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Abstract

Exponential-family harmoniums (EFHs) generalize the re-
stricted Boltzmann machine beyond Bernoulli random vari-
ables to other exponential families. Here we show how to
extend the EFH beyond standard exponential families (Pois-
son, Gaussian, etc.), by allowing the sufficient statistics for
the hidden units to be arbitrary functions of the observed
data, parameterized by deep neural networks. This rules out
the standard sampling scheme, block Gibbs sampling, so we
replace it with a form of Langevin dynamics within Gibbs,
inspired by a recent method for training Gaussian restricted
Boltzmann machines (GRBMs). With Gibbs-Langevin, the
GRBM can successfully model small data sets like MNIST
and CelebA-32, but struggles with CIFAR-10, and cannot
scale to larger images because it lacks convolutions. In con-
trast, our neural-network EFHs (NN-EFHs) generate high-
quality samples from CIFAR-10 and scale well to CelebA-
HQ. On these datasets, the NN-EFH achieves FID scores that
are 25–50% lower than a standard energy-based model with a
similar neural-network architecture and the same number of
parameters; and competitive with noise-conditional score net-
works, which utilize more complex neural networks (U-nets)
and require considerably more sampling steps.

Introduction
A basic trade-off in the design of generative models is be-
tween facility of generation and facility of inference. For
example, (vanilla) variational autoencoders (Rezende, Mo-
hamed, and Wierstra 2014; Kingma and Welling 2014) cor-
respond to directed graphical models with two vertices, so
generation is trivial because it involves only an “ancestral
pass” (from parent to child) through the graph. The gener-
ative process can still be made highly expressive without
much computational overhead by retaining standard para-
metric distributions (e.g., normal) but letting their param-
eters (mean, variance, etc.) depend on the latent variables
through deep neural networks. There is, however, a price
to paid for these highly expressive generative processes: in-
ference must be approximate, since Bayes rule will not be
computable (it will involve either an intractable integral or
an infeasible summation). VAEs therefore employ a separate
“recognition model” for inference, that is, for approximating
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the distribution over latent variables (ẑ), given the observa-
tions (x), under the generative model. The same is true of
diffusion models (Sohl-Dickstein et al. 2015), although the
generative and recognition models can be more faithfully
aligned by extending the directed graph over hundreds of
vertices. There is, in turn, a cost in generation: it requires
a large number of steps (Song and Ermon 2019; Ho, Jain,
and Abbeel 2020), perhaps in the form of an ODE solver
(Song et al. 2021)), distillation (Yin et al. 2023), or some
approximation. Or again, the recognition model can be dis-
pensed with altogether if the map from simply-distributed
latent variables to the data is designed to be deterministic
and invertible (Bell and Sejnowski 1995; Dinh, Krueger, and
Bengio 2015; Rezende and Mohamed 2015). But in practice
the latent variables in such models—which must have the
same dimension as the observed data—learn to encoder vi-
sual rather than semantic features of the (e.g.) images on
which they are trained (Kirichenko, Izmailov, and Wilson
2020).

One long-standing alternative is define the generative
model directly in terms of the posterior distribution,
p̂(ẑ|x̂;θ), as well as the “emission” distribution, p̂(x̂|ẑ;θ).
(Circumflexes indicate models throughout.) A joint distribu-
tion is implied by these specifications, but can itself be deter-
mined only up to an intractable normalizer. Thus, inference
is easy, but sampling from the joint (generation) is hard. It
generally takes the form of block Gibbs sampling, i.e. re-
peated iterations of sampling first from the posterior and
then from the emission distribution. In the best known exam-
ple of this approach, both emission and posterior are defined
to be products over Bernoulli probability mass functions; the
resulting undirected graphical model is the restricted Boltz-
mann machine (RBM) (Smolensky 1986).

Even with simple emissions and posteriors, as in the
RBM, this architecture can model arbitrarily complex
marginal distributions in the observation space (Le Roux
and Bengio 2008). Furthermore, the emission and posterior
can be generalized to any exponential-family distributions
(or combinations thereof) (Welling, Rosen-Zvi, and Hinton
2004), in which case they are known as exponential-family
harmoniums (EFHs). This is particularly important for the
visible units, since not all data are well represented by (or
can be coerced into) binary vectors. On the other hand, it can
be shown that certain non-pathological distributions cannot
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be represented efficiently by RBMs (and by extension EFHs)
with a realistic number of hidden units and magnitudes of
the weights (Martens et al. 2013). And as they stand, EFHs
cannot incorporate computational structures that are known
to be efficient at computing features from images, like mul-
tilayer convolutional neural networks.

