5, a plateau in performance when536

the training set size is approaching 60%, implying537

that simply keep adding more training samples does538

not necessarily yield significant improvements, and539

hypothesize that the discussed potential improve-540

ments are the keys to further effectively exploit the541

rich knowledge in large-scale instructional data.542

7 Related Works543

Procedural Text Understanding. Uncovering544

knowledge in texts that specifically features proce-545

dural structure has drawn many attentions, includ-546

ing aspects of tracking entity state changes (Brana-547

van et al., 2012b; Bosselut et al., 2018; Mishra548

et al., 2018; Tandon et al., 2020), incorporating549

common sense or constraints (Tandon et al., 2018;550

Du et al., 2019), procedure-centric question an-551

swering (QA) (Tandon et al., 2019), and struc- 552

tural parsing or generations (Malmaud et al., 2014; 553

Zellers et al., 2021). (Clark et al., 2018) leverages 554

VerbNet (Schuler, 2005) with if-then constructed 555

rules, one of the keywords we also utilize, to de- 556

termine object-state postconditions for answering 557

state-related reading comprehension questions. In 558

addition, some prior works also specifically formu- 559

late precondition understanding as multiple choice 560

QA for event triggers (verbs) (Kwon et al., 2020) 561

and common sense phrases (Qasemi et al., 2021). 562

We hope our work on inferring action-condition 563

dependencies, an essential knowledge especially 564

for understanding task-procedures, from long in- 565

struction texts, can help advancing the goal of more 566

comprehensive procedural text understanding. 567

Drawing dependencies among procedure steps 568

has been explored in (Dalvi et al., 2019; Sakaguchi 569

et al., 2021), however, their procedures come from 570

manually synthesized short paragraphs. Our work, 571

on the other hand, aims at inferring diverse de- 572

pendency knowledge directly from more complex 573

real-world and task-solving-oriented instructional 574

manuals, enabling the condition dependencies to go 575

beyond inter-step and narrative order boundaries. 576

Event Relation Extraction. Our work is also 577

inspired by document-level event relation extrac- 578

tion (Han et al., 2019, 2021a; Huang et al., 2021; 579

Ma et al., 2021). Specifically, certain works also 580

adopt weak supervisions to learn event temporal re- 581

lations (Zhou et al., 2020, 2021; Han et al., 2021b). 582

8 Conclusions 583

In this work we propose a task on inferring ac- 584

tion and (pre/post)condition dependencies on real- 585

world online instructional manuals. We formulate 586

the problem in both zero-shot and low-resource set- 587

tings, where several heuristics are designed to con- 588

struct an effective large-scale weakly supervised 589

data. While the proposed heuristics and the two- 590

staged training leads to significant performance 591

improvements, the results still highlight significant 592

gaps below human performance (> 20% F1-score). 593

We hope our studies and the collected resources 594

can spur relevant research, and suggest two main 595

future directions: (1) End-to-end propose (refined) 596

actionables, conditions, and their dependencies, by 597

fully exploiting our featured span-annotations of 598

the text segments. (2) Inferred world states from 599

the text descriptions as well as external knowledge 600

of the entities and causal common sense can be 601

factored into the heuristics for weak-supervisions. 602
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9 Limitations603

