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ABSTRACT

Autoregressive decoding is bottlenecked by its sequential nature. Speculative de-
coding has become a standard way to accelerate inference by using a fast draft
model to predict upcoming tokens from a slower target model, and then verifying
them in parallel with a single target model forward pass. However, speculative
decoding itself relies on a sequential dependence between speculation and verifi-
cation. We introduce speculative speculative decoding (SSD) to parallelize these
operations. While a verification is ongoing, the draft model predicts likely verifi-
cation outcomes and prepares speculations pre-emptively for them. If the actual
verification outcome is then in the predicted set, a speculation can be returned
immediately, thereby elimination all speculation overhead. We identify three key
challenges presented by speculative speculative decoding, and put forth princi-
pled methods to solve each after theoretical analysis. The result is SAGUARO, an
optimized SSD algorithm which is up to twice as fast as optimized speculative
decoding baselines and up to 5x faster than autoregressive decoding with open
source inference engines.

1 INTRODUCTION

Modern AI relies on fast language model inference. Applications ranging from chat assistants to
coding agents and more depend on low-latency for interactive user experiences. However, the inher-
ently sequential nature of autoregressive LLM decoding makes it challenging to attain low latency
on modern GPUs, which rely on huge amounts of parallel compute for speed.

Speculative decoding (Leviathan et al., 2023; Chen et al., 2023) (SD) is a technique introduced to
alleviate this problem. It uses a fast “draft model” to predict the next few tokens that would be
generated by a slower “target model”. These tokens are then “verified” in one parallel forward pass
of the target model, according to an algorithm that guarantees the resulting tokens are drawn from
the target distribution. In each verification, the target model decides both how many speculated
tokens to accept, and samples an additional bonus token that follows all of the accepted tokens. This
method exploits the key fact that verifying many tokens in parallel is much faster than generating
them sequentially. Although speculative decoding is an effective technique for accelerating LLM
decoding, it is itself limited by a sequential dependence: verification must complete before the next
speculation can begin. In this work, we ask:

Can we eliminate the sequential dependence between drafting and verification?

We introduce speculative speculative decoding (SSD), a unifying framework for methods that aim to
parallelize drafting and verification. While in SD the draft model waits for the verification to com-
plete before beginning to speculate the next round, in SSD the draft model predicts what verification
outcomes are most likely, and prepares (pre-speculates) for all of them in parallel to the verification.
If any of these outcomes occurs, the draft model can immediately send the pre-speculated tokens to
the verifier, thereby introducing no drafting latency.

There are three main challenges. First: the draft model must accurately predict the outcome of a
verification, which is hard because the space of possible outcomes is extremely large: the draft must
correctly predict not just how many speculated tokens will be accepted, but also which bonus token
will be sampled at the end for each of those cases. Second, we identify a subtle trade-off between the
acceptance rate of the speculator and how well it is able to predict verification outcomes, which must
be navigated carefully to maximize speedups. Third, the algorithm must have a fallback strategy to
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Figure 1: (Left) End-to-end performance of speculative speculative decoding (SSD), averaged over
four datasets spanning math, code, instruction following, and chat. Comparison with autoregressive
(AR) and ordinary speculative decoding (SD) baselines. (Middle) Ordinary speculation requires
the verifier to wait idly for the draft to speculate. (Right) In our algorithm, speculation happens
on distinct hardware, in parallel, while verification is taking place, based on predicted verification
outcomes. This allows the latency of drafting to be hidden and allows the draft model to speculate
more tokens, but risks a “cache miss” if the draft fails to predict the actual verification.

handle cases where the draft model fails to predict the verification outcome correctly, balancing its
latency and acceptance rate. Such failures become increasingly common as batch size or sampling
temperature increase, and thus necessitate careful treatment.

We present SAGUARO, an optimized SSD algorithm that addresses these three challenges.
SAGUARO achieves decoding speedups of up to 2x compared to optimized speculative decoding
baselines, and up to 5x that of standard autoregressive generation on a range of datasets and model
families (Figure 8). It introduces optimizations to address the three challenges above:

• In Section 4.1, we frame the problem of predicting verification outcomes in terms of con-
strained optimization, and introduce a technique that uses the most likely draft logits to
predict the bonus token, doing so with up to 90% accuracy.

• In Section 4.2, we identify a tension between accurately predicting verification outcomes
and generating high-quality speculations, and develop a sampling algorithm that allows
balancing the two. This results in 50% end-to-end speedups at high temperatures.

• In Section 4.3, we propose and examine various strategies to handle failed predictions,
demonstrating that the optimal fallback strategy varies with batch size. Adopting this,
SAGUARO outperforms SD by 60% at low batch sizes and 20% even at larger batch sizes,
despite having to do much more compute per batch element by decoding many possible
outcomes simultaneously.

2 BACKGROUND

2.1 SPECULATIVE DECODING

Speculative decoding accelerates sampling from a target distribution ptarget by using a cheaper
draft distribution pdraft to generate candidate continuations, and then using the target distribution
to accept selectively. To verify, the target first computes probabilities for all the speculated to-
kens in parallel in a single forward pass. Drafted tokens are accepted sequentially, each with
probability min{1, ptarget(x)/pdraft(x)}. Upon the first rejection, remaining draft tokens are dis-
carded, and the last-token target logits are used to sample a “bonus token.” This is done by sam-
pling the bonus token from a modified distribution that guarantees the resulting sequence is dis-
tributed as ptarget. This modified distribution is called the residual distribution, and takes the form
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r(·) ∝ max (ptarget(·)− pdraft(·), 0). In the case where all tokens are accepted, the residual distribu-
tion is simply the target distribution.

The expected number of generated tokens per round, and thus the overall efficiency of speculative
decoding, is governed by the acceptance rate: the probability of accepting a given token in the
speculation, conditioned on accepting all prior tokens. In (Leviathan et al., 2023), it is shown that
the acceptance rate can be written in terms of how well the draft distribution approximates the target
distribution in the following way.

Theorem 1. (Leviathan et al., 2023)

α =
∑
x

min{ptarget(x), pdraft(x)} = 1− 1
2∥ptarget − pdraft∥1

Definition 2. We define a speculation at round T , denoted sT := (sT1 , . . . , s
T
K), as the sequence of

K tokens proposed autoregressively by the draft model. The length K of the speculated sequence is
called the speculative lookahead.

Definition 3. We define a verification outcome at round T , denoted vT := (k, t∗) ∈ VT , where
(sT−1

1 , . . . , sT−1
k ) are the accepted draft tokens from round T−1, and t∗ is the bonus token sampled

from the residual distribution.

2.2 RELATED WORK

Parallel Speculative Decoding. AMUSD (McDanel, 2025) and PEARL (Liu et al., 2025) pro-
pose speculating the next round during ongoing verification, but only prepare for the verification
outcome in which all tokens are accepted, which is one special case of many possible outcomes.
SwiftSpec (Zhang et al., 2025) and SpecBranch (Shen et al., 2025) prepare a larger cache consisting
of a token tree branching off of the speculation being verified (thus enabling larger speedups), but
both use fallback strategies that do not work at large batch sizes. SpecBranch (Shen et al., 2025)
has similar motivation to SSD: it constitutes (approximately) a special case of the SSD framework
where only a single branching point is allowed, where the fallback speculator is equal to the regular
speculator, and where the hyperparameters (branching point, number branches, speculation length)
are dynamically chosen to maximize speedups. SwiftSpec (Zhang et al., 2025) considers the special
case of greedy sampling, and adopts a fallback strategy of just-in-time speculation that struggles
at higher temperatures and batch sizes when cache-misses become inevitable. SAGUARO sampling
(Section 4.2) and fallback (Section 4.3) allow our techniques to perform better in these important
regimes.