Here we propose to augment EFHs with just such compu-
tational structures, in particular allowing the sufficient statis-
tics of the posterior to depend on the inputs through deep
neural networks. The price is that the emission is no longer
a known parametric distribution, so standard sampling tech-
niques will no longer work. But sampling was never one
of the EFHs strengths, so this is perhaps a small price to
pay. And it is still possible through a form of Langevin-
within-Gibbs that has recently been proposed for Gaussian-
Bernoulli RBMs (GRBMs) (Liao et al. 2022). Below we
show that this technique allows us to train EFHs with neu-
ral sufficient statistics on, and subsequently generate high-
quality samples from, complex datasets like CIFAR-10 and
CelebA-HQ. The model outperforms the GRBM, as well as
a standard energy-based model (without latent variables) de-
fined by a similar neural-network architecture.

The Exponential-Family Harmonium
We derive the exponential-family harmonium from a slightly
different perspective than that of Welling and colleagues
(Welling, Rosen-Zvi, and Hinton 2004). This allows us to
show that the resulting joint distribution is (under some mild
conditions) the most generic possible. In particular, when the
conditional distributions (posterior and emission) are expo-
nential families,

p̂(ẑ|x̂;θ) = h(ẑ) exp
{
η(x̂)TT (ẑ)−A(η(x̂))

}
,

p̂(x̂|ẑ;θ) = k(x̂) exp
{
ζ(ẑ)TU(x̂)−B(ζ(ẑ))

}
,

then the only term in the joint that involves both hidden (la-
tent) and visible (observed) vectors must be a bilinear form
in the sufficient statistics, U(x̂)TWTT (ẑ), for some matrix
W.

To derive the form of the joint distribution, we note that
the ratio of the conditionals is also the ratio of the marginals:

p̂(x̂|ẑ;θ)
p̂(ẑ|x̂;θ)

=
p̂(x̂;θ)

p̂(ẑ;θ)
=

k(x̂)eA(η(x̂))

h(ẑ)eB(ζ(ẑ))
eζ(ẑ)

TU(x̂)−η(x̂)TT (ẑ).

We know an additional fact about this ratio: it must factor
entirely into terms that refer to at most one of ẑ or x̂. This
condition is satisfied for the terms occurring in the quotient.
For it to hold also for the exponential term, it is necessary
that

ζ(ẑ)TU(x̂)− η(x̂)TT (ẑ) = µ(ẑ)− ν(x̂), (1)

for some functions µ and ν. It can be shown (see the proof
in the Appendix) that under some mild conditions, this re-
quires each distribution’s natural parameters to be an affine
function of the other distribution’s sufficient statistics,

η(x̂) = bẑ +WU(x̂)

ζ(ẑ) = bx̂ +WTT (ẑ),
(2)

Ẑ1 Ẑ2 Ẑ3 · · · ẐK

p̂(x̂|ẑ;θ) ∝ exp
{
−∥x̂− µ∥2 +U(x̂,ϕ)TWTẑ

}p̂(ẑ|x̂;θ) = Bern(WU(x̂,ϕ) + bẑ)

U1 U2 U3 U4 · · · UN

x

Figure 1: The NN-EFH.

with a shared, albeit transposed, linear transformation W.
Therefore, the marginal distributions are (up to the propor-
tionality constants)

p̂(ẑ;θ) ∝ h(ẑ)ebẑ
TT (ẑ)+B(bx̂+WTT (ẑ)),

p̂(x̂;θ) ∝ k(x̂)ebx̂
TU(x̂)+A(bẑ+WU(x̂));

and the conditional distributions are

p̂(ẑ|x̂;θ) = h(ẑ)e(bẑ+WU(x̂))TT (ẑ)−A(bẑ+WU(x̂)),

p̂(x̂|ẑ;θ) = k(x̂)e(bx̂+WTT (ẑ))
T
U(x̂)−B(bx̂+WTT (ẑ)).

(3)

Multiplying a conditional by the appropriate marginal yields
the joint distribution:

p̂(ẑ, x̂;θ) = p̂(ẑ|x̂;θ)p̂(x̂;θ)

∝ h(ẑ)k(x̂)ebx̂
TU(x̂)+bẑ

TT (ẑ)+U(x̂)TWTT (ẑ).