We hereby discuss the current limitations of our604

work: (1) As mentioned in Section 3.1, although605

our annotated dataset enables the possibility of606

learning an extractive model that can be trained607

to predict the span of the text segments of interest608

from scratch, we focus on the more essential action-609

condition dependency linkage inference task as we610

find that the SRL extraction heuristic currently ap-611

plied sufficiently reliable. In the future, we look612

forward to actualizing such an extractive module613

and other relevant works that can either further re-614

fine the SRL-spans or directly propose the text seg-615

ments we require. More specifically, the extractive616

module can be supervised and/or evaluated against617

with our human annotations on the text segment618

start-end positions of an article. (2) The current619

system is only trained on unimodal (text-only) and620

English instruction resources. Multilingual and621

multimodal versions of our work could be as well622

an interesting future endeavors to make. (3) In623

this work, we mostly consider instructions from624

physical works. While certain conditions and ac-625

tions can still be defined within more social domain626

of data (e.g. a precondition to being a good person627

might be cultivating good habits). As a result, we628

do not really guarantee the performance of our mod-629

els when applied to data from these less physical-630

oriented domains.631

10 Ethics and Broader Impacts632

We hereby acknowledge that all of the co-authors633

of this work are aware of the provided ACL Code634

of Ethics and honor the code of conduct. This work635

is mainly about inferring pre- and postconditions636

of a given action item in an instructional manual.637

The followings give the aspects of both our ethi-638

cal considerations and our potential impacts to the639

community.640

Dataset. We collect the human annotation of the641

ground truth condition-action dependencies via642

Amazon Mechanical Turk (MTurk) and ensure that643

all the personal information of the workers involved644

(e.g., usernames, emails, urls, demographic infor-645

mation, etc.) is discarded in our dataset. Although646

we aim at providing a test set that is agreed upon647

from various people examining the instructions,648

there might still be unintended biases within the649

judgements, we make efforts on reducing these650

biases by collecting diverse set of instructions in651

order to arrive at a better general consensus on our 652

task. 653

This research has been reviewed by the IRB 654

board and granted the status of an IRB exempt. 655

The detailed annotation process (pay per amount of 656

work, guidelines) is included in the appendix; and 657

overall, we ensure our pay per task is above the the 658

annotator’s local minimum wage (approximately 659

$15 USD / Hour). We primarily consider English 660

speaking regions for our annotations as the task 661

requires certain level of English proficiency. 662

Techniques. We benchmark the proposed 663

condition-inferring task with the state-of-the-art 664

large-scale pretrained language models and our pro- 665

posed training paradigms. As commonsense and 666

task procedure understanding are of our main focus, 667

we do not anticipate production of harmful outputs, 668

especially towards vulnerable populations, after 669

training (and evaluating) models on our proposed 670

task. 671
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A Details of The Datasets891

Resource-wise our work utilizes online instruc-892

tional manuals (e.g. WikiHow) following many893

existing works (Zhou et al., 2019; Zhang et al.,894

2020; Wu et al., 2022), specifically, the large-scale895

WikiHow training data is provided by (Wu et al.,896

2022), while we scrape the Instructables.com data897

on our own. Since Instructables.com dataset tend898

to have noisier and more free-formed texts, we thus899

manually sub-sample a smaller (as compared to the900

test-set of WikiHow) high quality subset.901

We report the essential statistics of the annotated-902

sets in Table 7. Although our definition of action-903

able is any textual phrase that can be actually acted904

in the real world, every unique phrase in our dataset905

is basically a distinct actionable. We compute the906

number of distinct actions by extracting the main907

verb-noun phrases (with lemmatization applied) in908

a text segment as a valid-action, and report their909

counts in Table 7 as well. Each unique action in910

this way can lead to roughly only 1-to-3 pairwise911

relation instance in our annotated dataset. Both912

this and the aforementioned unique action count913

justifies the diversity of our collected annotated-set.914

Each unique URL of WikiHow can have differ-915

ent multi-step sections, and we denote each unique916

section as a unique article in our dataset; while for917

Instructables.com, each URL only maps to a single918

section. As a result, for WikiHow we firstly manu-919

ally select a set of URLs that are judged featuring920

high quality (i.e. articles consisting clear instructed921

actions, and contain not so much non-meaningful922

or unhelpful monologues from the writer) instruc-923

tions and then sample one or two sections from924

each of the URLs to construct our annotated-set.925

The statistics of the datasets used to construct the926

large-scale weakly supervised WikiHow training927

set can be found in Section 3 of (Wu et al., 2022),928

where we use their provided WikiHow training929

samples that are mostly from physical categories.930
∗Our densely annotated datasets and relevant931

