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Abstract

A promising way to mitigate the expensive process of obtaining a high-dimensional signal is
to acquire a limited number of low-dimensional measurements and solve an under-determined
inverse problem by utilizing the structural prior about the signal. In this paper, we focus on
adaptive acquisition schemes to save further the number of measurements. To this end, we
propose a reinforcement learning-based approach that sequentially collects measurements to
better recover the underlying signal by acquiring fewer measurements. Our approach applies
to general inverse problems with continuous action spaces and jointly learns the recovery
algorithm. Using insights obtained from theoretical analysis, we also provide a probabilistic
design for our methods using variational formulation. We evaluate our approach on multiple
datasets and with two measurement spaces (Gaussian, Radon). Our results confirm the
benefits of adaptive strategies in low-acquisition horizon settings.

1 Introduction

Compressed sensing aims at solving underdetermined linear inverse problems by leveraging the structure of
the underlying signal of interest (Tibshirani, 1996; Candès et al., 2006; Donoho, 2006). Although the initial
theory was focused on sparsity, other notions of structure have been considered too, for instance, in Tang
et al. (2013). Compressed sensing theory provides a hard constraint on the number of required measurements
for signal recovery. Reducing the number of measurements is crucial when they are costly, for example, due to
resource constraints or patient comfort in imaging tasks, and there has been a line of works exploring adaptive
measurements to achieve this goal (see related works section). These works have been mainly focused on
medical imaging applications like MRI where the space of measurements is a discrete space (see for example
Bakker et al. (2020) and references therein).
On the other hand, certain works in compressed sensing theory suggest adaptive methods are not helpful in
noiseless settings when the worst-case error is considered (Cohen et al., 2009; Foucart et al., 2010; Novak,
1995). At first look, this seems to be in conflict with the experimental gains shown by the adaptive methods.
It is important to understand the roots of this discrepancy and see if any guidelines can be obtained by
revising the existing theoretical results.
In this work, we pursue two goals. First, we aim to design a generic framework to solve adaptive recovery
problems by simultaneously learning a measurement policy network and a recovery algorithm , while working
with either continuous or discrete measurement spaces. Moreover, we aim to explain the apparent discrepancy
between certain theoretical results and the experimental works and derive design guidelines. We stress that
our method only needs to learn the measurement actions and the recovery network. Thereby, our model
can potentially be agnostic to the exact measurement model, making it a suitable candidate for non-linear
settings.

Contributions. 1) We introduce a framework for adaptive sensing with arbitrary sensing operations that
can naturally work in both continuous and discrete spaces. 2) We propose a novel training procedure for
end-to-end learning of both reconstruction and acquisition strategies, which combines supervised learning of
the signal to recover and reinforcement learning on latent space for optimal measurement selection. 3) We
add a probabilistic formulation of our model, which can be trained with a variational lower bound to add
structure and probabilistic interpretation to the latent space.
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2 Methodology

2.1 Compressed Sensing

Problem. As in compressed sensing, we consider underdetermined inverse problems, where the goal
is to recover a high-dimensional signal x ∈ RN through low-dimensional observations y ∈ RT (T ≪ N).
Each observation yt = F (at,x) is acquired through a projection operation parameterized as at. In a linear
measurement setting, this amounts to:

y = F (A,x) = Ax (1)

where A ∈ RT×N is referred to as the ‘sensing matrix’, and is defined as:

A =


a1
a2
...

aT

 (2)

We will explain specific types of A, x, y, and F used in this work in section 4.1.

Goal 1: Reconstruction. The primary goal in the compressed sensing setup is to recover the signal x.
Note that this reconstruction is generally intractable as it amounts to solving an under-determined system of
equations. However, the reconstruction becomes possible if we assume a prior about the signal structure, for
example, the assumption of sparsity or lying on the data manifold modeled by a deep generative model (Bora
et al., 2017).

Goal 2: Reducing Measurements. An auxiliary goal in compressed sensing is to reduce the number of
measurements (i.e., the number of rows in A) with minimal impact on the recovery process. This is especially
critical when the measurement process is an expensive, time-consuming process, such as with medical MRI or
CT scans. Reducing the measurements can be achieved by designing a better measurement matrix A.

The above two goals present an inherent trade-off: we can obtain better reconstructions at the price of
collecting more expensive, time-consuming measurements. In the next section, we present our technique that
jointly addresses this trade-off.

2.2 Adaptive Compressed Sensing

Framework. Central to our approach towards minimizing the number of measurements is exploiting
adaptivity: to sequentially construct the sensing matrix A (composed of T projection vectors at) to enable
better recovery of the underlying signal x. Similar to Bakker et al. (2020), we approach this sequential
decision-making problem within a reinforcement learning framework. In the following, we use the terms active
and adaptive strategies interchangeably, meaning strategies that select custom measurements depending on
the specific input or signal. Other works, such as Bakker et al. (2022), make a distinction between active and
adaptive, with adaptive meaning a custom set of measurements per input collected all at once, and active
meaning that several rounds of measurements and observations are done, potentially also more than one
measurement at the time like in Yin et al. (2021).
Adaptive Acquisition as a POMDP. We define the adaptive acquisition as a Partially Observable Markov
Decision Process (POMDP). A POMDP is defined by a tuple (S, A, O, F , U , R). Here, S is the state space,
A the action space, O the observation space, F : (S × A) → S is the transition distribution, U : (S × A) → O
is the observation distribution, and R : (S × A) → R is the reward function for a state-action pair. Over the
next paragraphs, we take a closer look at each of these aspects of the problem of adaptive compressed sensing.
Stationary State and Transition Distribution. We consider the signal x, which needs to be recovered as
the stationary state of the system. The agent cannot directly observe the state but rather senses and obtains
low-dimensional observations yt. As a result of the stationary state, the transition distribution remains fixed:

F(xt+1 | xt,at) = δ(xt+1 − xt), x0 = x (3)
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Figure 1: Schematic representation of our method. A reconstruction network is trained to reconstruct the
signal x given a sequence of actions a1:t and corresponding observations y1:t. The role of the acquisition
network is to select the next action at+1 based on the reconstruction quality of the signal x̂t. The improvement
in reconstruction quality between consecutive steps t and t− 1 is used as reward rt to train the acquisition
network with Reinforcement Learning. After a new action at+1 is selected, a new observation yt+1 is collected
based on a function F (at+1, x), specific to the inverse problem at hand. Note that in real-world scenarios,
there might be no knowledge of F and x, and the observation y can be obtained only through measurements
a of the environment.

which would mean that xt+1 ∼ δ(xt+1 − x), where δ is the Dirac distribution.

Actions. Each action at corresponds to a particular projection operation, i.e., a row of the sensing matrix
A. Depending on the type of measurement used (more details in 4.1), the actions can take different forms
but generally are N -dim real-valued vectors.
Observations and Observation Distribution. We denote as observation yt the information received
by the agent after performing a measurement yt = F (at,x). This observation is drawn from observation
distribution yt ∼ U(yt|x,at). Since the paper primarily studies reconstructing a time-invariant signal in a
noiseless setting, the observation corresponds to a deterministic measurement yt = F (at,x).
Reward. After taking an action, the agent receives a reward according to the distribution rt ∼ R(rt | x,at).
We define the reward at each time step as the improvement in reconstruction quality d(.) between consecutive
time steps: rt = d(x̂t,x) − d(x̂t−1,x) following a metric d. In our experiments, we use Structural Similarity
Index Measure (SSIM) (Wang et al., 2004) as d(.). For t = 1, the reward is simply d(x̂1,x).