Thus the joint takes the form of a Boltzmann distribution
with energy

E(ẑ, x̂,θ) = − log(h(ẑ)k(x̂))− bx̂
TU(x̂)− bẑ

TT (ẑ)

−U(x̂)TWTT (ẑ).
(4)

The Sufficient Statistics
The sufficient statistics for the emission distribution, U(x̂),
determine which features of the input the EFH is sensitive
to. In the RBM, for example, the emission is a product over
Bernoullis, so its sufficient statistics are U(x̂) = x̂. This
means that no hidden unit can encode information about,
e.g., pairwise correlations, xixj . Although the marginal dis-
tributions (over either latent or observed variables) can be
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arbitrarily complex (see above), we suspect that this limi-
tation of the posterior damages the efficiency of the RBM.
Furthermore, for any EFH, so long as the emission is de-
fined to be a product over standard exponential families, the
sufficient statistics U(x̂) cannot contain interaction terms.

We can relax this restriction if we are willing to let go of
standard exponential families for the emission. In particular,
we will retain a product over Bernoullis for the posterior
distribution,

p̂(ẑ|x̂;θ) = Bern(WU(x̂,ϕ) + bẑ), (5)

but allow the joint energy to have the form

E(ẑ, x̂,θ) = ∥x̂− µ∥2 −U(x̂,ϕ)TWTẑ − bẑ
Tẑ, (6)

where the sufficient statistics U(x̂,ϕ) are now allowed to
be any deep neural network (Fig. 1). In particular, by letting
U(x̂,ϕ) be a convolutional neural network, we allow the la-
tent variables (under the posterior distribution) to be directly
sensitive to the two-dimensional, translation-invariant fea-
tures of natural images. We also include a quadratic term,
∥x̂− µ∥2, to encourage the energy to be convex far from
the data, in order to speed convergence of the Langevin dy-
namics (Cheng et al. 2020). Here µ is a learned vector of
parameters.

Learning
To fit the marginal distribution over visible units, p̂(x̂;θ),
to an observed distribution of data, p(x̂), we descend the
gradient of the relative entropy of these distributions (the
standard loss):

d

dθ
DKL{p(X)∥p̂(X;θ)} = EẐ,X

[
− d

dθ
log p̂

(
Ẑ,X;θ

)]
= EẐ,X

[
dE

dθ
(Ẑ,X,θ)

]
− EẐ,X̂

[
dE

dθ
(Ẑ, X̂,θ)

]
.

(7)

The final equality is well known (Hinton 2002). Its appar-
ently simplicity belies the fact that the second term requires
samples from the model joint—which, as we have lately dis-
cussed, are expensive to generate. We return to the sampling
procedure below.

In the standard EFH, with energy given by Eq. 4, the pa-
rameters are θ = {bẑ, bx̂,W}, and Eq. 7 takes a particularly
elegant form as a difference of expected vectors or outer
products. For our proposed energy, Eq. 6, the parameters are
θ = {bẑ,µ,W,ϕ}. The derivative with respect to the last,
ϕ, in particular can be computed with automatic differentia-
tion through the sufficient-statistics network, U(x̂,ϕ).

Sampling
If the emission and posterior are chosen to be standard expo-
nential families, then sampling is straightforward. The nat-
ural parameters can be computed with Eq. 2, converted into
moment parameters with the inverse link function, and sam-
ples drawn from the distributions (Bernoulli, Poisson, Gaus-
sian, etc.) with standard procedures. This is the case, for ex-
ample, in RBMs and GRBMs. In our model, exact sampling

Algorithm 1: Gibbs-Langevin Training

1: Input: Data x1, . . . ,xN , number of Gibbs steps M ,
number of Langevin steps L, step size ϵ, temperature
T , learning rate η, initial parameters θ = (W,ϕ)

2:
3: for i = 1, . . . , I do
4: ▷ in practice, minibatches rather than single samples
5: z ∼ p̂(ẑ|x;θ) = Bern(WU(x,ϕ) + bẑ)
6: x̂, ẑ ← TRAININGSAMPLER(θ,M,L, ϵ, T )
7: θ ← PARAMETERUPDATE(θ,x, z, x̂, ẑ, η)
8: end for

9: procedure TRAININGSAMPLER(θ,M,L, ϵ, T )
10: x̂ ∼ N (0, I)
11: ẑ ∼ p̂(ẑ|x̂;θ) = Bern(WU(x̂,ϕ) + bẑ)
12: for m = 1, . . . ,M do
13: for l = 1, . . . , L do
14: ŷ ∼ N (0, I)

15: x̂← x̂− ϵ∂E∂x̂ (ẑ, x̂,θ) +
√
2ϵT ŷ

16: end for
17: ẑ ∼ p̂(ẑ|x̂;θ) = Bern(WU(x̂,ϕ) + bẑ)
18: end for
19: return x̂, ẑ
20: end procedure

21: procedure PARAMETERUPDATE(θ,x, z, x̂, ẑ, η)
22: ▷ in practice, use AdaM
23: return θ − η

(
dE
dθ (z,x,θ)−

dE
dθ (ẑ, x̂,θ)

)
24: end procedure

is feasible for the posterior distribution, Eq. 5, but not for the
emission distribution: since its sufficient statistics are a com-
plex neural network, it does not correspond to any known
exponential-family distribution.