Tree-Based Speculative Decoding. Numerous speculative decoding methods have been proposed
that increase the expected number of accepted tokens by allowing the draft model to speculate a
tree of tokens instead of a sequence, thereby giving the verifier several token options at each posi-
tion (Miao et al., 2024; Li et al., 2024b; Chen et al., 2024; Svirschevski et al., 2024). Our method
differs in important ways: First, existing tree-based methods are still sequential: speculate, then
verify. Second, tree-based methods introduce a large amount of verifier compute—which is quite
expensive due to the size of the target model—because the entire tree must be verified in the target
model forward pass. Our method, on the other hand, scales up the speculation compute by pre-
speculating for many verification outcomes in parallel, but does not introduce any additional verifier
compute. Lastly, it is important to note that our method can be combined with these tree-based
approaches for further gains (see Appendix E for discussion).

Improved Draft Architectures. There have been many advancements in draft model architectures
that can improve the acceptance rates and/or speeds of the draft model. For example, EAGLE (Li
et al., 2024a;b; 2025b) allows the draft model to take as input the powerful representations from
the target model for the current prefix, while GliDe (Du et al., 2024) and LongSpec (Yang et al.,
2025) allow the draft model to perform cross-attention on the KV cache of the target model. Alter-
nate model architectures, like diffusion LLMs (Nie et al., 2025; Sahoo et al., 2024; Li et al., 2025a;
Christopher et al., 2025; Samragh et al., 2025) or SSMs (Gu et al., 2022; Gu & Dao, 2023; Wang
et al., 2024), can also be used to increase the speed with which the draft model can produce the spec-
ulated token sequence. We include more technical details on how SSD can fruitfully be combined
with these improved draft model architectures (e.g., EAGLE-3; Li et al. (2025b)) in Appendix E.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 THE SPECULATIVE SPECULATIVE DECODING FRAMEWORK

We introduce speculative speculative decoding, a framework to reason about asynchronous variants
of speculative decoding (Section 3.1), and present theoretical results comparing the expected speed
of SSD to baselines (Section 3.2). Definitions introduced here will be important in Section 4.

3.1 ALGORITHM

Algorithm 1: The Speculative Speculative Decoding (SSD) Framework.
Function main(prompt, target, draft, backup spec):

asynchronously launch speculator(prompt, draft, backup spec)
generated tokens← verifier(prompt, target)
return generated tokens

Function verifier(prompt, target):
target.prefill(prompt)
WAIT TO RECEIVE spec tokens from speculator
generated tokens← []
while True do

verify outcome← target.verify(spec tokens)
generated tokens.append(verify outcome.tokens)
SEND verify outcome to speculator
if end token ∈ verify outcome then

return generated tokens
end
WAIT TO RECEIVE spec tokens from speculator

end

Function speculator(prompt, primary spec, backup spec):
spec tokens← draft.speculate(prompt)
while True do

SEND spec tokens to verifier for verification
cache keys← predict verification outcomes(spec tokens) // Section 4.1
cache vals← speculate for outcomes(cache keys)// Section 4.2
WAIT TO RECEIVE verify outcome from verifier
if verify outcome ∈ cache then

spec tokens← cache[verify outcome]
else

spec tokens← fallback speculate (
verify outcome, primary spec, backup spec

) // Section 4.3
end

end

We present the SSD framework in Algorithm 1. The speculator and verifier processes run in parallel
on separate hardware. While the verifier is verifying the drafted tokens from round T , the speculator
begins speculating round T + 1.

It does so by predicting likely verification outcomes, and then preparing speculations for each of
these outcomes in parallel, and storing these in a “speculation cache” (defined formally below).
Then, when it receives the actual verification outcome, it checks whether this was one of the out-
comes in the cache that it had prepared for. If so, it immediately returns it. Otherwise it defers to a
fallback speculation strategy.

Definition 4. We define a speculation cache ST as a dictionary mapping a set of verification out-
comes VT to their associated pre-computed speculations sT = (sT1 , . . . , s

T
K). We denote a spec-

ulated token sequence sT corresponding to an outcome vT ∈ VT by ST (vT ) as a cache lookup
operation.

4
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Definition 5. A cache hit is when the outcome vT of verifying sT−1 is contained in the speculation
cache ST . A cache miss is when vT /∈ ST .
Definition 6. Let phit,p denote the probability of a cache hit on an iteration conditional on the pre-
vious iteration having been speculated by the primary draft model. Analogously, phit,b represents
the probability of a cache hit on an iteration conditional on speculating with the backup model.
Finally, let phit denote the unconditional probability of a cache hit in an iteration.

3.2 THEORETICAL RESULTS

We analyze the performance of SAGUARO relative to regular autoregressive decoding (Theorem 7)
and sequential speculative decoding (Corollary 20).
Theorem 7. Let the primary and backup speculators take time Tp and Tb relative to the verifier. Let
the expected number of generated tokens from the primary speculator be Ehit, Emiss, respectively.
The expected speedup of Algorithm 1 relative to autoregressive decoding is then:

speedup =
phit · Ehit + (1− phit) · Emiss

phit ·max(1, Tp) + (1− phit) · (1 + Tb)
.

The numerator corresponds to the expected number of tokens generated in each iteration of the
algorithm, and the denominator corresponds to the expected latency of each iteration relative to
autoregressive decoding. This implies two key corollaries.
Corollary 8. (Strictly Faster Than SD). Suppose we run SD with a given speculatorM. Running
SSD with primary and backup both set toM does no worse than SD (strictly better if phit, TSD > 0).
Corollary 9. (Speedup Sandwich) Suppose we choose a primary speculator for which drafting
completes before verification (Tp < 1), and a fast backup speculator (Tb = 0). Then if TSD, ESD

represent the latency and expected number of generated tokens from a draft model in SD, then the
SSD speedup over SD can be bounded by:(

1 + TSD

)
· Ehit

ESD
· phit ≤

speedupSSD

speedupSD
≤
(
1 + TSD

)
· Ehit

ESD
.

This equation reveals that the maximum speedup attainable by SSD is proportional to the latency
reduction (1 + TSD) from hiding draft latency, and the increase in expected number of generated
tokens (Ehit/ESD) from increased drafting time. However, a low cache hit rate phit reduces the
effectiveness of this algorithm, as shown by the lower bound.

4 SAGUARO: AN OPTIMIZED SSD ALGORITHM

In this section, we present SAGUARO, our optimized instantiation of the SSD framework. We present
the three core optimizations we introduce to attain them in Sections 4.1, 4.2, 4.3, respectively, then
combine and evaluate them end to end.

Setup. Throughout this section, experiments are run on batch size 1 with greedy decoding unless
otherwise specified, with the target model on 4×H100 and draft on 1×H100 (in SSD, but colocated
with target in SD). We conduct experiments on two model families, Llama-3 and Qwen-3; the former
appears the main text, with analogous plots for the latter in Appendix F. We document results across
four standard datasets, Alpaca (Dubois et al., 2024), GSM8k (Cobbe et al., 2021), UltraFeedback
(Cui et al., 2024), and HumanEval (Chen et al., 2021). Further setup details are in Appendix B.