tools will be made public upon paper acceptance.932

A.1 Dataset Splits933

The whole annotated Instructables.com data sam-934

ples are used as an evaluating set so we do not need935

to explicitly split them. For WikiHow, we split936

mainly with respect to the URLs to ensure that no937

articles (i.e. sections) from the same URL are put938

into different data splits, so as to prevent model ex-939

ploiting the writing style and knowledge from the940

Type Counts

Total Unique Articles 500
Total Unique URLs 326

Annot.-Train / Annot.-Test 200 / 300
Type-Token Ratio 9799 / 173920 = 0.06

Pre-/Postcondition Ratio 16457 / 2839 = 5.80
Distinct Actions 5205

Avg. Instance per Unique Action 3.33
Avg. Possible Text Segment Pairs 717.49

Type Mean Std Min Max

Tokens in a Step Text 67.67 23.77 2 161
Sentences in a Step Text 4.20 1.00 1 6
Tokens in an article 319.12 91.71 96 631
Sentences in an article 19.81 4.03 11 28

(a) WikiHow

Type Counts

Total Unique Articles 150
Total Unique URLs 150

Annot.-Train / Annot.-Test 0 / 150
Type-Token Ratio 5580 / 60150 = 0.09

Pre-/Postcondition Ratio 5157 / 698 = 7.39
Distinct Actions 1986

Avg. Instance per Unique Action 1.11
Avg. Possible Text Segment Pairs 633.75

Type Mean Std Min Max

Tokens in a Step Text 64.75 42.57 2 234
Sentences in a Step Text 4.27 2.73 1 17
Tokens in an article 333.3 143.22 124 877
Sentences in an article 21.98 9.47 10 50

(b) Instructables.com

Table 7: General statistics of the two annotated-sets: We
provide the detailed component counts of the annotated-sets
used in this work, including the statistics of tokens and sen-
tences from the instruction steps (lower halves).

same URL of articles on WikiHow. The splitting 941

on the URL-level is as well a random split. 942

B Details of Human Annotations 943

B.1 Inter-Annotator Agreements (IAAs) 944

There are two types of inter-annotator agreements 945

(IAAs) we compute: (1) IAA on text segments and 946

(2) IAA on linkages, and we describe the details 947

of their computations in this section. 948

IAA on Text Segments. For each worker- 949

highlighted text segment, either coming from di- 950

rectly clicking the pre-highlighted segments or their 951

own creations, we compute the percentage of the 952

overlapping of the tokens between segments an- 953

notated by different workers. If this percentage is 954

> 60% of each segment in comparison, we denote 955

these two segments are aligned. Concretely, for all 956

the unique segments of the same article, annotated 957

by different workers, we can postulate a segment 958

dictionary where the aligned segments from dif- 959

ferent worker annotations are combined into the 960
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same ones. And hence each worker’s annotation961