Instead, we turn to Markov chain Monte Carlo (MCMC)
to sample the emission, in particular to Langevin dynamics
(Neal 2011). Sampling from the model’s joint distribution
still requires block Gibbs sampling, so the overall scheme is
a form of “Langevin within Gibbs.” More precisely, to draw
a sample from the model, we make M pairs of alternating
draws from the posterior and the emission (see Algorithm
1). Draws from the posterior follow the standard procedure
for sampling from Bernoulli distributions. Sampling from
the emission takes L steps of Langevin dynamics:

x̂(l+1) = x̂(l) − ϵ
∂E

∂x̂

(
ẑm, x̂(l),θ

)
+
√
2ϵT ŷ(l), (8)

with ŷ(l) ∼ N (0, I), ϵ the step size, and T the temperature.
The energy in Eq. 8 is the joint energy of Eq. 6, evaluated at
the vector of latent variables, ẑm, produced by the preceding
draw from the posterior. This energy has the same gradient
as the energy of the emission, p̂(x̂|ẑ;θ), since it differs only
by a normalizer that is constant in x̂.

This still leaves some choices for the sampler. In theory,
after a sufficient number of steps, samples from an ergodic
Markov chain will eventually be drawn from the (unique)
stationary distribution, independent of the location of the ini-
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Figure 2: Conceptual illustration of the differences between
LD and Gibbs-Langevin. (a) Langevin dynamics explor-
ing the data space using gradient information. (b) Gibbs-
Langevin exploring the space using a combination of data
and latent space.

tial sample. That implies that the Gibbs chain as well as the
Langevin dynamics could be initialized anywhere. In prac-
tice, Langevin dynamics can be extremely slow to converge
(Hinton 1999; Nijkamp et al. 2019, 2020). In their recent
work on GRBMs, Liao and colleagues (Liao et al. 2022) pro-
pose allowing the Markov chains for the Langevin dynam-
ics to “persist” across Gibbs steps—but not across weight
updates—and we adopt that procedure here. During train-
ing, then, both the Gibbs sampler and the very first (m = 1)
Langevin dynamics are initialized at noise. After that, the
Langevin sampler is initialized at the current state of both
the latent and observed vectors, although it only updates the
latter (see again Algorithm 1). We found that this method of
persistent Langevin dynamics within Gibbs sampling yields
better results compared to a Langevin dynamics in which, at
each Gibbs iteration, the Langevin chain is initialized from
noise.

At test time (i.e., for generation of images), in the spirit
of contrastive divergence (Hinton 2002), we initialize the
Gibbs sampler at data rather than noise (Algorithm 2). Since
the model is assumed to be well-trained at this point, sam-
ples from the model should be near the data distribution,
so data initialization should significantly shorten the burn-in
phase of the Markov chain. In our experiments, we found
that good samples can be generated even when initializ-
ing the Gibbs sampler at noise, but that data initialization
tended to produce the best results. Note, however, that the
first Langevin chain is still initialized at noise, as during
training.

Technically, Eq. 8 is only guaranteed to generate samples
from the stationary distribution in the limit of very small
steps, ϵ, so a Metropolis adjustment is required to correct
the transitions of the Markov chain. However, in our model,
as in others’ (Hinton 1999; Nijkamp et al. 2019, 2020; Du
and Mordatch 2019; Du et al. 2021), the acceptance proba-
bilities computed under Metropolis-Hastings are very small,
leading to a large number of rejected samples and intolerably
long Langevin dynamics. Following the literature, we sim-
ply omit the Metropolis adjustment, accepting all samples,
which we find works well in practice.