2.3 Architectural components

Central to our approach (see Figure 1) are two models: (a) a reconstruction model that recovers the signal
from low-dimension observations; and (b) an acquisition model (the agent) that adaptively constructs the
sensing matrix for measurements. We now look into these models in-depth.
Reconstruction Model. The goal of the reconstruction model (see Figure 2; in blue) is to recover a signal
x̂t that faithfully represents the signal x under measurement. Such a recovery is challenging, given that the
system is under-determined, i.e., we recover using T measurements y1:T while the signal is N -dimensional
(N ≫ T ). To tackle this challenge, inspired by Bakker et al. (2020), we use an autoencoder-style model to
perform reconstruction but with one key difference: the encoder is a Gated Recurrent Unit (GRU) (Cho
et al., 2014) designed to deal with variably-sized sequences. The autoencoder is defined by a (recurrent)
encoder gϕ and a decoder fϕ, both parameterized by ϕ (Fig. 2). At each time-step t, the encoder predicts
the latent features zt from the trajectory of actions a1:t and observations y1:t: zt = gϕ(at,yt,ht), where ht
is the hidden state of the GRU and summarizes the past inputs a1:t−1 and y1:t−1. The decoder receives zt as
input and outputs a reconstruction x̂t: x̂t = fϕ(zt).
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The model is trained to minimize a loss L defined as the sum of the Mean Squared Error (MSE) between x
and x̂t for each t:

L = 1
T

T∑
t=1

(x − x̂t)2 (4)

As opposed to solely considering the MSE with the final reconstruction x̂T , our formulation presents certain
benefits: (a) it takes into account the scenario in which x changes over time (e.g., when taking a measurement
affects the true signal); (b) it forces the model to have good reconstruction quality at each time step; and (c)
makes the loss comparable to the variational evidence lower bound optimized in section 4.4, which includes
the sum of likelihoods at each time step of the trajectory.
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Figure 2: Network architecture used in our experiments. A recurrent encoder (orange) maps the action at
and observation yt at time step t to a latent representation zt, using the hidden state ht to summarize the
past actions and observations a1:t−1 and y1:t−1. A convolutional decoder is then used to reconstruct the
signal x̂t from zt. The acquisition network is used to select actions at+1 from the latent representation
zt. The acquisition network is only used for the adaptive acquisition strategies, while the random baseline
samples actions at random from a predefined probability distribution. Note how the encoder only receives
gradients from the decoder fϕ, and gradients from the acquisition network are never backpropagated through
the encoder.

Acquisition Model (Policy Network). The goal of the acquisition model is to predict a projection (the
action) at, such that the resulting observation yt = F (at,x) is highly informative towards reconstructing
the signal x̂t. To achieve this goal, we design a policy πθ (see Figure 2; in green) to select the next action
based on the history of measurements, observations, and reconstruction qualities. Therefore, we condition the
policy network on the encoder’s latent representation zt−1 = gϕ(at−1,yt−1,ht−1), which is in parallel also
used to aid reconstruction as we saw earlier. Following the manifold hypothesis (Pope et al., 2021; Fefferman
et al., 2016; Bengio et al., 2013), we assume that zt−1 contains all the relevant information about the history
of acquisitions and observations in a compressed space. Therefore, the policy learns to select the next action
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at+1 conditioned only on the latest latent representation:

at ∼ πθ(at | zt−1) (5)

This differs from what is commonly done in Adaptive Sensing for MRI, where the policy is conditioned on
the latest reconstruction x̂t (Bakker et al., 2020). Following this acquisition, we reconstruct the signal based
on the latest observation to assign an instantaneous reward rt. We train the acquisition model with Vanilla
Policy Gradient (VPG) (Sutton and Barto, 2018), specifically using reward-to-go R̂t =

∑T
k=t γ

k−trk with
discount factor γ, advantage estimation Aπ (Schulman et al., 2016), and a neural network Vψ(zt) as baseline
for variance reduction. We estimate the policy gradient for a batch of B images as:

ĝB = 1
B

∑
B

T∑
t=1

∇θ log πθ(at | st)Ât (6)

with θ the parameters of the policy network. The baseline (subsection 4.2) is trained by mean squared error
as:

ψk+1 = arg min
ψ

1
BT

∑
B

T∑
t=1

(
Vψ(zt) − R̂t

)2
(7)

2.4 Training strategy and Baselines

In this section, we walk through our end-to-end approach where the reconstruction and adaptive acquisition
model are jointly trained. We begin discussing two baseline approaches and conclude with the end-to-end
approach.
Baseline 1: Random Acquisition and Reconstruction (AE-R). In this baseline, we consider a random
acquisition policy: each action taken is drawn agnostic to past actions, observations, and rewards. Note
that in this case, there is no inherent concept of temporal sequences, as all the measurements are done in
parallel and independently of each other, therefore removing the need for a recurrent encoder. However, to
make the baseline comparable with other acquisition strategies with sequential acquisition, we keep the same
architectural components described in the previous section.
Baseline 2: Adaptive Acquisition with pre-trained Reconstruction (AE-P). The second baseline
consists of a pre-trained reconstruction model, trained with the same procedure used for the AE-R baseline.
This strategy is similar to that proposed in Bakker et al. (2020). The policy selects a first measurement a1,
which is used to obtain a first observation y1. Then, for t = 1, . . . , T , we compute zt = gϕ(at,yt,ht) (h1 is
filled with zeros) and x̂t = fϕ(zt). The policy selects the next action at+1 based on zt, and the procedure
is repeated until the entire trajectory is collected. Finally, the policy is updated with Policy Gradient (see
section 2.3), while the reconstruction model is kept fixed. The policy network is always trained on the same
data used to pre-train the reconstruction network.
End-to-End Adaptive Acquisition and Reconstruction (AE-E2E). We proposed end-to-end training
of both reconstruction and acquisition models. Unlike the previous AE-P strategy, the reconstruction model
is now initialized with random parameters and is trained after each trajectory is collected by the policy.
Inspired by Zintgraf et al. (2020), we do not backpropagate gradients from the policy to the encoder, to avoid
instabilities and the need for additional hyperparameters for the multi-task learning loss.

2.5 Bayesian reasoning and the importance of belief states

In this section, we extend our approach with a variational formulation (Kingma and Welling, 2014) to reap
two additional benefits: (a) generalizability, as simple auto-encoders learning an unstructured latent space,
typically leads to overfitting (Chung et al., 2015); and (b) uncertainty quantification, which provides a
reasonable signal to guide the policy network. Intuitively, we expect the policy to select exploratory actions
in high uncertainty regimes and more exploitative actions as uncertainty reduces. Consequently, we introduce
a variational formulation for our model, inspired by Zintgraf et al. (2020), to learn a belief distribution over
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the latent space. The encoder outputs the parameters of such distribution, in our experiments, a Multivariate
Gaussian with diagonal covariance like in standard Variational Autoencoders (Kingma and Welling, 2014):

bt = gϕ(at,yt,ht) = (µ̄t, σ̄t) (8)

The policy selects the following action based on the belief:

at+1 = πθ(at+1 | bt), (9)

while the decoder reconstructs the image from a sample from the belief distribution:

x̂t = fϕ(zt), zt ∼ N (µ̄t, σ̄tI) (10)

We train the model to maximize the probability of the signal x given the sequence of acquisitions and
observations:

log p(x | a1:T ,y1:T ) = log
∫
p(x, z1:T | a1:T ,y1:T )dz1:T (11)

As this probability is intractable, we maximize the ELBO instead:

T∑
t=1

Ez1:T −1 [EzT
[log p(xt = x | zt)] −DKL(q(zt | at,yt,ht) ∥ p(zt | zt−1))] (12)

The lower bound derivation can be found in Appendix B. The training procedure remains the same as for the
deterministic end-to-end case. The prior at t = 1 is p(z1) = N (0, I), while at each time step t > 1 it is the
posterior q at time t− 1.