can be viewed as a binary existence of each of the962

items in such a segment dictionary, where we can963

compute the Cohen’s Kappa inter-annotator agree-964

ment scores on every pair of annotators to derive965

the averaged IAA scores.966

IAA on Linkages. Similar to the construction of967

a segment dictionary, we also construct a linkage968

dictionary where every link has a head segment969

pointing to the tail segment, with both of the seg-970

ments coming from an item in the segment dictio-971

nary. We thus can also treat the annotation of the972

linkages across different worker annotations as a bi-973

nary existence and perform similar inter-annotator974

agreement computations.975

The resulting IAAs for each dataset and annota-976

tion types are reported in Section 3.1.977

Majority Vote. To obtain the final multi-annotator-978

judged refined data, with our collection budget al-979

lowance, we ensure that the number of annotators980

per data instance (instruction article) is at least 2981

(mostly 3), where consensus (strict agreement) is982

used for instances with 2 annotators, and majority983

vote is adopted for 3 annotators.984

B.2 Annotation Process985

We adopt Amazon Mechanical Turk (MTurk) to986

publish and collect our annotations, where each987

of the annotation in the MTurk is called a Human988

Intelligence Task (HIT). As shown in Figure 4a,989

on the top of each HIT we have a detailed descrip-990

tion of the task’s introduction, terminologies, and991

instructions. For the terms we define, such as ac-992

tionables and pre-/postconditions, we also illustrate993

them with detailed examples. To make it easier994

for workers to quickly understand our tasks, we995

provide a video version explaining important con-996

cepts and the basic operations. We also set up a997

Frequently Asked Question (FAQ) section and con-998

stantly update such section with some questions999

gathered from the workers.1000

Figure 4b shows the layout of the annotation1001

panel. A few statements are pre-highlighted in1002

grey and each of them is clickable. These state-1003

ments are automatically pre-selected using the SRL1004

heuristics described in Section 3.1, which are sup-1005

posed to cover as much potential actionables and1006

pre-/postconditions as possible. Workers can either1007

simply click the pre-highlighted statements or redo1008

the selection to get their more desired segments.1009

The clicked or selected statements will pop up to1010

Confidence Level WikiHow Instructables.com

5 (Very) 27.27 16.33
4 (Fairly) 27.11 23.47
3 (Moderately) 28.25 22.95
2 (Somewhat) 16.23 29.10
1 (Not-At-All) 1.14 8.16

Table 8: Confidence-Level Statistics (%): In WikiHow,
majority (> 80%) of the annotators indicate at least > 3 (Mod-
erately) confidence level. As for Instructables.com, it has
lower confidence level as the articles tend to be more free-
formed and noisy, however, there are still more than 60% of
the time workers report confidence levels at least moderately.

the right panel as the text-blocks. For the conve- 1011

nience to manage the page layout, each text-block 1012

is dragable and can be moved anywhere within 1013

the panel. The workers then should examine with 1014

their intelligence and common sense to connect 1015

text-blocks (two at a time) by right clicking one of 1016

them to start a directed linkage (which ends at an- 1017

other text-block) and choose a proper dependency 1018

label for that particular drawn linkage. 1019

Since our annotation task can be rather compli- 1020

cated, we would like our workers to fully under- 1021

stand the requirements before proceeding to the 1022

actual annotation. All annotators are expected to 1023

pass three qualification rounds, each consisting of 1024

5 HITs, before being selected as an official anno- 1025

tator. 15 HITs are annotated internally in advance 1026

as the standard answers to be used to judge the 1027

qualification round qualities. 1028

We calculate the IAAs of each annotator against 1029

our standard answers to measure their performance 1030

in our task. In each round, only the best performers 1031

move on to the next. At the end of each round, 1032

we email annotators to explain the questions they 1033

asked or some of the more commonly made mis- 1034

takes shared across multiple workers. In total, over 1035

60 workers participated in our task, and 10 of them 1036

passed the qualification rounds. 1037

We estimate the time required to complete each 1038

of our HITs to be 10-15 minutes, and adjust our pay 1039

rate to $2.5 and $3 USD for the qualification and 1040

the actual production rounds, respectively. This 1041

roughly equates to a $15 to $18 USD per hour 1042

wage, which is above the local minimum wage for 1043

the workers. We also ensure that each of our data 1044

samples in the official rounds is annotated by at 1045

least two different good workers. 1046

Confidence Levels. We compute the averaged per- 1047

centage of confidence levels reported by the work- 1048

ers in Table 8. Note that majority of the workers 1049
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indicate a moderately or fairly confidence levels,1050