We hypothesize the superior performance of Gibbs-

Algorithm 2: Gibbs-Langevin Testing

1: procedure TESTSAMPLER(x,θ,M,L, ϵ, T )
2: ▷ x from the data distribution
3: x̂ ∼ N (0, I)
4: ẑ ∼ p̂(ẑ|x;θ) = Bern(WU(x,ϕ) + bẑ)
5: for m = 1, . . . ,M do
6: for l = 1, . . . , L do
7: ŷ ∼ N (0, I)

8: x̂← x̂− ϵ∂E∂x̂ (ẑ, x̂,θ) +
√
2ϵT ŷ

9: end for
10: ẑ ∼ p̂(ẑ|x̂;θ) = Bern(WU(x̂,ϕ) + bẑ)
11: end for
12: return x̂, ẑ
13: end procedure

Langevin compared to baseline models trained solely with
Langevin dynamics can be attributed to the significantly
larger space explored by Gibbs-Langevin, particularly dur-
ing the initial training phase. As illustrated in Fig. 2a,
Langevin dynamics explores the data space by utilizing
gradient information. However, in regions of the energy
landscape where the gradient signal is weak (flat energy
landscape)—especially during the initial training phase—
exploration is limited. In contrast, Gibbs-Langevin dynam-
ics leverages the latent space to make jumps (as shown in
Fig. 2b), and when combined with the gradient-based sam-
pling of Langevin dynamics, it enables exploration of a
much larger space. To verify this, we analyzed the average
distance traveled between the starting point and the end of
the chain for both Langevin and Gibbs-Langevin dynamics.
For Langevin dynamics, we performed 300 steps, while for
Gibbs-Langevin, we used 5 Gibbs steps and 60 Langevin
dynamics steps. In the case of Gibbs-Langevin, the distance
was approximately 10 times greater than that observed with
Langevin dynamics, confirming our hypothesis.

Related Work
Attempts to put convolutions into RBMs date back at least to
Lee and colleagues (Lee et al. 2009). This approach builds a
single-layer convolution into the RBM. Multilayer convolu-
tions are then achieved by extending this RBM into a deep
belief network (DBN), i.e., training a second RBM on the la-
tent variables inferred by the first RBM, and so on. However,
no attempt was made to generate images, and the model is
limited to convolutions.

A more closely related idea is to incorporate an inverse
autoregressive flow (IAF) (Kingma et al. 2016) into the en-
ergy function of the RBM (Liu, Xie, and Wang 2020). Since
the flow is invertible, sampling in the observation space is
still possible, and the energy gradient is computable simply
via its Jacobian determinant. This is an intriguing approach
and has some advantages over our own, chiefly obviating
Langevin dynamics. On the other hand, the IAF limits the
available neural-network architectures since it must retain
invertibility; and the authors were apparently unable to gen-
erate images from their model.

Most recently, Liao and colleagues have proposed learn-
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ing the variance of the input dimensions with a Gaussian-
Bernoulli RBM (Liao et al. 2022). Our implementation of
Langevin within Gibbs was inspired by theirs. But this
model is limited to second-order statistics (indeed, only the
diagonal of the covariance matrix), and as we see below is
unable to capture the fine details of complex distributions.

Methods
We model the sufficient statistic using a neural network with
an architecture similar to that described by Nijkamp and col-
leagues (Nijkamp et al. 2019, 2020): three convolutional lay-
ers interspersed with self-attention layers. We use this same
neural network in an energy-based model (EBM) as a base-
line for comparison. In particular, in the EBM, the model en-
ergy is computed from the penultimate layer by inner prod-
uct with a (learned) vector of weights. For our NN-EFH, in
contrast, the penultimate layer provides the sufficient statis-
tics for the emission density. We additionally normalize the
final energy by the batch size, a step we have found to help
stabilize the training process. For MNIST and CIFAR-10,
the final layer contains 1024 units; for CelebA, 4096. The
NN-EFH additionally has a hidden layer (ẑ), with sizes 2048
and 8192, respectively.

We train the NN-EFH to descend the gradient in Eq. 7
with Langevin-within-Gibbs, as lately described. In particu-
lar, we employ L = 60 steps of Langevin dynamics within
M = 5 steps of Gibbs sampling. We train the baseline EBM
using the standard MLE/min-KL loss. In our experience, the
best results for EBMs trained with Langevin dynamics on
complex datasets are achieved with a step size of ϵ = 1 and
temperature T = 5e−5, and we accordingly used these pa-
rameters in our Langevin-with-Gibbs when training the NN-
EFH and for the (vanilla) Langevin dynamics for the EBM.
To obtain samples from the EBM during training, we em-
ploy Langevin dynamics with the same parameters.

The recent implementation of the GRBM proposed by
Liao and colleagues (Liao et al. 2022) also provides another
useful point of comparison, since it is trained with the same
Langevin-within-Gibbs scheme, and differs only in the ex-
pressivity of the sufficient statistics. For training GRBMs in
this work, we use their source code and choices for hyper-
parameters.