We would like to end this section with a remark on the theoretical support for the gain of adaptive acquisition.
In compressed sensing, there are certain results that state there is no gain in adaptive sensing (see for example
Foucart et al. (2010); Foucart and Rauhut (2013)). We analyze the assumptions behind the theory in App.
A. To summarize, first, the adaptive sensing does not improve the worst-case error, and second, the theory
does not apply to a probabilistic adaptive scheme. In this work, we have focused on average-case error
improvements, and used a probabilistic formulation of adaptive sensing. See App. A for detailed discussions.

3 Related Work

3.1 Adaptive acquisition with Reinforcement Learning

The question of adaptive compressed sensing has been approached from a theoretical perspective in Cohen
et al. (2009); Foucart et al. (2010) (see Foucart and Rauhut (2013) for a concise and detailed overview of
arguments based on Gelfand width). There are other works discussing various methods and theoretical
analysis for the adaptive sensing (Malloy and Nowak, 2014; Castro, 2014; Castro and Tánczos, 2015; Davenport
et al., 2016; Braun et al., 2015). These works consider in general noisy setting, while we are focused on
noiseless setting here. Their approach is classical and not data-driven. In this work, we focus on Gelfand
width-based analysis and review the subtleties of this argument in App. A and generalize some of the
existing results. Complementing traditional compressed sensing approaches which focus on solving the
reconstruction problem, we consider adaptive sensing approaches (Bakker et al., 2020; Pineda et al., 2020; Jin
et al., 2019; Bakker et al., 2022; Ramanarayanan et al., 2023) where acquiring measurements are treated as
a sequential decision-making problem. While our approach is closely related to the latter line of adaptive
sensing techniques, we present a more general approach that is suitable beyond MRI scenarios, e.g., capable
of dealing with both continuous and discrete sensing matrices and observations. More importantly, we tackle
both reconstruction and acquisition problems simultaneously thereby contrasting the two-stage training
procedure, in which a model is first trained for reconstruction and subsequently for acquisition. While the
authors in Yin et al. (2021) also tackle these problems simultaneously, their approach trains the whole system
in a supervised manner with short acquisition horizons (4 steps in their experiments). To the best of our
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knowledge, we are the first to introduce an end-to-end training of reconstruction and acquisition models
for active sensing with reinforcement learning. Our method also extends the work of Zintgraf et al. (2020),
which proposes a method to learn a belief distribution over unknown environments. While we use a similar
architecture and training procedure, our work differs in its goal. The work Zintgraf et al. (2020) performs
meta-learning over the transition probability and reward function of unknown environments while we train
our models to extract a belief distribution over the unknown state of a POMDP, similarly to Igl et al. (2018);
Lee et al. (2020). In addition, the decoder in Zintgraf et al. (2020) is used to predict the future (and the
past) of a Bayesian Augmented MDP, while for us, it is used as a reconstruction network, which is crucial to
our end goal, namely to achieve a reconstructed signal faithful to the original signal x.

3.2 Latent Variable models and Deep RL

The papers Chung et al. (2015); Gregor et al. (2018) introduce variational methods for modeling temporal
sequences, arguing that it is important to have a latent representation that can form a belief distribution
representing a measure of uncertainty. We draw inspiration from these works to introduce a probabilistic
interpretation of the latent space in our model. Our architecture and training procedure are similar to the
ones used in Reinforcement Learning on latent space methods (Khan et al., 2019; Allshire et al., 2021; Zhou
et al., 2021), Meta Reinforcement Learning (Wang et al., 2016; Duan et al., 2016; Zintgraf et al., 2020) and
Model-Based Reinforcement Learning (Hafner et al., 2020; 2021). In the context of POMDPs, works such as
Igl et al. (2018); Hafner et al. (2019); Lee et al. (2020) use Deep Variational Reinforcement Learning to learn
a belief distribution over the hidden state, showing how explicitly modeling the uncertainty improves the
performance of the agent. In our work, such belief distribution must be suitable for both the acquisition and
reconstruction networks to select the follow-up action and reconstruct the unknown signal x.

4 Experiments

In this section, we describe the experiments performed to evaluate the proposed method. We first describe
the datasets used, and then provide a comparison of the three methods introduced above, AE-R, AE-P,
and AE-E2E. Finally, we verify the effectiveness of the variational formulation introduced in section 2.5.
Additional experiments can be found in Appendix D.2, where we analyze a phenomenon observed in Bakker
et al. (2020), where greedy policies (γ = 0) seem to perform better than discounted ones. Note that we focus
on continuous action spaces. Moreover, we report additional ablation studies and complementary results for
some of the datasets in Appendix D.4 and D.5. While our method can in principle deal with non-linear CS
problems, we do not experiment with those in this work.

It is important to note that the use of adaptive acquisitions is particularly relevant when the acquisition
budget is low. In principle, if one could take infinite measurements, then there wouldn’t be any benefit in
using an adaptive strategy over a random one. In the following, we provide an evaluation for different tasks at
different measurement budgets, which can be used as a guideline to understand when the proposed adaptive
strategy should be the preferred alternative over random acquisitions. In practice, the acquisition horizon T
is often driven by the specific domain, and the choice of acquisition strategy should be selected accordingly.

4.1 Datasets and Sensing Operations

We test our algorithms for adaptive acquisition on two datasets: the handwritten digits dataset MNIST
(Deng, 2012) and the Low Dose CT Image and Projection Data1 (MAYO) dataset (Moen et al., 2021) (more
details in App. C.1). We use two different sensing operations F , which we name as Gaussian and Radon.
The Gaussian transformation, denoted as G, consists in a matrix multiplication between a random Gaussian
matrix A and the flattened image x: y = G(A,x) = Ax. The rows at of the sensing matrix have continuous
entries ∈ (−∞,∞), and same for y. For a vectorized image of size N × 1, the sensing matrix has size T ×N
(each row at is 1 ×N , with T the total number of acquisitions, and y is a vector of dimensions 1 × T . In
the adaptive acquisition scenario, the resulting yt = G(at,x) is a scalar. Note that in compressed sensing,
Gaussian measurements can achieve theoretical limits for non-adaptive sensing, and therefore represent the

1https://www.aapm.org/grandchallenge/lowdosect/
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best non-adaptive sensing scheme. The Radon transform is commonly used to reconstruct images from CT
scans, see Beatty (2012) for a detailed description. The sensing matrix A corresponds to a vector 1 × T of
angles in radians, with each at being a scalar ∈ [−π, π]. Assuming that x is an image of dimensions h× w,
then the y resulting from R(A,x) is a matrix of dimensions h× T . In adaptive acquisition, yt = R(at,x) is
a vector of dimensions h× 1.

4.2 Implementation Details

In these experiments, we use a simple GRU encoder and convolutional decoder. The policy is a convolutional
architecture like the decoder for the Gaussian measurements, while it is a Multi-Layer Perceptron (MLP)
for Radon measurements. The value network baseline is always an MLP with one hidden layer and ReLU
activation function. The MLP takes as input the latent vector from the encoder and outputs a scalar
representing the baseline value used for variance reduction. All the policy models are trained with VPG and
γ = 0.9 unless otherwise specified. For AE-R, the actions are randomly sampled from a spherical Gaussian
at ∼ N (0, I) for Gaussian measurements and from a uniform at ∼ U(−π, π) for Radon. For the adaptive
acquisition, for both AE-P and AE-E2E models, the policy parametrizes the mean and standard deviation
of a Gaussian distribution for Gaussian measurements, and the mean and concentration of a Von Mises
distribution for Radon measurements. During training, actions are sampled from such distributions, while at
validation the mean parameter is used as an action. More details about hyperparameters can be found in
appendix C.