4.1 PREDICTING VERIFICATION OUTCOMES: BUILDING THE SAGUARO CACHE

Given a speculation sT that is in the process of being verified, SAGUARO must build a cache ST
for the most likely verification outcomes. The difficulty is that the space of possible verification
outcomes is vast, of size (K+1)V ; there are K+1 possibilities for the number of accepted tokens,
and V − 1 possible bonus tokens (the rejected token in the speculation can never be the bonus, V
possibilities if all tokens are accepted). While the draft decodes all anticipated speculations at once,
in parallel, using a special attention mask (Appendix B), each branch being decoded adds to the
compute-load. This motivates posing verification prediction as constrained optimization.

5
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4.1.1 ALGORITHM

Definition 10. We define the fan-out F p
k :=

∣∣{vT := (k′, t∗) ∈ ST | k′ = k}
∣∣ at position k to be

the number of bonus tokens the draft model anticipates at that position, given the previous iteration
was speculated by the primary speculator. F b

k is defined analogously for the backup speculator.

SpeculationT+1 Prepared
Possible 

Verification 
Outcome

 
SpeculationT Being 

Verified

F2= 3F0= 1

Figure 2: Schematic of speculation
cache strategy. We allocate fan-out
(bonus token guesses) over sequence
length K + 1 according to Theorem 12.

SAGUARO Verification Outcome Prediction Algorithm
Given a fan-out strategy {F p

k , F
b
k} (ours based on Theo-

rem 12), SAGUARO takes the top-Fk tokens at each looka-
head position k in the draft logits, and adds those to the
speculation cache. These are the top-Fk logits excluding
the sampled token sent for verification at that position,
which is guaranteed not to be the bonus token.

4.1.2 THEORETICAL RESULTS

We show how to optimize the choice of fan-out values F p
k

and F b
k to maximize the speedup under a constraint on the

size of the speculation cache.

The probability of a verification outcome (k, ·) in a given
iteration depends on whether the previous speculation

was generated by the primary or backup speculator. Since the two have distinct acceptance rates, the
probability a given number of tokens being accepted need not be the same between the two. Thus,
if the default fan-out strategy when building the cache is to fan out uniformly at each sequence posi-
tion, the cache hit rate on a given iteration depends on whether the previous iteration was speculated
by the primary or backup speculate. These are the definitions of phit,p(F ) and phit,b(F ), respectively.
We see in Figure 3 that these functions (in fact their complement, the rejection rate) empirically
follow a power-law.

Definition 11. 1 We say that a speculator has a r power-law cache hit rate if the chance of a cache
miss with fan-out F is equal to a power-law of F with exponent r, for a sequence drafted by this
speculator. More specifically, this means 1− phit,∗(F ) = 1/F r ∀F ∈ N, for some r > 0.

We now use this definition to reason about how to optimally select the fan-out values F p
k and F b

k
under a computational constraint on the size of the cache. We consider the general case, when this
assumption doesn’t hold, in Appendix A.

Theorem 12. (SAGUARO Cache Shape: Geometric Fan-Out) Consider a draft model with a r
power-law cache hit rate. Then the optimal choice of F p

k (F b
k ) values for k ∈ [0,K] under the

constraint
∑K

k=0 F
p
k ≤ B, follows a capped geometric series:

Fk = F0 · ak/(1+r) ∀k < K, and

FK = F0 · aK/(1+r) · (1− a)−1/(1+r),

where F0 can be chosen such that
∑K

k=0 F
p
k = B (closed form-equation in Appendix A).

This result cleanly reflects the intuition that the lengths of verified strings follow a capped geometric
distribution supported on the speculation lookahead. In other words, if it is unlikely that j ∈ [0,K]
tokens will be accepted by the verifier, we should not waste compute guessing and speculating on
the bonus token at that position, and should lower Fj .

4.1.3 EMPIRICAL EVALUATION

We compare the end-to-end performance of using a naive (uniform) fan-out strategy over sequence
length against the geometric fan-out strategy advanced by Theorem 12. In Figure 4 we find it
improves cache hit rate (right) and end-to-end decoding speed, especially at higher temperatures,
where both SD and the uniform fan out begin to flounder.

1This definition is closely related to the notion of b power-law acceptance rate in Chen et al. (2024).
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Figure 3: Scaling of cache hit rate with fan out. The overall cache hit rate phit(F ) (right) computed
using Theorem 1. Rejection (cache miss) falls as a power law in draft-fan out, suggesting consistent
increases in cache hit rate with larger cache sizes.
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Figure 4: Advantage of geometric fan out strategy increases at higher temperatures, improving
both speculation cache hit rate (right) and thus end-to-end speed (left). Results averaged over four
datasets. At all temperatures, SSD with either fan out strategy outperforms ordinary speculative
decoding.

4.2 BALANCING CACHE HIT AND ACCEPTANCE RATE WITH SAGUARO SAMPLING

The majority of the time, the bonus token is sampled from the residual distribution (except when all
tokens are accepted, in which case it is sampled from the target directly). The residual distribution
can be difficult to predict, especially as sampling temperatures increase. We introduce a novel
sampling scheme that makes this residual easier to predict and therefore increases cache hit rates.

This exploits the fact that the residual distribution is a function of the draft distribution. We make
the recovery token easier to predict by explicitly increasing the residual probability mass on the
most likely draft tokens; and this is done by decreasing the corresponding probability mass when
sampling from the draft. In biasing the draft distribution, however, we may decrease the acceptance
rate by having moved the draft distribution farther from the target (see 1). This induces a tradeoff
between the acceptance rate and the cache hit rate, both of which contribute to end-to-end speed (see
Figure 5, left).

4.2.1 ALGORITHM

Definition 13. We define a sampling scheme as a function σ : RV → ∆V−1 from model logits
zdraft ∈ RV to a probability distribution p ∈ ∆V−1.

To understand how to design a sampling scheme that increases the residual probability mass on
the most likely draft tokens, we first note that the probability of token t in the residual distribution
is proportional to max(ptarget(t) − pdraft(t), 0). Thus, decreasing pdraft(t) increases the token the
probability of t in the residual. This is exactly what our cache-aware sampling scheme does.

Definition 14. Given draft logits z ∈ RV , we define the SAGUARO sampling scheme σF,C(z) for
fan-out F and downweighting constant C ∈ [0, 1] as

σF,C(z) ∝

C · exp
(
zt

)
if t ∈ topF (z)

exp
(
zt

)
otherwise,

7
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In practice, C is a hyperparameter found empirically. The optimal choice C∗ ∈ [0, 1] varies with
temperature (see Figure 6), and that C ≪ 1 can be especially advantageous at high temperatures.

4.2.2 THEORETICAL RESULTS

Theorem 15. For fan-out F and primary speculator logits z, the cache hit rate phit of the SAGUARO
sampling scheme increases monotonically as C → 0.

The new sampling hyperparameter C allows a trade-off between cache hit rate and acceptance
rate. We plot this tradeoff in Figure 5 (left). Figure 5 (right) presents an illustration of how
SAGUARO sampling allows control of the residual distribution by manipulating the draft distri-
bution during speculation. The intuition here is that SAGUARO sampling deliberately suppresses
the draft probabilities on the F cached tokens. By downweighting pdraft(t) on this set, the residual
max

(
ptarget(t) − pdraft(t), 0

)
is pushed to concentrate on those same tokens, increasing the chance

that the bonus token lands inside the cache by construction. The ability to trade-off these two quan-
tities becomes an important way to accelerate inference at high temperatures when cache hit rate
falls quickly but acceptance rate only slowly.