All models are trained using stochastic gradient descent
with the Adam optimizer on V100 GPUs for 50,000 itera-
tions with a batch size of 64.

Results
Quality of Generated Images. We begin with MNIST
(32x32). Fig. 3a shows digits generated from an NN-EFH.
The model successfully learns the distribution and effec-
tively captures the strokes, curves, and typical shapes with-
out suffering from any kind of mode collapse. Model perfor-
mance is comparable with the GRBM (Liao et al. 2022) and
EBMs.

Similar appraisals can be made of images generated from
NN-EFHs trained on Fashion MNIST (Fig. 3b) and the Ox-
ford Flowers dataset (Fig. 3c). We draw attention to the lat-
ter in particular. Nijkamp et al. (2020) trained energy-based

a b

c d

Figure 3: Samples generated from the NN-EFH. (a) MNIST,
(b) FMNIST, (c) Oxford Flowers, (d) CelebA-HQ (64x64).

Model FID
EBM base 22.7
NN-EFH 11.3

DCGAN (Radford, Metz, and Chintala 2016) 12.5
VAE (Kingma and Welling 2014) 38.76

Glow (Kingma and Dhariwal 2018) 23.32

Table 1: Frechet Inception distance on CelebA

models by gradient descent of the marginal cross entropy—
the same loss we use for the NN-EFH (Eq. 7)—using (short-
run) Langevin dynamics to draw samples from the model,
and with an identical neural-network architecture to ours.
Their generated flowers are noticeably blurrier (cf. Figure
7, second column, op. cit.). This very strongly suggests that
the introduction of latent variables and the Gibbs-Langevin
sampling scheme together yield a superior approach. FID
scores are not reported in that work, so we reproduce their
EBMs below and quantify the superiority of the NN-EFH.

Next we turn to CelebA-HQ (64x64). The dataset is a
high-quality version of the CelebA dataset, consisting of
30,000 high-resolution celebrity images, refined and pro-
cessed to ensure higher visual quality. Randomly selected
samples generated from the NN-EFH are shown in Fig. 3d.
The samples are high-quality and capture fine detail; the lat-
ter in particular appears difficult for the GRBM (see Fig. 4
in (Liao et al. 2022)). We also note the diversity of faces and
of backgrounds, which likewise is noticeably absent from
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Model FID
EBM 42.3

JEM (Grathwohl et al. 2020) 38.40
IGEBM (Du and Mordatch 2019) 38.2

FlowCE (Gao et al. 2020) 37.3
NCSN [21] (Song and Ermon 2019) 25.2
Glow (Kingma and Dhariwal 2018) 48.9

NT-EBM 48.01
GRBM (Liao et al. 2022) (Gibbs-Langevin) 164

NN-EFH 32.1

Table 2: Frechet Inception distance on CIFAR-10

samples generated by the GRBM.
To quantify the quality of the celebrity faces generated

by the NN-EFH, we compare their FID score (Heusel et al.
2017) against similarly sized recent models (Table 1). The
NN-EFH outperforms an EBM with an identical neural-
network architecture, as well as a vanilla VAE and Glow;
it is similar to DCGAN.

Finally, we train all three models on CIFAR-10 (60,000
32x32 color images spread across 10 classes, each represent-
ing different objects such as animals and vehicles). Samples
generated from each of three different models are shown in
Fig. 4. The GRBM (Fig. 4a) fails to generate realistic sam-
ples from this dataset, likely due to its greater complexity
and diversity compared to MNIST and CelebA. (We note
that Liao et al. did not report results for CIFAR-10.) The
EBM (Fig. 4b) and the NN-EFH (Fig. 4c) both generate re-
alistic and diverse samples. To determine the relative qual-
ity of these samples, we again compute FID scores. Table 2
shows that the NN-EFH achieves significantly better scores
than both of the other models. This is (to our knowledge)
the first time an RBM/EFH has generated realistic samples
from CIFAR-10. Indeed, its FID scores are competitive with
noise-conditional score matching (Song and Ermon 2019).

Sample Diversity. The ability to generate high-quality im-
ages is a necessary but not sufficient condition for being a
good generative model. It is also necessary to show that the
samples are not overly similar to the training set. We focus
here on CIFAR-10.