4.3 Random vs Adaptive Acquisitions

We start by comparing the performance of AE-R, AE-P, and AE-E2E models introduced in section 2.4
on the MNIST dataset, for both Gaussian and Radon sensing operations. We experiment with different
trajectory length, T = 20, 50, 100 for Gaussian and T = 5, 10, 20 for Radon. This choice is motivated by
Radon measurements providing more information than Gaussians (a vector instead of a scalar). The results
are reported in table 1. We also report the reconstruction quality in SSIM after each acquisition step for
models trained to optimize the whole trajectories, in Figure 4.

Table 1: Results on the MNIST datset for both Gaussian and Radon measurements in SSIM (higer is better).
The trajectory length of the experiment is reported on the second row. All results are computed on the whole
test set for one run. We highlight in bold the best performance for each configuration.

Gaussian Radon

Models 20 50 100 5 10 20
AE-R .49 ± .02 .64 ± .02 .73 ± .01 .58 ± .02 .69 ± .01 .77 ± .01
AE-P .49 ± .02 .42 ± .02 .40 ± .02 .66 ± .01 .47 ± .02 .43 ± .02
AE-E2E .62 ± .02 .59 ± .02 .60 ± .02 .83 ± .01 .84 ± .01 .85 ± .01

From the results, we can see how AE-E2E outperforms the other methods in most cases. However, while in
Radon longer trajectories lead to higher performance, that is not the case for Gaussian measurements, where
increasing the number of measurements leads to worse performance. Note, however, that this is the case
only for the adaptive strategies, while AE-R keeps improving performance the more we add measurements
and observations. We conjecture that this behavior could be related to the high dimensionality of the action
space for the policy with Gaussian measurements. However, the adaptive E2E model still performs better
for trajectories of length ∼ 40, which is more than is used in papers such as Bakker et al. (2020); Yin et al.
(2021). As we see that generally, the worst-case error improves as the mean performance improves, we drop
this metric in the following sections. We also drop the comparison with AE-P, as in our experiments, it never
outperforms AE-E2E.
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Figure 3: Results on the MNIST test dataset with Gaussian measurements. We report the mean and standard
error of the mean in SSIM (Left) and worst case error in SSIM (Right) for AE-R (yellow), AE-P (blue), and
AE-E2E (green) for each acquisition step in the trajectory. Each model is trained on optimizing the whole
trajectory length (100 for Gaussian).
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Figure 4: Results on the MNIST test dataset with Radon measurements. We report the mean and standard
error of the mean in SSIM (Left) and worst case error in SSIM (Right) for AE-R (yellow), AE-P (blue), and
AE-E2E (green) for each acquisition step in the trajectory. Each model is trained on optimizing the whole
trajectory length (20 for Radon).

4.4 VAEs and β-VAEs

We perform the same experiments on MNIST done in section 4.3 but with the variational formulation
introduced in section 2.5. We define the models as VAE-R and VAE-E2E. We further define two variations of
VAE-E2E, in which we introduce a weighting of the KL term with a scalar parameter β, as done in Higgins
et al. (2017). Using β in a β-VAE can control the disentanglement of the features in the latent representation.
A high value (β > 1) corresponds to high disentanglement, while a low value (β < 1) usually results in a
better reconstruction quality for the decoder. It is, therefore, crucial for us to tune β, as a disentangled
latent space can be useful for the policy, but at the same time can harm the reconstruction performance for
the decoder, which is the most important metric in our setting. We try three values of β : 1, 0.1, and 0.01,
without hyperparameter tuning. The results are reported in table 2 and Figure 5.

VAE-E2E with β = 0.01 outperforms the other VAE-E2E versions and achieves performance on-par or
superior compared to the equivalent AE-E2E. Furthermore, by looking at Figure 5, it is possible to see how
the decrease in performance with long acquisition horizons seems to be ameliorated. This suggests that the
disentanglement in the latent space with the probabilistic formulation if carefully tuned, can be useful for
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Figure 5: Comparison of AE-E2E (yellow) and VAE-E2E for different β (β = 1 → blue, β = 0.1 → green,
β = 0.01 → red). We show the mean and standard error of the mean in SSIM for the MNIST test set, at
different stages of the acquisition trajectory. We test on models trained on different acquisition horizons: 100
for Gaussian and 20 for Radon.

the policy in selecting optimal actions in long trajectories. However, VAE-R still outperforms the adaptive
strategy on long acquisition trajectories.

Table 2: MNIST SSIM (the higher the better) for different trajectory lengths (number on second row). SSIM
is computed at the end of each acquisition trajectory, and we report mean and standard error of the mean.
We highlight in bold the best performance for each configuration. Note that for 50 Gaussian measurements,
the performances of VAE-E2E and VAE-R agree within the error.

Gaussian Radon

Models β 20 50 100 5 10 20
VAE-R 1 .44 ± .02 .63 ± 0.02 .70 ± .01 .55 ± .02 .68 ± .013 .74 ± .01

VAE-E2E
1 .57 ± .02 .60 ± .02 .58 ± .02 .77 ± .01 .83 ± .01 .85 ± .01
0.1 .59 ± .02 .58 ± .02 .59 ± .02 .81 ± .01 .84 ± .01 .85 ± .01
0.01 .61 ± .02 .63 ± .02 .61 ± .02 .82 ± .01 .85 ± .01 .85 ± .01

4.5 High-resolution experiments on MAYO

Table 3: Results on the MAYO datset for both Gaussian and Radon measurements, for trajectory length
respectively of 50 and 10. We report mean and standard error of the mean in SSIM on the test set. We
highlight in bold the best performance for each configuration.

Gaussian Radon
Models 50 10
AE-R .575 ± .008 .444 ± .009
AE-E2E .506 ± .008 .623 ± .012
VAE-R (β = 1) .521 ± .008 .551 ± .010
VAE-E2E (β = 1) .413 ± .012 .608 ± .011

Finally, we test our methods on the higher-resolution images from the MAYO dataset. We train the models
AE-R, AE-E2E, and the corresponding variational models with β = 1. We test both Gaussian and Radon
measurements, with T = 50 and T = 10 respectively. The results are reported in Table 3 and Figure 6. For
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Gaussian measurements, AE-R and VAE-R outperform their adaptive counterparts. We make the hypothesis
that the way we use the policy is inefficient for Gaussian measurements, as the dimensionality of the action
space scales quadratically with the image dimension (the action space is a vector of dimensions 1 × 16384).
For Radon, while the adaptive models still outperform the random baselines, we observe a small decrease in
performance over the trajectory for AE-E2E, which could be caused by overfitting in the unstructured latent
space.
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Figure 6: Results on the MAYO test dataset, for AE-R (yellow), VAE-R (β = 1, green), AE-E2E (blue) and
VAE-E2E (β = 1, red), as the mean and standard error of the mean in SSIM. Left: Gaussian measurements
with trajectory length 50. Right: Radon measurements with trajectory length 10.