4.2.3 EMPIRICAL EVALUATION

We show in Figure 5 how there is a trade-off between acceptance rate and cache hit rate which we
can navigate by using the SAGUAROsampling scheme with different values of C. Lower values of
C lead to to higher cache hit rates and lower acceptance rates as they bias the draft distribution away
from the target to control the residual distribution. In Figure 6, we see that to maximize speedup at
larger temperatures it is important to sacrifice some acceptance rate (by choosing C ≪ 1) to attain
higher cache hit rates.
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Figure 5: We introduce SAGUARO sampling, a novel sampling scheme designed specifically for
SSD. (Left) It interpolates between high cache hit rate and high speculative acceptance rate. (Right)
Illustrative schematic for how SAGUARO sampling increases residual probability mass on the top
draft tokens, encouraging the sampled bonus token to lie in the speculation cache by construction.

4.3 HANDLING CACHE MISSES WITH SAGUARO FALLBACK

We now discuss how we optimize the handling of cache misses in SAGUARO, and propose an optimal
strategy for picking the backup speculator based on the batch size.

4.3.1 ALGORITHM

We design SAGUARO’s cache miss strategy based on the observation that cache misses occur almost
certainly at large batch sizes, and that when this happens, in SSD the whole batch must wait for the
backup speculator to complete before being verified. We propose the SAGUARO fallback strategy:
set the backup speculator to be equal to the primary speculator at low batch size, then switch to a
low-latency speculator (Oliaro et al., 2024; Liu et al., 2024b; Xu et al., 2025) for larger batch sizes
b > b∗, where the critical batch size b∗ is derived in the following section.
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Figure 6: (Left) Tokens/sec and cache hit rate vs C, averaged over four temperatures in [1, 1.4].
While cache hit rate always increases in C (Theorem 15), end-to-end speed depends on both cache
hit rate and acceptance rate. (Right) The optimal C∗ depends on temperature: the naive default of
C = 1 is suboptimal at higher temperatures.

4.3.2 THEORETICAL RESULTS

We prove that SAGUARO’s backup speculator strategy is optimal, under the conditions that SSD uses
a high-quality (slow) speculator (primary), and a lower-quality (fast) speculator (backup). We begin
with a corollary to Theorem 7 which accounts for the impact of batch size on the expected speedup
attained by SSD. This result assumes that in SSD the whole batch waits for the backup speculator to
complete before verifying the batch.
Corollary 16. At batch size b, the expected speedup from SSD is equal to:

speedup =
phit · Ehit + (1− phit) · Emiss

pbhit ·max(1, Tp) + (1− pbhit) · (1 + Tb)
, which approaches

phit · Ehit + (1− phit) · Emiss

1 + Tb
as b→∞.

In our implementation, the backup strategy is to return random tokens,2 and the primary strategy
is to do just-in-time speculation. As the batch size increases, the entire batch stalls on the latency
of the backup speculator as cache misses happen more frequently. This forces the choice of a low
latency speculator at larger batch sizes, as the following theorem makes precise.
Theorem 17. The optimal cache miss strategy given two speculators of varying speed (primary and
backup) is to set the backup equal to the primary for batch sizes b < b∗, and not otherwise. We solve
for b∗ in Appendix A.

4.3.3 EMPIRICAL EVALUATION

We show in Figure 7 that as the batch size increases, using a fast backup speculator that returns
random tokens outperforms using a slow but more accurate neural speculator just-in-time.
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Figure 7: (Left) Optimal backup speculator (fast vs neural) depends on batch size, as Theorem 17
predicts. (Right) We forecast how cache hit rate/decoding speed improves with draft compute.

2Note that we can easily improve upon this random token strategy by using extremely fast non-neural
speculators, like those based on n-grams (Liu et al., 2024b; Oliaro et al., 2024)
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5 END-TO-END EVALUATION

In Figure 8 we compare the end-to-end performance of SAGUARO to key baselines. Our baselines
are very strong: our implementation of ordinary speculative decoding (SD) is faster than that of
SGLang with SD, which was the fastest of all the popular inference engines we tried. We attain
over a 4x speedup on average, and are almost twice as fast as the optimized speculative decoding
baselines, including EAGLE-3 (Li et al., 2025b).
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Figure 8: End-to-end decoding speed comparison of SSD compared to SD and standard autoregres-
sive decoding across two model families and four datasets.

5.1 CONCLUSION AND LIMITATIONS

Speculative decoding is an important technique for LLM inference acceleration because it allows
trading off compute and latency, and since LLM inference is typically memory-bound, there is usu-
ally compute to spare. However, it requires drafting and verification to wait synchronously on each
other. We take this trade-off to its natural conclusion, parallelizing even this sequential dependence,
and reaping commensurate end-to-end speedups. We characterize the expected performance gains
as well as performance upper bounds of our method, in addition to studying each major component
of the parallel speculative decoding design space in a principled manner.

An important limitation of our method—as with all speculative decoding methods—is that it focuses
on improving latency and not throughput. While the former is critical in many modern applications
like interactive chat assistants and coding agents, the latter is important in settings like large-scale
reinforcement learning or offline synthetic data generation. We note, however, that relative to token-
tree verification methods, SSD is able to attain higher throughput by only increasing draft model
compute (which is cheap), not verifier compute (which is expensive).

Looking forward, we hope to see our method combined with popular variants of speculative de-
coding like EAGLE (Li et al., 2024a;b; 2025b) or token tree speculation (Miao et al., 2024; Chen
et al., 2024) for even larger gains, and for future work to study how to scale parallel speculative
decoding techniques to large fleets of many communicating compute nodes, where considerations
like prefill-decode disaggregation (Zhong et al., 2024) come to the fore.
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A THEORETICAL RESULTS

A.1 THEOREM 7 PROOF: MODELING THE SPEEDUP FROM SSD

We copy Theorem 7 for reference:

Theorem 18. Let the primary and backup speculators take time Tp and Tb relative to the verifier.
Let the expected number of generated tokens from the primary speculator be Ehit and and backup
speculator by Emiss. The expected speedup of Algorithm 1 relative to autoregressive decoding is
then:

speedup =
phit · Ehit + (1− phit) · Emiss

phit ·max(1, Tp) + (1− phit) · (1 + Tb)
.

The global cache hit rate phit can be expressed in terms of the cache hit rates phit,p and phit,b, cor-
responding to whether the last round’s speculator was the primary one or the backup, respectively
(assuming |phit,p − phit,b| < 1):

phit =
phit,b

1 + phit,b − phit,p
.

Proof. We will prove this theorem in two parts:

• Part 1: We will first prove this speedup equation, assuming we know the overall cache hit
rate phit (conditioned on choice of lookahead, cache topology, sampling algorithm, etc.).

• Part 2: We will then prove the functional form of phit, as a function of the cache hit rates
phit,p and phit,b of the primary and backup speculators, respectively.

A.1.1 PART 1

In each iteration of SSD, the expected number of generated tokens is Ehit if there is a cache hit, and
Emiss if there is not. Similarly, the latency is max(1, Tp) if there is a cache hit, and 1+Tb if there is
not—this is because backup speculation, which takes time Tb, begins only after verification (which
we assume takes 1 unit of time) completes.