implying they are sufficiently confident about their1051

annotations. We also see feedback from workers1052

that some of them rarely use strong words such as1053

very to indicate their confidence levels, and hence1054

the resulted statistics of their confidences could be1055

a bit biased towards the medium.1056

Human Performance. We randomly select 1001057

samples from the WikiHow annotated-test-set and1058

50 samples from the Instructables.com annotated-1059

test-set for computing the human performance. The1060

allowed inputs are exactly the same as what mod-1061

els take, i.e. given all the instruction paragraph as1062

context and highlighted (postulated text segment1063

boxes) text segments of interests, workers are asked1064

to predict the relations among such segments so1065

as to induce a complete dependency graph. For1066

each sample, we collect inputs from two different1067

workers, and ensure that the workers are not the1068

ones that give the original annotations of the action-1069

condition dependencies. The human performance1070

is then computed by taking the averaged metrics1071

similar to the models on the given samples.1072

C Modelling Details1073

C.1 More on Heuristics1074

C.1.1 SRL Extraction1075

As SRL can detect multiple plausible ways to form1076

the ARG frames to the same central verb, we need1077

to determine which one is the most likely to be1078

desirable. When such multiple argument patterns1079

exist for the same central verb, we simply deter-1080

mine the most desirable formation of segments by1081

maximizing both the number of plausible segments1082

(where they do not overlap above certain thresh-1083

old, which is set to be 60% in this work) within a1084

sentence and the number of ARGs in each segment.1085

C.1.2 Linking Algorithm1086

In Section 4.2 we mention that a maximum dis-1087

tance of 2 steps between linked segments is im-1088

posed to filter out possible non-dependent condi-1089

tions. While this still can potentially include many1090

not-so-much depended text segments, our goal is1091

to exploit the generalization ability of large-scale1092

pretrained language models to recognize segments1093

that are most probable conditions by including as1094

much as heuristically proposed linkages as possi-1095

ble, which is empirically proven effective. A better1096

strategy on making such a design choice of maxi-1097

mum allowed step-wise distance is left as a future1098

work. 1099

C.1.3 Keywords 1100

About 3% of the entire un-annotated data have sen- 1101

tences containing the keywords we use in this work 1102

(Table 2). Despite the relatively small amount com- 1103

pared to other heuristics, they are quite effective 1104

judging from the results reported in Table 3. 1105

C.1.4 Key Entity Tracing 1106

For the key entity tracing heuristic described in Sec- 1107

tion 4.1.2, as long as two segments share at least 1108

one mentioned entity, they can be linked (i.e. traced 1109

by the shared entity). We do not constraint the num- 1110

ber of key entities within a segment, so there can 1111

be more than one being used to conduct the tracing. 1112

Constructing Entity Prediction Datasets. As 1113

mentioned in Section 4.1.2, one way to postulate 1114

the key entities is via constructing a predictive 1115

model for outputting potentially involved entities. 1116

To do so, we firstly construct an entity vocabulary 1117

by extracting all the noun phrases within each SRL 1118

extracted segments of the entire un-annotated-set 1119

articles. To prevent from obtaining a too much 1120

large vocabulary as well as improbable entities, we 1121

only retain entities (without lemmatization) that 1122

appear with > 5 occurrences in at least one article. 1123

We then train a language model (based on 1124

RoBERTa-large as well) where the output is the 1125

multi-label multi-class classification results on the 1126

predicted entities. When predicting the key enti- 1127

ties for a given segment, we further constraint the 1128

predictions to be within the local vocabulary (more 1129

than 5 occurrences) within the article such segment 1130

belongs to. This model is inspired by the entity 1131

selector module proposed in (Bosselut et al., 2018) 1132

while we only consider single step statements. We 1133

verify the performance of the learned model on the 1134

dataset provided by (Bosselut et al., 2018) (the en- 1135

tity selection task), where our model can achieve 1136

roughly 60% on F-1 metric, indicating the trained 1137

model is sufficiently reliable. 1138

C.1.5 Temporal Relations 1139

We use the temporal relation resolution model 1140

from (Han et al., 2021b) that is trained on various 1141

temporal relation datasets such as MATRES (Ning 1142

et al., 2018). We train the model on three different 1143

random seeds and make them produce a consen- 1144

sus prediction, i.e. unless all of the models jointly 1145

predict a specific relation (BEFORE or AFTER), 1146

otherwise the relation will be regarded as VAGUE. 1147
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C.2 GPT-3 Baseline1148