5 Conclusion

We introduce a novel framework for end-to-end training of reconstruction and acquisition in generic compressed
sensing problems. We show how using adaptive acquisition strategies can improve over random measurements,
especially for a limited number of acquisition steps. We further introduced a variational formulation to
obtain a better structure for the latent space, which when carefully tuned, can outperform the non-variational
counterpart. Finally, we provided an ablation study over the effect of the choice of discount factor and policy
gradient algorithm.
Future work. Our method does not outperform the random baseline in the cases of long acquisition
horizons and high-dimensional action space. This is expected as random measurements are known to be
theoretically optimal when a sufficiently long measurement horizon is available. Nonetheless, we propose
some future directions to potentially improve upon our results. A careful tuning of discount factor and other
policy parameters can improve performances (see App. D.2). For the case of Gaussian measurements, the
dimensionality of the action space scales quadratically with the dimension of the images. Results suggest
that this might be a major drawback, as the policy seems to find it difficult to select optimal actions in such
a vast action space. Better ways to parametrize the probabilistic policy space could substantially improve
the results, alongside more sophisticated policy learning strategies that can deal with such a complex search
space. Finally, for the models using the variational formulation, a fine-grained tuning of β could also lead
to superior results, finding the optimal trade-off between latent space disentanglement and reconstruction
quality.
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A Gelfand Width Bounds for Adaptive Acquisition

In this section, we consider the argument based on Gelfand width analysis against the gain of adaptive sensing.
In the classical result, the focus has been on the worst-case error for deterministic recovery algorithms and
adaptive schemes that rely only on the outcome of previous measurements and not on the intermediate
reconstruction. We extend the existing results and show that a similar result can be obtained even if we
extend the adaptive schemes to use previous reconstructions as input or fix the recovery algorithm. This
means that we might not expect additional gain by using previous reconstructions. We argue for two insights
from the theory. First, the gain can show itself if we move away from worst-case error analysis. Second, we
argue that the theory does not apply to a probabilistic adaptive scheme. This is a motivation behind using
probabilistic formulations as presented above to get gains from adaptive sensing.

We follow the notation used in Foucart and Rauhut (2013) and Gelfand width-based analysis as in Foucart
et al. (2010). To this end, in this section m refers to the rows of the sensing matrix A, which in the rest of
the text is referred to as T . Note that in this work, we have focused on noiseless observations, convenient for
Gelfand width-based analysis.

A.1 A Classical Result

We start with some definitions and state the classical result mainly taken from Chapter 10 of Foucart and
Rauhut (2013), which appeared already in Cohen et al. (2009). The first definition will provide the best
possible worst case error that we can get over all possible m-dimensional non-adaptive linear measurements,
denoted by A, and recovery algorithms ∆.
Definition A.1. The compressive m-width of a subset K of a normed space X is defined as:

Em(K,X) := inf
A,∆

(
sup
x∈K

∥x − ∆(Ax)∥ ,A : X → Rm,A is linear ,∆ : Rm → X

)
.

The next definition extends the previous one to the case of adaptive measurements.
Definition A.2. The adaptive compressive m-width of a subset K of a normed space X is defined as:

Emada(K,X) := inf
F ,∆

(
sup
x∈K

∥x − ∆(F x)∥ ,F : X → Rm,F is adaptive ,∆ : Rm → X

)
.

Let’s clarify what we mean by adaptive measurement. Consider the first measurement given by a linear
functional λ1(x). The adaptive map is defined as

F =


λ1(x)

λ2;λ1(x)(x)
...

λm;λ1(x),λ2;λ1(x)(x),...,λm−1;...,λ1(x)(x)(x)


This simply means that the current measurement depends on the outcome of all previous measurements.

It is clear that optimal adaptive measurements, as defined here, can at least match the performance of
linear measurements. This implies that Emada(K,X) ≤ Em(K,X). The next question is to see if adaptive
measurements can bring additional gains. To pinpoint the result, we need to introduce the notion of Gelfand
m-width.
Definition A.3. The Gelfand m-width of a subset K of a normed space X is defined as

dm(K,X) := inf
(

sup
x∈K∩ker(A)

∥x∥ ,A : X → Rm,A is linear
)
.

The Gelfand width provides a common ground for comparing adaptive and non-adaptive compressed sensing
widths.
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Theorem A.4 (Theorem 10.4. (Foucart and Rauhut, 2013)). If K is a subset of a normed space X, it is
symmetric K = −K, and satisfies K +K ⊂ aK for a positive constant a > 0, we have:

dm(K,X) ≤ Emada(K,X) ≤ Em(K,X) ≤ a.dm(K,X).

This theorem already implies that adaptive and non-adaptive best worst-case errors are constrained from
both directions by the Gelfand width. For example, in sparse recovery problems, the number of required
measurements for recovering a s-sparse vector scales as Ω(s log(N/s)). The theorem implies that one cannot
hope for better scaling with adaptive measurements. Apparently, many experimental results seem to counter
this conclusion and show a concrete gain for adaptive measurements.

We would like to characterize the reason behind this discrepancy by examining some conjectures around it.

• Theorem A.4 seems to be about the worst case error only. The other statistics of the error can be
potentially improved by adaptiveness. This hypothesis is stated in Foucart and Rauhut (2013).

• The notion of adaptiveness is too restrictive. The adaptive F only depends on the outcome of
previous measurements and not necessarily the reconstructed vector from those measurements or the
residual errors. These are commonly used in the literature for building adaptive methods.

• The infimum computed over all possible linear measurements and recovery algorithms assumes an
exhaustive search rarely done in practice. For a suboptimal recovery method, adaptive measurements
can provide gain.

These conjectures are formulated based on inspection of the definitions. In what follows, we carefully examine
these conjectures. Before that, we look into the proof of the theorem again following what was presented in
Foucart and Rauhut (2013).

A.2 Proof Outline

Proof of dm(K,X) ≤ Emada(K,X).

Consider any reconstruction map ∆(·) and an adaptive sensing matrix F . The main idea behind this inequality
is to construct a non-adaptive linear transformation A from F . To do so, consider vectors in K that are
in the kernel of the first measurement, namely all x ∈ K such that λ1(x) = 0. From this set, select all the
vectors in the kernel of the second adaptive measurement, which is:{

x ∈ K ∩ ker(λ1) : λ2;λ1(x)(x) = λ2;0(x) = 0
}

Note that this set is given by K ∩ ker(λ1) ∩ ker(λ2;0). Continuing this process successively, we arrive at the
set of vectors x in the set K ∩ ker(λ1) ∩ ker(λ2;0) ∩ · · · ∩ ker(λm;0,...,0), for which F (x) = 0. Define A as:

A =


λ1(x)
λ2;0(x)

...
λm;0,...,0(x)

 . (13)

Note that for all x ∈ K ∩ ker(A), we have F (x) = 0. Using symmetry of K, we get −x ∈ K ∩ ker(A) and
therefore F (−x) = 0. We can now use the triangle inequality to get for all x ∈ K ∩ ker(A):

∥x∥2 =
∥∥∥∥1

2(x − ∆(F (x)) − 1
2(−x − ∆(F (−x))

∥∥∥∥
2

(14)

≤ 1
2 ∥x − ∆(F (x))∥2 + 1

2 ∥−x − ∆(F (−x))∥2 (15)

≤ sup
x∈K

∥x − ∆(F x)∥2 . (16)
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That’s how the Gelfand width is connected to adaptive compressive width. We have:

dm(K,X) ≤ sup
x∈K∩ker(A)

∥x∥2 (17)

≤ sup
x∈K

∥x − ∆(F x)∥2 . (18)

Since this holds for any ∆ and F , we can get the infimum over them and obtain:

dm(K,X) ≤ Emada(K,X).

Note that the key elements of the proof are first building the matrix A from F , and having ∆(F (x)) =
∆(F (−x)). The rest of the operation holds regardless.

Proof of Em(K,X) ≤ adm(K,X).

The starting point is this inequality, which holds in general for any A and ∆:

Em(K,X) ≤ sup
x∈K

∥x − ∆(Ax)∥2 .