Therefore, it is clear that the expected number of generated tokens and the expected latency (relative
to autoregressive decoding) in one iteration of SSD are:

E[# Generated tokens] = phit · Ehit + (1− phit) · Emiss

E[Latency] = phit ·max(1, Tp) + (1− phit) · (1 + Tb)

Thus, the expected speedup is:

speedup =
E[# Generated tokens]

E[Latency]

=
phit · Ehit + (1− phit) · Emiss

phit ·max(1, Tp) + (1− phit) · (1 + Tb)
.

This concludes part 1 of the proof.

A.1.2 PART 2

We will now prove that the overall (unconditional) cache hit rate phit is equal to:

phit =
phit,b

1 + phit,b − phit,p
.

where phit,p and phit,b are the cache hit rates conditioned on the prior iteration being speculated by
the primary and backup speculators, respectively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The challenge in deriving a closed-form solution for the overall cache hit rate phit is that phit at
iteration T of the SSD algorithm depends on whether there was a cache hit in the previous round
(in which case the primary speculator was used) or not (in which case, the backup speculator was
used).

In order to deal with this recursive property of phit, we first write phit as a recursive equation, which
considers the iteration number t of the algorithm. We consider both the base case (t = 0), where for
now we will assume we always use the non-neural spec, along with all rounds thereafter:

phit(0) = phit,p, because we use the primary speculator at T = 0,

phit(T ) = phit(T − 1) · phit,p +
(
1− phit(T − 1)

)
· phit,b

We rearrange and unroll this recurrence:

phit(T ) = phit(T − 1) ·
(
phit,p − phit,b

)
+ phit,b

= phit(T − 1) · r + phit,b, letting r := phit,p − phit,b

=
(
phit(T − 2) · r + phit,b

)
· r + phit,b

= (T − 2) · r2 + phit,b · r + phit,b

=
(
phit(T − 3) · r + phit,b

)
· r2 + phit,b · r + phit,b

= phit(T − 3) · r3 + phit,b · r2 + phit,b · phit,b
= . . .

= phit(0) · rT + phit,b

T−1∑
t=0

rt

= phit(0) · rT + phit,b
1− rT

1− r

Using the stated assumption that |r| := |phit,p − phit,b| < 1, we can see that the first term above
converges to 0, and the second term converges to phit,b

1−r =
phit,b

1+phit,b−phit,p
, as expected.

This concludes the proof.

A.1.3 PROVING THE TWO COROLLARIES

We now prove the two corollaries of Theorem 7, copied below:

Corollary 19. (Strictly Faster Than SD). Suppose we run SD with a given speculatorM. Running
SSD with primary and backup both set toM does no worse than SD (strictly better if phit, TSD > 0).

Proof. Let Ehit = Emiss = ESD, and Tp = Tb = TSD. Then

speedup =
phit · Ehit + (1− phit) · Emiss

phit ·max(1, Tp) + (1− phit) · (1 + Tb)

=
phit · ESD + (1− phit) · ESD

phit ·max(1, TSD) + (1− phit) · (1 + TSD)

=
ESD

phit ·max(1, TSD) + (1− phit) · (1 + TSD)

Recall that the speedup from SD is ESD/(1 + TSD). This final term is strictly greater than the SD
speedup if phit > 0 and TSD > 0, because in this case max(1, TSD) < 1 + TSD. If phit = 0 or
TSD = 0, then the SSD speed is equal to the SD speed.

Corollary 20. (Speedup sandwich) Suppose we choose a primary speculator for which drafting
completes before verification (Tp < 1), and a fast backup speculator (Tb = 0). Then if TSD, ESD
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represent the latency and expected number of generated tokens from a draft model in SD, then the
SSD speedup over SD can be bounded by:(

1 + TSD

)
· Ehit

ESD
· phit ≤

speedupSSD

speedupSD
≤
(
1 + TSD

)
· Ehit

ESD
.

Proof. By assumption, Tp < 1 and Tb = 0. So the SSD speedup is:

speedupSSD =
phit · Ehit + (1− phit) · Emiss

phit ·max(1, Tp) + (1− phit) · (1 + Tb)

= phit · ESD + (1− phit) · ESD

Recall the SD speedup equation is:

speedupSD =
ESD

1 + TSD
.

So,
speedupSSD

speedupSD
=

phit · Ehit + (1− phit) · Emiss

ESD/(1 + TSD)
.

Because phit ≤ 1, we get the upper bound (assuming Ehit ≥ Emiss):
speedupSSD

speedupSD
=

(
1 + TSD

)
· Ehit

ESD
.

Because Emiss ≥ 1 (bonus token is always generated), we get the lower-bound:
speedupSSD

speedupSD
=

phit · Ehit + (1− phit) · Emiss

ESD/(1 + TSD)

≥
(
1 + TSD

)
· Ehit

ESD
· phit.

A.2 THEOREM 12 PROOF: OPTIMIZING SAGUARO CACHE TOPOLOGY

To prove Theorem 12, we will first prove Theorem 21, which is a more general version of the
theorem. Then, Theorem 12 will be an easy corollary of this more general theorem.
Theorem 21. The choice of F p

k (and equivalently, F b
k ) values that maximizes the speedup of

SAGUARO under the constraint
∑K

k=0 F
p
k ≤ B (where K is the speculative lookahead), is:

K∑
k=0

F p
k = B,

∂pkhit,p
∂F

(
Fk

)
= a−k ·

∂p0hit,p
∂F

(
F0

)
∀k < K, and

∂pK,all
hit,p

∂F

(
FK

)
= (1− ap) · a−K ·

∂p0hit,p
∂F

(
F0

)
.

Proof. To understand how to optimize our cache topology, we first rewrite the speedup equations
from Section 3.2, now making explicit how the speedup depends on the F p

k and F b
k values:

speedup
(
{F p

k }
K
k=0), {F b

k}Kk=0)
)

= phit

(
{F p

k }, {F
b
k}
)
· Ehit

+

(
1− phit

(
{F p

k }, {F
b
k}
))
· Emiss, where

phit

(
{F p

k }, {F
b
k}
)

=
phit,b({F b

k})
1 + phit,b({F b

k})− phit,p({F p
k })

.

We can express phit,p more precisely in terms of:

17
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• The acceptance rate ap of the primary speculator, and

• The functions pkhit,p(Fk) and pK,all
hit,p (Fk): These functions describe the probability of a

cache hit conditioned on (1) the last round’s speculator was the primary one, (2) k tokens
were accepted, (3) whether all of the tokens were accepted (pK,all

hit,p ) or not (pkhit,p), and (4)
Fk verification outcomes were prepared for in case k tokens were accepted. Note that this
can be estimated empirically by comparing the draft and target probability distributions for
a set of sequences in a calibration set.

We can do the same for phit,b, the cache hit rate when the last round’s speculator was the backup.

phit,p({F p
k }) = aKp · p

K,all
hit,p (FK) +

K−1∑
k=0

akp(1− ap) · pkhit,p(Fk), and

These equation are a direct result of the fact that the chance of accepting exactly k tokens is akp(1−
ap) for k < K, and aKp for k = K, when the acceptance rate is a.