More precisely, we investigate whether the initialization
of the Gibbs sampler at data at test time yokes the gener-
ated images to the initial images. Fig. 5a shows images from
eight randomly chosen Gibbs-Langevin runs that were ini-
tialized at the images shown in the leftmost column. Each
subsequent column shows the chain after 1 more Gibbs step.
The noise introduced in initializing the first Langevin chain
(see again Algorithm 2) clearly lifts the samples off the man-
ifold of images, to which they subsequently return over the
course of sampling—but not to the original image from the
data distribution. Indeed, samples can even move from one
category to another—as in the second row, where a sampler
initialized at a truck yields a horse—suggesting that the sam-
pler can mix across modes of the distribution.

A related, residual concern is whether the final sample
might resemble, if not the initialization of the Gibbs sam-

Dataset CIFAR10 FMNIST
Model Accuracy

U (x̂) 53% 71%
η(x̂) 47% 62%
EBM penultimate layer 29% 35%

Table 3: Linear evaluation accuracy on CIFAR10 and FM-
NIST datasets.

pler, some other image in the training set. Fig. 5b shows four
randomly chosen generated images from the NN-EFH (left-
most column), along with their nearest neighbors in CIFAR-
10 (columns 2–4) in terms of Euclidean distance in pixel
space. The generated images resemble images in the train-
ing set only at the category level (“truck,” “horse,” etc.), but
not in fine details. This is precisely the desired outcome.

The Learned Features. After training an energy-based
model (EBM) with latent variables, we sought to evaluate
whether the learned latent variables encode useful informa-
tion. One approach to testing this is to train a simple linear
classifier on top of the learned features and to assess the ac-
curacy across different datasets. For the NN-EFH, we used
as features the sufficient statistics, U (x̂), or the natural pa-
rameters for the latent variables, η(x̂), on top of which the
linear model was trained. As a baseline, we let the features
be the penultimate layer of an EBM with a similar architec-
ture, trained using short-run MCMC.

Table 3 shows the results for CIFAR-10 and FMNIST
(chance is 10%). The NN-EFH evidently learns useful fea-
tures, achieving respectable classification accuracies. Using
the penultimate layer of the EBM for features cuts accura-
cies in half. These results highlight the potential of the NN-
EFH model, which not only serves as a strong generative
model but also learns meaningful latent representations. A
promising direction for future research involves incorporat-
ing a contrastive loss into the existing training procedure to
enhance the quality of latent representations (Kim and Ye
2022; Lee et al. 2023).

Discussion
The RBM (or EFH) represents a particular compromise be-
tween ease of inference and sample generation, in particular
opting for exact inference while requiring MCMC to gener-
ate samples. Until now, this architecture has not been able to
generate images from complex datasets like CIFAR-10. The
premise of this study is that this is due in part to the absence
of useful biases in the architecture, most obviously convolu-
tions, which exploit the two-dimensional translation invari-
ance of images—but also attention, which we have found to
significantly improve generation from energy-based models.
Such biases can be incorporated into the EFH, at the price of
losing cheap conditional sampling of the observations given
the latent variables—the “emission” distribution. We have
argued that this is not such a steep price to pay, since gener-
ation from the joint or marginal distributions is already the
limiting factor, and since Langevin dynamics can be used
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a b c

Figure 4: CIFAR-10 samples generated from (a) the GRBM, (b) an EBM, and (c) the NN-EFH.

a b

Figure 5: Sample diversity. (a) An illustration of the sam-
pling process for Algorithm 2 for an NN-EFH trained on
CIFAR-10. Each row corresponds to a different initial sam-
ple (first column); columns show samples after every full
Gibbs step. Final samples (last column) do not strongly re-
semble the data initialization. (b) Nearest neighbors in the
training set (columns 2–4) to the generated samples in col-
umn 1.

to sample the emission effectively. In particular, if the suf-
ficient statistics for the latent variables are computed from
the inputs with a deep neural network, the posterior (and
consequently the joint) can be directly sensitive to complex
features in those input. Furthermore, inference is still exact
and cheap, since we do not alter the sufficient statistics for
the posterior distribution—a product over Bernoulli distri-
butions.

The resulting model can learn to generate from the stan-
dard datasets (MNIST, CelebA, CIFAR-10)—to our knowl-
edge, the first time the RBM/EFH architecture has ever done
so for the last in particular. We emphasize that we did not
use a particularly large or complex neural network; the point

of this study was to determine whether relaxing the limi-
tations on the sufficient statistics of the emission could by
itself yield superior models. Evidently, this is the case, since
a GRBM trained with the same procedure cannot learn to
generate from CIFAR-10, or (to our knowledge) capture fine
detail in CelebA.