To get to Gelfand width at the output, we must select ∆ properly. Interestingly, the only condition required
for ∆ is consistency. The condition states that for any x in K and the observation y = Ax, the recovery
algorithm ∆ returns a vector x̂ that is in K and in the pre-image of y, A−1(y), namely Ax̂ = Ax:

∆(y) ∈ K ∩ A−1(y).

With this mild assumption, we get:

∥x − ∆(Ax)∥2 ≤ sup
z∈K∩A−1(Ax)

∥x − z∥2

and thereby:
sup
x∈K

∥x − ∆(Ax)∥2 ≤ sup
x∈K

sup
z∈K∩A−1(Ax)

∥x − z∥2 .

Note that x − z ∈ ker(A), and x − z ∈ K −K ⊂ aK, and therefore:

sup
x∈K

∥x − ∆(Ax)∥2 ≤ sup
x∈K

sup
z∈K∩A−1(Ax)

∥x − z∥2 ≤ sup
x∈aK∩ker(A)

∥x∥2 = a sup
x∈K∩ker(A)

∥x∥2 .

The rest of the proof is about taking the infimum over A and ∆ from both sides, which gives us Em(K,X) ≤
adm(K,X). In this part, the key element of the proof was the consistency assumption for ∆.

We are now ready to explore if the theoretical results hold by relaxing some of the assumptions.

A.3 More inputs for adaptive measurements will not help

As we mentioned above, one of the conjectures was the limited notion of adaptiveness used in the result. For
example, in Bakker et al. (2020), the input to the policy network is the reconstruction from the previous
measurements.

We extend the definition of adaptive sensing to include previous measurements and construction. This would
include all the information available in the reconstruction pipeline apart from recovery algorithm details.

We extend the definition of the recovery algorithm ∆ to incorporate intermediate reconstruction:

∆ :=
{

∆j , j ∈ [m],∆j : Rj → X
}
. (19)

Consider again the first measurement λ1(x). In the extended setting, the next measurement would be given
by:

λ2;λ1(x),∆1(λ1(x))(x).
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The new adaptive map is then defined as

G =


λ1(x)

λ2;λ1(x),∆1(λ1(x))(x)
...

λm;λ1(x),∆1(λ1(x)),λ2;λ1(x),∆1(λ1(x))(x),...,λm−1;...,λ1(x),∆1(λ1(x))(x),∆m−1(λm−1;...(x))(x)


Just to get a better intuition from this cumbersome notation, we denote the individual measurement obtained
at step j by yj , and the measurement vector up to time j by yj = (y1, . . . , yj)⊤. The extended adaptive
sensing matrix is then given by:

G =


λ1(x)

λ2;y1,∆1(y1)(x)
λ3;y2,∆1(y1),∆2(y2)(x)

...
λm;ym,∆1(y1),...,∆m−1(ym−1)(x).

 (20)

The question is whether the previous lower bound using Gelfand width would hold for this new adaptive
sensing matrix. Let’s start with the new definition.
Definition A.5. The extended adaptive compressive m-width of a subset K of a normed space X is defined
as:

Emext.ada(K,X) := inf
G,∆

(
sup
x∈K

∥x − ∆(Gx)∥ ,G : X → Rm,G is adaptive and given in equation 20 ,∆ is given in equation 19
)
.

The following theorem states that the extended adaptive measurements do not bring any gain either.
Theorem A.6. If K is a subset of a normed space X, it is symmetric K = −K, and satisfies K +K ⊂ aK
for a positive constant a > 0, we have:

dm(K,X) ≤ Emext.ada(K,X) ≤ Em(K,X) ≤ a.dm(K,X).

Proof. The upper bounds are just replications of what we proved before. So, we only need to prove
dm(K,X) ≤ Emext.ada(K,X).

First of all, see that we can build a matrix A in a similar way by considering the vectors in K ∩ ker(λ1) ∩
ker(λ2;01,∆1(01)) ∩ · · · ∩ ker(λm;0m−1,∆1(01),...,∆m−1(0m−1)), for which G(x) = 0, namely:

A =


λ1(x)

λ2;01,∆1(01)x)
...

λm;0m−1,∆1(01),...,∆m−1(0m−1)(x)

 . (21)

Now using this A, we have again that for all x ∈ K ∩ ker(A), G(x) = 0. We can replicate the proof:

∥x∥2 =
∥∥∥∥1

2(x − ∆(G(x)) − 1
2(−x − ∆(G(−x))

∥∥∥∥
2

(22)

≤ 1
2 ∥x − ∆(G(x))∥2 + 1

2 ∥−x − ∆(G(−x))∥2 (23)

≤ sup
x∈K

∥x − ∆(Gx)∥2 , (24)

which implies:

dm(K,X) ≤ sup
x∈K∩ker(A)

∥x∥2 ≤ sup
x∈K

∥x − ∆(Gx)∥2 ≤ Emext.ada(K,X). (25)
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Remark A.7. Note that in the above argument, the key inequality is supx∈K∩ker(A) ∥x∥2 ≤
supx∈K ∥x − ∆(Gx)∥2. If the choice sensing matrix, adaptive or not, is limited to a specific subset of
all matrices, say A, then we can redefine the Gelfand width limited to A, and obtain a similar lower bound.

A.4 Adaptive sensing would not improve for a fixed recovery algorithm

We now examine the third hypothesis, which is about fixing the recovery algorithm, which might be suboptimal.

Note that the lower bound would still hold regardless of the choice of ∆, namely dm(K,X) ≤
supx∈K ∥x − ∆(Gx)∥2. This time, we need to examine the upper bound. It turns out that as long as
the recovery algorithm is consistent, that is, ∆(y) ∈ K ∩ A−1(y), we still get:

∥x − ∆(Ax)∥2 ≤ sup
z∈K∩A−1(Ax)

∥x − z∥2 ≤ a sup
x∈K∩ker(A)

∥x∥2 . (26)

The upper bound follows accordingly. This simple derivation shows that not much is to be expected from
adaptive sensing, even if the recovery algorithm has limitations.

We can repeat this argument by considering a subset of all possible sensing matrices. It can be similarly
shown that a similar bound can be obtained on the errors.

A.5 Where is the gain of adaptive sensing?

As we have seen in the above derivations, some of the conjectures about the source of gain in adaptive sensing
can be debunked. To summarize, even extending the notion of adaptiveness or restricting the measurement
matrix and recovery algorithm sets would not break the theorem. So the natural question is where else we
can look for the gains of adaptive sensing.

The most obvious angle, previously mentioned in the literature, is about moving from worst-case error to
average error. This change will break some of the inequalities used in the proof, for example, ∥x − ∆(Ax)∥2 ≤
supz∈K∩A−1(Ax) ∥x − z∥2.

The other key point, crucial for both lower and upper bound, was the deterministic nature of the adaptive
scheme and recovery algorithm, for example, assuming ∆(Ax) does not have stochastic components for
instance, a random initialization, or the adaptive measurement λj;...(x) is a deterministic function of past. In
the latter case, one cannot find a deterministic A from G to use in the lower bound proof.

The consistency was another assumption, although in most cases, we can expect the recovery algorithm to
provide an approximation close enough to the underlying data manifold and satisfy measurement consistency.

To summarize, there are two angles where the gain of adaptive sensing shows itself. First, it is about moving
away from worst-case errors. Second, we should consider probabilistic adaptive schemes. Our problem
formulation in the paper follows these guidelines.