Given these equations, we can now optimize the cache topology (i.e., the choice of Fk values) to
maximize speedup. We notice that the speedup is monotonically increasing in phit, and that phit is
monotonically increasing in both phit,p and phit,b (easy to see by taking first derivatives of phit, and
seeing they are always positive). Thus, we must simply maximize phit,p({F p

k }) and phit,b({F b
k})

under the constraints that
∑K

k=0 F
p
k ≤ B and

∑K
k=0 F

b
k ≤ B. We do this below

A.2.1 MAXIMIZING phit,p({F p
k }) AND phit,b({F b

k})

As discussed, we want to maximize the probability of a cache hit under the budget constraint∑K
k=0 FK ≤ B. We do this for phit,p, and the proof is identical for phit,b.

max∑
k Fk≤B

phit,p(K,F ) = max∑
k Fk≤B

aKp · p
K,all
hit,p (FK) +

K−1∑
k=0

akp(1− ap) · pkhit,p(Fk)

We will solve this maximization problem with Lagrange multipliers.

L(F0, . . . , Fk, λ) = aKp · p
K,all
hit,p (FK) +

K−1∑
k=0

akp(1− ap) · pkhit,p(Fk) + λ ·
( K∑

k=0

Fk −B
)

Now, we will take the derivative with respect to all the variables, and set it to zero.

∂L
∂Fk

= akp(1− ap) ·
∂

∂Fk
pkhit,p(Fk) + λ = 0 for k < K

∂L
∂FK

= aKp
∂

∂Fk
pK,all
hit,p (FK) + λ = 0

∂L
∂λ

=

K∑
k=0

FK −B = 0

18
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We notice that for all k, ∂L
∂Fk

are equal to one another (all equal to −λ). Thus, we see that:

(1− ap)
∂

∂Fk
p0hit,p(F0) = a(1− ap)

∂

∂Fk
p1hit,p(F1) = . . .

. . . = aK−1(1− ap)
∂

∂Fk
pK−1
hit,p(FK−1) = aKp

∂

∂Fk
pK,all
hit,p (FK)

⇒ ∂

∂Fk
pkhit,p(Fk) = a−k ∂

∂Fk
p0hit,p(F0) ∀k < K, and

∂

∂Fk
pK,all
hit,p (FK) = (1− ap)a

−K ∂

∂Fk
p0hit,p(F0)

This gives the desired result.

We now use this result to prove Theorem 12, which is a special case of the above theorem in the
case where the speculators have r power-law cache hit rates.
Theorem 22. (SAGUARO Cache Topology) The optimal choice of F p

k (equivalently, F b
k ) values for

k ∈ [0,K] for SAGUARO under the constraint
∑K

k=0 F
p
k ≤ B, and under the assumption that the

speculator has a r power-law cache hit rate, follows a geometric series (for k < K):

Fk = F0 · ak/(1+r) ∀k < K, and

FK = F0 · aK/(1+r) · (1− a)−1/(1+r),

where F0 can be chosen as follows so that
∑K

k=0 F
p
k = B.

F0 =
B

aK/(1+r) · (1− ap)−1/(1+r) +
(
1− aK/(1+r)

)
/
(
1− a1/(1+r)

)
Proof. Now, substituting pkhit,p(F ) = 1− F−r (and thus ∂

∂Fk
pkhit,p(F ) = b · F−r−1), we get:

⇒ r · F−r−1
k = a−k

p r · F−r−1
0 ∀k < K, and

r · F−r−1
K = (1− ap) · a−K

p · r · F−r−1
0 .

⇒ Fk = F0 · ak/(1+r)
p ∀k < K, and

FK = F
(1+r)/(1+r)
0 · aK/(1+r)

p · (1− ap)
−1/(1+r) · (r/r)−1/(1+r).

To solve for the exact sequence of Fk fan-out values, we plug the above values into the budget
equation:

B = F0 · aK/(1+r)
p · (1− ap)

−1/(1+r) +

K−1∑
k=0

F0 · ak/(1+r)
p

Solve for F0 gives:

F0 =
B

a
K/(1+r)
p · (1− ap)−1/(1+r) +

∑K−1
k=0 a

k/(1+r)
p

We can simplify this further using the equation for the sum of the geometric series:
K−1∑
k=0

ak/(1+r)
p =

K−1∑
k=0

ck =
1− cK

1− c
, for c = a1/(1+r)

p

Plugging this in gives the desired result.

F0 =
B

a
K/(1+r)
p · (1− ap)−1/(1+r) +

(
1− a

K/(1+r)
p

)
/
(
1− a

1/(1+r)
p

)
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A.3 THEOREM 15 PROOF: OPTIMIZING SAGUARO SAMPLING ALGORITHM

We now prove Theorem 15, copied below for reference:

Theorem 23. For fan-out F , and draft logits z, the cache hit rate phit of the SAGUARO sampling
algorithm increases as C → 0.

Proof. Because the overall cache hit rate phit is monotonically increasing in the cache hit rate phit,p
of the primary speculator, here it is sufficient to show that phit,p of the SAGUARO sampling algorithm
increases as C → 0.

We assume here that the F tokens (t1, . . . , tF ) with the highest draft logits are the ones we put in the
cache, and we let pdraft := σF,C(z), the draft distribution constructed with the SAGUARO sampling
algorithm. It is clear that by reducing the value of C the amount of residual probability mass on the
top F draft tokens increases, while the total residual mass on all other tokens decreases.

We now look at the amount of residual probability mass (before normalization) in the top F tokens
in(C), and the amount outside of the top F tokens out(C), and show that in(C) is increasing in C,
while out(C) is decreasing in C. I will then use the fact that the probability of a cache hit (for any
k < K) is equal to:

pkhit,p(F ) =
in(C)

in(C) + out(C)

to prove that the cache hit rate increases as C drops. In particular, I will show that the derivative of
pkhit,p(F ) with respect to C is negative, which shows that as C grows, the cache hit rate drops, or
conversely that when C shrinks from 1 toward 0, the cache hit rate increases.

∂pkhit,p(F )

dC
=

in′(C) ·
(

in(C) + out(C)
)
−
(

in′(C) + out′(C)
)
· in(C)(

in(C) + out(C)
)2

=
in′(C) · out(C)− out′(C) · in(C)(

in(C) + out(C)
)2

It’s easy to see that this value is ≤ 0 if in′(C) ≤ 0 and out′(C) ≥ 0, because in(C) and out(C) are
both ≥ 0 by definition. We can see in′(C) ≤ 0 because increasing C by construction reduces the
residual probability mass in the top-F tokens. We can also see that out′(C) ≥ 0 because increasing
C by construction increases the residual probability mass outside of the top-F tokens.

This concludes the proof.

A.4 COROLLARY 16 AND THEOREM 17 PROOFS: OPTIMIZING SAGUARO FALLBACK
STRATEGY

We first prove corollary 16, and then Theorem 17, both copied below for reference:

Corollary 24. At batch size b, the expected speedup from SSD is equal to:

speedup =
phit · Ehit + (1− phit) · Emiss

pbhit ·max(1, Tp) + (1− pbhit) · (1 + Tb)
, which approaches

phit · Ehit + (1− phit) · Emiss

1 + Tb
as b→∞.

Proof. For each element of the batch, if it gets a cache hit it will generate Ehit tokens, and otherwise
Emiss. The latency of an element of the batch, however, depends on whether any element of the
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batch had a cache miss. If so, the latency for the entire batch is 1 + Tb. Otherwise, if every element
of the cache had a hit, the latency is max(1, Tp). Thus, we can see that:

E[# Generated tokens] = phit · Ehit + (1− phit) · Emiss

E[Latency] = pbhit ·max(1, Tp) + (1− pbhit) · (1 + Tb)

Thus, the expected speedup is:

speedup =
E[# Generated tokens]

E[Latency]

=
phit · Ehit + (1− phit) · Emiss

pbhit ·max(1, Tp) + (1− pbhit) · (1 + Tb)
.