We use the most powerful version of GPT-31149

(Davinci)9 provided by the OpenAI GPT-3 API1150

(zero-shot prompted version) with the following1151

prompt:1152

Extract the preconditions and postconditions1153

from this text:1154

Text: "Slice 500 grams of onion. Heat the pan1155

with olive oil. Wait until the oil is sizzling. Place1156

onions in the frying pan. Stir the onions. In a few1157

minutes, they should be caramelized."1158

Segment 1: "Heat the pan with olive oil."1159

Segment 2: "oil is sizzling."1160

Label: post-condition1161

Text: "Slice 500 grams of onion. Heat the pan1162

with olive oil. Wait until the oil is sizzling. Place1163

onions in the frying pan. Stir the onions. In a few1164

minutes, they should be caramelized."1165

Segment 1: "Slice 500 grams of onion."1166

Segment 2: "Place the onions in the frying pan."1167

Label: pre-condition1168

Text: "Slice 500 grams of onion. Heat the pan1169

with olive oil. Wait until the oil is sizzling. Place1170

onions in the frying pan. Stir the onions. In a few1171

minutes, they should be caramelized."1172

Segment 1: "Slice 500 grams of onion."1173

Segment 2: "Heat the pan with olive oil."1174

Label: no relation1175

Text: "Fill-In an Article"1176

Segment 1: "Fill-In Text Segment 1"1177

Segment 2: "Fill-In Text Segment 2"1178

Label: GPT-3 Prediction1179

In other words, we provide an exemplar simpli-1180

fied instance to instruct what pre- and postcon-1181

ditions should be like to the model with the ar-1182

ticle context and a pair of text segments of interest.1183

And then, the GPT-3 model should generate the1184

text description-based prediction label (non-case-1185

sensitive). For preconditions we allow verbalized1186

label to be within {precondition, pre-condition},1187

and postconditions within {postcondition, post-1188

condition}. For the NULL relation, we allow {no1189

relation, unrelated, null, none}.1190

C.3 Development Set Performance1191

We select the model checkpoints to be evaluated1192

using the held-out development split (annotated-1193

dev-set). We also report the performance on this1194

annotated-dev-set in Table 9.1195

9https://openai.com/api/pricing/

C.4 More Results on Train-Set Size Varying 1196

Table 10 is a similar experiment as Table 5 but here 1197

we conduct the experiments with the models that do 1198

not utilize the weakly supervised data constructed 1199

with the proposed heuristics at all. One can observe 1200

that similar trends hold that a plateau can be no- 1201

ticed when the training set size is approaching 60%. 1202

Compared to Table 5, we can also observe that the 1203

smaller the train-set size is, the larger gaps shown 1204

between the models with and without utilizing the 1205

heuristically constructed data. This can further im- 1206

ply the effectiveness of our heuristics to construct 1207

meaningful data for the action-condition depen- 1208

dency inferring task. The models with heuristics, 1209

if compared at the same train-set size respectively, 1210

significantly outperforms every model counterparts 1211

that do not utilize the heuristics. 1212

Table 11 reports similar experiments but in the 1213

Instructables.com annotated-test-set. Note that we 1214

perform a direct zero-shot transfer from the Wiki- 1215

How annotated-train-set, so the test-set size is al- 1216

ways 100% for the Instructables. 1217

Finally, both Tables 12 and 13 report the same 1218

experiments, however, this time the second-stage 1219

self-training is not applied. It is worth noting that 1220

the self-training is indeed effective throughout all 1221

the train-set-size and across different datasets and 1222

model variants, however, the trends of model per- 1223

formance hitting a saturation point when the train- 1224

set size increases still hold. 1225

C.5 Training & Implementation Details 1226

Training Details. The maximum of 500 token 1227

length described in Section 6.1 is sufficient for 1228

most of the data in the annotated-test-sets, as ev- 1229

ident in Table 7. All the models in this work 1230

are trained on a single Nvidia A100 GPU10 on 1231

a Ubuntu 20.04.2 operating system. The hyperpa- 1232

rameters for each model are manually tuned against 1233

different datasets, and the checkpoints used for test- 1234

ing are selected by the best performing ones on 1235

the held-out development sets in their respective 1236

datasets. 1237

Implementation Details. The implementations of 1238

the transformer-based models are extended from 1239

the HuggingFace11 code base (Wolf et al., 2020), 1240

and our entire code-base is implemented in Py- 1241

Torch.12 1242

10https://www.nvidia.com/en-us/data-center/a100/
11https://github.com/huggingface/transformers
12https://pytorch.org/
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WikiHow Annotated-Dev-Set Precondition Postcondition
Model Heuristics Finetuned Self Prec. Recall F-1 Prec. Recall F-1