B Lower bound for reconstruction loss in Adaptive Acquisition

In this section, we derive a variational bound for the reconstruction loss in adaptive acquisition schemes.
The graphical model of our scenario is represented in Figure 7. The random variable x1:T correspond to the
reconstructed signal, a1:T are the measurement actions chosen adaptively, and y1:T are the observations.
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Figure 7: Graphical Model for Random Variables

The derivation runs as follows, and involves standard factorization steps with the ELBO lower bound:

log p(x1:T | a1:T , y1:T ) = log
∫
p(x1:T , z1:T | a1:T , y1:T )dz1:T (27)

= log
∫
p(x1:T , z1:T | a1:T , y1:T )q(z1:T | x1:T , a1:T , y1:T )

q(z1:T | x1:T , a1:T , y1:T )dz1:T

= logEz1:T ∼(z1:T |x1:T ,a1:T ,y1:T )

[
p(x1:T , z1:T | a1:T , y1:T )
q(z1:T | x1:T , a1:T , y1:T )

]
(a)
≥ Ez1:T

[
log p(x1:T , z1:T | a1:T , y1:T )

q(z1:T | x1:T , a1:T , y1:T )

]
= Ez1:T

[
log
∏T
t=1 p(xt | zt, at, yt)p(zt | z1:t−1, y1:t, a1:t)∏T

t=1 q(zt | xt, z1:t−1, y1:t, a1:t)

]

= Ez1:T

[
T∑
t=1

log p(xt | zt, at, yt) + log p(zt | z1:t−1, y1:t, a1:t) − log q(zt | xt, z1:t−1, y1:t, a1:t)
]

=
T∑
t=1

Ez1:T [log p(xt | zt, at, yt) + log p(zt | z1:t−1, y1:t, a1:t) − log q(zt | xt, z1:t−1, y1:t, a1:t)]

=
T∑
t=1

EzT
Ez1:T −1 [log p(xt | zt, at, yt) + log p(zt | z1:t−1, y1:t, a1:t) − log q(zt | xt, z1:t−1, y1:t, a1:t)]

=
T∑
t=1

Ez1:T −1EzT
[log p(xt | zt, at, yt) + log p(zt | z1:t−1, y1:t, a1:t) − log q(zt | xt, z1:t−1, y1:t, a1:t)]

=
T∑
t=1

Ez1:T −1EzT

[
log p(xt | zt, at, yt) − log q(zt | xt, z1:t−1, y1:t, a1:t)

p(zt | z1:t−1, y1:t, a1:t)

]

=
T∑
t=1

Ez1:T −1

[
EzT

[log p(xt | zt, at, yt)] − EzT

[
log q(zt | xt, z1:t−1, y1:t, a1:t)

p(zt | z1:t−1, y1:t, a1:t)

]]
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In the derivations, (a) is the ELBO step. Note that the derivations are general and assumed full dependence on
the history for the prior p(·) and the approximate posterior q(·). First, we can assume a Markov assumption on
the sequence of zt’s and simplify p(zt | z1:t−1, y1:t, a1:t) as p(zt | zt−1). Next, we assume that the latent variable
zt summarizes whatever necessary for the reconstruction, namely replacing p(xt | zt, at, yt) = p(xt | zt).
Finally, we use a recurrent architecture, a GRU, in our implementation of approximate posterior q(·), and
there, the history of observations y1:t, and the actions a1:t is summarized through a hidden state ht. This
means that q(zt | xt, z1:t−1, y1:t, a1:t) is given by q(zt | at, yt, ht). Using these simplifications, we will arrive at
the following equation.

T∑
t=1

Ez1:T −1

[
EzT

[log p(xt | zt, at, yt)] − EzT

[
log q(zt | xt, z1:t−1, y1:t, a1:t)

p(zt | z1:t−1, y1:t, a1:t)

]]

=
T∑
t=1

Ez1:T −1 [EzT
[log p(xt = x | zt, at, yt)] −DKL(q(zt | at, yt, ht) ∥ p(zt | zt−1))]

=
T∑
t=1

Ez1:T −1 [EzT
[log p(xt = x | zt)] −DKL(q(zt | at, yt, ht) ∥ p(zt | zt−1))].

C Training details

For all the experiments, we train the models for 100 epochs, with batch size 128. All the models are trained
with ADAM optimizer (Kingma and Ba, 2015), with learning rate lr = 1e−3 for reconstruction and lr = 1e−4

for acquisition. In the Gaussian case, the measurements at are normalized before computing the corresponding
observation. For Radon, after computing yt = R(at, x), at is divided by π to be in the range [−1, 1], while yt
is scaled to be in the range [0, 1].

C.1 Preprocessing for MAYO dataset

We use the DICOM image data consisting of 512 × 512 images belonging to three different classes labeled N
for neuro, C for chest, and L for liver. To train our models, we consider ∼1.5K samples from the N subset and
split them into train, validation, and test sets comprising ∼80%, ∼10%, and ∼10% of the images, respectively.
Before feeding a model, we apply a random crop and then rescale the images to 128 × 128. Finally, we
normalize the pixel values in [0, 1].

C.2 Architectures

GRU encoder. At each time step, the vectors at and yt are concatenated and fed to a GRU. For MNIST,
the GRU has 1 layer with 128 units, while for mayo x layers with y units. Then, a fully connected layer maps
the output of the GRU to the latent size dimension (×2 in the variational experiments to account for mean
and standard deviation).
Convolutional Decoder. For MNIST experiments, the decoder is a two-layer transposed convolution
network with 64 and 128 channels. For MAYO, the network has 8 transposed convolution residual blocks.
We do not use any normalization layer.
Policy Network. The policy network has the same architecture as the Decoder when we use Gaussian
measurements (outputs two channels instead of one). For Radon measurements, the policy is an MLP with
one hidden layer with 256 units.

D Additional experimental results

D.1 Full Results from MNIST

In Table 4 we report the full set of results concerning the MNIST dataset. Specifically, compared to Table 1,
in this section, we add to the table the results from the worst-case scenario for each model we trained.
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Table 4: Results on the MNIST datset for both Gaussian and Radon measurements in SSIM (higer is better).
The trajectory length of the experiment is reported on the second row. For each model, we report mean and
standard error of the mean on on the row signed as M, while we report the worst case error on the row signed
as W. All results are computed on the whole test set for one run. We highlight in bold the best performance
for each configuration.

Gaussian Radon

Models 20 50 100 5 10 20

AE-R M .49 ± .02 .64 ± .02 .73 ± .01 .58 ± .02 .69 ± .01 .77 ± .01
W −.01 .07 .21 −.01 .08 .17

AE-P M .49 ± .02 .42 ± .02 .40 ± .02 .66 ± .01 .47 ± .02 .43 ± .02
W −.12 −.10 −.12 .03 −.10 −.06

AE-E2E M .62 ± .02 .59 ± .02 .60 ± .02 .83 ± .01 .84 ± .01 .85 ± .01
W .01 −.05 .02 .22 .26 .23

D.2 The effect of the discount factor γ

Bakker et al. (2020) suggests that greedy policies can perform on par or even outperform policies trained with
a discounted reward. We investigate the role of the discount factor in this section. We additionally explore
the effectiveness of the Vanilla Policy gradient and compare it to the more recent and efficient Proximal Policy
Optimization (PPO) (Schulman et al., 2017). The results are reported in table 5 and Figure 8 for AE-E2E,
with 20 Gaussian measurements on MNIST. Our experiments show that, at least with our model and training
strategy, a carefully discounted objective function leads to the best results, as it generally happens in RL.
The fact that PPO with γ = 0.9 obtains the best performance suggests that using more recent and advanced
policy gradient algorithms could also bring additional improvement.

Table 5: Comparison between PPO and VPG for different discount factors. All the models are trained with
trajectories of 20 Gaussian acquisitions on the MNIST test dataset. We report mean and standard error of
the mean at the end of the trajectory, in SSIM (higher is better). We highlight in bold the best performance
across the different configurations.