Noticing that pbhit → 0 as b grows concludes the proof. This concludes part 1 of the proof.

Theorem 25. The optimal cache miss strategy, conditioned on only being able to choose between
a high-quality slow speculator (primary), and a lower-quality speculator with negligible latency
(backup), is to use the primary speculator for batch sizes b < b∗, and the backup speculator other-
wise. The value of b∗ is given by:

b∗ =
1

log(phit)
· log

((
1 +

1

Tp
− Ehit

Tp · phit · Ehit + Tp · (1− phit) · Emiss

))

Proof. Using the slow primary speculator as the backup speculator gives expected speedup:

speedupslow backup =
phit · Ehit + (1− phit) · Ehit

pbhit ·max(1, Tp) + (1− pbhit) · (1 + Tp)
.

=
Ehit

pbhit + (1− pbhit) · (1 + Tp)
.

=
Ehit

1 + Tp − Tp · pbhit
.

Using the fast backup speculator (with Tb = 0) as the backup speculator gives expected speedup:

speedupfast backup =
phit · Ehit + (1− phit) · Emiss

pbhit ·max(1, Tp) + (1− pbhit) · (1 + Tb)
.

=
phit · Ehit + (1− phit) · Emiss

pbhit ·max(1, Tp) + (1− pbhit)
.

= phit · Ehit + (1− phit) · Emiss.

We set these equations equal to each other and solve for b, which gives the equation in the Theorem
statement.

phit · Ehit + (1− phit) · Emiss =
Ehit

1 + Tp − Tp · pbhit

1 + Tp − Tp · pbhit =
Ehit

phit · Ehit + (1− phit) · Emiss

pbhit =
1

Tp

(
1 + Tp −

Ehit

phit · Ehit + (1− phit) · Emiss

)
b∗ =

1

log(phit)
· log

((
1 +

1

Tp
− Ehit

Tp · phit · Ehit + Tp · (1− phit) · Emiss

))
.

Now we must simply show that for batch sizes b < b∗, it is better to use the slow backup speculator
(a.k.a., the primary speculator), and for b ≥ b∗ it is better to use the fast backup speculator.
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We do this by seeing that the speedupslow backup is monotonically decreasing in the batch size
b (negative derivative with respect to b), whereas the speedupfast backup does not depend on b
(obvious from equation). This shows that if there is a value b∗ that makes these two speedups equal,
then for b < b∗ the slow backup option gives a larger speedup, whereas for b ≥ b∗ the fast backup
option gives a larger speedup.

∂speedupslow backup

db
=

∂

db

(
Ehit

1 + Tp − Tp · pbhit

)
=

Ehit · Tp · pb · log(phit)
(1 + Tp − Tp · pb)2

,

which is clearly negative because log(phit) < 0 and everything else is positive. This concludes the
proof.

B IMPLEMENTATION DETAILS

B.1 SYSTEMS DESIGN

Overall Design. We implement SAGUARO as a custom inference engine from scratch, incorporating
PagedAttention (Kwon et al., 2023b), continuous batching (Yu et al., 2022), tensor parallelism, BF16
mixed precision, torch compilation, and CUDAGraphs.

The engine orchestrates from a coordinator process on the main GPU. A scheduler paired with
a block manager handles prefill/decode scheduling and page-table bookkeeping. A ModelRunner
on each target GPU prepares attention metadata and executes forward passes. In async mode, the
draft model runs in a separate process on its own GPU. Target and draft communicate once per
iteration via NCCL with fused payloads: the target sends cache keys (sequence ID, accepted-prefix
length, recovery token), current sequence lengths, draft block tables for KV addressing, and per-row
temperatures; the draft returns a cache-hit bitmap, K speculative tokens per sequence, and K-step
logits for acceptance.

Crucially, while the target host maintains page-table bookkeeping for both models, the draft KV
cache tensor resides on the draft device—no KV data is ever transferred. The scheduler ensures the
target has sufficient pages for K+1 multi-query decoding steps, preempting sequences when looka-
head reservations cannot be satisfied. After verification, both page tables are reconciled: completed
pages are finalized (hashed for prefix caching), and any pages allocated beyond the accepted suffix
are deallocated. This rollback requirement—undoing allocations for rejected tokens that wrote into
pre-allocated pages—necessitates a host-side post-processing step after each verification.

Design Decisions and Performance Engineering. During draft speculation, all F (K + 1)
branches of each sequence are decoded in parallel using a custom sparse attention mask that al-
lows each branch to attend to the verified trunk and its own forking path. We use FlashAttention
kernels (Shah et al., 2024) where possible, falling back to FlashInfer (Ye et al., 2025) for multi-query
decoding paths requiring custom masks. An example mask is shown below.

Materializing these masks—which depend on prefix length, B, K, F , and step i—is a substan-
tial overhead. The sparse, non-coalesced memory access patterns in custom-mask attention kernels
dominate our critical path, limiting how many steps we can profitably draft. As a result, most
end-to-end speedup comes from hiding draft latency rather than increasing lookahead depth. Be-
cause accepted branches land in fragmented KV cache locations, we perform a “glue” append of
the previous speculation before each round of async decoding, rather than copying fragments into
contiguous pages. This corresponds to the “Glue & Recurrence” column in Figure 9, enabling all F
forked branches to attend to the same verified prefix.

We originally expanded forked sequences along the batch dimension, which permitted standard
causal masks but required reloading the prefix KV cache at every step. This motivated refactoring
to multi-query decoding with custom masks, avoiding repeated prefix loads by sharing the trunk KV
across all branches in a single forward pass.
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Custom SSD Attention Mask, B = 1, K = 3, F = 4, i = 2

Figure 9: Custom attention mask for multi-query decoding of all BF (K + 1) verification branches
in parallel. This mask is for B = 1, K = 3, uniform fan-out F = 4, at depth i = 2. Black indicates
tokens that can be attended to. The left block shows attention to the verified prefix; diagonal bands
show each branch attending only within its forking path.

B.2 EXPERIMENTAL DESIGN

Datasets. We take 512 prompts from each dataset (or the maximum number in the dataset, if less
than this), using maximum prompt length 128 and sample 512 decoding tokens for every prompt. We
use vanilla sampling throughout (not top-p or top-k). We measure decoding throughput, excluding
prefill. All experiments are done on a single node of NVIDIA Hopper GPUs.

Baselines. We use an SGLang baseline because we find vLLM has very weak support for specula-
tive decoding (decoding speeds were half of SGLang), and wanted to compare against the strongest
possible baselines. For both, we considered vanilla (standalone) speculative decoding, since meth-
ods like EAGLE can be combined with speculative speculative decoding, and are thus not mutually
exclusive baselines. We always use torch compilation and CUDAgraphs in our baselines, including
in our implementation of ordinary speculative decoding.