Non-Context. All Y Y 8.22 74.77 14.00 19.70 69.94 28.36

Context.

No Heuristics Y N 29.96 56.91 35.41 30.28 39.10 32.03
No Heuristics Y Y 40.09 57.60 43.20 41.10 48.59 42.53

All N N 9.59 32.69 13.35 7.48 9.26 7.81
– temporal – coref. - keywords Y N 43.59 58.74 45.95 39.33 44.45 40.64

– temporal – coref. Y N 38.43 60.48 42.83 39.72 47.80 41.92
– temporal Y N 41.19 57.06 43.92 47.63 54.69 48.91

All Y N 45.05 59.59 47.35 45.65 50.35 46.42
All Y Y 44.93 65.25 49.12 46.06 52.04 47.21

Table 9: Annotated-dev-set performance on WikiHow: Similar to Table 3, we report the development set performance on the
WikiHow dataset (Instructables.com does not have the development set as we are conducting a zero-shot transfer).

Train Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1

10% 33.44 56.41 38.69 42.37 53.86 45.25
20% 35.05 60.97 40.86 40.76 51.35 43.19
30% 44.57 60.19 47.68 43.00 47.26 43.83
40% 39.38 72.23 46.63 45.51 54.27 47.57
50% 40.97 69.70 47.24 49.15 59.04 51.76
60% 46.99 71.14 52.27 48.80 56.51 50.74

Table 10: Varying annotated-train-set size without weakly
supervised training: on WikiHow (test-set size is fixed at
30%). The model used in this experiment is without training
on any of the heuristically constructed dataset, but we apply
the self-training paradigm.

Train Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1

10% 32.25 50.50 36.36 41.37 51.37 44.03
20% 35.95 56.99 40.89 48.77 60.10 51.86
40% 39.62 64.19 45.77 48.83 60.30 52.08
50% 57.38 64.46 57.53 50.49 54.57 51.09
60% 45.62 61.02 49.06 55.00 65.04 57.54

10% 27.50 50.32 32.74 34.99 47.66 38.18
20% 26.86 51.73 32.34 40.31 52.89 43.43
40% 30.58 64.38 38.16 44.78 60.86 49.28
50% 39.65 63.28 45.41 50.96 59.98 53.54
60% 39.90 65.68 45.95 49.64 58.83 51.97

Table 11: Varying annotated-train-set size: on Instructa-
bles.com (test-set size is fixed at 100%). Note that here the
train-set size is from WikiHow annotated-set, and the 30% is
basically Table 3. The upper half is with models that utilize
both the heuristically constructed dataset and the self-training
paradigm, while the lower half is with models that do not use
any weak supervisions.

C.6 Hyperparameters1243

We train our models until performance convergence1244

is observed on the heuristically constructed dataset.1245

The training time for the weakly supervised learn-1246

ing is roughly 6-8 hours. For all the finetuning that1247

involves our annotated-sets, we train the models1248

for roughly 10-15 epochs for all the model vari-1249

ants, where the training time varies from 1-2 hours.1250

We list all the hyperparameters used in Table 14.1251

The basic hyperparameters such as learning rate,1252

Train Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1

10% 39.77 61.58 44.65 45.76 53.42 47.57
20% 42.75 64.32 47.40 47.97 56.99 50.21
30% 52.37 64.59 54.43 50.70 55.93 51.87
40% 43.77 68.58 49.28 45.47 53.78 47.48
50% 51.98 67.29 54.94 50.45 54.84 51.21
60% 47.96 69.77 52.61 47.81 52.27 48.77