Gaussian - 20

Algorithm γ = 0 γ = 0.9 γ = 0.99 γ = 1
VPG .577 ± .017 .616 ± .017 .634 ± .016 .618 ± .017
PPO .570 ± .017 .641 ± .016 .627 ± .016 .622 ± .017
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Figure 8: Mean and standard error of the mean in SSIM at each acquisition step, for models trained on
MNIST with Gaussian measurements and 20 step trajectories. The results are obtained on the test set. We
compare VPG (yellow) and PPO (blue) performance for different discount factors γ reported on top of each
graph.
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D.3 Comparison with ISTA

As an additional baseline, we compare the performance of our approach (AE-E2E and AE-R) with the
well-established compressed sensing method Iterative Soft-Tresholding Algorithm (ISTA) (Daubechies et al.,
2004) on the MNIST dataset. Both AE-E2E and AE-R are trained on a trajectory length of 784 measurements.
The results are reported in figure 9.

Figure 9: Performance of ISTA (blue), AE-R (orange) and AE-E2E (green) in average mean square error per
pixel over the test dataset.

D.4 Additional figures

In this section, we show additional plots for the experiments in sections 4.3 and 4.4. Figure 10 reports
the results at each step of the acquisition trajectory for models trained on 20 and 50 steps for Gaussian
measurements, and 5 and 10 steps for Radon, for the AE-R, AE-P, and AE-E2E models. The same is reported
in Figure 11 but for the variational encoder-decoder models.
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Figure 10: Results on the MNIST test dataset with Gaussian and Radon measurements. We report the mean
and standard error of the mean in SSIM (Left) and worst case error in SSIM (Right) for AE-R (yellow), AE-P
(blue), and AE-E2E (green) for each acquisition step in the trajectory. Each model is trained on different
trajectory lengths: 20 and 50 for Gaussian and 5 and 10 for Radon.
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Figure 11: Comparison of AE-E2E (yellow) and VAE-E2E for different β (β = 1 → blue, β = 0.1 → green,
β = 0.01 → red). We show the mean and standard error of the mean in SSIM for the MNIST test set at
different stages of the acquisition trajectory. We test on models trained with Gaussian measurements on 20
and 50 acquisition horizons and 5 and 10 for Radon.
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D.5 Ablation Studies

The purpose of this section is to report results from ablation studies. We report results concerning the
MNIST and MAYO datasets. According to the main paper, also in this section, we consider Gaussian and
Radon measurements. As we already mentioned in subsection 4.1, we base our choice of Gaussian and Radon
type of measurements on the following observation. In compressed sensing, Gaussian measurements can
achieve theoretical limits for non-adaptive sensing and therefore represent the best non-adaptive sensing
scheme. Instead, the Radon transform represents a common choice to reconstruct images from CT scans
(see Beatty (2012) for a detailed description). In Table 6 to Table 9 we report results concerning models
trained using the final reward only, i.e., we consider only the reconstruction error at the final state (after T
measurements). We rerun the simulations on the MNIST dataset multiple times. It is possible to notice how
in Table 6 and Table 7 the results are significantly worse than the cases in which reward is given at each time
step, indicating that the increased sparsity in the reward distribution results to be more challenging for the
policy, especially as the acquisition horizon increases. A different result can be seen in Table 8 and Table 9,
where the performances seem to improve with respect to the results in Table 3, even though not always with
increased number of acquisition. From these results, we can conclude that the two different kinds of rewards
may be suited for different models and datasets and that both should be tested.

Table 6: Results on the MNIST dataset for both Gaussian and Radon measurements in SSIM (higer is better).
The trajectory length of the experiment is reported on the second row. For each model, we report mean and
standard error of the mean on the row signed as M, while we report the worst case error on the row signed as
W. The reward for the RL policy is computed based on the reconstruction error at the final state only.

Gaussian Radon

Models 20 50 100 5 10 20

AE-R M .505 ± .018 .641 ± .014 .726 ± .011 .658 ± .014 .664 ± .014 .757 ± .011
W −.028 .064 .132 .074 −.036 .100

AE-P M .325 ± .021 .217 ± .018 .232 ± .016 .680 ± .013 .456 ± .019 .365 ± .017
W −.117 −.153 −.119 .079 −.120 −.111

AE-E2E M .475 ± .021 .296 ± .021 .283 ± .021 .824 ± .009 .781 ± .014 .739 ± .015
W −.078 −.162 −.144 .205 .057 .010
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Table 7: Results on the MNIST dataset for both Gaussian and Radon measurements in SSIM (higer is better).
The trajectory length of the experiment is reported on the second row. For each model, we report mean and
standard error of the mean. The reward for the RL policy is computed based on the reconstruction error at
the final state only.

Gaussian Radon

Models β 20 50 100 5 10 20

VAE-R

1 .441 ± .018 .627 ± .014 .703 ± .012 .566 ± .016 .639 ± .015 .733 ± .012
.1 .467 ± .017 .629 ± .015 .701 ± .012 .581 ± .015 .678 ± .012 .743 ± .011
.01 .482 ± .016 .635 ± .014 .696 ± .012 .595 ± .014 .714 ± .012 .761 ± .010
.001 .479 ± .016 .635 ± .014 .706 ± .012 .612 ± .014 .675 ± .013 .764 ± .010

VAE-P
1 .335 ± .019 .297 ± .017 .252 ± .017 .585 ± .014 .662 ± .015 .586 ± .017
.1 .348 ± .019 .196 ± .015 .216 ± .018 .642 ± .015 .662 ± .014 .535 ± .016
.01 .321 ± .018 .251 ± .020 .201 ± .018 .655 ± .013 .433 ± .016 .493 ± .017
.001 .323 ± .018 .203 ± .016 .235 ± .018 .613 ± .013 .520 ± .016 .378 ± .018

VAE-E2E
1 .306 ± .021 .301 ± .021 .259 ± .019 .646 ± .015 .621 ± .016 .656 ± .017
.1 .307 ± .020 .256 ± .019 .207 ± .015 .714 ± .014 .676 ± .015 .490 ± .022
.01 .293 ± .019 .231 ± .017 .205 ± .014 .722 ± .014 .654 ± .017 .573 ± .026
.001 .295 ± .019 .205 ± .015 .215 ± .015 .771 ± .012 .737 ± .015 .637 ± .021

Table 8: Results on the MAYO dataset for Radon measurements. The trajectory length of the experiment is
reported on the second row. We report mean and standard error of the mean in SSIM. For each model, we
report mean and standard error of the mean on the row signed as M, while we report the worst case error on
the row signed as W. The reward for the RL policy is computed based on the reconstruction error at the
final state only.

Radon

Models 5 10 20

AE-R M .629 ± .014 .646 ± .014 .532 ± .011
W .339 .349 .286

AE-E2E M .657 ± .016 .660 ± .015 .658 ± .016
W .242 .302 .264

Table 9: Results on the MAYO dataset for Radon measurements. The trajectory length of the experiment is
reported on the second row. We report mean and standard error of the mean in SSIM. The reward for the
RL policy is computed based on the reconstruction error at the final state only.

Radon

Models β 5 10 20

VAE-R

1 .571 ± .012 .612 ± .013 .604 ± .013
.1 .574 ± .013 .618 ± .013 .620 ± .013
.01 .599 ± .014 .614 ± .013 .593 ± .012
.001 .556 ± .011 .622 ± .013 .629 ± .013

VAE-E2E
1 .643 ± .015 .652 ± .014 .668 ± .014
.1 .661 ± .014 .664 ± .014 .659 ± .015
.01 .666 ± .014 .661 ± .014 .661 ± .015
.001 .664 ± .014 .662 ± .014 .671 ± .014
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