B.3 NUMERICAL RESULTS

Model Dataset AR tok/s SD tok/s Speedup Latency (ms) SSD tok/s Speedup Latency (ms)
Llama-3.3
70B/1B HumanEval 56 147 2.63× 6.803 245 4.38× 4.082

Ultrafeedback 56 126 2.25× 7.937 200 3.58× 5.000
Alpaca 56 127 2.26× 7.874 205 3.66× 4.878
GSM8k 56 154 2.74× 6.494 257 4.59× 3.891
Average 56 138 2.47× 7.246 227 4.05× 4.405

Qwen-3
32B/0.6B HumanEval 93 147 1.59× 6.803 195 2.10× 5.128

Ultrafeedback 93 128 1.38× 7.812 161 1.73× 6.211
Alpaca 93 126 1.35× 7.937 167 1.80× 5.988
GSM8k 93 157 1.69× 6.369 202 2.18× 4.950
Average 93 140 1.50× 7.143 181 1.95× 5.525

Table 1: Throughput and inter-token latency comparison. AR: Autoregressive baseline, SD: Specu-
lative Decoding, SSD: Staged Speculative Decoding. Latency refers to average inter-token latency
in (ms) and is the reciprocal of tokens/sec.
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C SSD OVERHEAD

Let B be the target batch size, K the speculation lookahead, and F the (uniform) fan out factor for
the draft model guessing verification bonus tokens.

Compute. Let ĉ be the compute required for a draft forward pass, normalized by units of target
FLOPs. Since the draft decodes BK(K + 1)F tokens per round in SSD but BK tokens per round
in SD, we incur a factor of ĉ(K + 1)F more FLOPs on the draft relative to ordinary speculative
decoding. Recall this is because each step on (of which there are K) the draft decode B(K + 1)F
tokens in parallel using a custom attention mask.

In much the same way that SD uses more FLOPs to achieve lower latency (see (Leviathan et al.,
2023), Section 3.4), SSD applies the same philosophy to use even more FLOPs to achieve even lower
latency than even SD itself. In the SD setting, tokens speculated by the draft that were rejected by the
target constitute wasted compute. In the SSD setting (in addition to the above), we have that entire
chains decoded pre-emptively in parallel for anticipated verification outcomes constitute wasted
compute. Thus, SSD introduces new tradeoffs between compute and latency that were not possible
before.

Memory. The draft model must build up a speculation cache as it speculates asynchronously. This
has possible verification outcomes as keys and the corresponding tokens/logits as values. Concrete,
this means storing a tensor of BK(K + 1)F tokens that are decoded, in the form of length-K
speculations stored for B(K + 1)F possible verification outcomes. For each of these tokens, we
also store logits of size V , so the speculation cache stores overall O (BFK(K + 1)(V + 1)) bits,
ending up around hundreds of megabytes in practice. Given this cache is refreshed every speculation
round, this ends up small enough to be a non-issue in practice, as the HBM on modern GPUs is much
larger.

Communication. The draft and target model synchronize once per speculation round. The target
model sends the outcome of the previous round of speculation (the number of accepted tokens and
recovery token for each sequence, O(B) bits of information). The draft sends back the newly
speculated tokens (“cache hits”) as well as their logits (which the target will need for verification).
This is O(BKV ) bits of information. All communications are device to device over NCCL via
NVLink, which is fast enough that communications are not a bottleneck in practice.

D EXTENDED RELATED WORK

Beyond draft–verify methods like those we study, the LLM inference stack has seen rapid progress
along many axes. Our work situates itself within a larger tradition of deep learning scaling, enabled
by hardware improvements and an improved science of hardware-aware algorithms. Hardware-
aware attention kernels (e.g., FlashAttention) reduce HBM traffic and deliver wall-clock speedups
without approximation (Dao et al., 2022). Serving systems co-design scheduling and memory: Page-
dAttention in vLLM implements virtual-memory–style KV paging and sharing, enabling larger ef-
fective batch sizes and higher throughput (Kwon et al., 2023a).

Memory pressure from KV caches has led to compression/eviction and quantization lines: H2O
identifies heavy-hitter tokens to guide KV retention; adaptive schemes discard or compress low-
utility states (Ge et al., 2024); quantization approaches (e.g., KVQuant, MiniCache) push extreme
compression with minimal quality loss (Hooper et al., 2024; Liu et al., 2024a) – with some recent
works even training in binary or ternary precision to specifically alleviate inference-time memory
bottlenecks (Wang et al., 2023).

Classic attention sparsification for long contexts (Longformer, BigBird) and kernelized/LSH approx-
imations (Performer, Reformer) trade exactness for favorable scaling while retaining high quality
across (Beltagy et al., 2020; Zaheer et al., 2020; Choromanski et al.). Finally, lossless multi-token
and feature-level methods (Medusa, EAGLE) and parallel exact decoders (Lookahead) reduce steps
or verifier calls via auxiliary heads or tree/parallel verification (Cai et al., 2024; Fu et al., 2024).
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E COMBINING SSD WITH SD VARIANTS

Advanced draft model architectures (e.g., EAGLE-3). We now discuss how we can combine
SSD with advanced draft model architectures like EAGLE-3 (Li et al., 2025b) or GliDE (Du et al.,
2024) that allow the draft model to leverage the powerful representations (activations or KV cache,
respectively) of the target model to improve acceptance rates. We focus here on EAGLE-3 for
illustration purposes, but the ideas transfer to this entire class of methods. We consider the token
tree drafting/verification aspect of EAGLE-3 in the section below.

The primary difference between SSD with standalone speculators (e.g., Llama-1B) and SSD with an
EAGLE-3 speculator is that the target model must communicate its activations for the latest verified
tokens (and the prompt) to the speculator, as these are part of the input to the EAGLE speculator.
From an algorithmic perspective, the only reason SSD + EAGLE-3 might have a slightly lower
expected number of accepted tokens than EAGLE-3 (assuming the same lookahead), is that SSD
does not have access to the target model activations for the token sequence that is currently being
verified. Thus, in order to pre-speculate for the next round while verification is taking place, the draft
must use its own activations to self-condition for longer than it would ordinarily in EAGLE-3. The
EAGLE-3 paper (Figure 7), however, demonstrates that acceptance rates are actually quite stable
many tokens ahead of the last target model activations, so this is unlikely to be an issue in practice.

Token-Tree Methods. Token-tree SD methods (Miao et al., 2024; Chen et al., 2024; Li et al.,
2024b; 2025b) can be combined quite nicely with SSD. SSD drafts a linear chain for many possible
verification outcomes. To combine SSD with these token-tree approaches, one would simply pre-
speculate (and verify) a token tree for each verification outcome instead of a token chain. In practice,
this requires a more elaborate attention mask than that presented in Figure 9. But fundamentally
these methods can combine quite nicely.

F ADDITIONAL EXPERIMENTS

Here, we reproduce similar trends from the main text on the Qwen3 model family, showing our
results and algorithms are model and dataset agnostic.
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Figure 10: Effect of SAGUARO sampling across temperatures for the Qwen3 model family. Qwen3-
32B used as the target model, and 0.6B as the draft. We find similar trends as in the main text, where
using the default C = 1 is suboptimal at higher temperatures.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2 4 8 16 32 64 128
F

10 2

10 1

Re
je

ct
io

n 
ra

te

2 4 8 16 32 64 128
F

10 2

10 1

Re
je

ct
io

n 
ra

te

2 4 8 16 32 64 128
F

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

p h
it(

F)

T=0, 0.6B draft
T=0.7, 0.6B draft
T=1.0, 0.6B draft
T=0, 1.7B draft
T=0.7, 1.7B draft
T=1.0, 1.7B draft

Figure 11: Rejection rate and cache hit rate scaling for Qwen-3 model family. Like the Llama-3
model family, we see it is an approximate power law in the fan-out, so that cache hit rates increase
steadily as we grow F , the size of our cache.
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Figure 12: End-to-end speed for Qwen-3 model family compared to synchronous baselines.
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Figure 13: Batch size scaling of Qwen-3 models compared to synchronous baselines.
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