10% 26.37 51.61 31.80 31.52 47.68 35.33
20% 28.62 56.40 34.53 33.68 48.10 37.30
30% 37.20 60.09 42.32 37.44 45.52 39.39
40% 32.74 68.97 40.57 36.33 47.00 39.00
50% 40.30 65.62 45.94 44.86 53.36 46.85
60% 38.80 68.16 45.27 42.03 51.96 44.43

Table 12: Varying annotated-train-set size: on WikiHow
(test-set size is fixed at 30%). The upper half is with mod-
els that utilize the heuristically constructed dataset, while the
lower half is with models that do not use any weak super-
visions. Both upper and lower halves do not undergo any
second-stage self-training.

Train Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1

10% 29.59 52.25 34.76 40.31 50.26 42.92
20% 31.46 53.34 36.37 44.11 55.32 46.94
40% 34.02 60.66 40.20 43.62 51.56 45.43
50% 42.57 59.24 46.38 49.83 57.26 51.77
60% 37.69 61.36 43.34 48.49 54.29 49.70

10% 18.44 41.85 23.20 21.97 39.08 26.02
20% 20.91 48.63 26.52 28.93 44.85 32.98
40% 23.89 61.51 31.59 36.43 51.98 40.50
50% 30.56 58.10 36.90 41.35 54.48 44.95
60% 28.59 60.24 35.52 40.06 53.41 43.20

Table 13: Varying annotated-train-set size: on Instructa-
bles.com (test-set size is fixed at 100%). The structure of
this table is similar to that of Table 12, i.e. no self-training is
conducted.

batch size, and gradient accumulation steps are 1253

kept consistent for all kinds of training in this work, 1254

including training on the weakly supervised data, 1255

finetuning on the annotated-sets, as well as during 1256

the second-stage self-training. We also include the 1257

search bounds and number of trials in Table 15, that 1258

all of our models adopt the same search bounds and 1259
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Models Batch Size Initial LR # Training Epochs Gradient Accu- # Paramsmulation Steps

Non-contextualized 8 1× 10−5 15 1 355M
Contextualized 4 1× 10−5 15 1 372M

Table 14: Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are trained with Adam
optimizers (Kingma and Ba, 2015). We include number of learnable parameters of each model in the column of # params.

Type Batch Size Initial LR # Training Epochs Gradient Accumulation Steps

Bound (lower–upper) 2–8 1× 10−5–1× 10−6 5–15 1

Number of Trials 2–4 2–3 2–4 1

Table 15: Search bounds for the hyperparameters of all the models.

ranges of trials.1260

D Releases & Codes1261

The comprehensive human-annotated datasets, in-1262

cluding both on WikiHow and Instructables.com1263

will be released upon acceptance, along with a1264

clearly stated documentation for usages. We plan to1265

also release the codes (a snippet of our codes are in-1266

cluded as a .zip file during the reviewing period)1267

for processing the datasets as well as the implemen-1268

tation of our models and proposed training methods.1269

We hope that by sharing the essential resources, our1270

work can incentivize more interests into research1271

on procedural understanding that specifically tar-1272

gets condition and action dependencies and their1273

applications to autonomous task-solving agents and1274

assistant AI that guides humans throughout accom-1275

plishing complex tasks.1276
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(a) Human Annotation Instruction

(b) Sample Annotation Interface

Figure 4: MTurk Annotation User Interface: (a) We ask workers to follow the indicated instruction. All the blue-colored text
bars on the top of the page are expandable. Workers can click to expand them for detailed instructions of the annotation task.
(b) The annotation task is designed for an intuitive click/select-then-link usage, followed by a few additional questions such as
confidence level and feedback (this example is obtained from WikiHow dataset). The grey-color-highlighted text segments are
postulated by the SRL, where the color of a segment will turn yellow if either being selected or cursor highlighted. Notice that
for better illustration, the directions of the links in our paper are opposite to those in the annotation process.
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