On CIFAR-10, the neural-network EFH also outperforms
an energy-based model with the same neural-network archi-
tecture. The most obvious explanation is that the addition
of latent variables improves model performance. But by it-
self, this amounts only to adding another layer to the neural
network, with softplus nonlinearities (Martens et al. 2013).
More interesting is the possibility that Gibbs sampling pro-
vides an advantage over Langevin dynamics alone.

In fact, the reverse also appears to be true. The sam-
pling procedure, Langevin within Gibbs, was forced upon
us by giving up a standard exponential family for the emis-
sion distribution. However, it may be beneficial per se. In
the GRBM, standard techniques are available to sample
from the emission density—it is a normal distribution. But
Liao and colleagues (Liao et al. 2022) found that Langevin-
within-Gibbs yields superior results for the GRBM. We con-
sider this an important direction for future research.

Finally, since the network learns good models of mod-
erately complex datasets, since inference is still exact, and
since this posterior is sensitive to higher-order statistics in
the input, the latent variables learned by this model may be
useful for downstream tasks. They are, for example, more
useful for classification than are features from a similarly
stuctured EBM.

Appendix
Enforcing consistency between exponential-family emis-
sion and posterior distributions. We showed in the main
text that when the emission and posterior distributions are
both exponential families, the natural parameters are con-
strained by Eq. 1. To simplify the presentation, we repeat
the constraint here (with the vector-valued functions named
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alphabetically):

µ(ẑ)− ν(x̂) = γ(ẑ)Tδ(x̂)− β(x̂)Tα(ẑ). (9)

It is intuitive that this equation constrains the natural param-
eters (here, γ(ẑ) and β(x̂)): no ẑ-x̂ interaction terms ap-
pear on the left-hand side, so those generated on the right
must cancel. This is particularly restrictive since the interac-
tions are created only through inner products. For example,
if δ(x̂) contains only terms quadratic in the elements of x̂,
then β(x̂) must contain such terms as well, in order to can-
cel them (except in the trivial case where γ(ẑ) is constant).

Let all the functions be polynomials in ẑ and x̂ of maxi-
mum degree D, and define the monomial bases

x̂ ..=
[
x̂1, x̂2, . . . , x̂1

2, x̂1x̂2, x̂1x̂3, . . . , x̂K
D
]T

ẑ ..=
[
ẑ1, ẑ2, . . . , ẑ1

2, ẑ1ẑ2, ẑ1ẑ3, . . . , ẑK
D
]T
.

(Notice that we have omitted the constants from these
bases.) For appropriately shaped matrices (A,B,C,D),
vectors (a, b, c,d), and scalar (k), Eq. 9 is equivalent to the
equation

mTẑ − nTx̂+ k

= (c+Cẑ)
T
(d+Dx̂)− (b+Bx̂)

T
(a+Aẑ)

= ẑT(CTD−ATB
)
x̂+ ẑT(CTd−ATb

)
+
(
cTD− aTB

)
x̂+

(
cTd− aTb

)
holding for all values of ẑ and x̂. Therefore,

k = cTd− aTb

m = CTd−ATb

−nT = cTD− aTB

0 = CTD−ATB. (10)

We shall only make use of the last of these, Eq. 10.
Now if the sufficient statistics are not to be redundant (i.e.,

are to be minimal), then A and D must both have linearly in-
dependent rows (otherwise some elements of α and δ could
be computed from other elements). For neural-network suffi-
cient statistics δ(x̂), as in the main text, we consider a poly-
nomial approximation. In this case D would be very large,
and the size of the basis larger still (on the order of K +D
choose D), so even high-dimensional δ(x̂) will not violate
the requirement. Under the assumption, then, that A and D
have linearly independent rows, there exists a right pseudo-
inverse for A, call it A†, such that AA† = I; and a right
pseudo-inverse for D, call it D†, such that DD† = I. It
follows immediately from Eq. 10 that

CT = ATBD†, B =
(
CA†)T

D

=⇒
(
CA†)T

= BD† =.. W

=⇒ CT = ATW, B = WD,

(11)

where on the second line we have defined a new matrix W.
This allows us to rewrite the functions γ(ẑ) and β(x̂) in

terms of α(ẑ) and δ(x̂) (resp.):

γ(ẑ) = Cẑ + c

= WDx̂+ b

= WT(Aẑ + a) +
(
c−WTa

)
= WTα(ẑ) +

(
c−WTa

)
,

β(x̂) = Bx̂+ b

= WTAẑ + c

= W(Dx̂+ d) + (b−Wd)

= Wδ(x̂) + (b−Wd).

In a word, γ(ẑ) is an affine function of α(ẑ), and β(x̂) is
an affine function of δ(x̂); and the linear transformations are
transposes of each other.
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